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Exercise 1. Is the function f(x) = x3 − x bounded on (−∞, +∞)? Is there a local maximum?
Is there a local minimum?

Exercise 2. Consider the function

f(x) =
(x2 + 5x− 3) sin(x2 − 1) + ex cos x +

√
x2 + 1

x2 + 1

on the closed bounded interval [0, 1].
a) Is f continuous on [0, 1]?
b) Is f uniformly continuous on [0, 1]?
c) Is f differentiable on [0, 1]?
d) Is f integrable on [0, 1]?

Exercise 3.
a) Give the values of

lim
x→0+

(
|x|
x

+ sin x + cos x

)
and lim

x→0−

(
|x|
x

+ sin x + cos x

)
.

b) Give the values of

lim sup
x→+∞

1
2 + sin x

, lim inf
x→+∞

1
2 + sin x

,

and of

lim sup
x→+∞

(
1 +

1
x

)
sin x, lim inf

x→+∞

(
1 +

1
x

)
sin x.

Exercise 4. Let t be a positive real number. Consider the function f(x) defined on (−∞, +∞)
by

f(x) =
x

|x|+ t
·

a) Show that this function is monotonous.
b) Show that this function is bounded and compute supx∈R f(x) and infx∈R f(x).
c) Is f continuous? For which values of k is f differentiable k times?

Exercise 5. Compute the value of the proper integral∫ 1

0

x2e−xdx.
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Exercise 6. Let t be a positive real number. Compute∫ t

0

x cos xdx.

Exercise 7.
Let n be a relative integer. Is the improper integral∫ +∞

1

tne−tdt

convergent?

Exercise 8. Is the improper integral ∫ +∞

−∞

sin x

1 + x2
dx

convergent?

Exercise 9. For n ≥ 1 integer, define

un =
∫ 1

0

dt

(1 + t)n
·

a) Compute un for n ≥ 1.
b) Is the series ∑

n≥1

un

convergent?

Exercise 10.
a) Let t be a real number. Compute

lim
n→+∞

(
1 +

t

n

)n

.

b) Compute

lim
n→+∞

∫ 1

0

(
1 +

t

n

)n

dt.

Exercise 11. Consider the function

f(x) =

{
e−1/x2

if x 6= 0,
0 if x = 0.

Check that for all k ≥ 0 the function f is k times differentiable. What is the Taylor series of f? Is
f the sum of a power series?
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Solution exercise 1
The function x3 − x is not bounded above, not bounded below. Since the derivatives is 3x2 − 1, there is
a local maximum at x1 = −1/

√
3 = −

√
3/3 with f(x1) = −(2/3)x1 = 2

√
3/9 and a local minimum at

x2 = 1/
√

3 =
√

3/3 with f(x2) = −(2/3)x2 = −2
√

3/9.

Solution exercise 2
The answers are all yes: the sums, products, composites of continuous functions are continuous, also the
quotient when the denominator does not vanish. A function which is continuous on a closed bounded in-
terval is uniformly continuous and is integrable. The sums, products, composites of differentiable functions
are differentiable, also the quotient when the denominator does not vanish.

Solution exercise 3
a)

lim
x→0+

„
|x|
x

+ sin x + cos x

«
= 2 and lim

x→0−

„
|x|
x

+ sin x + cos x

«
= 0.

b)

lim sup
x→+∞

1

2 + sin x
= 1, lim inf

x→+∞

1

2 + sin x
=

1

3
,

and

lim sup
x→+∞

„
1 +

1

x

«
sin x = 1, lim inf

x→+∞

„
1 +

1

x

«
sin x = −1.

Solution exercise 4
The function f is continuous at 0 with f(0) = 0. We have f(x) ≥ 0 for x ≥ 0 and f(x) ≤ 0 for x ≤ 0.
On the closed interval [0, +∞], the function

f(x) =
x

x + t

is, continuous, differentiable with

f ′(x) =
t

(x + t)2
> 0,

hence the function is increasing and therefore

sup
x≥0

f(x) = lim
x→+∞

f(x) = 1, inf
x≥0

f(x) = f(0) = 0.

Furthermore, f ′ is differentiable with

f ′′(x) =
−2t

(x + t)3
·
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On the closed interval (+∞, 0], the function

f(x) =
x

−x + t

is continuous, differentiable with

f ′(x) =
t

(x− t)2
> 0,

hence the function is increasing and therefore

sup
x≤0

f(x) = f(0) = 0, inf
x≤0

f(x) = lim
x→−∞

f(x) = −1.

Furthermore, f ′ is differentiable with

f ′′(x) =
−2t

(x− t)3
·

This shows that f is increasing on (−∞, +∞),

sup
x∈R

f(x) = lim
x→+∞

f(x) = 1, inf
x∈R

f(x) = lim
x→−∞

f(x) = −1.

Since f ′(0+) = f ′(0−) = 1/t while f ′′(0+) = −2/t2 6= 2/t2 = f ′′(0−), the function f is k times differen-
tiable for k = 1 but not for k = 2 (hence not for k ≥ 2).

Solution exercise 5
Integration by part gives

for I =

Z 1

0

x2e−xdx the value I =
−1

e
+ 2J with J =

Z 1

0

xe−xdx.

Again, integrating by part gives

J = 1− 2

e
· Hence I = 2− 5

e
·

Solution exercise 6
A primitive of x cos x is x sin x + cos x. HenceZ t

0

x cos xdx = t sin t + cos t− 1.

One can also prove this by integrating by part.

Solution exercise 7
Let n be a relative integer. We have

lim
t→+∞

tn+2e−t = 0,

hence the improper integral Z +∞

1

tne−tdt

is convergent.

Solution exercise 8
Since

| sin x|
1 + x2

≤ 1

1 + x2
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for all x ∈ R, the integral Z +∞

−∞

sin x

1 + x2
dx

is absolutely convergent, hence convergent. The function f(x) = sin x/(1 + x2) is odd: f(−x) = −f(x),
hence for all R > 0Z +R

−R

sin x

1 + x2
dx = 0 and therefore

Z +∞

−∞

sin x

1 + x2
dx = lim

R→+∞

Z +R

−R

sin x

1 + x2
dx = 0.

Solution exercise 9
a) We have

u1 =

Z 1

0

dt

1 + t
= log 2.

b) For n ≥ 2, a primitive of (1 + t)−n is (−1/(n− 1))(1 + t)−n+1, hence

un =

Z 1

0

dt

(1 + t)n
=

1

n− 1

„
1− 1

2n−1

«
.·

c) Since X
n≥2

1

n− 1

1

2n−1
is convergent and

X
n≥2

1

n− 1
diverges to +∞,

the series

log 2 +
X
n≥2

1

n− 1

„
1− 1

2n−1

«
diverges to +∞.

Solution exercise 10
a) For t ∈ R,

lim
n→+∞

„
1 +

t

n

«n

= et.

This has been proved during the course, but we need (for the next question) to check that the limit is
uniform on [0, 1]. This follows from the estimate

sup
0≤t≤1

˛̨̨̨
n log

„
1 +

t

n

«
− t

˛̨̨̨
<

2

n
for sufficiently large n

and the fact that the exponential function is continuous.
b) Since the limit is uniform on [0, 1], we have

lim
n→+∞

Z 1

0

„
1 +

t

n

«n

dt =

Z 1

0

lim
n→+∞

„
1 +

t

n

«n

dt =

Z 1

0

etdt = e− 1.

Remark. There is another solution for this exercise: since

d

dt

„
1 +

t

n

«n+1

=
n + 1

n

„
1 +

t

n

«n

,

we have Z 1

0

„
1 +

t

n

«n

dt =
n

n + 1

 „
1 +

1

n

«n+1

− 1

!
=

„
1 +

1

n

«n

− n

n + 1
·
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The conclusion follows from

lim
n→+∞

„
1 +

1

n

«n

= e and lim
n→+∞

n

n + 1
= 1.

Solution exercise 11

For all integers k, the function

f(x) =

(
e−1/x2

if x 6= 0,

0 if x = 0

satisfies xkf(x) → 0 as x → 0. It follows that for all k ≥ 0, the function f is k times differentiable with
f (k)(0) = 0. The Taylor series of f is the power series with all coefficients 0. Hence f is not the sum of a
power series.
Remark. e−1/x → 0 when x→ 0+ and e−1/x → +∞ when x→ 0−, this is why one takes 1/x2 and not
1/x.
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