Number Theory
 II: Prime Numbers African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Assignment 2

1. Let $a \geq 2$ and $n \geq 2$ be two integers. Assume that $a^{n}-1$ is prime. Show that $a=2$ and that n is prime.
2. Let $a \geq 2$ and $n \geq 2$ be two integers. Assume that $a^{n}+1$ is prime. Show that a is even and that n is a power of 2 .

Give an example of a pair (a, n) where a is an integer ≥ 3 which is not a power of 2 and n is an integer ≥ 2 such that $a^{n}+1$ is prime.
3. Let a, m, n be positive integers with $m \neq n$. Show that the gcd of $a^{2^{m}}+1$ and $a^{2^{n}}+1$ is 1 is a is even, and is 2 if a is odd.
4. Let $a \geq 2$ and $n \geq 1$ be integers. Let p be an odd prime divisor of $a^{2^{n}}+1$. Show that p is congruent to 1 modulo 2^{n+1}.

Deduce that for each $n \geq 1$, there are infinitely many primes p congruent to 1 modulo 2^{n+1}.
5. Using $641=2^{4}+5^{4}=5 \cdot 2^{7}+1$, show that 641 divides $2^{32}+1$.
6. Let $f \in \mathbb{Z}[X]$ be a non constant polynomial.
(a) Show that the set
$\{p \mid p$ prime, there exists an integer $n \geq 0$ such that p divides $f(n)\}$
is infinite.
(b) For $m \geq 2$, denote by $P(m)$ the largest prime factor of m; set also $P(0)=0, P(1)=1$ and $P(-m)=P(m)$. Check

$$
\limsup _{n \rightarrow+\infty} P(f(n))=\infty
$$

Number Theory
 II: Prime Numbers
 African Institute for Mathematical Sciences (AIMS)

Michel Waldschmidt, Sorbonne Université

Assignment 2 - Solution

(1). Write

$$
a^{n}-1=(a-1)\left(a^{n-1}+a^{n-2}+\cdots+a+1\right) .
$$

Since $a \geq 2$ and $n \geq 2$ we have $a^{n-1}+a^{n-2}+\cdots+a+1>1$. Hence if the number $a^{n}-1$ is prime, then $a-1=1$, and $a=2$.

Assume $n=k d$ with $d>1$. Set $b=2^{k}$ and write

$$
2^{n}-1=b^{d}-1=(b-1)\left(b^{d-1}+b^{d-2}+\cdots+b+1\right)
$$

so that $2^{n}-1$ is divisible by $b-1$; since $1 \leq b-1<2^{n}-1$ and since $2^{n}-1$ is prime, we deduce $b-1=1,2^{k}=2$ and $k=1, d=n$. Hence n is prime.

The prime numbers of the form $2^{p}-1$ are called the Mersenne primes.
(2). Assume $d \geq 3$ is an odd divisor of n. Write $n=k d, b=a^{k}$ and

$$
a^{n}+1=b^{d}+1=(b+1)\left(b^{d-1}-b^{d-2}+\cdots-b+1\right) .
$$

Hence $b+1$ divides $a^{n}+1$. This is not compatible with the assumption that $a^{n}+1$ is prime because $1<b+1<a^{n}+1$. Therefore n has no odd prime divisor, which means that n is a power of 2 .

The prime numbers of the form $2^{2^{n}}+1$ are called the Fermat primes. Remark. For $a=6$ and $n=2$ the number $6^{2}+1=37$ is prime. It is conjectured that $x^{2}+1$ is prime for infinitely many positive integer x. The first primes of the form $n^{2}+1$ are

$$
2,5,17,37,101,197,257,401,577,677,1297,1601,2917,3137,4357, \ldots
$$

https://oeis.org/A002496 and the corresponding values of n are

$$
1,2,4,6,10,14,16,20,24,26,36,40,54,56,66, \ldots
$$

https://oeis.org/A005574
An example with $n=4$ and $a^{n}+1$ prime is with $a=6$.
(3). (This is [1 Exercise IV.3). Without loss of generality assume $m>n$. Let $k=m-n$. Set $x=a^{2^{n}}$, so that $a^{2^{m}}=x^{2^{k}}$. Since $k \geq 1, x+1$ divides $x^{2^{k}}-1$. Hence $a^{2^{n}}+1$ divides $a^{2^{m}}-1$.

If d divides both $a^{2^{m}}+1$ and $a^{2^{n}}+1$, it divides $a^{2^{m}}+1$ and $a^{2^{m}}-1$, hence it divides the difference which is 2 . Therefore the gcd of $a^{2^{n}}+1$ and $a^{2^{m}}+1$ is 1 or 2 . Finally these numbers are even if and only if a is odd.
(4). (This is [1 Exercise VIII.3). If n and a are positive integers and p an odd prime such that $a^{2^{n}}$ is congruent to -1 modulo p, then the class of a modulo p in the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$has order 2^{n+1}, hence 2^{n+1} divides $p-1$ and p is congruent to 1 modulo 2^{n+1}.

Let p_{1}, \ldots, p_{s} be primes which are congruent to 1 modulo 2^{n+1}. Let m be the largest integer such that 2^{m} divides $p_{i}-1$ for $1 \leq i \leq s$; hence $m \geq n+1$. Let p be an odd prime which divides $a^{2^{m}}+1$. Then p is congruent to 1 modulo 2^{m+1}, hence p is congruent to 1 modulo 2^{n+1} and is different from p_{1}, \ldots, p_{s}.
5. From (4), it follows that any prime divisor of $2^{2^{5}}+1$ is congruent to 1 modulo $2^{6}=64$. If we wish to factor $2^{32}+1$, it suffices to try to divide by the numbers $64 k+1$ which are primes. For $k=1$ and $k=6$ the number $64 k+1$ is divisible by 5 (and 385 is also divisible by 7). For $k=2,5$ and 8 it is divisible by 3 . For $3,4,7,9$ and 10 the number $64 k+1$ is prime :

$$
193,257,449,577,641 .
$$

Let us check that 641 divides $2^{32}+1$. From $641=5 \cdot 2^{7}+1$ we deduce

$$
5 \cdot 2^{7} \equiv-1 \quad(\bmod 641)
$$

hence by taking the 4th power

$$
5^{4} \cdot 2^{28} \equiv 1 \quad(\bmod 641)
$$

From $641=2^{5}+5^{4}$ we deduce

$$
5^{4} \equiv-2^{4} \quad(\bmod 641)
$$

Therefore

$$
1 \equiv 5^{4} \cdot 2^{28} \equiv-2^{4} \cdot 2^{28} \equiv-2^{32} \quad(\bmod 641)
$$

'The same proof may be given without using congruences: we use the fact that $x^{4}-1$ is divisible by $x+1$ since

$$
\left(x^{4}-1\right)=(x-1)(x+1)\left(x^{2}+1\right) .
$$

Set $x=5 \cdot 2^{7}$. We deduce that $5 \cdot 2^{7}+1=641$ divides $5^{4} \cdot 2^{28}-1$. On the other hand $641=2^{5}+5^{4}$ divides $\left(2^{5}+5^{4}\right) 2^{28}$. Hence 641 divides the difference

$$
\left(2^{5}+5^{4}\right) 2^{28}-\left(5^{4} \cdot 2^{28}-1\right)=2^{32}+1
$$

6.

(a) Let $S=\left\{p_{1}, \ldots, p_{s}\right\}$ be a finite set of primes. We first check that there exists a constant $c_{1}>0$ such that, for sufficiently large X, the number of integers m with $|m| \leq X$ of the form $m= \pm p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}$ is $\leq c_{1}(\log X)^{s}$. Indeed, for such an integer m, we have $p_{i}^{a_{i}} \leq X$, hence $a_{i} \leq \frac{\log X}{\log p_{i}}$. This proves the result with

$$
c_{1}=\frac{1}{\left(\log p_{1}\right) \cdots\left(\log p_{s}\right)} .
$$

Next, we check that there exists a constant $c_{2}>0$ such that, for sufficiently large X, the number of integers m with $|m| \leq X$ of the form $m=f(n)$ for some $n \geq 0$ in \mathbb{Z}, is $\geq c_{2} X^{1 / d}$ where d is the degree of f. Indeed, for Y a sufficiently large integer and for $0 \leq n<Y$, we have

$$
\left.|f(n)| \leq\left(\left|a_{0}\right|+\cdots+\mid a_{d}\right]\right) Y^{d}
$$

for $f(X)=a_{0}+a_{1} X+\cdots+a_{d} X^{d}$. Each of the values $f(0), f(1), \ldots, f(Y-1)$ occurs at most d times. The result follows by taking $Y=c_{3} X^{1 / d}$ with

$$
c_{3}=\frac{1}{\left.\left(\left|a_{0}\right|+\cdots+\mid a_{d}\right]\right)^{1 / d}}, \quad c_{2}=\frac{c_{3}}{d} .
$$

For sufficiently large X, we have $c_{2} X^{1 / d}>c_{1}(\log X)^{s}$, hence one at least of $f(n)$ with $n \in \mathbb{Z}$ is not of the form $\pm p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}$. This shows that the set of primes p which divide some $f(n)$ with $n \in \mathbb{Z}, n \geq 0$ is infinite.
(b) For a sequence of integers $\left(u_{n}\right)_{n \geq 0}$, the inequality

$$
\limsup _{n \rightarrow+\infty} P\left(u_{n}\right)<\infty
$$

is equivalent to saying that the set of prime numbers which divide at least one of the u_{n} is finite.

References

[1] Weil, André. Number theory for beginners, With the collaboration of Maxwell Rosenlicht. Springer-Verlag, New York-Heidelberg, 1979. Zbl|MR
[2] Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers. Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles. Oxford University Press, Oxford, 2008. Zbl MR

