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1. Let a ≥ 2 and n ≥ 2 be two integers. Assume that an − 1 is prime. Show
that a = 2 and that n is prime.

2. Let a ≥ 2 and n ≥ 2 be two integers. Assume that an + 1 is prime. Show
that a is even and that n is a power of 2.

Give an example of a pair (a, n) where a is an integer ≥ 3 which is not a
power of 2 and n is an integer ≥ 2 such that an + 1 is prime.

3. Let a, m, n be positive integers with m 6= n. Show that the gcd of a2
m

+1
and a2

n
+ 1 is 1 is a is even, and is 2 if a is odd.

4. Let a ≥ 2 and n ≥ 1 be integers. Let p be an odd prime divisor of a2
n

+ 1.
Show that p is congruent to 1 modulo 2n+1.

Deduce that for each n ≥ 1, there are infinitely many primes p congruent
to 1 modulo 2n+1.

5. Using 641 = 24 + 54 = 5 · 27 + 1, show that 641 divides 232 + 1.

6. Let f ∈ Z[X] be a non constant polynomial.
(a) Show that the set

{p | p prime, there exists an integer n ≥ 0 such that p divides f(n)}

is infinite.
(b) For m ≥ 2, denote by P (m) the largest prime factor of m; set also
P (0) = 0, P (1) = 1 and P (−m) = P (m). Check

lim sup
n→+∞

P (f(n)) =∞.



November 9 – 19, 2021. Limbe (Cameroun)

Number Theory
II: Prime Numbers

African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université
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(1). Write
an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a + 1).

Since a ≥ 2 and n ≥ 2 we have an−1 + an−2 + · · · + a + 1 > 1. Hence if the
number an − 1 is prime, then a− 1 = 1, and a = 2.

Assume n = kd with d > 1. Set b = 2k and write

2n − 1 = bd − 1 = (b− 1)(bd−1 + bd−2 + · · ·+ b + 1),

so that 2n − 1 is divisible by b− 1; since 1 ≤ b− 1 < 2n − 1 and since 2n − 1
is prime, we deduce b− 1 = 1, 2k = 2 and k = 1, d = n. Hence n is prime.

The prime numbers of the form 2p − 1 are called the Mersenne primes.

(2). Assume d ≥ 3 is an odd divisor of n. Write n = kd, b = ak and

an + 1 = bd + 1 = (b + 1)(bd−1 − bd−2 + · · · − b + 1).

Hence b+ 1 divides an + 1. This is not compatible with the assumption that
an + 1 is prime because 1 < b + 1 < an + 1. Therefore n has no odd prime
divisor, which means that n is a power of 2.

The prime numbers of the form 22n + 1 are called the Fermat primes.
Remark. For a = 6 and n = 2 the number 62 + 1 = 37 is prime. It is
conjectured that x2 + 1 is prime for infinitely many positive integer x. The
first primes of the form n2 + 1 are

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, . . .

https://oeis.org/A002496 and the corresponding values of n are

1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, . . .
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An example with n = 4 and an + 1 prime is with a = 6.

(3). (This is [1] Exercise IV.3). Without loss of generality assume m > n.
Let k = m − n. Set x = a2

n
, so that a2

m
= x2k . Since k ≥ 1, x + 1 divides

x2k − 1. Hence a2
n

+ 1 divides a2
m − 1 .

If d divides both a2
m

+1 and a2
n

+1, it divides a2
m

+1 and a2
m−1, hence

it divides the difference which is 2. Therefore the gcd of a2
n

+ 1 and a2
m

+ 1
is 1 or 2. Finally these numbers are even if and only if a is odd.

(4). (This is [1] Exercise VIII.3). If n and a are positive integers and p an
odd prime such that a2

n
is congruent to −1 modulo p, then the class of a

modulo p in the group (Z/pZ)× has order 2n+1, hence 2n+1 divides p− 1 and
p is congruent to 1 modulo 2n+1.

Let p1, . . . , ps be primes which are congruent to 1 modulo 2n+1. Let m be
the largest integer such that 2m divides pi−1 for 1 ≤ i ≤ s; hence m ≥ n+1.
Let p be an odd prime which divides a2

m
+ 1. Then p is congruent to 1

modulo 2m+1, hence p is congruent to 1 modulo 2n+1 and is different from
p1, . . . , ps.

5. From (4), it follows that any prime divisor of 225 + 1 is congruent to 1
modulo 26 = 64. If we wish to factor 232 + 1, it suffices to try to divide by
the numbers 64k + 1 which are primes. For k = 1 and k = 6 the number
64k + 1 is divisible by 5 (and 385 is also divisible by 7). For k = 2, 5 and 8
it is divisible by 3. For 3, 4, 7, 9 and 10 the number 64k + 1 is prime :

193, 257, 449, 577, 641.

Let us check that 641 divides 232 + 1. From 641 = 5 · 27 + 1 we deduce

5 · 27 ≡ −1 (mod 641),

hence by taking the 4th power

54 · 228 ≡ 1 (mod 641).

From 641 = 25 + 54 we deduce

54 ≡ −24 (mod 641).
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Therefore
1 ≡ 54 · 228 ≡ −24 · 228 ≡ −232 (mod 641).

‘The same proof may be given without using congruences: we use the fact
that x4 − 1 is divisible by x + 1 since

(x4 − 1) = (x− 1)(x + 1)(x2 + 1).

Set x = 5 ·27. We deduce that 5 ·27+1 = 641 divides 54 ·228−1. On the other
hand 641 = 25 + 54 divides (25 + 54)228. Hence 641 divides the difference

(25 + 54)228 − (54 · 228 − 1) = 232 + 1.

6.
(a) Let S = {p1, . . . , ps} be a finite set of primes. We first check that there
exists a constant c1 > 0 such that, for sufficiently large X, the number of
integers m with |m| ≤ X of the form m = ±pa11 · · · pass is ≤ c1(logX)s.
Indeed, for such an integer m, we have paii ≤ X, hence ai ≤ logX

log pi
. This

proves the result with

c1 =
1

(log p1) · · · (log ps)
·

Next, we check that there exists a constant c2 > 0 such that, for suffi-
ciently large X, the number of integers m with |m| ≤ X of the form m = f(n)
for some n ≥ 0 in Z, is ≥ c2X

1/d where d is the degree of f . Indeed, for Y a
sufficiently large integer and for 0 ≤ n < Y , we have

|f(n)| ≤ (|a0|+ · · ·+ |ad])Y d

for f(X) = a0+a1X+ · · ·+adX
d. Each of the values f(0), f(1), . . . , f(Y −1)

occurs at most d times. The result follows by taking Y = c3X
1/d with

c3 =
1

(|a0|+ · · ·+ |ad])1/d
, c2 =

c3
d
·

For sufficiently large X, we have c2X
1/d > c1(logX)s, hence one at least of

f(n) with n ∈ Z is not of the form ±pa11 · · · pass . This shows that the set of
primes p which divide some f(n) with n ∈ Z, n ≥ 0 is infinite.
(b) For a sequence of integers (un)n≥0, the inequality

lim sup
n→+∞

P (un) <∞

is equivalent to saying that the set of prime numbers which divide at least
one of the un is finite.
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