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Which one is an elliptic curve?

y2 = 4x3 − 4x

Answer 1 Answer 2 Answer 3

Right answer: a subset of
{

1 , 2 , 3
}

.
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René Magritte: la trahison des images (1928–1929)
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Left-right reversal illusion

Figure 1. Arrow that changes direction when seen in a mirror.

Kokichi Sugihara, Left-right reversal illusion.
Eur. Math. Soc. Mag. 125 (2022), pp. 13–19.
https://doi.org/10.4171/MAG/96
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Left-right reversal illusion (2)

Computer graphics images of the object in Figure 1.
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Left-right reversal illusion (3)

Object and its mirror image

Front view

Side view
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https://en.wikipedia.org/wiki/Elliptic_curve

In mathematics, an elliptic curve is a smooth, projective, algebraic
curve of genus one, on which there is a specified point O. An
elliptic curve is defined over a field K and describes points in K2.
If the field’s characteristic is different from 2 and 3, then the curve
can be described as a plane algebraic curve which consists of
solutions (x, y) for:

y2 = x3 + ax+ b

for some coefficients a and b in K.

The curve is required to be non-singular, which means that the
curve has no cusps or self-intersections. (This is equivalent to the
condition 4a3 + 27b2 6= 0, that is, being square-free in x.)

It is always understood that the curve is really sitting in the
projective plane, with the point O being the unique point at
infinity.
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https://mathworld.wolfram.com/EllipticCurve.html

Informally, an elliptic curve is a type of cubic curve whose
solutions are confined to a region of space that is topologically
equivalent to a torus. The Weierstrass elliptic function
P (z; g2, g3) describes how to get from this torus to the
algebraic form of an elliptic curve.

Formally, an elliptic curve over a field K is a nonsingular cubic
curve in two variables, f(X,Y ) = 0, with a K-rational point
(which may be a point at infinity). The field K is usually
taken to be the complex numbers C, reals R, rationals Q,
algebraic extensions of Q, p-adic numbers Qp, or a finite field.
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Lawrence C. Washington

Elliptic Curves: Number Theory and Cryptography, Second Edition
(Discrete Mathematics and Its Applications) 2008
https://people.cs.nctu.edu.tw/~rjchen/ECC2012S/EllipticCurvesNumberTheoryAndCryptography2n.pdf

Chapter 2 The basic theory

For most situations in this book, an elliptic curve E is the graph
of an equation of the form

y2 = x3 +Ax+B

where A and B are constant. This will be referred to as the
Weierstrass equation for an elliptic curve.

If K is a field and A,B ∈ K, then we will say that E is defined
over K.

If we want to consider points with coordinates in some field
L ⊂ K, we write E(L).
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Henri Cohen

A Course in Computational Algebraic Number Theory.
Graduate Texts in Mathematics, Springer (1993).
https://www.math.u-bordeaux.fr/~hecohen

Chapter V Elliptic curves.

An elliptic curve can be defined as a smooth projective curve
of degree 3 in the projective plane, with a point which is the
origine: then the set of points has a group structure. A more
concrete definition arises from the fact that one can write the
affine equation in the form

y2 = x3 + ax+ b with 4a3 + 27b2 6= 0.
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Christophe Ritzenthaler.
Introduction to elliptic curves.
https://perso.univ-rennes1.fr/christophe.ritzenthaler/cours/elliptic-curve-course.pdf

Definition 1. A Weierstrass equation of an elliptic curve E
over a field K is

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0 where ∆ is the
discriminant of E and is defined as follow

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.
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https://perso.univ-rennes1.fr/christophe.ritzenthaler/cours/elliptic-curve-course.pdf

Definition 2. A (projective) Weierstrass equation of an elliptic
curve E over a field K is

Ẽ : y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0.

Definition 3. An elliptic curve over a field K is a projective
non-singular curve of genus 1 with a K-rational point O.

12 / 104

https://perso.univ-rennes1.fr/christophe.ritzenthaler/cours/elliptic-curve-course.pdf


Other avatars of elliptic curves

1. Quartic equations: y2 = f(x) with f a degree 4 polynomial
without multiple root;

2. Hessian model: x3 + y3 + z3 = dxyz;

3. Intersection of quadrics in P3 : x2 + z2 = ayt and
y2 + t2 = axz;

4. Edwards model: x2 + y2 = 1 + dx2y2.

To keep it simple, we will however often confuse the definition
of an elliptic curve and of its (Weierstrass equation) but one
has to keep in mind that in general abstract curve 6= a model
of a curve 6= an equation of the curve.
https://perso.univ-rennes1.fr/christophe.ritzenthaler/cours/elliptic-curve-course.pdf
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Projective plane cubics

P2(K) 3 (x : y : z)

f(x, y, z) = a300x
3 + a210x

2y + a120xy
2 + a030y

3+

a201x
2z + a111xyz + a021y

2z + a102xz
2 + a012yz

2 + a003z
3.

The generic equation of a projective plane cubic having an
inflexion point at (0 : 1 : 0) with tangent z = 0 is

f(x, y, z) = a300x
3+a201x

2z + a111xyz+

a021y
2z + a102xz

2 + a012yz
2 + a003z

3

with a300 6= 0, a021 6= 0.
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Projective plane cubics

f(x, y, z) = a300x
3 + a210x

2y + a120xy
2 + a030y

3+

a201x
2z + a111xyz + a021y

2z + a102xz
2 + a012yz

2 + a003z
3.

f ′x(x, y, z) = 3a300x
2+2a210xy+a120y

2+2a201xz+a111yz+a102z
2

f ′y(x, y, z) = a210x
2+2a120xy+3a030y

2+a111xz+2a021yz+a012z
2

f ′z(x, y, z) = a201x
2+a111xy+a021y

2+2a102xz+2a012yz+3a003z
2.

f(0, 1, 0) = a030,

f ′x(0, 1, 0) = a120 f ′y(0, 1, 0) = 3a030, f ′z(0, 1, 0) = a021.
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Projective plane cubics passing through (0 : 1 : 0)

f(0, 1, 0) = a030 = 0

Tangent: xf ′x(0, 1, 0) + yf ′y(0, 1, 0) + zf ′z(0, 1, 0) = 0

Assume that the tangent at (0, 1, 0) is z = 0:
f ′x(0, 1, 0) = f ′y(0, 1, 0) = 0, f ′z(0, 1, 0) 6= 0.

f ′x(0, 1, 0) = a120, f ′y(0, 1, 0) = 3a030, f ′z(0, 1, 0) = a021.

Intersection of z = 0 with the curve:

a300x
3 + a210x

2y + a120xy
2 + a030y

3 = 0

Here:
(a300x+ a210y)x2 = 0

The point (a210 : −a300 : 0) is on the intersection. Hence
(0 : 1 : 0) is an inflexion point if and only if a210 = 0, a300 6= 0.
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Projective plane cubics

Generic equation of a projective plane cubic with an inflexion
point at (0 : 1 : 0) with tangent z = 0:

f(x, y, z) = a300x
3+a201x

2z + a111xyz+

a021y
2z + a102xz

2 + a012yz
2 + a003z

3

with a300 6= 0, a021 6= 0.

With1 a300 = 1, a021 = −1, setting aijk = (−1)2k−ja2k−j, one
gets the equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

1Set z = −a300z′/a021.
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Weierstrass equation
In characteristic 6= 2, complete the square by setting

Y = y +
1

2
(a1x+ a3).

The equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

becomes

Y 2 = x3 +
b2

4
x2 +

b4

2
x+

b6

4
·

In characteristic 6= 2, 6= 3, set

X = x+
b2

12
·

The equation becomes

Y 2 = X3 + aX + b.
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Elliptic curve over a field K

If the coefficients ai belong to a field K, the elliptic curve is
defined over K.

For the Weierstrass model y2 = x3 + ax+ b with
a1 = a2 = a3 = 0, a4 = a, a6 = b, we have

b2 = 0, b4 = 2a, b6 = 4b, b8 = −a2

and
∆ = −16(4a3 + 27b2).

The weight of ai and bi is i, of a is 4, of b is 6 and of ∆ is 12.
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Discriminant
The discriminant of the degree d polynomial

a0x
d + a1x

d−1 + · · ·+ ad−1x+ ad = a0

d∏
i=1

(x− αi)

is
a2d−2

0

∏
1≤i<j≤d

(αj − αi)2.

The cubic polynomial

ax3 + bx2 + cx+ d

has discriminant

b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd .

For instance the discriminant of the polynomial x3 + ax+ b is

−4a3 − 27b2 .
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Smooth curves

A cubic y2z = f(x, z) where f ∈ K[x, z] is homogeneous of
degree 3 is smooth if and only if the discriminant of f is not 0.

Let F (x, y, z) = y2z − f(x, z). Assume

F (x0, y0, z0) = F ′x(x0, y0, z0) = F ′y(x0, y0, z0) = F ′z(x0, y0, z0) = 0.

The condition F ′y(x0, y0, z0) = 0, gives y0 = 0, f(x0, z0) = 0.

Then the conditions f ′x(x0, z0) = f ′y(x0, z0) = 0 correspond to a

multiple root, hence a vanishing discriminant.

For instance y2z = x3 + axz2 + bz3 is smooth if and only if
4a3 − 27b2 6= 0.
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Three real cubics

E(R) = {(x : y : t) ∈ P2(R) | y2t = 4x3 − g2xt
2 − g3t

3}.
Point at infinity: (0 : 1 : 0).
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Real cubics

https://web.northeastern.edu/dummit/docs/numthy_7_elliptic_curves.pdf
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Non degenerate and degenerate cubics over R

Henri Cohen. A course in computational algebraic number theory § 7.1.4 fig. 7.1.
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The group law: chord and tangent

Let C be a smooth projective plane cubic over an algebraically
closed field K.
If P , Q are distinct points on C(K), the line joining P and Q
cuts the cubic in a third point (which may be P or Q), say
P ◦Q ∈ C(K).
If P = Q, let P ◦ P be the third point of intersection of the
cubic with the tangent to C at P .
Let O be a point on C(K). Define

P +Q = O ◦ (P ◦Q) and − P = (O ◦O) ◦ P .

Theorem. This endows C(K) of a structure of abelian group
with O the neutral element.
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The group law for the Weierstrass model

Let E be the elliptic curve with Weierstrass equation

y2z = x3 + axz2 + bz3.

The point O = (0 : 1 : 0) has O ◦O = O, O +O = O.

For (x0 : y0 : 1) on the curve with y0 6= 0 the line passing
through (x0 : y0 : 1) and (x0 : −y0 : 1) has equation x = x0z
(vertical line) and cuts the curve at O.

Hence −P is the symmetric of P with respect to the real axis.
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The group law for the Weierstrass model

Consider the elliptic curve with Weierstrass equation
F (x, y, z) = 0,

F (x, y, z) = y2z − x3 − axz2 − bz3.

The tangent at a point (x0 : 0 : z0) with x3
0 + ax0z

2
0 + bz3

0 = 0 has
equation

xF ′x(x0, 0, z0) + yF ′y(x0, 0, z0) + zF ′z(x0, 0, z0) = 0

with F ′y(x0, 0, z0) = 0, hence it is again the vertical line x = x0z.

(Notice that x0(3x20 + a) = −(2ax0 + 3b).)

The points P on the curve with 2P = O are the three points
(e : 0 : 1) with e3 + ae+ b = 0.
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Chord and tangent

Compare with the group law on the circle.
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y2 = x3 + 1 y2z = x3 + z3, O = (0 : 1 : 0)

Rational points :
P 1 = P = (2,−3),
P 2 = 2P = (0,−1),
P 3 = 3P = (−1, 0),
P 4 = 4P = (0, 1),
P 5 = 5P = (2, 3)
P 0 = 6P = O

https://fr.wikipedia.org/wiki/Courbe_elliptique
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The group law for the Weierstrass model
Let E be the elliptic curve with Weierstrass equation

y2z = x3 + axz2 + bz3

with O = (0 : 1 : 0).
For P = (x0 : y0 : 1), we have −P = (x0 : −y0 : 1).
For P 1 = (x1 : y1 : 1), P 2 = (x2 : y2 : 1) with P 1 6= −P 2, we
have P 1 + P 2 = (x : y : 1) with

x = λ2 − (x1 + x2), y = −λ3 + λ(x1 + x2)− µ,

where

λ =


3x2

1 + a

2y1

if P 2 = P 1

y1 − y2

x1 − x2

if P 2 6= P 1

and µ = y1 − λx1.
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The group law for the Weierstrass model

Proof. Assume first not only P 1 6= −P 2 but also P 1 6= P 2.
The point P 1, P 2,−P with P = P 1 +P 2 are on a straight line

det

 x1 y1 1
x2 y2 1
x −y 1

 = 0.

y1 = λx1 + µ, y2 = λx2 + µ, y = −λx− µ,

with λ = y1−y2
x1−x2 , µ = y1 − λx1. The polynomial

t3 + at+ b− (λt+ µ)2

has roots x1, x2, x, the sum of the roots x1 + x2 + x is λ2.
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The group law for the Weierstrass model
Proof (continued). Assume P 1 = P 2 6= O. The equation of
the tangent at P 1 = (x1 : y1 : z1) is

xF ′x(x1, y1, z1) + yF ′y(x1, y1, z1) + zF ′z(x1, y1, z1) = 0.

namely

2y1z1y − (3x2
1 + az1)x+ 2(y2

1 − 2ax1z1)− 3bz2
1 = 0.

In affine coordinates the equation of the tangent at
P 1 = (x1 : y1 : 1) is

2y1(y − y1)− (3x2
1 + a)(x− x1) = 0,

the slope of which is

λ =
3x2

1 + a

2y1

·
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Isomorphisms of elliptic curves

Let E and E ′ be two elliptic curves with Weierstrass equations

y2 = x3 + ax+ b and Y 2 = X3 + a′X + b′.

They are called isomorphic if there exists a nonzero u with

a′ = u4a, b′ = u6b.

If a, b, a′, b′ are in a field K and u ∈ K×, the two elliptic
curves are called isomorphic over K.
The map

E(K) −→ E ′(K)
(x, y) 7−→ (u2x, u3y)

is bijective.

x has weight 2, y weight 3, a weight 4, b weight 6.
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Isomorphisms of elliptic curves

Let E and E ′ be two elliptic curves isomorphic over a field K:

y2 = x3 + ax+ b and Y 2 = X3 + a′X + b′.

Let u ∈ K× satisfy

a′ = u4a, b′ = u6b.

Then the bijective map

E(K) −→ E ′(K)
(x, y) 7−→ (u2x, u3y)

is an isomorphism of algebraic groups.
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Torsion points

Over a finite field, all rational points are torsion points.

Over C, the group of torsion points is isomorphic to
Q/Z×Q/Z.

Over a number field, the group of torsion poins is finite.

Over the field of rational numbers, the torsion group has at
most 16 elements (B. Mazur).

Let e1, e2 and e3 be the three roots of the polynomial
x3 + ax+ b (in an algebraically closure of K):

x3 + ax+ b = (x− e1)(x− e2)(x− e3).

The three points Qi := (ei : 0 : 1) are torsion points of order
2. The group {O,Q1, Q2, Q3} is a Klein group of order 4.
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Torsion points on an elliptic curve over Q

Theorem (Barry Mazur, 1977). If E is an elliptic curve over
Q, then E(Q)tors is isomorphic to one of the following 15
groups:

(i) Z/nZ, with 1 ≤ n ≤ 10 or
n = 12,
(ii) (Z/2Z)× (Z/2mZ) with
1 ≤ m ≤ 4.

Barry Mazur

The order of E(Q)tors is ≤ 16.
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Torsion points on an elliptic curve over a number

field

Merel (1996): the torsion of
elliptic curves over number
fields is uniformly bounded.

Löıc Merel

https://perso.imj-prg.fr/loic-merel/

37 / 104

https://perso.imj-prg.fr/loic-merel/


Lattices in C

Theorem. The discrete subgroups of C are
• {0} (rank 0),
• Zλ with λ 6= 0 (rank 1),
• Zλ1 + Zλ2 with (λ1, λ2) a basis of C over R (rank 2).

A lattice is a discrete subgroup of C or rank 2.
Elements of the lattice will be called periods.
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Primitive or reduced pair of periods

Fundamental pair of periods of a lattice: a basis (λ1, λ2) of
the Z–module.

Primitive or reduced pair of periods: (λ1, λ2) with |λ1|
minimal among |λ|, λ ∈ Λ \ {0} and |λ2| minimal among |λ|,
λ ∈ Λ \ Rλ1 and Im λ2

λ1
> 0.

Theorem. A primitive pair is fundamental.

Examples:
(i,−1) is a pair of primitive periods for the lattice Z + Zi,
(1, 2 + i) is a fundamental pair of periods for the same lattice
but is not a primitive pair of periods.
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Criterion for a fundamental pair to be primitive

Theorem. A fundamental pair of periods (λ1, λ2) is primitive
if and only if τ = λ2/λ1 satisfies

|τ | ≥ 1, Im τ > 0, −1

2
≤ Re τ ≤ 1

2
·

Reference: Chandrasekharan, Chapter I.
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Fundamental domain for the modular group

Given a lattice, there exists a
pair of fundamental periods
(λ1, λ2) such that τ = λ2/λ1

satisfies Im τ > 0, |τ | ≥ 1,
−1

2
≤ Re τ < 1

2
,

with Re τ ≤ 0 if |τ | = 1.

This is a primitive pair of fundamental periods.
If (λ∗1, λ

∗
2) is an other fundamental pair with τ ∗ = λ∗2/λ

∗
1

satisfying these conditions, then τ ∗ = τ .
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The modular group SL2(Z)
The subgroup SL2(Z) of GL2(Z) of matrices of determinant
+1 is generated by the two elements

S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)
with the relations

S2 = (ST )3 = −I.

(
a b
c d

)
τ =

aτ + b

cτ + d
, S(τ) =

−1

τ
, T (τ) = τ + 1.

The subgroup {I, S} is the isotropy group of i, while
{I, ST , (ST )2} is the isotropy group of % = e2πi/3 and
{I, TS, (TS)2} is the isotropy group of −1/%̄ = eπi/3.
Reference: J-P. Serre A course in arithmetic.
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Lattice in C = discrete subgroup of rank 2

Let G be a discrete subgroup of rank 2 in C. Then there
exists a basis (x1, x2) of C over R such that G = Zx1 + Zx2.

Proof.
By assumption there exists a basis (e1, e2) of C over R such
that Ze1 + Ze2 ⊂ G.
Let

P = {t1e1 + t2e2 | −1 ≤ t1, t2 ≤ 1}.

Then P ∩G is a finite set which generates G as a Z module
and G ⊂ Qe1 + Qe2.
It follows that there exists d > 0 such that G is a subgroup of
the free abelian group G0 := Zf 1 + Zf 2 with f i = ei/d.
There is a basis y1, y2 of G0 over Z and there are two positive
integers a1, a2 such that a1 divides a2, G0 = Zy1 + Zy2 and
G = Zx1 + Zx2 with xi = aiyi.
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Lattices in C

Recall: a lattice is a discrete subgroup of C of maximal rank 2.

The lattices are the subgroups Zλ1 + Zλ2 where λ1, λ2 is a
basis of C over R.

Examples: Z + Zi, Z + Ze2πi/3.

Change of basis of a lattice: GL2(Z).

Z + Zi = Z(a+ bi) + Z(c+ di) when ad− bc = ±1.

Condition Im τ > 0: det = +1, SL2(Z).
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Two main example of lattices

• Let K be an imaginary quadratic number field embedded in
C, R the ring of integers of K.
Any nonzero ideal A of R is a lattice in C.

• Let τ ∈ C \ R. Then Z + Zτ is a lattice in C.
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Lattices

https://en.wikipedia.org/wiki/Lattice_(group)
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Fundamental domain

A fundamental domain of C/Λ is a subset F of C such that
the canonical surjection C→ C/Λ induces a bijective map
F → C/Λ (i.e. F is a set of representatives of C modulo Λ).

Example: let (λ1, λ2) be a basis of Λ as a Z–module. Then
the fundamental parallelogram

P = {t1λ1 + t2λ2 | 0 ≤ t1, t2 < 1}

is a fundamental domain of C/Λ.
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Torus

Let Λ be a lattice in C. The quotient T = C/Λ is a torus.
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The group of periods of a meromorphic function

Given a meromorphic function f : C→ P1(C), the set

Per(f) = {λ ∈ C | f(z + λ) = f(z)}

is an additive subgroup of C.

If f is constant, then Per(f) = C.

If f is not constant, then Per(f) is a discrete subgroup of C.

If the group Per(f) has rank 2 over Z (i.e. is a lattice), then
f is called an elliptic function.
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Elliptic function: definition

Given a lattice Λ in C, an elliptic function with respect to Λ
is a meromorphic function f on C such that Λ ⊂ Per(f).

The only entire elliptic functions are the constants (Liouville).

The set of elliptic functions with respect to Λ is a field M(Λ).
This field is stable under derivation.

An elliptic function f : C→ P1(C) with respect to Λ induces
a map on the torus T := C/Λ:

C

��

f // P1(C)

T

<<
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Elliptic functions: properties

Let Λ be a lattice in C, let f be a non constant elliptic
function with respect to Λ and let F be a fundamental
domain for C/Λ. Then

(1)
∑

w∈F resw(f) = 0.

(2)
∑

w∈F ordw(f) = 0.

(3)
∑

w∈F ordw(f) · w ∈ Λ.

The order of a non constant elliptic function is the number of
poles (counting multiplicities) in a fundamental domain.
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Theorem of Abel and Jacobi

Niels Henrik Abel
1802 - 1829

Karl Jacobi
1804–1851

Let Λ be a lattice and F a fundamental domain of C/Λ. For
each w ∈ F , let kw be a rational integer such that
{w ∈ F | kw 6= 0} is finite. There exists an elliptic function
f with respect to Λ satisfying ordw(f) = kw for all w ∈ F if
and only if ∑

w∈F

kw = 0 and
∑
w∈F

kw · w ∈ Λ.
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Divisor of a non constant elliptic function

The divisor of a non constant elliptic function f : T → P1(C)
is

div(f) :=
∑
w∈T

ordw(f)[w] ∈
⊕
w∈T

Z

(finite formal sum of points in T = C/Λ with integer
coefficients).

If two non constant elliptic functions f , g with respect to Λ
have the same divisor, then f = cg for some constant c ∈ C×.
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The divisor group Div(T ) of a torus T = C/Λ

Div(T ) =
⊕
w∈T

Z.

The summation map Σ : Div(T )→ T sends
∑

w∈T nw[w] to∑
w∈T nww.

The degree map Div(T )→ Z sends
∑

w∈T nw[w] to
∑

w∈T nw.
The kernel of the degree map is the subgroup Div0(T ) of divisors
of degree 0.
The divisor map div :M(Λ)× → Div0(T ) sends a non-zero elliptic
function to its associated divisor.

Theorem. The sequence of abelian groups

1 −→ C× −→M(Λ)×
div−→ Div0(T )

Σ−→ T −→ 1

is exact. Reference: Washington §9.1.
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Eisenstein series
For s ∈ R, the series ∑

λ∈Λ\{0}

|λ|−s

converges if and only if s > 2.

Lemma. The Eisenstein
series are

Gk(Λ) :=
∑

λ∈Λ\{0}

λ−k

for k > 2 an integer.

Exercise.
Gotthold Eisenstein

1823 – 1852

• for k odd, Gk(Λ) = 0.
• for λ ∈ C \ {0} and Λ = Zλ+ Ziλ, G6(Λ) = 0.
• for λ ∈ C \ {0} and Λ = Zλ+ Z%λ with % = e2πi/3, G4(Λ) = 0. 55 / 104



Weierstrass ℘–function

℘(z) =
1

z2
+
∑

λ∈Λ\{0}

(
1

(z − λ)2
− 1

λ2

)

℘′(z) =
∑
λ∈Λ

−2

(z − λ)3
·

Karl Weierstrass
1815 – 1897

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2(Λ)z2n.
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The field M(Λ) of elliptic functions for Λ

The field C(℘Λ) is the field of even elliptic functions for the
lattice Λ.

More precisely, any non constant even elliptic function can be
written

c
∏
w∈W

(
℘(z)− ℘(w)

)nw
where c ∈ C×, W is a finite subset of C \ Λ and nw ∈ Z.

The field M(Λ) is C(℘Λ, ℘
′
Λ), a quadratic extension of C(℘Λ).
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Differential equation of ℘Λ

(℘′Λ)2 = 4℘3
Λ − g2(Λ)℘Λ − g3(Λ)

with

g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).

Consequence.

℘′′ = 6℘2 − g2

2
·
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Smooth cubic curves

We have

4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3)

with

e1 = ℘(λ1/2), e2 = ℘(λ2/2), e3 = ℘((λ1 + λ2)/2).

Since e1, e2, e3 are pairwise distinct, the discriminant

∆ = g3
2 − 27g2

3 = 16(e1 − e2)2(e1 − e3)2(e2 − e3)2

does not vanish.
The curve y2t = 4x3 − g2xt

2 − g3t
3 in P2(C) is smooth (no

singular point).
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Weierstrass parametrization
Theorem. Let Λ be a lattice in C. The Weierstrass map

C −→ P2(C)
z 7−→ (℘(z) : ℘′(z) : 1) z 6∈ Λ
λ 7−→ (0 : 1 : 0) λ ∈ Λ

induces a bijective map from the torus T := C/Λ to the
complex elliptic curve EΛ with projective Weierstrass equation

EΛ : Y 2Z = 4X3 − g2(Λ)XZ2 − g3(Λ)Z3.

Corollary. The Weierstrass parametrization

expE : C −→ EΛ(C)

endows EΛ(C) with a group structure isomorphic to C/Λ,
with zero element 0E := (0 : 1 : 0). The inverse of
(X : Y : Z) is (X : −Y : Z). Three distinct points on EΛ(C)
add to 0E if and only if they are collinear.
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Complex torsion

The torsion elements in E(C) are the images under (℘ : ℘′ : 1)
of the Q–vector space QΛ spanned by Λ.

For N ≥ 1,

{P ∈ E(C) | NP = 0E} '
1

N
Λ/Λ ' (Z/NZ)2.

The torsion subgroup E(C)tors of E(C) is isomorphic to
Q/Z×Q/Z.

Compare with
(C×)tors = µ ' Q/Z.

where µ is the group of roots of unity in C.
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Addition formula for the Weierstrass ℘–function
For u, v, w ∈ C, the condition u+ v + w = 0 is equivalent to

det

 ℘(u) ℘′(u) 1
℘(v) ℘′(v) 1
℘(w) ℘′(w) 1

 = 0.

This means that three points on E(C) add to OE if and only
if they are on a straight line.

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(
℘′(z1)− ℘′(z2)

℘(z1)− ℘(z2)

)2

.

℘(2z) = −2℘(z) +
1

4

(
℘′′(z)

℘′(z)

)2

.
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Uniformization Theorem

Theorem. Let g2, g3 be two complex numbers such that
g3

2 6= 27g2
3. Then there exists a lattice Λ in C such that

g2(Λ) = g2, g3(Λ) = g3. Hence the smooth cubic curve

E : Y 2Z = 4X3 − g2XZ
2 − g3Z

3

is the elliptic curve EΛ attached to the torus C/Λ.

It suffices to show that there exists a lattice Λ0 with j
invariant j(E). Then there exists α such that Λ = αΛ0 solves
the problem.
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Isogenies

Let Λ1, Λ2 be two lattices in C, T 1 = C/Λ1, T 2 = C/Λ2 the
associated tori and ψ : T 1 → T 2 a continuous map. Then
there is a continuous map φ : C→ C such that the diagram

C φ−→ C
↓ ↓

C/Λ1
ψ−→ C/Λ2

commutes.
The map φ is unique up to an additive constant in Λ2 and
satisfies φ(Λ1) ⊂ Λ2.
If φ is analytic and ψ(0) = 0, then ψ is called an isogeny.
The set of isogenies is an additive group with neutral element
the zero isogeny.
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Isogenies

Let Λ1, Λ2 be two lattices in C and let α ∈ C satisfy
αΛ1 ⊂ Λ2. Then the map

ψα : C/Λ1 −→ C/Λ2

z mod Λ1 7−→ αz mod Λ2

associated with the analytic map [α] : z 7→ αz :

C [α]−→ C
↓ ↓

C/Λ1
ψα−→ C/Λ2

is an isogeny.
Conversely, if ψ : C/Λ1 −→ C/Λ2 is an isogeny, then there
exists α ∈ C such that αΛ1 ⊂ Λ2 and ψ = ψα.
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The group of isogenies

Consequence: Any isogeny C/Λ1 −→ C/Λ2 is a group
homomorphism and Hom(C/Λ1,C/Λ2) is an additive group.

If ψ = ψα is an isogeny associated with α ∈ C× such that
αΛ1 ⊂ Λ2, then the kernel of ψ is Λ2/αΛ1 hence is finite. Its
number of elements (the index of αΛ1 in Λ2) is the degree of
the isogeny.

If ψ is a non zero isogeny of degree n from C/Λ1 to C/Λ2,
then nΛ2 is a subgroup of index n in αΛ1, hence n/α maps Λ2

to a subgroup of index n in Λ1 and there exists an isogeny ψ̂ of
degree n from C/Λ1 to C/Λ2, the dual isogeny corresponding
to ψ; the composites ψ ◦ ψ̂ and ψ̂ ◦ ψ are multiplication by n.
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Example of dual isogenies
E1: y2 = x3 + x2 + x
E2: Y 2 = X3 − 2X2 − 3X

φ E1 −→ E2

(x, y) 7−→
(
y2

x2
,
y(1− x2)

x2

)

φ̂ E2 −→ E1

(X,Y ) 7−→
(
Y 2

4X2
,
−Y (3 +X2)

8X2

)

φ̂ ◦ φ = [2].

Reference: Silverman, Example 4.5 p.74.
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Isomorphism between elliptic curves

Two complex elliptic curves are isomorphic iff there is an
isogeny of degree 1 between them:

E1 = C/Λ1, E2 = C/Λ2, Λ2 = αΛ1 for some α ∈ C×.

The two tori C/Λ, C/αΛ are said to be homothetic.

We have ℘αΛ(z) = α−2℘Λ(αz) and

g2(αΛ) = α−4g2(Λ) and g3(αΛ) = α−6g2(Λ),
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The modular invariant j(Λ)

Let Λ be a lattice in C. Recall

∆(Λ) = g2(Λ)3 − 27g3(Λ)2

and

g2(αΛ) = α−4g2(Λ), g3(αΛ) = α−6g2(Λ),

Hence ∆(αΛ) = α−12∆(Λ).
Define

j(Λ) = 1728
g2(Λ)3

∆(Λ)
·

Proposition. Two lattices are homothetic if and only if they
have the same j invariant.
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The modular function j(τ )

For τ1 and τ2 in the upper half plane
H = {τ ∈ C | Im τ > 0}, the two lattices Z + Zτ1 and

Z + Zτ2 are homothetic if and only if there exists

(
a b
c d

)
in

SL2(Z) such that

τ2 =
aτ1 + b

cτ1 + d
·

The elliptic modular invariant is defined for τ in H by

j(τ) = j(Z + Zτ).

Exercise. Check j(τ)→∞ for Im(τ)→∞.

Consequence. j : H→ C is surjective.
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j(H) = C
Theorem. The elliptic modular invariant j induces a
bijective map SL2(Z)\H −→ C.

Consequence: proof of the Uniformization Theorem.
According to the uniformization Theorem, the j invariant gives
a bijective map between C and isomorphism classes of elliptic
curves.

For j 6∈ {0, 1728}, the j invariant of

y2 = 4x3 − gx− g with g =
27j

j − 1728

is j (notice that ∆ 6= 0 since g 6∈ {0, 27}).
The j invariants of y2 = x3 + 1 and y2 = x3 + x are 0 and
1728 respectively.
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Classes of isomorphism of elliptic curves

For τ and τ ′ in H, the two elliptic curves E = C/(Z + Zτ)
and E ′ = C/(Z + Zτ ′) are isomorphic as complex elliptic

curves if and only if there exists

(
a b
c d

)
∈ SL2(Z) such that

τ ′ =
aτ + b

cτ + d
·

Remark. The two elliptic curves

y2 = 4x3 − 4x and y2 = 4x3 + 4x

are isomorphic over C, not over Q.
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Complex multiplication

Let E = C/Λ be an elliptic curve with Λ = Z + Zτ . Then the
ring of endomorphisms of E is

End(E) = {α ∈ C | αΛ ⊂ Λ} =

{
Z if [Q(τ) : Q] > 2,

Z + ZAτ if [Q(τ) : Q] = 2,

where, in the second case, A is the leading coefficient in the
minimal equation Aτ 2 +Bτ + C = 0.

degα := Card kerα = N(α) = αᾱ.

Definition. In characteristic 0, E has complex multiplication
if End(E) 6= Z.
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Chowla–Selberg Formula (1949, 1967)

SarvadamanChowla
1907 – 1995

Atle Selberg
1917 – 2007

G4(Z + Zi) =
∑

(m,n)∈Z2\{(0,0)}

(m+ ni)−4 =
Γ(1/4)8

26 · 3 · 5 · π2

and

G6(Z + Z%) =
∑

(m,n)∈Z2\{(0,0)}

(m+ n%)−6 =
Γ(1/3)18

28π6

Formula of Chowla and Selberg (1966): the periods of
elliptic curves with complex multiplication are products of
values of the Gamma function at rational points. 74 / 104



Endomorphisms of an elliptic curve

Let Λ be a lattice and α ∈ C× such that αΛ ⊂ Λ. Then α is
either a rational integer or an imaginary quadratic number.
The function ℘Λ(αz) is a rational function of ℘Λ(z) such that
the degree of the numerator is α2 if α ∈ Z and Norm(α) if α
is imaginary quadratic; the degree of the denominator is
α2 − 1 and Norm(α)− 1 respectively.

Example. K = Q(
√
−2), α = i

√
2, Λ = Z + Zα,

y2 = 4x3 − gx− g, g =
3353

2 · 72
, j = 203,

℘(αz) =
−1

2
℘(z)2 − 15

14
℘(z)− 3452

2472

℘(z) + 15
7

·
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Automorphisms of elliptic curves
The map (x, y) 7→ (x,−y) defines an automorphism of order 2
of the elliptic curve E : y2 = 4x3 − g2x− g3.
The map

[i] : E(C) −→ E(C)
(x, y) 7−→ (−x, iy)

is an automorphism of order 4 of the elliptic curve
E : y2 = x3 − x:

Aut(E) = {±1,±[i]} = Z[i]×

The map
[%] : E(C) −→ E(C)

(x, y) 7−→ (%x,−y)

is an automorphism of order 6 of the elliptic curve
E : y2 = x3 − 1:

Aut(E) = {±1,±[%],±[%]2} = Z[%]×

is a cyclic group of order 6.
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Complex multiplication and imaginary quadratic

number field

Let K be an imaginary quadratic number field, R its ring of
integer and Cl(R) the ideal class group of R. Fix an
embedding of K in C. To each ideal of R is associated a
lattice Λ ⊂ C and an elliptic curve C/Λ, so that

End(C/Λ) = {α ∈ C | αΛ ⊂ Λ} = R.

Up to isomorphism, C/Λ depends only on the class of Λ in
Cl(R).
One deduces a one to one correspondence between ideal
classes in Cl(R) and elliptic curves E with End(E) = R.

Reference: Silverman, Appendix C, §11 Complex multiplication.
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Fundamental theorem of complex multiplication

Heinrich Weber
1842 – 1913

Karl Rudolf Fueter
1880 – 1950

Let Λ be a lattice associated with an ideal class of R.
Theorem (Weber, Fueter). The number j(Λ) is an algebraic
integer of degree over Q (and over K) the class number h of
K. The field K(j(Λ)) is the maximal unramified extension
(Hilbert class field) of K. A complete set of conjugates of
j(Λ) over K is given by j(Λ1), . . . , j(Λh) when Λ1, . . . ,Λh are
representatives of the h classes of ideals of R.
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Complex multiplication (continued)
If K has class number 1, then j is a rational integer.
Discriminants of quadratic fields with class number 1:
d = −3,−4,−7,−8,−11,−19,−43,−67,−163

j-invariants for orders of class number 1.
https://oeis.org/A032354

Discriminants for orders: https://oeis.org/A133675

−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163

0, 1728 = 123,−3375 = −153, 8000 = 203,−32768 = −323,

54000 = 2 · 303, 287496 = 663,−884736 = −963,

− 12288000 = −3 · 1603, 16581375 = 2553,

− 884736000 = −9603,−147197952000 = −52803,

− 262537412640768000 = −6403203

Example: j((−1 +
√
−163)/2) = −262537412640768000 = −6403203.

Reference: David Masser
Auxiliary Polynomials in Number Theory, Cambridge University Press
2016 79 / 104
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eπ
√

163

The decimal expansion of eπ
√

163 starts with

262537412640768743.99999999999925007 . . .

and the continued fraction expansion starts with

[262537412640768743, 1, 1333462407511, 1, 8, 1 . . . ].

Recall, for q = e2πiτ ,

j(τ) = J(q) =
1

q
+ 744 + 196884q + 21493760q2 + · · ·

Let τ = (−1 +
√
−163)/2 so that q = e2πiτ = −eπ

√
163. Then∣∣∣∣j(τ)− 1

q
− 744

∣∣∣∣ =
∣∣∣j(τ) + eπ

√
163 − 744

∣∣∣ = 196884q + · · ·

while |q| < 1
210−17. Hence the distance of eπ

√
163 to the nearest

integer |j(τ)|+ 744 is less than 10−12.
http://oeis.org/A060295 http://oeis.org/A058292
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A few special values of j

Henri Cohen. A course in computational algebraic number theory § 7.2.3 Examples.
81 / 104
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Prime values of polynomials

Leonhard Euler
1707 – 1783

Harold Stark

Euler polynomial: x2 − x+ 41: produces prime numbers for all
integer values of x from 1 to 40.
For p = 41 the field Q(

√
1− 4p) = Q(

√
−163) has class

number 1.
Harold Stark. A historical note on complex quadratic fields with
class-number one. Proceedings of the American Mathematical Society,
(1969) 21 254–255.
doi:10.1090/S0002-9939-1969-0237461-X
https://en.wikipedia.org/wiki/Lucky_numbers_of_Euler

https://mathworld.wolfram.com/LuckyNumberofEuler.html

https://math.stackexchange.com/questions/169066/polynomials-representing-primes
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Kronecker – Weber

Leopold Kronecker
1823 – 1891

Heinrich Weber
1842 – 1913

Kronecker (1853), Weber (1886), Hilbert (1896).
Every finite abelian extension of Q is contained in a
cyclotomic field Q(e2πi/n).

Hilbert’s twelfth problem asks for generalizations of the
Kronecker–Weber theorem to base fields other than the
rational numbers, and asks for the analogues of the roots of
unity for those fields.

83 / 104



Kronecker Jugendtraum

Kronecker in a letter to Dedekind in 1880 reproduced in
volume V of his collected works, page 455

Es handelt sich um meinen liebsten Jugendtraum, nämlich um
den Nachweis, dass die Abel’schen Gleichungen mit
Quadratwurzeln rationaler Zahlen durch die
Transformations-Gleichungen elliptischer Functionen mit
singularen Moduln grade so erschöpft werden, wie die
ganzzahligen Abel’schen Gleichungen durch die
Kreisteilungsgleichungen.
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Kronecker Jugendtraum

Kronecker’s Jugendtraum is the twelfth of the 23 problems of
Hilbert. It asks for an extension of the Kronecker–Weber
theorem on abelian extensions of the rational numbers, to any
base number field.

The goal is to describe the finite abelian extension of any
number field K by means of values of complex functions. For
K = Q this is done by the Kronecker–Weber theorem using
the exponential function, for an imaginary quadratic field it is
done by using suitably selected elliptic functions.
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CM fields, totally real fields

Goro Shimura
1930 – 2019

Samit Dasgupta Mahesh Kakde

Goro Shimura extended the classical theory of complex
multiplication to CM fields.
In the special case of totally real fields, a solution was given by
Dasgupta and Kakde. This provides an effective method to
construct the maximal abelian extension of any totally real
field. The method rests on p–adic integration and the solution
it provides for totally real fields is different in nature from
what Hilbert had in mind in his original formulation.
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Totally real quadratic fields

Henri Darmon Alice Pozzi Jan Vonk

A solution in the more special case of totally real quadratic
fields, also resting on p–adic methods, was given by Darmon,
Pozzi and Vonk.
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Hilbert’s Twelfth Problem: A Comedy of Errors

Schappacher, Norbert: On the History of Hilbert’s Twelfth
Problem: A Comedy of Errors. Matériaux pour l’histoire des
mathématiques au XXème siècle, Nice, 1996, France. Sémin.
Congr. 3, Soc. Math. France, Paris (1998), p.243-273.

Nikolaev, Igor: On algebraic values of function
exp(2πix+ log log y). Ramanujan J. 47, 417–425 (2018).

M.W. On a paper by Nikolaev. The Ramanujan Journal,
volume 57, 1517–1518 (2022). Published online: 12 February
2022.
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On algebraic values of function exp(2πix+ log log y)

Nikolaev, Igor. Ramanujan J. 47, 417–425 (2018).

M.W. Ramanujan Journal, 57, 1517–1518 (2022).
The abstract of the paper [Nikolaev] starts with the following sentence: It
is proved that, for all but a finite set of the square-free integers, d the
value of transcendental function exp(2πix+ log log y) is an algebraic
number for the algebraic arguments x and y lying in a real quadratic field
of discriminant, d. As a matter of fact, the modulus of this number is
| log y|, a transcendental number according to the Hermite–Lindemann
Theorem. Theorem 1 of [Nikolaev] contradicts the Hermite–Lindemann
Theorem.
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Prime numbers of the form x2 + ny2: Fermat

Pierre de Fermat
1600(?) – 1665

An odd prime number p can
be written p = x2 + y2 with
rational integers x and y if
and only if p ≡ 1 (mod 4).

Also :

p = x2 + 2y2 ⇐⇒ p ≡ 1, 3 (mod 8).

p = x2 + 3y2 ⇐⇒ p = 3 or p ≡ 1 (mod 3).

90 / 104



Euler’s conjectures

Leonhard Euler
1707 – 1783

An odd prime number p can
be written p = x2 + 5y2 if and
only if p ≡ 1, 9 (mod 20).

Johann Carl Friedrich Gauss
1777 – 1865

p = x2 + 27y2 ⇐⇒

{
p ≡ 1 (mod 3) and 2 is

a cubic residue modulo p.
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History

André Weil
Number theory :
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp. André Weil

1906 – 1998

https://doi.org/10.1007/978-0-8176-4571-7

92 / 104

https://doi.org/10.1007/978-0-8176-4571-7


Class field theory

Let n be a positive integer. There exists an irreducible
polynomial fn(X) ∈ /Z[X] such that for a prime p dividing
neither n nor the discriminant of fn,

p = x2+ny2 ⇐⇒


− n is a quadratic residue modulo p and

and there exists x ∈ Z such that

fn(x) ≡ 0 (mod p).

The polynomial fn is the minimal polynomial of a primitive
element of a ring class field determined by Z(

√
−n).

David A. Cox. Primes of the form x2 + ny2: Fermat, Class Field
Theory, and Complex Multiplication.
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118400722

http://www.math.toronto.edu/~ila/Cox-Primes_of_the_form_x2+ny2.pdf
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Division of the lemniscate

Johann Carl Friedrich Gauss
1777 – 1865

Niels Henrik Abel
1802 - 1829

Gauss: The regular n–gon can be constructed by a ruler and a
compass if and only if n is a product of distinct Fermat primes
22k + 1 and a power of 2.
Abel: same result for the lemniscate

(x2 + y2)2 = x2 − y2,

the arc length is given by the elliptic integral (Gauss constant)

$ = 4

∫ 1

0

dt√
1− t4

= 2.622 057 554 292 . . .

https://handwiki.org/wiki/Lemniscate_constant https://oeis.org/A062539
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Lemniscate sine and cosine functions

d

dz
sl z =

(
1 + sl2 z

)
cl z,

d

dz
cl z = −

(
1 + cl2 z

)
sl z,

sl 0 = 0, cl 0 = 1,

z =

∫ sl z

0

dt√
1− t4

=

∫ 1

cl z

dt√
1− t4

.

Compare with

d

dz
sin z = cos z,

d

dz
cos z = − sin z, sin 0 = 0, cos 0 = 1,

and

z =

∫ sin z

0

dt√
1− t2

=

∫ 1

cos z

dt√
1− t2

.
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Lemniscate elliptic functions

cl2 z + sl2 z + cl2 z sl2 z = 1

Parametrization of the quartic curve

x2 + y2 + x2y2 = 1.

The Lemniscate functions cl and sl are elliptic functions with
fundamental periods ω1 = (1 + i)$ and ω2 = (1− i)$ = iω1,
like the Weierstrass elliptic function ℘ with equation
y2 = 4x3 + x.
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Lemniscate vs Weierstrass

sl(z) = −2
℘(z)

℘′(z)
, sl′(z) =

4℘2(z)− 1

4℘2(z) + 1
.

The functions sl and sl′ parametrize the curve

y2 = 1− x4.

A birational transformation between this curve and the
Weierstrass curve is given by

x = −2
X

Y
, y =

4X2 − 1

4X2 + 1
·

David A. Cox and Trevor Hyde, The Galois theory of the lemniscate. Journal of
Number Theory 135 (2014) 43–59.
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Lemnatomic polynomials

The elliptic curve C/Λ with
Λ = Z(1 + i)$ + Z(1− i)$
has complex multiplication
with ring of endomorphisms
O = Z[i].

Let β ∈ O and δβ = (1 + i)$/β. The minimal polynomial of
δβ is

Λβ(x) =
∏

[α]∈(O/βO)×

(x− sl(αδβ))

Compare with cyclotomic polynomials :

Φn(X) =
∏

[d]∈(Z/nZ)×

(X − e2dπi/n).
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Division of the lemniscate

Cyclotomy: Gal(Q(e2πi/n)/Q) ' (Z/nZ)× has order a power
of 2 if and only if n is a product of distinct Fermat primes and
a power of 2.

Lemniscate: same for (Z[i]/nZ[i])×.

References:

B. Sury. Cyclotomy and Cyclotomic Polynomials. The Story of
how Gauss Narrowly Missed Becoming a Philologist. Resonance,
December 1999, 41 – 53.
https://www.isibang.ac.in/~sury/cyclotomy.pdf

Michael Rosen. Abel’s Theorem on the Lemniscate. The American
Mathematical Monthly, 1981, Vol. 88, No. 6, pp. 387-395.
https://www.jstor.org/stable/2321821
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Transcendence and elliptic functions

Siegel (1932): elliptic analog of Lindemann’s Theorem on the
transcendence of π.

Schneider (1937): elliptic analog of Hermite–Lindemann
Theorem. General transcendence results on values of elliptic
functions, on periods, on elliptic integrals of the first and
second kind.

C.L. Siegel
1896 – 1981

Th. Schneider
1911 – 1988
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Schneider – Lang Theorem (1949, 1966)

Theodor Schneider
1911 – 1988

Serge Lang
1927 – 2005

Let f 1, . . . , fm be meromorphic functions on C. Assume f 1

and f 2 are algebraically independent and of finite order. Let K
be a number field. Assume f ′j belongs to K[f 1, . . . , fm] for
j = 1, . . . ,m. Then the set

S = {w ∈ C | w not pole of f j, f j(w) ∈ K for j = 1, . . . ,m}

is finite.
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Schneider.html

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Lang.html
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Elliptic analog of Hermite–Lindemann Theorem

Let w ∈ C, not pole of ℘. Then one at least of the numbers
g2, g3, w, ℘(w) is transcendental.

Proof as a consequence of the Schneider–Lang Theorem.
Let K = Q(g2, w, ℘(w), ℘′(w)). The two functions f 1(z) = z,
f 2(z) = ℘(z) are algebraically independent, of finite order. Set
f 3(z) = ℘′(z). From ℘′2 = 4℘3 − g2℘− g3 one deduces

f ′1 = 1, f ′2 = f 3, f ′3 = 6f 2
2 − (g2/2).

The set S contains

{`w | ` ∈ Z, `w not pole of ℘}

which is infinite. Hence K is not a number field. �
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Some consequences

If g2 and g3 are algebraic, then λ1 and λ2 are transcendental.

If Λ = Z + Zτ , then one at least of g2, g3 is transcendental.

Theorem (Schneider). If τ and j(τ) are algebraic, then τ is
quadratic.

Hint: Let ℘ with invariant j(τ) and with g2, g3 algebraic. From
Schneider–Lang Theorem one deduces that if τ and j(τ) are
algebraic, then the two functions ℘(z) and ℘(τz) are algebraically
dependent.

Reference: David Masser, Auxiliary Polynomials in Number Theory
Cambridge Tracts in Mathematics, Cambridge University Press (2016).
doi:10.1017/CBO9781107448018

103 / 104

https://doi.org/10.1017/CBO9781107448018
doi:10.1017/CBO9781107448018


References

• Komaravolu Chandrasekharan. Elliptic functions, Springer Verlag,

Grundlehren der mathematischen Wissenschaften (GL 281) (1985).
https://doi.org/10.1007/978-3-642-52244-4

https://epdf.tips/elliptic-functions452efc21f5fb80b90989bbda54297e5e74666.html

Chapter I Periods of meromorphic functions
Chapter II General properties of elliptic functions
Chapter III Weierstrass’s elliptic function ℘(z)
Chapter IV The zeta-function and the sigma-function of Weierstrass
Chapter VI The modular function J(τ)

• Henri Cohen. A course in computational algebraic number theory,

Springer Verlag, Graduate Texts in Mathematics (GTM, volume 138),

3rd ed. (1996).

https://doi.org/10.1007/978-3-662-02945-9

https://www.math.u-bordeaux.fr/~hecohen/

Chapter 7 Introduction to elliptic curves.

103 / 104

https://doi.org/10.1007/978-3-642-52244-4
https://epdf.tips/elliptic-functions452efc21f5fb80b90989bbda54297e5e74666.html
https://doi.org/10.1007/978-3-662-02945-9
https://www.math.u-bordeaux.fr/~hecohen/


• David A. Cox. Primes of the form x2 + ny2: Fermat, Class Field
Theory, and Complex Multiplication.

(AMS Notices Novembre 2021) AMS Chelsea Publishing, Volume 387

December 2022. Third Edition with Solutions. With contributions by

Roger Lipsett
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118400722

http://www.math.toronto.edu/~ila/Cox-Primes_of_the_form_x2+ny2.pdf

• Marc Hindry. Arithmétique, Calvage & Mounet (2008). English

translation, Arithmetics, Universitext, Springer (2011).

http://www.calvage-et-mounet.fr/2022/05/09/arithmetique/

https://webusers.imj-prg.fr/~marc.hindry/enseignement_fr.html

https://doi.org/10.1007/978-1-4471-2131-2

Chapitre V Courbes elliptiques.

103 / 104

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118400722
http://www.math.toronto.edu/~ila/Cox-Primes_of_the_form_x2+ny2.pdf
http://www.calvage-et-mounet.fr/2022/05/09/arithmetique/
https://webusers.imj-prg.fr/~marc.hindry/enseignement_fr.html
https://doi.org/10.1007/978-1-4471-2131-2
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