Institute of Mathematies \& Applications

The square root of 2 , the Golden Ratio and the Fibonacci sequence

Michel Waldschmidt
Professeur Émérite, Sorbonne Université, Institut de Mathématiques de Jussieu, Paris http://www.imj-prg.fr/~michel.waldschmidt/

Abstract

The square root of 2 ,

$$
\sqrt{2}=1.414213562373095 \ldots,
$$

and the Golden ratio

$$
\Phi=\frac{1+\sqrt{5}}{2}=1.618033988749894 \ldots
$$

are two irrational numbers with many remarkable properties. The Fibonacci sequence

$$
0,1,1,2,3,5,8,13,21,34,55,89,144,233 \ldots
$$

occurs in many situations, in mathematics as well as in the real life. We review some of these properties.

Tablet YBC 7289 : $1800-1600$ BC

Babylonian clay tablet, accurate sexagesimal approximation to $\sqrt{2}$ to the equivalent of six decimal digits.

$$
1+\frac{24}{60}+\frac{51}{60^{2}}+\frac{10}{60^{3}}=1.414212962962962 \ldots
$$

$\sqrt{2}=1.414213562373095048801688724209698078 \ldots$
https://en.wikipedia.org/wiki/YBC_7289

A4 format 21×29.7

$$
\frac{297}{210}=\frac{99}{70}=1.414285714285714285714285714 \ldots
$$

A4 format

The number $\sqrt{2}$ is twice its inverse : $\sqrt{2}=2 / \sqrt{2}$.
Folding a rectangular piece of paper with sides in proportion $\sqrt{2}$ yields a new rectangular piece of paper with sides in proportion $\sqrt{2}$ again.

Paper format A0, A1, A2,... in cm

$$
\begin{array}{rlrl}
x_{1}=100 \sqrt[4]{2}=118.9, & x_{2}=\frac{100}{\sqrt[4]{2}}=84.1 . \\
A 0: & x_{1} & =118.9 & x_{2}=84.1 \\
A 1: & x_{2}=84.1 & \frac{x_{1}}{2}=59.4 \\
A 2: & \frac{x_{1}}{2}=59.4 & \frac{x_{2}}{2}=42 \\
A 3: & \frac{x_{2}}{2} & =42 & \frac{x_{1}}{4}=29.7 \\
A 4: & \frac{x_{1}}{4} & =29.7 & \frac{x_{2}}{4}= \\
A 5: & \frac{x_{2}}{4} & =21
\end{array}
$$

Rectangles with proportion $1+\sqrt{2}$

Irrationality of $\sqrt{2}$: geometric proof

- Start with a rectangle have sides lengths 1 and $1+\sqrt{2}$.
- Decompose it into two squares with sides 1 and a smaller rectangle of sides $\sqrt{2}-1$ and 1 .
- This second small rectangle has sides lengths in the proportion

$$
\frac{1}{\sqrt{2}-1}=1+\sqrt{2}
$$

which is the same as for the large one.

- Hence the second small rectangle can be split into two squares and a third smaller rectangle with the same proportion $1+\sqrt{2}$.
- This process does not end.

Irrationality of $\sqrt{2}$: geometric proof

If we start with a rectangle having a rational proportion, say $297 / 210=99 / 70$, using an appropriate unit the sides lengths are integers. For instance 99 and 70 .

The successive squares have decreasing integer sides lengths, say $70,29,12,5,2,1$:
$99=70+29, \quad 70=2 \times 29+12, \quad 29=2 \times 12+5$, $12=2 \times 5+2, \quad 5=2 \times 2+1$.

Hence this process stops after finitely may steps.
Hence $1+\sqrt{2}$ is an irrational number, and $\sqrt{2}$ also.

Continued fraction of $\sqrt{2}$

The number

$$
\sqrt{2}=1.41421356237309504880168872420 \ldots
$$

satisfies

$$
\sqrt{2}=1+\frac{1}{1+\sqrt{2}}
$$

Hence

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{1+\sqrt{2}}}=1+\frac{1}{2+\frac{1}{2+\frac{1}{\ddots}}}
$$

We write the continued fraction expansion of $\sqrt{2}$ using the shorter notation

$$
\sqrt{2}=[1,2,2,2,2,2, \ldots]=[1, \overline{2}] .
$$

A4 format

$$
\begin{aligned}
\frac{297}{210} & =1+\frac{29}{70} \\
\frac{70}{29} & =2+\frac{12}{29} \\
\frac{29}{12} & =2+\frac{5}{12} \\
\frac{12}{5} & =2+\frac{2}{5} \\
\frac{5}{2} & =2+\frac{1}{2}
\end{aligned}
$$

Hence

$$
\frac{297}{210}=[1,2,2,2,2,2] .
$$

First decimals of $\sqrt{2}$

1.41421356237309504880168872420969807856967187537694807317667973 799073247846210703885038753432764157273501384623091229702492483 605585073721264412149709993583141322266592750559275579995050115 278206057147010955997160597027453459686201472851741864088919860 955232923048430871432145083976260362799525140798968725339654633 180882964062061525835239505474575028775996172983557522033753185 701135437460340849884716038689997069900481503054402779031645424 782306849293691862158057846311159666871301301561856898723723528 850926486124949771542183342042856860601468247207714358548741556 570696776537202264854470158588016207584749226572260020855844665 214583988939443709265918003113882464681570826301005948587040031 864803421948972782906410450726368813137398552561173220402450912 277002269411275736272804957381089675040183698683684507257993647 290607629969413804756548237289971803268024744206292691248590521 810044598421505911202494413417285314781058036033710773091828693 $1471017111168391658172688941975871658215212822951848847 \ldots$

First binary digits of $\sqrt{2}$

1.011010100000100111100110011001111111001110111100110010010000 10001011001011111011000100110110011011101010100101010111110100 11111000111010110111101100000101110101000100100111011101010000 10011001110110100010111101011001000010110000011001100111001100 10001010101001010111111001000001100000100001110101011100010100 01011000011101010001011000111111110011011111101110010000011110 11011001110010000111101110100101010000101111001000011100111000 11110110100101001111000000001001000011100110110001111011111101 00010011101101000110100100010000000101110100001110100001010101 11100011111010011100101001100000101100111000110000000010001101 11100001100110111101111001010101100011011110010010001000101101 00010000100010110001010010001100000101010111100011100100010111 10111110001001110001100111100011011010101101010001010001110001 01110110111111010011101110011001011001010100110001101000011001 10001111100111100100001001101111101010010111100010010000011111 00000110110111001011000001011101110101010100100101000001000100 $110010000010000001100101001001010100000010011100101001010 \ldots$

Computation of decimals of $\sqrt{2}$

1542 decimals computed by hand by Horace Uhler in 1951

14000 decimals computed in 1967

1000000 decimals in 1971
$137 \cdot 10^{9}$ decimals computed by Yasumasa Kanada and Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours and 31 minutes.

- Motivation : computation of π.

Émile Borel (1871-1956)

- Les probabilités dénombrables et leurs applications arithmétiques, Palermo Rend. 27, 247-271 (1909). Jahrbuch Database
- Sur les chiffres décimaux de $\sqrt{2}$ et divers problèmes de probabilités en chaînes,
C. R. Acad. Sci., Paris 230, 591-593 (1950).

Zbl 0035.08302

Émile Borel : 1950

Let $g \geq 2$ be an integer and x a real irrational algebraic number. The expansion in base g of x should satisfy some of the laws which are valid for almost all real numbers (with respect to Lebesgue's measure).

This is a nice rectangle

Golden rectangle

$$
\frac{\Phi}{1}=\frac{1}{\Phi-1}
$$

Irrationality of Φ and of $\sqrt{5}$
The number

$$
\Phi=\frac{1+\sqrt{5}}{2}=1.618033988749894 \ldots
$$

satisfies

$$
\Phi=1+\frac{1}{\boxed{\Phi}}
$$

Hence

$$
\Phi=1+\frac{1}{1+\frac{1}{\boxed{\Phi}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\ddots}}}
$$

If we start from a rectangle with the Golden ratio as proportion of sides lengths, at each step we get a square and a smaller rectangle with the same proportion for the sides lengths.
http://oeis.org/A001622

The Golden Ratio

$(1+\sqrt{5}) / 2=1.618033988749894 \ldots$
Golden Rectangle

The diagonal of the pentagon and the diagonal of the octogon

The diagonal of the pentagon is Φ

The diagonal of the octogon is $1+\sqrt{2}$

Nested roots

$$
\Phi^{2}=1+\Phi
$$

$$
\begin{aligned}
\Phi & =\sqrt{1+\Phi} \\
& =\sqrt{1+\sqrt{1+\Phi}} \\
& =\sqrt{1+\sqrt{1+\sqrt{1+\Phi}}} \\
& =\ldots
\end{aligned}
$$

$$
=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}
$$

Nested roots

Journal of the Indian Mathematical Society (1912) - problems solved by Ramanujan

$\sqrt{6+2 \sqrt{7+3 \sqrt{8+4 \sqrt{9+\cdots}}}}=4 \quad \begin{array}{r}\text { Srinivasa Raman } \\ 1887-1920\end{array}$

Geometric series $\quad u_{0}=1, \quad u_{n+1}=2 u_{n}$

How many ancesters do we have?

Sequence: 1, 2, 4, 8, 16 ...

Bees genealogy

Male honeybees are born from unfertilized eggs. Female honeybees are born from fertilized eggs. Therefore males have only a mother, but females have both a mother and a father.

Genealogy of a male bee (bottom - up)

Number of bees:

$$
1,1,2,3,5 \ldots
$$

Number of females:

$$
0,1,1,2,3 \ldots
$$

Rule :

$$
u_{n+2}=u_{n+1}+u_{n}
$$

Bees genealogy $u_{1}=1, u_{2}=1, u_{n+2}=u_{n+1}+u_{n}$

Number of females at a given level =
total population at the previous level
Number of males at a given level=
number of females at the previous level

$$
\begin{aligned}
& 3+5=8 \\
& 2+3=5 \\
& 1+2=3 \\
& 1+1=2 \\
& 0+1=1 \\
& 1+0=1
\end{aligned}
$$

The Lamé Series

Gabriel Lamé

$$
1795-1870
$$

Edouard Lucas

1842-1891

In 1844 the sequence

$$
0,1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

was referred to as the Lamé series, because Gabriel Lamé used it to give an upper bound for the number of steps in the Euclidean algorithm for the gcd.
On a trip to Italy in 1876 Edouard Lucas found them in a copy of the Liber Abbaci of Leonardo da Pisa.

Leonardo Pisano (Fibonacci)

The Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$,
$0,1,1,2,3,5,8,13,21$,
$34,55,89,144,233, \ldots$
is defined by

$$
F_{0}=0, F_{1}=1
$$

$F_{n+2}=F_{n+1}+F_{n} \quad$ for $\quad n \geq 0$.
http://oeis.org/A000045

Leonardo Pisano (Fibonacci)

Guglielmo Bonacci : filius
Bonacci or Fibonacci
travels around the mediterranean,
learns the techniques of Al-Khwarizmi

https://commons.wikimedia.org/w/index.php?curid=720501

Encyclopedia of integer sequences (again)

$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597$, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, $317811,514229,832040,1346269,2178309,3524578,5702887,9227465, \ldots$

The Fibonacci sequence is available online
The On-Line Encyclopedia of Integer Sequences

Neil J. A. Sloane

http://oeis.org/A000045

Fibonacci rabbits

Fibonacci considered the growth of a rabbit population.
A newly born pair of rabbits, a male and a female, are put in a field. Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits; rabbits never die and a mating pair always produces

one new pair (one male, one female) every month from the second month on. The puzzle that Fibonacci posed was : how many pairs will there be in one year?
Answer : $F_{12}=144$.

Fibonacci's rabbits

Modelization of a population

Adult pairs Young pairs

- First month
- Second month
- Third month
- Fourth month
- Fifth month
- Sixth month
 Sequence: 1, 1, 2, 3, 5, 8, ...

Modelization of a population of mice

Exponential sequence

- First month

- Second month
- Third month
- Fourth month
 Number of pairs: 1, 2, 4, 8, ...

Is-it a realistic model?

The genealogy of the ancestors of a human being is not a mathematical tree :
30 generations would give 2^{30} ancestors, more than a billion people, three to four times more than the total population on earth one thousand years ago.

Even worse for the genealogy of bees:
In every bee hive there is one female queen bee which lays all the eggs. If an egg is not fertilised it eventually hatches into a male bee, called a drone. If an egg is fertilised by a male bee, then the egg produces a female worker bee, which doesn't lay any eggs herself.

Alfred Lotka : arctic trees

In cold countries, each branch of some trees gives rise to another one after the second year of existence only.

Fibonacci squares

FIBONACCI SQUARES
http://mathforum.org/dr.math/faq/faq.golden.ratio.html

Geometric construction of the

 Fibonacci sequence

The Fibonacci numbers in nature

Ammonite (Nautilus shape)

Phyllotaxy

- Study of the position of leaves on a stem and the reason for them
- Number of petals of flowers: daisies, sunflowers, aster, chicory, asteraceae,...
- Spiral patern to permit optimal exposure to sunlight
- Pine-cone, pineapple, Romanesco cawliflower, cactus

Leaf arrangements

- Université de Nice, Laboratoire Environnement Marin Littoral, Equipe d'Accueil "Gestion de la Biodiversité"

http://www.unice.fr/LEML/coursJDV/tp/ tp3.htm

Phyllotaxy

Phyllotaxy

- J. Kepler (1611) uses the Fibonacci sequence in his study of the dodecahedron and the icosaedron, and then of the symmetry of order 5 of the flowers.
- Stéphane Douady and Yves Couder Les spirales végétales La Recherche 250 (Jan. 1993) vol. 24.

ON GROWTH AND FORM
 The Complete Revised Edition

D'Arcy Wentworth Thompson

Why are there so many occurrences of the

 Fibonacci numbers and of the Golden ratio in the nature?According to Leonid Levin, objects with a small algorithmic Kolmogorov complexity (generated by a short program) occur more often than others.

Another example is given by Sierpinski triangles.
Reference: J-P. Delahaye.
http://cristal.univ-lille.fr/~jdelahay/pls/

Reflections of a ray of light

Consider three parallel sheets of glass and a ray of light which crosses the first sheet. Each time it touches one of the sheets, it can cross it or reflect on it.

Denote by p_{n} the number of different paths with the ray going out of the system after n reflections.

$$
\begin{aligned}
& p_{0}=1, \\
& p_{1}=2, \\
& p_{2}=3, \\
& p_{3}=5 . \\
& \text { In general, } p_{n}=F_{n+2} .
\end{aligned}
$$

Sequences of 0,1 and 2

Denote by u_{n} the number of sequences of n elements, each of them is 0,1 or 2 , starting with 0 , and obeying the following rule : the sequence is alternatively increasing and decreasing.

For $n=1$ we have $u_{1}=1$ since there is just the sequence (0).
For $n=2$ we have $u_{2}=2$ since there are two sequences, namely $(0,1)$ and $(0,2)$.
For $n=3$ we have $u_{3}=3$ since there are three sequences, namely $(0,1,0),(0,2,1)$ and $(0,2,0)$.
For $n=4$ we have $u_{4}=5$ since there are five sequences, namely
$(0,1,0,1)$,
$(0,1,0,2)$,
$(0,2,1,2)$,
$(0,2,0,1)$,
$(0,2,1,2)$.

Sequences of 0,1 and 2

We found $u_{n}=F_{n+1}$ for $n=1,2,3,4$. Let us check this formula for $n \geq 5$ as well, by induction on n.

For n odd, an admissible sequence ends with 0 or 1 . For n even, it ends with 1 or 2 .

Denote by v_{n} the number of sequences of length n ending with 0 or 2 :

$$
v_{1}=1, \quad v_{2}=1, \quad v_{3}=2, \quad v_{4}=3
$$

Sequences of 0,1 and 2

For n even, we obtain all sequences of length n ending with 2 as follows:

- we consider the sequences of length $n-1$ ending with 0 and we complete with 2
- we consider the sequences of length $n-1$ ending with 1 and we complete with 2

The number of sequences of length n ending with 02 is v_{n-1}.
A sequence ending with 12 ends with 212 . The number of sequences of length n ending with 212 is v_{n-2}.

This gives $v_{n}=v_{n-1}+v_{n-2}$ for n even.
The same proof gives the result also for n odd.
Hence $v_{n}=F_{n}$ for $n \geq 1$.

Sequences of 0,1 and 2

Denote by w_{n} the number of sequences of length n ending with 1 :

$$
w_{1}=0, \quad w_{2}=1, \quad w_{3}=1, \quad w_{4}=2
$$

A sequence of length n ending with 1 ends with 21 if n is odd, with 01 if n is even. Hence $w_{n}=v_{n-1}$.

Therefore $w_{n}=F_{n-1}$ for $n \geq 1$.

Sequences of 0,1 and 2

Finally we have $u_{n}=v_{n}+w_{n}$.
Hence

$$
u_{n}=F_{n}+F_{n-1}=F_{n+1} .
$$

Reflection of the ray of light

Give a label to the three glasses: 0,1 and 2 .
To each path associate the sequence of 0,1 and 2 starting with 0 followed by the labels of the glasses where the ray reflects.
One deduces $p_{n}=u_{n+1}$. Hence $p_{n}=F_{n+2}$ for $n \geq 0$.

Levels of energy of an electron of an atom of

 hydrogenAn atom of hydrogen can have three levels of energy, 0 at the ground level when it does not move, 1 or 2 . At each step, it alternatively gains and looses some level of energy, either 1 or 2 , without going sub 0 nor above 2 . Let ℓ_{n} be the number of different possible scenarios for this electron after n steps.

In general, $\ell_{n}=F_{n+2}$.

We have $\ell_{0}=1$ (initial state level 0)
$\ell_{1}=2$: state 1 or 2 , scenarios (ending with gain) 01 or 02 .
$\ell_{2}=3$: scenarios (ending with loss) 010, 021 or 020.
$\ell_{3}=5$: scenarios (ending with gain) 0101, 0102, 0212, 0201 or 0202.

Electron of the atom of hydrogen

Recall that u_{n} denotes the number of sequences of n elements, each of them is 0,1 or 2 , starting with 0 , and obeying the following rule : the sequence is alternatively increasing and decreasing.

From the definition of u_{n} we deduce $\ell_{n}=u_{n+1}$.

Hence $\ell_{n}=F_{n+2}$.

Rhythmic patterns

The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody. Several Indian scholars, Pingala (200 BC), Virahanka (c. 700 AD), Gopāla (c. 1135), and the Jain scholar Hemachandra (c. 1150). studied rhythmic patterns that are formed by concatenating one beat notes • and double beat notes \boldsymbol{m}.
one-beat note • : short syllabe (ti in Morse Alphabet) double beat note $\boldsymbol{\square}$: long syllabe (ta ta in Morse)
1 beat, 1 pattern :
2 beats, 2 patterns : • • and ■■
3 beats, 3 patterns: • • •, •■ and $\boldsymbol{\bullet \bullet}$
4 beats, 5 patterns :

n beats, F_{n+1} patterns.

Fibonacci sequence and Golden Ratio

The developments

$$
[1], \quad[1,1], \quad[1,1,1], \quad[1,1,1,1], \quad[1,1,1,1,1], \quad[1,1,1,1,1,1], \ldots
$$

are the quotients

$$
\begin{array}{ccccccc}
\frac{F_{2}}{F_{1}} & \frac{F_{3}}{F_{2}} & \frac{F_{4}}{F_{3}} & \frac{F_{5}}{F_{4}} & \frac{F_{6}}{F_{5}} & \frac{F_{7}}{F_{6}} & \\
\| & \| & \| & \| & \| & \| & \cdots \\
\frac{1}{1} & \frac{2}{1} & \frac{3}{2} & \frac{5}{3} & \frac{8}{5} & \frac{13}{8} &
\end{array}
$$

of consecutive Fibonacci numbers.
The development $[1,1,1,1,1, \ldots]$ is the continued fraction expansion of the Golden Ratio

$$
\Phi=\frac{1+\sqrt{5}}{2}=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=1.618033988749894 \ldots
$$

which satisfies

$$
\Phi=1+\frac{1}{\Phi}
$$

The Fibonacci sequence and the Golden ratio

For $n \geq 0$, the Fibonacci number F_{n} is the nearest integer to

$$
\frac{1}{\sqrt{5}} \Phi^{n}
$$

where Φ is the Golden Ratio :

$$
\Phi=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}
$$

Binet's formula

For $n \geq 0$,

$$
\begin{gathered}
F_{n}=\frac{\Phi^{n}-(-\Phi)^{-n}}{\sqrt{5}} \\
=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
\end{gathered}
$$

Jacques Philippe Marie Binet (1843)

$$
\begin{gathered}
\Phi=\frac{1+\sqrt{5}}{2}, \quad-\Phi^{-1}=\frac{1-\sqrt{5}}{2} \\
X^{2}-X-1=(X-\Phi)\left(X+\Phi^{-1}\right)
\end{gathered}
$$

The so-called Binet Formula

Formula of A. De Moivre (1718, 1730), Daniel Bernoulli
(1726), L. Euler (1728, 1765), J.P.M. Binet (1843) : for $n \geq 0$,

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} .
$$

Generating series

A single series encodes all the Fibonacci sequence :

$$
\sum_{n \geq 0} F_{n} X^{n}=X+X^{2}+2 X^{3}+3 X^{4}+5 X^{5}+\cdots+F_{n} X^{n}+\cdots
$$

Fact : this series is the Taylor expansion of a rational fraction :

$$
\sum_{n \geq 0} F_{n} X^{n}=\frac{X}{1-X-X^{2}}
$$

Proof : the product

$$
\left(X+X^{2}+2 X^{3}+3 X^{4}+5 X^{5}+8 X^{6}+\cdots\right)\left(1-X-X^{2}\right)
$$

is a telescoping series

$$
\begin{array}{r}
X+X^{2}+2 X^{3}+3 X^{4}+5 X^{5}+8 X^{6}+\cdots \\
-X^{2}-X^{3}-2 X^{4}-3 X^{5}-5 X^{6}-\cdots \\
-X^{3}-X^{4}-2 X^{5}-3 X^{6}-\cdots
\end{array}
$$

$$
=X
$$

Generating series of the Fibonacci sequence

Remark. The denominator $1-X-X^{2}$ in the right hand side of

$$
X+X^{2}+2 X^{3}+3 X^{4}+\cdots+F_{n} X^{n}+\cdots=\frac{X}{1-X-X^{2}}
$$

is $X^{2} f\left(X^{-1}\right)$, where $f(X)=X^{2}-X-1$ is the irreducible polynomial of the Golden ratio Φ.

Homogeneous linear differential equation

Consider the homogeneous linear differential equation

$$
y^{\prime \prime}-y^{\prime}-y=0 .
$$

If $y=\mathrm{e}^{\lambda x}$ is a solution, from $y^{\prime}=\lambda y$ and $y^{\prime \prime}=\lambda^{2} y$ we deduce

$$
\lambda^{2}-\lambda-1=0 .
$$

The two roots of the polynomial $X^{2}-X-1$ are Φ (the Golden ratio) and Φ^{\prime} with

$$
\Phi^{\prime}=1-\Phi=-\frac{1}{\Phi} .
$$

A basis of the space of solutions is given by the two functions $\mathrm{e}^{\Phi x}$ and $\mathrm{e}^{\Phi^{\prime} x}$. Since (Binet's formula)

$$
\sum_{n \geq 0} F_{n} \frac{x^{n}}{n!}=\frac{1}{\sqrt{5}}\left(\mathrm{e}^{\Phi x}-\mathrm{e}^{\Phi \prime x}\right),
$$

this exponential generating series of the Fibonacci sequence is a solution of the differential equation.

Fibonacci and powers of matrices

The Fibonacci linear recurrence relation $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 0$ can be written

$$
\binom{F_{n+1}}{F_{n+2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{F_{n}}{F_{n+1}}
$$

By induction one deduces, for $n \geq 0$,

$$
\binom{F_{n}}{F_{n+1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}\binom{0}{1}
$$

An equivalent formula is, for $n \geq 1$,

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)
$$

Characteristic polynomial

The characteristic polynomial of the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

is

$$
\operatorname{det}(X I-A)=\operatorname{det}\left(\begin{array}{cc}
X & -1 \\
-1 & X-1
\end{array}\right)=X^{2}-X-1
$$

which is the irreducible polynomial of the Golden ratio Φ.

The Fibonacci sequence and the Golden ratio

 (continued)For $n \geq 1, \Phi^{n} \in \mathbb{Z}[\Phi]=\mathbb{Z}+\mathbb{Z} \Phi$ is a linear combination of 1 and Φ with integer coefficients, namely

$$
\Phi^{n}=F_{n-1}+F_{n} \Phi
$$

$$
\begin{aligned}
\Phi & =0+\Phi \\
\Phi^{2} & =1+\Phi \\
\Phi^{3} & =1+2 \Phi \\
\Phi^{4} & =2+3 \Phi \\
\Phi^{5} & =3+5 \Phi \\
\Phi^{6} & =5+8 \Phi \\
\Phi^{7} & =8+13 \Phi
\end{aligned}
$$

The Fibonacci sequence and Hilbert's 10th problem

Yuri Matiyasevich (1970) showed that there is a polynomial P in n, m, and a number of other variables x, y, z, \ldots having the property that $n=F_{2 m}$ iff there exist integers x, y, z, \ldots such that $P(n, m, x, y, z, \ldots)=0$.

This completed the proof of the impossibility of the tenth of Hilbert's problems (does there exist a general method for solving Diophantine equations?) thanks to the previous work of Hilary Putnam, Julia Robinson and
 Martin Davis.

The Fibonacci Quarterly

The Fibonacci sequence satisfies a lot of very interesting properties. Four times a year, the Fibonacci Quarterly publishes an issue with new properties which have been discovered.

Narayana's cows

Narayana was an Indian mathematician in the 14th century who proposed the following problem :
A cow produces one calf every year. Beginning in its fourth year each calf produces one calf at the beginning of each year. How many calves are there altogether after, for example, 17 years?

Narayana sequence

Narayana sequence is defined by the recurrence relation

$$
C_{n+3}=C_{n+2}+C_{n}
$$

with the initial values $C_{0}=2, C_{1}=3, C_{2}=4$.
It starts with

$$
2,3,4,6,9,13,19,28,41,60,88,129,189,277, \ldots
$$

Real root of $x^{3}-x^{2}-1$
$\frac{\sqrt[3]{\frac{29+3 \sqrt{93}}{2}}+\sqrt[3]{\frac{29-3 \sqrt{93}}{2}}+1}{3}=1.465571231876768 \ldots$

Generating series and power of matrices

$$
2+3 X+4 X^{2}+6 X^{3}+\cdots+C_{n} X^{n}+\cdots=\frac{2+X+X^{2}}{1-X-X^{3}}
$$

Differential equation : $y^{\prime \prime \prime}-y^{\prime \prime}-y=0$; initial conditions : $y(0)=2, y^{\prime}(0)=3, y^{\prime \prime}(0)=4$.

For $n \geq 0$,

$$
\left(\begin{array}{c}
C_{n} \\
C_{n+1} \\
C_{n+2}
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)^{n}\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) .
$$

Music:

In working this out, Tom Johnson found a way to translate this into a composition called Narayana's Cows.
Music : Tom Johnson
Saxophones: Daniel Kientzy

Narayana's cows

http://www.math.jussieu.fr/~michel.waldschmidt/

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Original Cow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
second yeneration	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Third yeneration	0	0	0	1	3	6	10	15	21	28	36	45	55	66	78	91	105
Fourth generation	0	0	0	0	0	0	1	4	10	20	35	56	84	120	165	220	286
Fifth generation	0	0	0	0	0	0	0	0	0	1	5	15	35	70	126	210	330
sixth yeneration	0	0	0	0	0	0	0	0	0	0	0	0	1	6	21	56	126
seventh seneration	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	7
Total	2	3	4	6	9	13	19	28	$\mathbf{4 1}$	60	88	$\mathbf{1 2 9}$	$\mathbf{1 8 9}$	277	406	595	872

Jean-Paul Allouche and Tom Johnson

http://www.math.jussieu.fr/~jean-paul.allouche/ bibliorecente.html
http://www.math.jussieu.fr/~allouche/johnson1.pdf

Cows, music and morphisms

Jean-Paul Allouche and Tom Johnson

- Narayana's Cows and Delayed Morphisms

In 3èmes Journées d'Informatique Musicale (JIM '96), Ile de Tatihou, Les Cahiers du GREYC (1996 no. 4), pages 2-7, May 1996.
http://kalvos.org/johness1.html

- Finite automata and morphisms in assisted musical composition, Journal of New Music Research, no. 24 (1995), 97 - 108. http://www.tandfonline.com/doi/abs/10.1080/ 09298219508570676 http://web.archive.org/web/19990128092059/www.swets. nl/jnmr/vol24_2.html

Music and the Fibonacci sequence

- Dufay, XV ${ }^{\text {ème }}$ siècle
- Roland de Lassus
- Debussy, Bartok, Ravel, Webern
- Stockhausen
- Xenakis
- Tom Johnson Automatic Music for six percussionists

Fibonacci numbers with odd indices

The sequence of Fibonacci numbers with odd indices is

$$
F_{1}=1, F_{3}=2, F_{5}=5, F_{7}=13, F_{9}=34, F_{11}=89, \ldots
$$

$1,2,5,13,34,89,233,610,1597,4181,10946,28657, \ldots$

They produce solutions of a special case of the Markoff equation

$$
x^{2}+y^{2}+1=3 x y
$$

$$
\text { with } x=F_{m-1} \text { and } y=F_{m+1} \text { : }
$$

$$
1^{2}+2^{2}+1=3 \cdot 1 \cdot 2
$$

$$
2^{2}+5^{2}+1=3 \cdot 2 \cdot 5
$$

$$
5^{2}+13^{2}+1=3 \cdot 5 \cdot 13, \ldots
$$

The sequence of Markoff numbers

A Markoff number is a positive integer z such that there exist two positive integers x and y satisfying

$$
x^{2}+y^{2}+z^{2}=3 x y z .
$$

For instance 1 is a Markoff number, since
$(x, y, z)=(1,1,1)$ is a
solution.

Andrei Andreyevich Markoff
(1856-1922)

Photos:
http://www-history.mcs.st-andrews.ac.uk/history/

The On-Line Encyclopedia of Integer Sequences

$1,2,5,13,29,34,89,169,194,233,433,610,985,1325,1597,2897$, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666, 43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, ...

The sequence of Markoff numbers is available on the web
The On-Line Encyclopedia of Integer Sequences

Neil J. A. Sloane

Neil J. A. Sloane
http://oeis.org/A002559

Integer points on a surface

Given a Markoff number z, there exist infinitely many pairs of positive integers x and y satisfying

$$
x^{2}+y^{2}+z^{2}=3 x y z .
$$

This is a cubic equation in the 3 variables (x, y, z), of which we know a solution $(1,1,1)$.

There is an algorithm producing all integer solutions.

Markoff's cubic variety

The surface defined by Markoff's equation

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

is an algebraic variety with many automorphisms: permutations of the variables, changes of signs and

$$
(x, y, z) \mapsto(3 y z-x, y, z)
$$

A.A. Markoff (1856-1922)

Algorithm producing all solutions

Let $\left(m, m_{1}, m_{2}\right)$ be a solution of Markoff's equation :

$$
m^{2}+m_{1}^{2}+m_{2}^{2}=3 m m_{1} m_{2}
$$

Fix two coordinates of this solution, say m_{1} and m_{2}. We get a quadratic equation in the third coordinate m, of which we know a solution, hence, the equation

$$
x^{2}+m_{1}^{2}+m_{2}^{2}=3 x m_{1} m_{2}
$$

has two solutions, $x=m$ and, say, $x=m^{\prime}$, with
$m+m^{\prime}=3 m_{1} m_{2}$ and $m m^{\prime}=m_{1}{ }^{2}+m_{2}{ }^{2}$. This is the cord and tangente process.

Hence, another solution is (m^{\prime}, m_{1}, m_{2}) with $m^{\prime}=3 m_{1} m_{2}-m$.

Three solutions derived from one

Starting with one solution (m, m_{1}, m_{2}), we derive three new solutions :

$$
\left(m^{\prime}, m_{1}, m_{2}\right), \quad\left(m, m_{1}^{\prime}, m_{2}\right), \quad\left(m, m_{1}, m_{2}^{\prime}\right) .
$$

If the solution we start with is $(1,1,1)$, we produce only one new solution, $(2,1,1)$ (up to permutation).

If we start from $(2,1,1)$, we produce only two new solutions, $(1,1,1)$ and $(5,2,1)$ (up to permutation).

A new solution means distinct from the one we start with.

New solutions

We shall see that any solution different from ($1,1,1$) and from $(2,1,1)$ yields three new different solutions - and we shall see also that, in each other solution, the three numbers m, m_{1} and m_{2} are pairwise distinct.

Two solutions are called neighbors if they share two components.

For instance

- $(1,1,1)$ has a single neighbor, namely $(2,1,1)$,
- $(2,1,1)$ has two neighbors : $(1,1,1)$ et $(5,2,1)$,
- any other solution has exactly three neighbors.

Markoff's tree

Assume we start with $\left(m, m_{1}, m_{2}\right)$ satisfying $m>m_{1}>m_{2}$. We shall check

$$
m_{2}^{\prime}>m_{1}^{\prime}>m>m^{\prime}
$$

We order the solution according to the largest coordinate.
Then two of the neighbors of $\left(m, m_{1}, m_{2}\right)$ are larger than the initial solution, the third one is smaller.

Hence, if we start from $(1,1,1)$, we produce infinitely many solutions, which we organize in a tree : this is Markoff's tree.

This algorithm yields all the solutions

Conversely, starting from any solution other than $(1,1,1)$, the algorithm produces a smaller solution.

Hence, by induction, we get a sequence of smaller and smaller solutions, until we reach $(1,1,1)$.
Therefore the solution we started from was in Markoff's tree.

First branches of Markoff's tree

Markoff's tree starting from $(2,5,29)$

Markoff's tree up to 100000

Don Zagier,
On the number of Markoff numbers below a given bound. Mathematics of Computation, 39160 (1982), 709-723.

Markoff's Conjecture

The previous algorithm produces the sequence of Markoff numbers. Each Markoff number occurs infinitely often in the tree as one of the components of the solution.

According to the definition, for a Markoff number $m>2$, there exist a pair $\left(m_{1}, m_{2}\right)$ of positive integers with $m>m_{1}>m_{2}$ such that $m^{2}+m_{1}^{2}+m_{2}^{2}=3 m m_{1} m_{2}$.

Question : Given m, is such a pair $\left(m_{1}, m_{2}\right)$ unique?

The answer is yes, as long as $m \leq 10^{105}$.

The Fibonacci sequence and the Markoff equation

The smallest Markoff number is 1 . When we impose $z=1$ in the Markoff equation $x^{2}+y^{2}+z^{2}=3 x y z$, we obtain the equation

$$
x^{2}+y^{2}+1=3 x y
$$

Going along the Markoff's tree starting from $(1,1,1)$, we obtain the subsequence of Markoff numbers
$1,2,5,13,34,89,233,610,1597,4181,10946,28657, \ldots$
which is the sequence of Fibonacci numbers with odd indices

$$
F_{1}=1, F_{3}=2, F_{5}=5, F_{7}=13, F_{9}=34, F_{11}=89, \ldots
$$

Fibonacci numbers with odd indices

Fibonacci numbers with odd indices are Markoff's numbers :

$$
F_{m+3} F_{m-1}-F_{m+1}^{2}=(-1)^{m} \quad \text { for } \quad m \geq 1
$$

and

$$
F_{m+3}+F_{m-1}=3 F_{m+1} \quad \text { for } \quad m \geq 1
$$

Set $y=F_{m+1}, x=F_{m-1}, x^{\prime}=F_{m+3}$, so that, for even m,

$$
x+x^{\prime}=3 y, \quad x x^{\prime}=y^{2}+1
$$

and

$$
X^{2}-3 y X+y^{2}+1=(X-x)\left(X-x^{\prime}\right)
$$

A computer should not be a Black Box

Computers will play an increasing role everywhere. You need to understand fully all what they are doing.

IBM Releases "Black Box"
Breaker on IBM Cloud

https://www.cbronline.com/news/ai-bias-ibm

$$
u_{0}=1, u_{1}=(1-\sqrt{5}) / 2, \quad u_{n}=u_{n-1}+u_{n-2}
$$

Question : compute u_{100}.

Pierre Arnoux

$$
\frac{1-\sqrt{5}}{2}=-0.618033988749894848204586834365 \ldots
$$

https://oeis.org/A001622 http://iml.univ-mrs.fr/~arnoux/

Excel file \quad Column $A: n \quad$ Column $B: u_{n}$

$$
u_{0}=1, u_{1}=(1-\sqrt{5}) / 2, \quad u_{n}=u_{n-1}+u_{n-2}
$$

	A	B
1	0	1
2	1	-0.618034

	A	B
1	0	1
2	1	-0.618034
3	$=1+\mathrm{A} 2$	$=\mathrm{B} 1+\mathrm{B} 2$

	A	B
1	0	1
2	1	-0.618034
3	2	0.38196601

Copy A3 B3 down

Excel file : u_{1} to u_{39}

```
1-0,61803399
    2 0,381966011
    -0,23606798
    4 0,145898034
    5-0,09016994
    0,05572809
    7-0,03444185
    8 0,021286236
    9-0,01315562
0,008130619
            -0,005025
        0,00310562
        -0,00191938
14 0,001186241
15 -0,00073314
16 0,000453104
17 -0,00028003
18 0,00017307
19 -0,00010696
20 6,6107E-05
21 -4,0856E-05
2,52506E-05
-1,5606E-05
9,64487E-06
25 -5,9609E-06
26 3,68401E-06
27 -2,2769E-06
28 1,40715E-06
29 -8,6971E-07
5,37445E-07
-3,3226E-07
2,05185E-07
-1,2708E-07
7,8109E-08
-4,8967E-08
2,91423E-08
-1,9824E-08
9,31784E-09
-1,0507E-08
```


Excel file : u_{1} to u_{39}

$$
\begin{array}{rr}
1 & -0,61803399 \\
2 & 0,381966011 \\
3 & -0,23606798 \\
4 & 0,145898034 \\
5 & -0,09016994 \\
6 & 0,05572809 \\
7 & -0,03444185 \\
8 & 0,021286236 \\
9 & -0,01315562 \\
10 & 0,008130619 \\
11 & -0,005025 \\
12 & 0,00310562 \\
13 & -0,00191938 \\
14 & 0,001186241 \\
15 & -0,00073314 \\
16 & 0,000453104 \\
17 & -0,00028003 \\
18 & 0,00017307 \\
19 & -0,00010696
\end{array}
$$

20	$6,6107 \mathrm{E}-05$
21	$-4,0856 \mathrm{E}-05$
22	$2,52506 \mathrm{E}-05$
23	$-1,5606 \mathrm{E}-05$
24	$9,64487 \mathrm{E}-06$
25	$-5,9609 \mathrm{E}-06$
26	$3,68401 \mathrm{E}-06$
27	$-2,2769 \mathrm{E}-06$
28	$1,40715 \mathrm{E}-06$
29	$-8,6971 \mathrm{E}-07$
30	$5,37445 \mathrm{E}-07$
31	$-3,3226 \mathrm{E}-07$
32	$2,05185 \mathrm{E}-07$
33	$-1,2708 \mathrm{E}-07$
34	$7,8109 \mathrm{E}-08$
35	$-4,8967 \mathrm{E}-08$
36	$2,91423 \mathrm{E}-08$
37	$-1,9824 \mathrm{E}-08$
38	$9,31784 \mathrm{E}-09$
39	$-1,0507 \mathrm{E}-08$

Exact value of u_{n}

Observations: The signs of u_{n} alternate, the absolute value is decreasing.

Set $\widetilde{\Phi}=(1-\sqrt{5}) / 2$. Notice that $\widetilde{\Phi}$ is a root of $X^{2}-X-1$, the other root is $\Phi=(1+\sqrt{5}) / 2$, the golden ratio.

From $\widetilde{\Phi}^{n}=\widetilde{\Phi}^{n-1}+\widetilde{\Phi}^{n-2}$ with $u_{0}=1, u_{1}=\widetilde{\Phi}$, we deduce by induction $u_{n}=\widetilde{\Phi}^{n}$.

Exact value of u_{39}

Numerical values :

$$
\widetilde{\Phi}=-0.618033988749894 \ldots
$$

$$
\log |\widetilde{\Phi}|=-0.4812118250596034 \ldots
$$

$$
u_{39}=-\widetilde{\Phi}^{39}=-\mathrm{e}^{-18.767261177324,453 \ldots}=-7.071019 \ldots 10^{-9}
$$

PARI GP: https://pari.math.u-bordeaux.fr/ P忸R

Comparing the excel values with the exact values

excel value

5,37445E-07
-3,32261E-07
2,05185E-07
-1,27076E-07
7,8109E-08
-4,89667E-08
2,91423E-08
-1,98244E-08
9,31784E-09
$-1,05066 \mathrm{E}-08$
-1,18878E-09
-1,16954E-08
exact value

5,3749E-07
-3,32187E-07
2,05303E-07
-1,26884E-07
7,84188E-08
-4,84655E-08
2,99533E-08
-1,85122E-08
1,14411E-08
-7,07102E-09
4,37013E-09
$-2,70089 \mathrm{E}-09$

Exact value of u_{100}

The answer to initial question is

$$
u_{100}=\widetilde{\Phi}^{100}
$$

$$
\begin{aligned}
& \widetilde{\Phi}=-0.618033988749894 \ldots, \log |\widetilde{\Phi}|=-0.4812118250596034 \ldots \\
& \widetilde{\Phi}^{100}=e^{-48.12118250596034 \ldots}=1.262513338064 \ldots 10^{-21}
\end{aligned}
$$

Excel (continued)

$$
u_{100}=-19241.901833167 \ldots
$$

38	$9,31784 \mathrm{E}-09$	85	$-14,10695857$
39	$-1,05066 \mathrm{E}-08$	86	$-22,82553845$
40	$-1,18878 \mathrm{E}-09$	87	$-36,93249702$
41	$-1,16954 \mathrm{E}-08$	88	$-59,75803546$
42	$-1,28842 \mathrm{E}-08$	89	$-96,69053248$
43	$-2,45796 \mathrm{E}-08$	90	$-156,4485679$
44	$-3,74637 \mathrm{E}-08$	91	$-253,1391004$
45	$-6,20433 \mathrm{E}-08$	92	$-409,5876684$
46	$-9,9507 \mathrm{E}-08$	93	$-662,7267688$
47	$-1,6155 \mathrm{E}-07$	94	$-1072,314437$
48	$-2,61057 \mathrm{E}-07$	95	$-1735,041206$
49	$-4,22608 \mathrm{E}-07$	96	$-2807,355643$
50	$-6,83665 \mathrm{E}-07$	97	$-4542,396849$
51	$-1,10627 \mathrm{E}-06$	98	$-7349,752492$
52	$-1,78994 \mathrm{E}-06$	99	$-11892,14934$
		100	$-19241,90183$

The linear recurrence sequence $u_{n}=u_{n-1}+u_{n-2}$

From the two solutions Φ^{n} and $\widetilde{\Phi}^{n}$ one deduces that any solution is of the form $u_{n}=a \Phi^{n}+b \widetilde{\Phi}^{n}$.

Since $|\Phi|>1$, the term Φ^{n} tends to ∞.
Since $|\widetilde{\Phi}|<1$, the term $b \widetilde{\Phi}^{n}$ tends to 0 .
If $a \neq 0$, then $\left|u_{n}\right|$ tends to infinity like $a \Phi^{n}$.
If $a=0$, then $u_{n}=b \widetilde{\Phi}^{n}$ tends to 0 .
If two consecutive terms are of the same sign, then all the next ones have the same sign and $\left|u_{n}\right|$ tends to infinity.

Two computers may give different answers

One of the objectives of the Aric project (Arithmetic and Computing)
http://www.ens-lyon.fr/LIP/AriC/
is to build correctly rounded mathematical function programs.

The IEEE 754-2008 standard
https://en.wikipedia.org/wiki/IEEE_754 specifies the behavior of floating-point arithmetic. This standard defines rounding rules : properties to be satisfied when rounding numbers during arithmetic and conversions.

Decimal expansion of real numbers

A real number has a decimal expansion
$a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0}+b_{1} 10^{-1}+b_{2} 10^{-2}+\cdots$ where the digits a_{i} and b_{j} belong to $\{0,1, \ldots 9\}$.
Any sequence of digits defines a real number, but some numbers have two decimal expansions, namely the rational numbers with denominator a power of 10 .
From the relation

$$
1+a+a^{2}+a^{3}+\cdots+a^{m}+\cdots=\frac{1}{1-a}
$$

which is valid for $-1<a<1$ we deduce

$$
1+\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\cdots \frac{1}{10^{m}}+\cdots=\frac{1}{1-\frac{1}{10}}=\frac{10}{9}
$$

hence

$$
0.999999999 \cdots=1
$$

Handbook of floating-point arithmetic

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, Serge Torres. Handbook of floating-point arithmetic. Birkhäuser Basel, 2010.
Y. V. Nesterenko and M. Waldschmidt. On the approximation of the values of exponential function and logarithm by algebraic numbers (in Russian). Mat. Zapiski, 2 :23-42, 1996. Available in English at http://www.math.jussieu.fr/~miw/articles/ps/Nesterenko.ps

Connection with Diophantine approximation

Many functions considered in the IEEE 754-2008 standard are transcendental, including the exponentials, logarithms, trigonometric functions, and inverse trigonometric functions.

The Table Maker's Dilemma.
Accurate rounding of transcendental mathematical functions is difficult because the number of extra digits that need to be calculated to resolve whether to round up or down cannot be known in advance.
https://en.wikipedia.org/wiki/Rounding

The Table Maker's Dilemma for the exponential function

Let α be a precision- p floating-point number in $[1,2]$. The exact value $\exp (\alpha)$ belongs to the interval $\left[\mathrm{e}, \mathrm{e}^{2}\right)$. We now use the theorem of Nesterenko and Waldschmidt with
$E=\mathrm{e}=2.7182818 \ldots$ and $\theta=\alpha^{\prime}$, where α^{\prime} is any precision- p floating-point number in $[1,6)$. We obtain the following :

$$
\left|\mathrm{e}^{\alpha^{\prime}}-\alpha\right| \geq 2^{-688 p^{2}-992 p \log (p+1)-67514 p-71824 \log (p+1)-1283614}
$$

Reference: Handbook of floating-point arithmetic, § 12.4. Solving the Table Maker's Dilemma for Arbitrary Functions, p. 431.

$\left|\mathrm{e}^{b}-a\right|$ for a and b rational integers

Maurice Mignotte

Franck Wielonsky
http://www-history.mcs.st-and.ac.uk/Biographies/Mahler.html https://www.i2m.univ-amu.fr/perso/franck.wielonsky/

$\left|\mathrm{e}^{b}-a\right|$ for a and b rational integers

K. Mahler noticed that an integer power of e is never an integer, since e is transcendental. Hence when a and b are rational integers, we have $\mathrm{e}^{b} \neq a$.

Mahler obtained a lower bound for $\left|\mathrm{e}^{b}-a\right|$ in 1953 and 1967. His estimates were improved by M. Mignotte (1974), and later by F. Wielonsky (1997). The sharpest known estimate is

$$
\left|e^{b}-a\right|>b^{-20 b}
$$

$\left|\mathrm{e}^{b}-a\right|$ for a and b rational integers

Mahler asked whether there exists an absolute constant $c>0$ such that, for a and b positive integers,

$$
\left|\mathrm{e}^{b}-a\right|>a^{-c} ?
$$

This is not yet solved. He also noticed that the inequality

$$
|b-\log a|<\frac{1}{a}
$$

has infinitely many solutions in positive integers a and b. Indeed, if a denotes the integral part of e^{b}, then we have
$0<\mathrm{e}^{b}-a<1$,
$0<a(b-\log a)<\mathrm{e}^{b}-a<\mathrm{e}^{b}(b-\log a)$,
hence

$$
0<b-\log a<\frac{\mathrm{e}^{b}-a}{a}<\frac{1}{a} .
$$

Mahler's conjecture

Mahler's conjecture arises by considering the numbers $\log a-b_{a}$ for $a=1, \ldots, A$, where b_{a} is the nearest integer to $\log a$, for growing values of A, and assuming that these numbers are more or less evenly distributed in the interval $(-1 / 2,1 / 2)$.

Mahler's conjecture is equivalent to the existence of a constant $c>0$ such that, for a and b positive integers,

$$
\left|\mathrm{e}^{b}-a\right|>\mathrm{e}^{-c b} .
$$

Stronger conjecture

I suggest that the numbers $\mathrm{e}^{b}-a_{b}$ for $b=1, \ldots, B$, for growing values of B, are evenly distributed in the interval $(-1 / 2,1 / 2)$, where a_{b} is the nearest integer to e^{b}. This amounts to suggest the stronger conjecture that there exists a constant $c>0$ for which

$$
\left|\mathrm{e}^{b}-a\right|>b^{-c}
$$

This conjecture is equivalent to the existence of a constant $c>0$ for which

$$
\left|\mathrm{e}^{b}-a\right|>\frac{1}{a(\log a)^{c}}
$$

$\left|\mathrm{e}^{b}-a\right|$ for a and b rational numbers

Define $H(p / q)=\max \{|p|, q\}$.

Then for a and b in \mathbb{Q} with $b \neq 0$, the estimate is

$$
\left|\mathrm{e}^{b}-a\right| \geq \exp \left\{-1,3 \cdot 10^{5}(\log A)(\log B)\right\}
$$

where $A=\max \left\{H(a), A_{0}\right\}, B=\max \{H(b), 2\}$.
Yu. V. Nesterenko \& M. Waldschmidt - On the approximation of the values of exponential function and logarithm by algebraic numbers. (In russian) Mat. Zapiski, 2 Diophantine approximations, Proceedings of papers dedicated to the memory of Prof. N. I. Feldman, ed.
Yu. V. Nesterenko, Centre for applied research under Mech.-Math.
Faculty of MSU, Moscow (1996), 23-42.
http://fr.arXiv.org/abs/math/0002047

$\left|\mathrm{e}^{b}-a\right|$ for a and b rational numbers

A refinement of our estimate has been obtained in Samy Khémira \& Paul Voutier.
Diophantine approximation and Hermite-Padé approximants of type I of exponential functions.
Ann. Sci. Math. Québec 35 (2011), no. 1, 85-116.

Samy Khemira

Paul Voutier
https://www. youtube.com/watch?v=1WnoyYPu65g
Parlons Passion : Samy donne des cours aux enfants hospitalisés

$\left|\mathrm{e}^{b}-a\right|$ for a and b rational numbers

> Makoto Kawashima, Linear independence of values of logarithms revisited, April 3, 2019
> https://arxiv.org/abs/ 1904.01737

New lower bound for linear form in

$$
1, \log (1+\alpha), \ldots, \log ^{m-1}(1+\alpha)
$$

with algebraic integer coefficients in both complex and p-adic case. Refinement of the result of Nesterenko-Waldschmidt on the lower bound of linear form in certain values of power of logarithms.

Further applications of Diophantine Approximation

Hua Loo Keng \& Wang Yuan - Application of number theory to numerical analysis, Springer Verlag (1981).

Hua Loo Keng (1910-1985)

Wang Yuan

Further applications of Diophantine Approximation include equidistribution modulo 1 , discrepancy, numerical integration, interpolation, approximate solutions to integral and differential equations.
http://www-history.mcs.st-and.ac.uk/Biographies/Hua.html
http://www-history.mcs.st-and.ac.uk/PictDisplay/Wang_Yuan.html

Institute of Mathematies \& Applications

The square root of 2 , the Golden Ratio and the Fibonacci sequence

Michel Waldschmidt
Professeur Émérite, Sorbonne Université, Institut de Mathématiques de Jussieu, Paris http://www.imj-prg.fr/~michel.waldschmidt/

