Master of Science in Mathematics Royal University of Phnom Penh RUPP

Michel Waldschmidt URPP - Université Royale de Phnom Penh
Centre International de Mathématiques Pures et Appliquées CIMPA
Coopération Mathématique Interuniversitaire Cambodge France

Real Analysis

Final Exam, October 20, 2010 (3 hours)
You are allowed to use the textbook by W. Trench, nothing else.
Please switch off your cell phone - thanks

Exercise 1. Is the function $f(x)=x^{3}-x$ bounded on $(-\infty,+\infty)$? Is there a local maximum? Is there a local minimum?

Exercise 2. Consider the function

$$
f(x)=\frac{\left(x^{2}+5 x-3\right) \sin \left(x^{2}-1\right)+e^{x \cos x}+\sqrt{x^{2}+1}}{x^{2}+1}
$$

on the closed bounded interval $[0,1]$.
a) Is f continuous on $[0,1]$?
b) Is f uniformly continuous on $[0,1]$?
c) Is f differentiable on $[0,1]$?
d) Is f integrable on $[0,1]$?

Exercise 3.

a) Give the values of

$$
\lim _{x \rightarrow 0+}\left(\frac{|x|}{x}+\sin x+\cos x\right) \quad \text { and } \quad \lim _{x \rightarrow 0-}\left(\frac{|x|}{x}+\sin x+\cos x\right)
$$

b) Give the values of

$$
\limsup _{x \rightarrow+\infty} \frac{1}{2+\sin x}, \quad \liminf _{x \rightarrow+\infty} \frac{1}{2+\sin x}
$$

and of

$$
\limsup _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right) \sin x, \quad \liminf _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right) \sin x .
$$

Exercise 4. Let t be a positive real number. Consider the function $f(x)$ defined on $(-\infty,+\infty)$ by

$$
f(x)=\frac{x}{|x|+t} .
$$

a) Show that this function is monotonous.
b) Show that this function is bounded and compute $\sup _{x \in \mathbf{R}} f(x)$ and $\inf _{x \in \mathbf{R}} f(x)$.
c) Is f continuous? For which values of k is f differentiable k times?

Exercise 5. Compute the value of the proper integral

$$
\int_{0}^{1} x^{2} e^{-x} d x
$$

Exercise 6. Let t be a positive real number. Compute

$$
\int_{0}^{t} x \cos x d x
$$

Exercise 7.

Let n be a relative integer. Is the improper integral

$$
\int_{1}^{+\infty} t^{n} e^{-t} d t
$$

convergent?
Exercise 8. Is the improper integral

$$
\int_{-\infty}^{+\infty} \frac{\sin x}{1+x^{2}} d x
$$

convergent?
Exercise 9. For $n \geq 1$ integer, define

$$
u_{n}=\int_{0}^{1} \frac{d t}{(1+t)^{n}}
$$

a) Compute u_{n} for $n \geq 1$.
b) Is the series

$$
\sum_{n \geq 1} u_{n}
$$

convergent?

Exercise 10.

a) Let t be a real number. Compute

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{t}{n}\right)^{n}
$$

b) Compute

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1}\left(1+\frac{t}{n}\right)^{n} d t
$$

Exercise 11. Consider the function

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Check that for all $k \geq 0$ the function f is k times differentiable. What is the Taylor series of f ? Is f the sum of a power series?

Master of Science in Mathematics
Royal University of Phnom Penh RUPP

Michel Waldschmidt
URPP - Université Royale de Phnom Penh
Centre International de Mathématiques Pures et Appliquées CIMPA
Coopération Mathématique Interuniversitaire Cambodge France

Real Analysis

Final Exam, October 20, 2010- solutions

Solution exercise 1

The function $x^{3}-x$ is not bounded above, not bounded below. Since the derivatives is $3 x^{2}-1$, there is a local maximum at $x_{1}=-1 / \sqrt{3}=-\sqrt{3} / 3$ with $f\left(x_{1}\right)=-(2 / 3) x_{1}=2 \sqrt{3} / 9$ and a local minimum at $x_{2}=1 / \sqrt{3}=\sqrt{3} / 3$ with $f\left(x_{2}\right)=-(2 / 3) x_{2}=-2 \sqrt{3} / 9$.

Solution exercise 2

The answers are all yes: the sums, products, composites of continuous functions are continuous, also the quotient when the denominator does not vanish. A function which is continuous on a closed bounded interval is uniformly continuous and is integrable. The sums, products, composites of differentiable functions are differentiable, also the quotient when the denominator does not vanish.

Solution exercise 3

a)

$$
\lim _{x \rightarrow 0+}\left(\frac{|x|}{x}+\sin x+\cos x\right)=2 \quad \text { and } \quad \lim _{x \rightarrow 0-}\left(\frac{|x|}{x}+\sin x+\cos x\right)=0
$$

b)

$$
\limsup _{x \rightarrow+\infty} \frac{1}{2+\sin x}=1, \quad \liminf _{x \rightarrow+\infty} \frac{1}{2+\sin x}=\frac{1}{3},
$$

and

$$
\limsup _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right) \sin x=1, \quad \liminf _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right) \sin x=-1 .
$$

Solution exercise 4

The function f is continuous at 0 with $f(0)=0$. We have $f(x) \geq 0$ for $x \geq 0$ and $f(x) \leq 0$ for $x \leq 0$. On the closed interval $[0,+\infty]$, the function

$$
f(x)=\frac{x}{x+t}
$$

is, continuous, differentiable with

$$
f^{\prime}(x)=\frac{t}{(x+t)^{2}}>0
$$

hence the function is increasing and therefore

$$
\sup _{x \geq 0} f(x)=\lim _{x \rightarrow+\infty} f(x)=1, \quad \inf _{x \geq 0} f(x)=f(0)=0
$$

Furthermore, f^{\prime} is differentiable with

$$
f^{\prime \prime}(x)=\frac{-2 t}{(x+t)^{3}}
$$

On the closed interval $(+\infty, 0]$, the function

$$
f(x)=\frac{x}{-x+t}
$$

is continuous, differentiable with

$$
f^{\prime}(x)=\frac{t}{(x-t)^{2}}>0
$$

hence the function is increasing and therefore

$$
\sup _{x \leq 0} f(x)=f(0)=0, \quad \inf _{x \leq 0} f(x)=\lim _{x \rightarrow-\infty} f(x)=-1
$$

Furthermore, f^{\prime} is differentiable with

$$
f^{\prime \prime}(x)=\frac{-2 t}{(x-t)^{3}} .
$$

This shows that f is increasing on $(-\infty,+\infty)$,

$$
\sup _{x \in \mathbf{R}} f(x)=\lim _{x \rightarrow+\infty} f(x)=1, \quad \inf _{x \in \mathbf{R}} f(x)=\lim _{x \rightarrow-\infty} f(x)=-1
$$

Since $f^{\prime}(0+)=f^{\prime}(0-)=1 / t$ while $f^{\prime \prime}(0+)=-2 / t^{2} \neq 2 / t^{2}=f^{\prime \prime}(0-)$, the function f is k times differentiable for $k=1$ but not for $k=2$ (hence not for $k \geq 2$).

Solution exercise 5

Integration by part gives

$$
\text { for } \quad I=\int_{0}^{1} x^{2} e^{-x} d x \quad \text { the value } \quad I=\frac{-1}{e}+2 J \quad \text { with } \quad J=\int_{0}^{1} x e^{-x} d x
$$

Again, integrating by part gives

$$
J=1-\frac{2}{e} . \quad \text { Hence } \quad I=2-\frac{5}{e} .
$$

Solution exercise 6

A primitive of $x \cos x$ is $x \sin x+\cos x$. Hence

$$
\int_{0}^{t} x \cos x d x=t \sin t+\cos t-1
$$

One can also prove this by integrating by part.

Solution exercise 7

Let n be a relative integer. We have

$$
\lim _{t \rightarrow+\infty} t^{n+2} e^{-t}=0
$$

hence the improper integral

$$
\int_{1}^{+\infty} t^{n} e^{-t} d t
$$

is convergent.

Solution exercise 8

Since

$$
\frac{|\sin x|}{1+x^{2}} \leq \frac{1}{1+x^{2}}
$$

for all $x \in \mathbf{R}$, the integral

$$
\int_{-\infty}^{+\infty} \frac{\sin x}{1+x^{2}} d x
$$

is absolutely convergent, hence convergent. The function $f(x)=\sin x /\left(1+x^{2}\right)$ is odd: $f(-x)=-f(x)$, hence for all $R>0$

$$
\int_{-R}^{+R} \frac{\sin x}{1+x^{2}} d x=0 \quad \text { and therefore } \int_{-\infty}^{+\infty} \frac{\sin x}{1+x^{2}} d x=\lim _{R \rightarrow+\infty} \int_{-R}^{+R} \frac{\sin x}{1+x^{2}} d x=0
$$

Solution exercise 9

a) We have

$$
u_{1}=\int_{0}^{1} \frac{d t}{1+t}=\log 2
$$

b) For $n \geq 2$, a primitive of $(1+t)^{-n}$ is $(-1 /(n-1))(1+t)^{-n+1}$, hence

$$
u_{n}=\int_{0}^{1} \frac{d t}{(1+t)^{n}}=\frac{1}{n-1}\left(1-\frac{1}{2^{n-1}}\right)
$$

c) Since

$$
\sum_{n \geq 2} \frac{1}{n-1} \frac{1}{2^{n-1}} \text { is convergent and } \sum_{n \geq 2} \frac{1}{n-1} \text { diverges to }+\infty
$$

the series

$$
\log 2+\sum_{n \geq 2} \frac{1}{n-1}\left(1-\frac{1}{2^{n-1}}\right)
$$

diverges to $+\infty$.
Solution exercise 10
a) For $t \in \mathbf{R}$,

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{t}{n}\right)^{n}=e^{t}
$$

This has been proved during the course, but we need (for the next question) to check that the limit is uniform on $[0,1]$. This follows from the estimate

$$
\sup _{0 \leq t \leq 1}\left|n \log \left(1+\frac{t}{n}\right)-t\right|<\frac{2}{n} \quad \text { for sufficiently large } n
$$

and the fact that the exponential function is continuous.
b) Since the limit is uniform on $[0,1]$, we have

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1}\left(1+\frac{t}{n}\right)^{n} d t=\int_{0}^{1} \lim _{n \rightarrow+\infty}\left(1+\frac{t}{n}\right)^{n} d t=\int_{0}^{1} e^{t} d t=e-1
$$

Remark. There is another solution for this exercise: since

$$
\frac{d}{d t}\left(1+\frac{t}{n}\right)^{n+1}=\frac{n+1}{n}\left(1+\frac{t}{n}\right)^{n}
$$

we have

$$
\int_{0}^{1}\left(1+\frac{t}{n}\right)^{n} d t=\frac{n}{n+1}\left(\left(1+\frac{1}{n}\right)^{n+1}-1\right)=\left(1+\frac{1}{n}\right)^{n}-\frac{n}{n+1} .
$$

The conclusion follows from

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e \quad \text { and } \quad \lim _{n \rightarrow+\infty} \frac{n}{n+1}=1
$$

Solution exercise 11

For all integers k, the function

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

satisfies $x^{k} f(x) \rightarrow 0$ as $x \rightarrow 0$. It follows that for all $k \geq 0$, the function f is k times differentiable with $f^{(k)}(0)=0$. The Taylor series of f is the power series with all coefficients 0 . Hence f is not the sum of a power series.
Remark. $e^{-1 / x} \rightarrow 0$ when $x \rightarrow 0+$ and $e^{-1 / x} \rightarrow+\infty$ when $x \rightarrow 0-$, this is why one takes $1 / x^{2}$ and not $1 / x$.

