
Bhubaneswar 13/12/2019

The square root of 2, the Golden Ratio

and the Fibonacci sequence

Michel Waldschmidt
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Abstract

The square root of 2,
p
2 = 1.414 213 562 373 095 . . . ,

and the Golden ratio

� =
1 +

p
5

2
= 1.618 033 988 749 894 . . .

are two irrational numbers with many remarkable properties.
The Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 . . .

occurs in many situations, in mathematics as well as in the
real life. We review some of these properties.
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Tablet YBC 7289 : 1800 – 1600 BC

Babylonian clay tablet,
accurate sexagesimal
approximation to

p
2 to the

equivalent of six decimal
digits.

1 +
24

60
+

51

602
+

10

603
= 1.414212 962 962 962 . . .

p
2 = 1.414213 562 373 095 048 801 688 724 209 698 078 . . .

https://en.wikipedia.org/wiki/YBC_7289
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A4 format 21⇥ 29.7

297

210
=

99

70
= 1.414 285 714 285 714 285 714 285 714 . . .
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A4 format
The number

p
2 is twice its inverse :

p
2 = 2/

p
2.

Folding a rectangular piece of paper with sides in proportionp
2 yields a new rectangular piece of paper with sides in

proportion
p
2 again.
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Paper format A0, A1, A2,. . . in cm

x1 = 100 4
p
2 = 118.9, x2 =

100
4
p
2
= 84.1.

A0 : x1 = 118.9 x2 = 84.1

A1 : x2 = 84.1
x1
2

= 59.4

A2 :
x1
2

= 59.4
x2
2

= 42

A3 :
x2
2

= 42
x1
4

= 29.7

A4 :
x1
4

= 29.7
x2
4

= 21

A5 :
x2
4

= 21
x1
8

= 14.8
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Rectangles with proportion 1 +
p
2
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Irrationality of
p
2 : geometric proof

• Start with a rectangle have sides lengths 1 and 1 +
p
2.

• Decompose it into two squares with sides 1 and a smaller
rectangle of sides

p
2� 1 and 1.

• This second small rectangle has sides lengths in the
proportion

1p
2� 1

= 1 +
p
2,

which is the same as for the large one.
• Hence the second small rectangle can be split into two
squares and a third smaller rectangle with the same proportion
1 +

p
2.

• This process does not end.
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Irrationality of
p
2 : geometric proof

If we start with a rectangle having a rational proportion, say
297/210 = 99/70, using an appropriate unit the sides lengths
are integers. For instance 99 and 70.

The successive squares have decreasing integer sides lengths,
say 70, 29, 12, 5, 2, 1 :
99 = 70 + 29, 70 = 2⇥ 29 + 12, 29 = 2⇥ 12 + 5,
12 = 2⇥ 5 + 2, 5 = 2⇥ 2 + 1.

Hence this process stops after finitely may steps.

Hence 1 +
p
2 is an irrational number, and

p
2 also.
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Continued fraction of
p
2

The number
p
2 = 1.414 213 562 373 095 048 801 688 724 20 . . .

satisfies p
2 = 1 +

1

1 +
p
2
·

Hence
p
2 = 1 +

1

2 +
1

1 +
p
2

= 1 +
1

2 +
1

2 +
1
. . .

We write the continued fraction expansion of
p
2 using the

shorter notation
p
2 = [1, 2, 2, 2, 2, 2, . . . ] = [1, 2].

10 / 125



A4 format

297

210
= 1 +

29

70
,

70

29
= 2 +

12

29
,

29

12
= 2 +

5

12
,

12

5
= 2 +

2

5
,

5

2
= 2 +

1

2
·

Hence
297

210
= [1, 2, 2, 2, 2, 2].
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First decimals of
p
2 http://wims.unice.fr/wims/wims.cgi

1.41421356237309504880168872420969807856967187537694807317667973

799073247846210703885038753432764157273501384623091229702492483

605585073721264412149709993583141322266592750559275579995050115

278206057147010955997160597027453459686201472851741864088919860

955232923048430871432145083976260362799525140798968725339654633

180882964062061525835239505474575028775996172983557522033753185

701135437460340849884716038689997069900481503054402779031645424

782306849293691862158057846311159666871301301561856898723723528

850926486124949771542183342042856860601468247207714358548741556

570696776537202264854470158588016207584749226572260020855844665

214583988939443709265918003113882464681570826301005948587040031

864803421948972782906410450726368813137398552561173220402450912

277002269411275736272804957381089675040183698683684507257993647

290607629969413804756548237289971803268024744206292691248590521

810044598421505911202494413417285314781058036033710773091828693

1471017111168391658172688941975871658215212822951848847 . . .
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First binary digits of
p
2 http://wims.unice.fr/wims/wims.cgi

1.011010100000100111100110011001111111001110111100110010010000

10001011001011111011000100110110011011101010100101010111110100

11111000111010110111101100000101110101000100100111011101010000

10011001110110100010111101011001000010110000011001100111001100

10001010101001010111111001000001100000100001110101011100010100

01011000011101010001011000111111110011011111101110010000011110

11011001110010000111101110100101010000101111001000011100111000

11110110100101001111000000001001000011100110110001111011111101

00010011101101000110100100010000000101110100001110100001010101

11100011111010011100101001100000101100111000110000000010001101

11100001100110111101111001010101100011011110010010001000101101

00010000100010110001010010001100000101010111100011100100010111

10111110001001110001100111100011011010101101010001010001110001

01110110111111010011101110011001011001010100110001101000011001

10001111100111100100001001101111101010010111100010010000011111

00000110110111001011000001011101110101010100100101000001000100

110010000010000001100101001001010100000010011100101001010 . . .
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Computation of decimals of
p
2

1 542 decimals computed by hand by Horace Uhler in 1951

14 000 decimals computed in 1967

1 000 000 decimals in 1971

137 · 109 decimals computed by Yasumasa Kanada and
Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours
and 31 minutes.

• Motivation : computation of ⇡.
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Émile Borel (1871–1956)

• Les probabilités dénombrables et leurs applications
arithmétiques,
Palermo Rend. 27, 247-271 (1909).
Jahrbuch Database JFM 40.0283.01
http://www.emis.de/MATH/JFM/JFM.html

• Sur les chi↵res décimaux de
p
2 et divers problèmes de

probabilités en châınes,
C. R. Acad. Sci., Paris 230, 591-593 (1950).

Zbl 0035.08302
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Émile Borel : 1950

Let g � 2 be an integer and x

a real irrational algebraic
number. The expansion in
base g of x should satisfy
some of the laws which are
valid for almost all real
numbers (with respect to
Lebesgue’s measure).
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This is a nice rectangle
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Golden rectangle

This is a nice rectangle A 

N 
I 
C 
E 

R 
E 
C 
T 
A 
N 
G 
L 
E 

A square 

1 

1 Φ -1 

Φ

�

1
=

1

�� 1
·
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Irrationality of � and of
p
5

The number

� =
1 +

p
5

2
= 1.618 033 988 749 894 . . .

satisfies

� = 1 +
1

�
·

Hence

� = 1 +
1

1 +
1

�

= 1 +
1

1 +
1

1 +
1
. . .

If we start from a rectangle with the Golden ratio as proportion
of sides lengths, at each step we get a square and a smaller
rectangle with the same proportion for the sides lengths.
http://oeis.org/A001622
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The Golden Ratio

(1 +
p
5)/2 = 1.618 033 988 749 894 . . .

Golden Rectangle
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The diagonal of the pentagon and the diagonal of
the octogon

The diagonal of the pentagon
is �

The diagonal of the octogon
is 1 +

p
2
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Nested roots

�2 = 1 + �.

� =
p
1 + �

=

q
1 +

p
1 + �

=

r

1 +

q
1 +

p
1 + �

= . . .

=

vuut
1 +

s

1 +

r

1 +

q
1 +

p
1 + · · ·
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Nested roots

Journal of the Indian Mathematical Society (1912) – problems
solved by Ramanujan

s

1 + 2

r

1 + 3

q
1 + 4

p
1 + · · · = 3

s

6 + 2

r

7 + 3

q
8 + 4

p
9 + · · · = 4

Srinivasa Ramanujan
1887 – 1920
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Geometric series u0 = 1, un+1 = 2un

How many ancesters do we 
have? 

Sequence:  1,  2,  4,  8, 16 …       
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Bees genealogy

Male honeybees are born from
unfertilized eggs. Female
honeybees are born from
fertilized eggs. Therefore
males have only a mother, but
females have both a mother
and a father.
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Genealogy of a male bee (bottom – up)

Number of bees :

1, 1, 2, 3, 5 . . .

Number of females :

0, 1, 1, 2, 3 . . .

Rule :

un+2 = un+1 + un.
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Bees genealogy u1 = 1, u2 = 1, un+2 = un+1 + un

Number of  females at a given level  =          
                                 total population at the previous  level   
Number of  males at a given level=  
                                 number of  females at the previous  level  

1 + 0 = 1 

1 + 1 = 2 

1 + 2 = 3 

2 + 3 = 5 

3 + 5 = 8 

0 + 1 = 1 
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The Lamé Series

Gabriel Lamé
1795 – 1870

Edouard Lucas
1842 - 1891

In 1844 the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

was referred to as the Lamé series, because Gabriel Lamé used
it to give an upper bound for the number of steps in the
Euclidean algorithm for the gcd.
On a trip to Italy in 1876 Edouard Lucas found them in a copy
of the Liber Abbaci of Leonardo da Pisa.
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Leonardo Pisano (Fibonacci)

The Fibonacci sequence
(F n)n�0,

0, 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, 89, 144, 233, . . .

is defined by

F 0 = 0, F 1 = 1,

F n+2 = F n+1+F n for n � 0.

http://oeis.org/A000045

Leonardo Pisano (Fibonacci)
(1170–1250)
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Leonardo Pisano (Fibonacci)

Guglielmo Bonacci : filius
Bonacci or Fibonacci

travels around the
mediterranean,

learns the techniques of
Al-Khwarizmi

Liber Abbaci (1202)

https://commons.wikimedia.org/w/index.php?curid=720501
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Encyclopedia of integer sequences (again)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,

317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, . . .

The Fibonacci sequence is
available online
The On-Line Encyclopedia

of Integer Sequences

Neil J. A. Sloane

http://oeis.org/A000045
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Fibonacci rabbits
Fibonacci considered the growth of a rabbit population.

A newly born pair of rabbits,
a male and a female, are put
in a field. Rabbits are able to
mate at the age of one month
so that at the end of its
second month a female can
produce another pair of
rabbits ; rabbits never die and
a mating pair always produces

one new pair (one male, one female) every month from the
second month on. The puzzle that Fibonacci posed was : how
many pairs will there be in one year ?

Answer : F 12 = 144.
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Fibonacci’s rabbits

Modelization of a population

•  First month

•  Third month

•  Fifth month

•  Sixth month

•  Second month

•  Fourth month

Adult pairs Young pairs 

Sequence: 1,  1,  2,  3,  5,  8, … 
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Modelization of a population of mice

Exponential sequence 

•  First month

•  Second month

•  Third month

•  Fourth month

Number of  pairs:  1,  2,  4,  8, … 
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Is-it a realistic model ?

The genealogy of the ancestors of a human being is not a
mathematical tree :
30 generations would give 230 ancestors, more than a billion
people, three to four times more than the total population on
earth one thousand years ago.

Even worse for the genealogy of bees :

In every bee hive there is one female queen bee which lays all
the eggs. If an egg is not fertilised it eventually hatches into a
male bee, called a drone. If an egg is fertilised by a male bee,
then the egg produces a female worker bee, which doesn’t lay
any eggs herself.
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Alfred Lotka : arctic trees

In cold countries, each branch
of some trees gives rise to
another one after the second
year of existence only.
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Fibonacci squares

http://mathforum.org/dr.math/faq/faq.golden.ratio.html
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Geometric construction of the 
Fibonacci sequence

1 2 

5 

8 

1 
2 

3 
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The Fibonacci numbers in nature

Ammonite (Nautilus shape)
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Phyllotaxy
•  Study of the position of leaves on a stem 

and the reason for  them
•  Number of petals of flowers: daisies, 

sunflowers, aster, chicory, asteraceae,…
•  Spiral  patern to permit optimal exposure 

to sunlight  
•  Pine-cone, pineapple, Romanesco 

cawliflower, cactus
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Leaf arrangements
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http://www.unice.fr/LEML/coursJDV/tp/
tp3.htm

•  Université de Nice,
    Laboratoire Environnement Marin Littoral, 

Equipe d'Accueil "Gestion de la 
Biodiversité"
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Phyllotaxy
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Phyllotaxy
•  J. Kepler (1611) uses the  Fibonacci 

sequence in his study of the  
dodecahedron and the icosaedron, and 
then of the symmetry of order 5 of the 
flowers.

•  Stéphane Douady and Yves Couder            
Les spirales végétales                                 
La Recherche 250 (Jan. 1993) vol. 24.
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Why are there so many occurrences of the
Fibonacci numbers and of the Golden ratio in the
nature ?

According to Leonid Levin,
objects with a small
algorithmic Kolmogorov
complexity (generated by a
short program) occur more
often than others.

Another example is given by Sierpinski triangles.

Reference : J-P. Delahaye.

http://cristal.univ-lille.fr/~jdelahay/pls/
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Reflections of a ray of light
Consider three parallel sheets of glass and a ray of light which
crosses the first sheet. Each time it touches one of the sheets,
it can cross it or reflect on it.

Denote by pn the number of di↵erent paths with the ray going
out of the system after n reflections.

p0 = 1,

p1 = 2,

p2 = 3,

p3 = 5.

In general, pn = F n+2.
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Sequences of 0, 1 and 2
Denote by un the number of sequences of n elements, each of
them is 0, 1 or 2, starting with 0, and obeying the following
rule : the sequence is alternatively increasing and decreasing.

For n = 1 we have u1 = 1 since there is just the sequence (0).

For n = 2 we have u2 = 2 since there are two sequences,
namely (0, 1) and (0, 2).

For n = 3 we have u3 = 3 since there are three sequences,
namely (0, 1, 0), (0, 2, 1) and (0, 2, 0).

For n = 4 we have u4 = 5 since there are five sequences,
namely

(0, 1, 0, 1), (0, 1, 0, 2), (0, 2, 1, 2), (0, 2, 0, 1), (0, 2, 1, 2).

52 / 125



Sequences of 0, 1 and 2

We found un = F n+1 for n = 1, 2, 3, 4. Let us check this
formula for n � 5 as well, by induction on n.

For n odd, an admissible sequence ends with 0 or 1. For n
even, it ends with 1 or 2.

Denote by vn the number of sequences of length n ending
with 0 or 2 :

v1 = 1, v2 = 1, v3 = 2, v4 = 3.

53 / 125



Sequences of 0, 1 and 2

For n even, we obtain all sequences of length n ending with 2
as follows :
• we consider the sequences of length n� 1 ending with 0 and
we complete with 2
• we consider the sequences of length n� 1 ending with 1 and
we complete with 2

The number of sequences of length n ending with 02 is vn�1.

A sequence ending with 12 ends with 212. The number of
sequences of length n ending with 212 is vn�2.

This gives vn = vn�1 + vn�2 for n even.

The same proof gives the result also for n odd.

Hence vn = F n for n � 1.
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Sequences of 0, 1 and 2

Denote by wn the number of sequences of length n ending
with 1 :

w1 = 0, w2 = 1, w3 = 1, w4 = 2.

A sequence of length n ending with 1 ends with 21 if n is odd,
with 01 if n is even. Hence wn = vn�1.

Therefore wn = F n�1 for n � 1.
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Sequences of 0, 1 and 2

Finally we have un = vn + wn.
Hence

un = F n + F n�1 = F n+1.
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Reflection of the ray of light

Give a label to the three glasses : 0, 1 and 2.
To each path associate the sequence of 0, 1 and 2 starting with
0 followed by the labels of the glasses where the ray reflects.
One deduces pn = un+1. Hence pn = F n+2 for n � 0.
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Levels of energy of an electron of an atom of
hydrogen

An atom of hydrogen can have three levels of energy, 0 at the
ground level when it does not move, 1 or 2. At each step, it
alternatively gains and looses some level of energy, either 1
or 2, without going sub 0 nor above 2. Let `n be the number
of di↵erent possible scenarios for this electron after n steps.

In general, `n = F n+2.

We have `0 = 1 (initial state

level 0)

`1 = 2 : state 1 or 2, scenarios
(ending with gain) 01 or 02.

`2 = 3 : scenarios (ending with

loss) 010, 021 or 020.

`3 = 5 : scenarios (ending with

gain) 0101, 0102, 0212, 0201 or

0202.
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Electron of the atom of hydrogen

Recall that un denotes the number of sequences of n
elements, each of them is 0, 1 or 2, starting with 0, and
obeying the following rule : the sequence is alternatively
increasing and decreasing.

From the definition of un we deduce `n = un+1.

Hence `n = F n+2.
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Rhythmic patterns
The Fibonacci sequence appears in Indian mathematics, in
connection with Sanskrit prosody. Several Indian scholars,
Pingala (200 BC), Virahanka (c. 700 AD), Gopāla (c. 1135),
and the Jain scholar Hemachandra (c. 1150). studied rhythmic
patterns that are formed by concatenating one beat notes •
and double beat notes ⌅⌅.
one-beat note • : short syllabe (ti in Morse Alphabet)

double beat note ⌅⌅ : long syllabe (ta ta in Morse)

1 beat, 1 pattern : •
2 beats, 2 patterns : • • and ⌅⌅

3 beats, 3 patterns : • • • , • ⌅⌅ and ⌅⌅ •
4 beats, 5 patterns :

• • • • , ⌅⌅ • • , • ⌅⌅ • , • • ⌅⌅, ⌅⌅ ⌅⌅

n beats, F n+1 patterns.
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Fibonacci sequence and Golden Ratio
The developments

[1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1], . . .

are the quotients

F 2

F 1

F 3

F 2

F 4

F 3

F 5

F 4

F 6

F 5

F 7

F 6
k k k k k k . . .
1

1

2

1

3

2

5

3

8

5

13

8
of consecutive Fibonacci numbers.

The development [1, 1, 1, 1, 1, . . . ] is the continued fraction

expansion of the Golden Ratio

� =
1 +

p
5

2
= lim

n!1

Fn+1

Fn
= 1.618 033 988 749 894 . . .

which satisfies

� = 1 +
1

�
·
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The Fibonacci sequence and the Golden ratio

For n � 0, the Fibonacci number F n is the nearest integer to

1p
5
�n

,

where � is the Golden Ratio :

� = lim
n!1

F n+1

F n
·
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Binet’s formula

For n � 0,

F n =
�n � (��)�n

p
5

=
(1 +

p
5)n � (1�

p
5)n

2n
p
5

,

Jacques Philippe Marie Binet
(1843)

� =
1 +

p
5

2
, ���1 =

1�
p
5

2
,

X
2 �X � 1 = (X � �)(X + ��1).
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The so–called Binet Formula
Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for n � 0,

F n =
1p
5

 
1 +

p
5

2

!n

� 1p
5

 
1�

p
5

2

!n

.

Abraham de
Moivre

(1667–1754)

Daniel
Bernoulli

(1700–1782)

Leonhard
Euler

(1707–1783)

Jacques P.M.
Binet

(1786–1856)
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Generating series
A single series encodes all the Fibonacci sequence :
X

n�0

F nX
n = X +X

2+2X3+3X4+5X5+ · · ·+F nX
n+ · · ·

Fact : this series is the Taylor expansion of a rational fraction :
X

n�0

F nX
n =

X

1�X �X2
·

Proof : the product

(X +X
2 + 2X3 + 3X4 + 5X5 + 8X6 + · · · )(1�X �X

2)

is a telescoping series

X +X
2 + 2X3 + 3X4 + 5X5 + 8X6 + · · ·

�X
2 � X

3 � 2X4 � 3X5 � 5X6 � · · ·
�X

3 � X
4 � 2X5 � 3X6 � · · ·

= X. 2 65 / 125



Generating series of the Fibonacci sequence

Remark. The denominator 1�X �X
2 in the right hand side

of

X +X
2 + 2X3 + 3X4 + · · ·+ F nX

n + · · · = X

1�X �X2

is X2
f(X�1), where f(X) = X

2 �X � 1 is the irreducible
polynomial of the Golden ratio �.
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Homogeneous linear di↵erential equation
Consider the homogeneous linear di↵erential equation

y
00 � y

0 � y = 0.

If y = e�x is a solution, from y
0 = �y and y

00 = �
2
y we deduce

�
2 � �� 1 = 0.

The two roots of the polynomial X2 �X � 1 are � (the
Golden ratio) and �0 with

�0 = 1� � = � 1

�
·

A basis of the space of solutions is given by the two functions
e�x and e�

0x. Since (Binet’s formula)
X

n�0

F n
x
n

n!
=

1p
5

�
e�x � e�

0x
�
,

this exponential generating series of the Fibonacci sequence is
a solution of the di↵erential equation.

67 / 125



Fibonacci and powers of matrices
The Fibonacci linear recurrence relation F n+2 = F n+1 + F n

for n � 0 can be written
✓
F n+1

F n+2

◆
=

✓
0 1
1 1

◆✓
F n

F n+1

◆
.

By induction one deduces, for n � 0,
✓

F n

F n+1

◆
=

✓
0 1
1 1

◆n✓
0
1

◆
.

An equivalent formula is, for n � 1,
✓
0 1
1 1

◆n

=

✓
F n�1 F n

F n F n+1

◆
.
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Characteristic polynomial

The characteristic polynomial of the matrix

A =

✓
0 1
1 1

◆

is

det(XI � A) = det

✓
X �1
�1 X � 1

◆
= X

2 �X � 1,

which is the irreducible polynomial of the Golden ratio �.
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The Fibonacci sequence and the Golden ratio
(continued)

For n � 1, �n 2 Z[�] = Z+ Z� is a linear combination of 1
and � with integer coe�cients, namely

�n = F n�1 + F n�.

� = 0 + �

�2 = 1 + �

�3 = 1 + 2�

�4 = 2 + 3�

�5 = 3 + 5�

�6 = 5 + 8�

�7 = 8 + 13�
...
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The Fibonacci sequence and Hilbert’s 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P
in n, m, and a number of other variables x, y, z, . . . having
the property that n = F 2m i↵ there exist integers x, y, z, . . .
such that P (n,m, x, y, z, . . . ) = 0.

This completed the proof of
the impossibility of the tenth
of Hilbert’s problems (does
there exist a general method
for solving Diophantine
equations ?) thanks to the
previous work of Hilary
Putnam, Julia Robinson and
Martin Davis.

71 / 125



The Fibonacci Quarterly

The Fibonacci sequence
satisfies a lot of very
interesting properties. Four
times a year, the Fibonacci
Quarterly publishes an issue
with new properties which
have been discovered.
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Narayana’s cows

Narayana was an Indian mathematician in the 14th century
who proposed the following problem :
A cow produces one calf every year. Beginning in its fourth
year each calf produces one calf at the beginning of each year.
How many calves are there altogether after, for example, 17
years ?
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Narayana sequence https://oeis.org/A000930

Narayana sequence is defined by the recurrence relation

Cn+3 = Cn+2 + Cn

with the initial values C0 = 2, C1 = 3, C2 = 4.
It starts with

2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, . . .

Real root of x3 � x
2 � 1

3

s
29 + 3

p
93

2
+

3

s
29� 3

p
93

2
+ 1

3
= 1.465571231876768 . . .
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Generating series and power of matrices

2 + 3X + 4X2 + 6X3 + · · ·+ CnX
n + · · · = 2 +X +X

2

1�X �X3
·

Di↵erential equation : y000 � y
00 � y = 0 ;

initial conditions : y(0) = 2, y0(0) = 3, y00(0) = 4.

For n � 0,
0

@
Cn

Cn+1

Cn+2

1

A =

0

@
0 1 0
0 0 1
1 0 1

1

A
n0

@
2
3
4

1

A .

75 / 125



Music : http://www.pogus.com/21033.html

In working this out, Tom Johnson found a way to translate
this into a composition called Narayana’s Cows.
Music : Tom Johnson
Saxophones : Daniel Kientzy
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Year 1 2 3 4 

= + 
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Year 2 3 4 5 

= + 
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Narayana’s cows
http://www.math.jussieu.fr/~michel.waldschmidt/

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Original 
Cow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Second 
generation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Third 
generation 0 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105

Fourth 
generation 0 0 0 0 0 0 1 4 10 20 35 56 84 120 165 220 286

Fifth 
generation 0 0 0 0 0 0 0 0 0 1 5 15 35 70 126 210 330

Sixth 
generation 0 0 0 0 0 0 0 0 0 0 0 0 1 6 21 56 126

Seventh 
generation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

Total 2 3 4 6 9 13 19 28 41 60 88 129 189 277 406 595 872
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17th year: 872 cows 
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Jean-Paul Allouche and Tom Johnson

http://www.math.jussieu.fr/~jean-paul.allouche/
bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf
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Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

• Narayana’s Cows and Delayed Morphisms
In 3èmes Journées d’Informatique Musicale (JIM ’96), Ile de

Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May

1996.

http://kalvos.org/johness1.html

• Finite automata and morphisms in assisted musical
composition,
Journal of New Music Research, no. 24 (1995), 97 – 108.

http://www.tandfonline.com/doi/abs/10.1080/

09298219508570676

http://web.archive.org/web/19990128092059/www.swets.

nl/jnmr/vol24_2.html
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Music and the Fibonacci 
sequence

•  Dufay, XVème siècle
•  Roland de Lassus
•  Debussy, Bartok, Ravel, Webern
•  Stockhausen
•  Xenakis
•  Tom Johnson Automatic Music for six 

percussionists
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Fibonacci numbers with odd indices

The sequence of Fibonacci numbers with odd indices is

F 1 = 1, F 3 = 2, F 5 = 5, F 7 = 13, F 9 = 34, F 11 = 89, . . .

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, . . .

They produce solutions of a special case of the Marko↵
equation

x
2 + y

2 + 1 = 3xy.

with x = Fm�1 and y = Fm+1 :
12 + 22 + 1 = 3 · 1 · 2,
22 + 52 + 1 = 3 · 2 · 5,
52 + 132 + 1 = 3 · 5 · 13, . . .
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The sequence of Marko↵ numbers

A Marko↵ number is a
positive integer z such that
there exist two positive
integers x and y satisfying

x
2 + y

2 + z
2 = 3xyz.

For instance 1 is a Marko↵
number, since
(x, y, z) = (1, 1, 1) is a
solution.

Andrei Andreyevich Marko↵
(1856–1922)

Photos :

http://www-history.mcs.st-andrews.ac.uk/history/
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The On-Line Encyclopedia of Integer Sequences
1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897,
4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666,

43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, . . .

The sequence of Marko↵
numbers is available on the
web
The On-Line Encyclopedia

of Integer Sequences

Neil J. A. Sloane

http://oeis.org/A002559
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Integer points on a surface

Given a Marko↵ number z, there exist infinitely many pairs of
positive integers x and y satisfying

x
2 + y

2 + z
2 = 3xyz.

This is a cubic equation in the 3 variables (x, y, z), of which
we know a solution (1, 1, 1).

There is an algorithm producing all integer solutions.
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Marko↵’s cubic variety

The surface defined by
Marko↵’s equation

x
2 + y

2 + z
2 = 3xyz.

is an algebraic variety with
many automorphisms :
permutations of the variables,
changes of signs and

(x, y, z) 7! (3yz � x, y, z).

A.A. Marko↵ (1856–1922)
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Algorithm producing all solutions

Let (m,m1,m2) be a solution of Marko↵’s equation :

m
2 +m1

2 +m2
2 = 3mm1m2.

Fix two coordinates of this solution, say m1 and m2. We get a
quadratic equation in the third coordinate m, of which we
know a solution, hence, the equation

x
2 +m1

2 +m2
2 = 3xm1m2.

has two solutions, x = m and, say, x = m
0, with

m+m
0 = 3m1m2 and mm

0 = m1
2 +m2

2. This is the cord
and tangente process.

Hence, another solution is (m0
,m1,m2) with

m
0 = 3m1m2 �m.
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Three solutions derived from one

Starting with one solution (m,m1,m2), we derive three new
solutions :

(m0
,m1,m2), (m,m

0
1,m2), (m,m1,m

0
2).

If the solution we start with is (1, 1, 1), we produce only one
new solution, (2, 1, 1) (up to permutation).

If we start from (2, 1, 1), we produce only two new solutions,
(1, 1, 1) and (5, 2, 1) (up to permutation).

A new solution means distinct from the one we start with.
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New solutions

We shall see that any solution di↵erent from (1, 1, 1) and from
(2, 1, 1) yields three new di↵erent solutions – and we shall see
also that, in each other solution, the three numbers m, m1

and m2 are pairwise distinct.

Two solutions are called neighbors if they share two
components.

For instance

• (1, 1, 1) has a single neighbor, namely (2, 1, 1),

• (2, 1, 1) has two neighbors : (1, 1, 1) et (5, 2, 1),

• any other solution has exactly three neighbors.
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Marko↵’s tree

Assume we start with (m,m1,m2) satisfying m > m1 > m2.
We shall check

m
0
2 > m

0
1 > m > m

0
.

We order the solution according to the largest coordinate.
Then two of the neighbors of (m,m1,m2) are larger than the
initial solution, the third one is smaller.

Hence, if we start from (1, 1, 1), we produce infinitely many
solutions, which we organize in a tree : this is Marko↵’s tree.
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This algorithm yields all the solutions

Conversely, starting from any solution other than (1, 1, 1), the
algorithm produces a smaller solution.

Hence, by induction, we get a sequence of smaller and smaller
solutions, until we reach (1, 1, 1).

Therefore the solution we started from was in Marko↵’s tree.
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First branches of Marko↵’s tree
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Marko↵’s tree starting from (2, 5, 29)

DON ZAGIER 

FIGURE2  
Markoff triples (p, q,  r ) with max( p ,  q )  100000  

Conversely, given a Markoff triple ( p ,  q, r )  with r > 1, one checks easily that 
3pq - r < r; and from t h s  it follows by induction that all Markoff triples occur, 
and occur only once, on this tree (for a fuller discussion of t h s  and other properties 
of the Markoff tree, see [2]). 

To prove the theorem we must analyze the asymptotic behavior of the Markoff 
tree. From the Markoff equation (1) we find that 3r2 2 3pqr or r 2 pq; if p is large 
(which will happen for all but a small portion of the tree, contributing O(log x )  to 
M(x)), then this implies that r is much larger than q and hence (1) gives r 2  < 3pqr < 
r 2  + o(r2)  or r - 3pq. Multiplying both sides of this equation by 3 and taking 
logarithms gives 

log(3p) + log(3q) = log(3r) + o(1) (p large) 
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Marko↵’s tree up to 100 000
DON ZAGIER 

FIGURE2  
Markoff triples (p, q,  r ) with max( p ,  q )  100000  

Conversely, given a Markoff triple ( p ,  q, r )  with r > 1, one checks easily that 
3pq - r < r; and from t h s  it follows by induction that all Markoff triples occur, 
and occur only once, on this tree (for a fuller discussion of t h s  and other properties 
of the Markoff tree, see [2]). 

To prove the theorem we must analyze the asymptotic behavior of the Markoff 
tree. From the Markoff equation (1) we find that 3r2 2 3pqr or r 2 pq; if p is large 
(which will happen for all but a small portion of the tree, contributing O(log x )  to 
M(x)), then this implies that r is much larger than q and hence (1) gives r 2  < 3pqr < 
r 2  + o(r2)  or r - 3pq. Multiplying both sides of this equation by 3 and taking 
logarithms gives 

log(3p) + log(3q) = log(3r) + o(1) (p large) 

Don Zagier,
On the number of Marko↵
numbers below a given bound.
Mathematics of Computation,
39 160 (1982), 709–723.
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Marko↵’s Conjecture

The previous algorithm produces the sequence of Marko↵
numbers. Each Marko↵ number occurs infinitely often in the
tree as one of the components of the solution.

According to the definition, for a Marko↵ number m > 2,
there exist a pair (m1,m2) of positive integers with
m > m1 > m2 such that m2 +m1

2 +m2
2 = 3mm1m2.

Question : Given m, is such a pair (m1,m2) unique ?

The answer is yes, as long as m  10105.
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The Fibonacci sequence and the Marko↵ equation

The smallest Marko↵ number is 1. When we impose z = 1 in
the Marko↵ equation x

2 + y
2 + z

2 = 3xyz, we obtain the
equation

x
2 + y

2 + 1 = 3xy.

Going along the Marko↵’s tree starting from (1, 1, 1), we
obtain the subsequence of Marko↵ numbers

1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, . . .

which is the sequence of Fibonacci numbers with odd indices

F 1 = 1, F 3 = 2, F 5 = 5, F 7 = 13, F 9 = 34, F 11 = 89, . . .
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Fibonacci numbers with odd indices
Fibonacci numbers with odd indices are Marko↵’s numbers :

Fm+3Fm�1 � F
2
m+1 = (�1)m for m � 1

and
Fm+3 + Fm�1 = 3Fm+1 for m � 1.

Set y = Fm+1, x = Fm�1, x0 = Fm+3, so that, for even m,

x+ x
0 = 3y, xx

0 = y
2 + 1

and
X

2 � 3yX + y
2 + 1 = (X � x)(X � x

0).
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A computer should not be a Black Box

Computers will play an increasing role everywhere.
You need to understand fully all what they are doing.

IBM Releases “Black Box”
Breaker on IBM Cloud

https://www.cbronline.com/news/ai-bias-ibm
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u0 = 1, u1 = (1�
p
5)/2, un = un�1 + un�2

Question : compute u100.

Pierre Arnoux

1�
p
5

2
= �0.618033988749894848204586834365 . . .

https://oeis.org/A001622
http://iml.univ-mrs.fr/~arnoux/
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Excel file Column A : n Column B : un

u0 = 1, u1 = (1�
p
5)/2, un = un�1 + un�2

A B
1 0 1
2 1 =(1-RACINE(5))/2

A B
1 0 1
2 1 -0.618034

A B
1 0 1
2 1 -0.618034
3 =1+A2 =B1+B2

A B
1 0 1
2 1 -0.618034
3 2 0.38196601

Copy A3 B3 down
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Excel file : u1 to u39
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Excel file : u1 to u39
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Exact value of un

Observations : The signs of un alternate, the absolute value is
decreasing.

Set e� = (1�
p
5)/2. Notice that e� is a root of X2 �X � 1,

the other root is � = (1 +
p
5)/2, the golden ratio.

From e�n = e�n�1 + e�n�2 with u0 = 1, u1 = e�, we deduce by
induction un = e�n.
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Exact value of u39

Numerical values :

e� = �0.618 033 988 749 894 . . .

log |e�| = �0.481 211 825 059 603 4 . . .

u39 = �e�39 = �e�18.767 261 177 324,453... = �7.071 019 . . . 10�9
.

PARI GP : https://pari.math.u-bordeaux.fr/
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Comparing the excel values with the exact values

excel value exact value
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Exact value of u100

The answer to initial question is

u100 = e�100

e� = �0.618 033 988 749 894 . . . , log |e�| = �0.481 211 825 059 603 4 . . .

e�100 = e�48.121 182 505 960 34... = 1.262 513 338 064 . . . 10�21
.
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Excel (continued)

u100 = �19 241.901 833 167 . . .
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The linear recurrence sequence un = un�1 + un�2

From the two solutions �n and e�n one deduces that any
solution is of the form un = a�n + be�n.

Since |�| > 1, the term �n tends to 1.

Since |e�| < 1, the term be�n tends to 0.

If a 6= 0, then |un| tends to infinity like a�n.

If a = 0, then un = be�n tends to 0.

If two consecutive terms are of the same sign, then all the next
ones have the same sign and |un| tends to infinity.
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Two computers may give di↵erent answers

One of the objectives of the Aric project (Arithmetic and
Computing)

http://www.ens-lyon.fr/LIP/AriC/
is to build correctly rounded mathematical function programs.

The IEEE 754-2008 standard
https://en.wikipedia.org/wiki/IEEE_754

specifies the behavior of floating-point arithmetic. This
standard defines rounding rules : properties to be satisfied
when rounding numbers during arithmetic and conversions.

Institute of Electrical and Electronics Engineers (IEEE).
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Decimal expansion of real numbers
A real number has a decimal expansion

ak10
k + ak�110

k�1 + · · ·+ a110 + a0 + b110
�1 + b210

�2 + · · ·
where the digits ai and bj belong to {0, 1, . . . 9}.
Any sequence of digits defines a real number, but some
numbers have two decimal expansions, namely the rational
numbers with denominator a power of 10.
From the relation

1 + a+ a
2 + a

3 + · · ·+ a
m + · · · = 1

1� a

which is valid for �1 < a < 1 we deduce

1 +
1

10
+

1

100
+

1

1000
+ · · · 1

10m
+ · · · = 1

1� 1

10

=
10

9
,

hence
0.999 999 999 · · · = 1.
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Handbook of floating-point arithmetic

Jean-Michel Muller, Nicolas
Brisebarre, Florent de
Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre,
Guillaume Melquiond,
Nathalie Revol, Damien
Stehlé, Serge Torres.
Handbook of floating-point
arithmetic.
Birkhäuser Basel, 2010.

Y. V. Nesterenko and M. Waldschmidt. On the

approximation of the values of exponential function and logarithm

by algebraic numbers (in Russian). Mat. Zapiski, 2 :23–42, 1996.

Available in English at

http://www.math.jussieu.fr/~miw/articles/ps/Nesterenko.ps
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Connection with Diophantine approximation

Many functions considered in the IEEE 754-2008 standard are
transcendental, including the exponentials, logarithms,
trigonometric functions, and inverse trigonometric functions.

The Table Maker’s Dilemma.
Accurate rounding of transcendental mathematical functions is
di�cult because the number of extra digits that need to be
calculated to resolve whether to round up or down cannot be
known in advance.
https://en.wikipedia.org/wiki/Rounding
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The Table Maker’s Dilemma for the exponential
function

Let ↵ be a precision-p floating-point number in [1, 2]. The
exact value exp(↵) belongs to the interval [e, e2). We now use
the theorem of Nesterenko and Waldschmidt with
E = e = 2.7182818 . . . and ✓ = ↵

0, where ↵0 is any precision-p
floating-point number in [1, 6). We obtain the following :

|e↵0 � ↵| � 2�688p2�992p log(p+1)�67514p�71824 log(p+1)�1283614
.

Reference : Handbook of floating-point arithmetic, § 12.4.

Solving the Table Maker’s Dilemma for Arbitrary Functions, p. 431.
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|eb � a| for a and b rational integers

Kurt Mahler
(1903 – 1988) Maurice Mignotte Franck Wielonsky

http://www-history.mcs.st-and.ac.uk/Biographies/Mahler.html

https://www.i2m.univ-amu.fr/perso/franck.wielonsky/
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|eb � a| for a and b rational integers

K. Mahler noticed that an integer power of e is never an
integer, since e is transcendental. Hence when a and b are
rational integers, we have eb 6= a.

Mahler obtained a lower bound for |eb � a| in 1953 and 1967.
His estimates were improved by M. Mignotte (1974), and later
by F. Wielonsky (1997). The sharpest known estimate is

|eb � a| > b
�20b

.
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|eb � a| for a and b rational integers
Mahler asked whether there exists an absolute constant c > 0
such that, for a and b positive integers,

|eb � a| > a
�c?

This is not yet solved. He also noticed that the inequality

|b� log a| < 1

a

has infinitely many solutions in positive integers a and b.
Indeed, if a denotes the integral part of eb, then we have

0 < eb � a < 1, 0 < a(b� log a) < eb � a < eb(b� log a),

hence

0 < b� log a <
eb � a

a
<

1

a
·
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Mahler’s conjecture

Mahler’s conjecture arises by considering the numbers
log a� ba for a = 1, . . . , A, where ba is the nearest integer to
log a, for growing values of A, and assuming that these
numbers are more or less evenly distributed in the interval
(�1/2, 1/2).

Mahler’s conjecture is equivalent to the existence of a
constant c > 0 such that, for a and b positive integers,

|eb � a| > e�cb
.
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Stronger conjecture

I suggest that the numbers eb � ab for b = 1, . . . , B, for
growing values of B, are evenly distributed in the interval
(�1/2, 1/2), where ab is the nearest integer to eb. This
amounts to suggest the stronger conjecture that there exists a
constant c > 0 for which

|eb � a| > b
�c
.

This conjecture is equivalent to the existence of a constant
c > 0 for which

|eb � a| > 1

a(log a)c
·
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|eb � a| for a and b rational numbers

Define H(p/q) = max{|p|, q}.

Then for a and b in Q with b 6= 0, the estimate is

|eb � a| � exp{�1, 3 · 105(logA)(logB)}

where A = max{H(a), A0}, B = max{H(b), 2}.

Yu. V. Nesterenko & M. Waldschmidt – On the approximation
of the values of exponential function and logarithm by algebraic numbers.
(In russian) Mat. Zapiski, 2 Diophantine approximations, Proceedings of
papers dedicated to the memory of Prof. N. I. Feldman, ed.
Yu. V. Nesterenko, Centre for applied research under Mech.-Math.

Faculty of MSU, Moscow (1996), 23–42.

http://fr.arXiv.org/abs/math/0002047
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|eb � a| for a and b rational numbers
A refinement of our estimate has been obtained in
Samy Khémira & Paul Voutier.

Diophantine approximation and Hermite-Padé approximants of
type I of exponential functions.
Ann. Sci. Math. Québec 35 (2011), no. 1, 85–116.

Samy Khemira Paul Voutier

https://www.youtube.com/watch?v=1WnoyYPu65g

Parlons Passion : Samy donne des cours aux enfants hospitalisés
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|eb � a| for a and b rational numbers

Makoto Kawashima

Makoto Kawashima,
Linear independence of values
of logarithms revisited,
April 3, 2019
https://arxiv.org/abs/
1904.01737

New lower bound for linear form in

1, log(1 + ↵), . . . , logm�1(1 + ↵)

with algebraic integer coe�cients in both complex and p–adic
case. Refinement of the result of Nesterenko-Waldschmidt on
the lower bound of linear form in certain values of power of
logarithms.
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Further applications of Diophantine Approximation
Hua Loo Keng & Wang Yuan – Application of number
theory to numerical analysis, Springer Verlag (1981).

Hua Loo Keng
(1910 – 1985)

Wang Yuan

Further applications of Diophantine Approximation include

equidistribution modulo 1, discrepancy, numerical integration,

interpolation, approximate solutions to integral and di↵erential equations.

http://www-history.mcs.st-and.ac.uk/Biographies/Hua.html

http://www-history.mcs.st-and.ac.uk/PictDisplay/Wang_Yuan.html
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The square root of 2, the Golden Ratio

and the Fibonacci sequence

Michel Waldschmidt

Professeur Émérite, Sorbonne Université,
Institut de Mathématiques de Jussieu, Paris

http://www.imj-prg.fr/~michel.waldschmidt/
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