4th Mini Symposium of the
Roman Number Theory Association (RNTA)

Representation of integers
 by cyclotomic binary forms

Michel Waldschmidt

Institut de Mathématiques de Jussieu - Paris VI http://www.imj-prg.fr/~michel.waldschmidt/

This is a joint work with
Étienne Fouvry and Claude Levesque

Étienne Fouvry

Claude Levesque

Representation of integers by cyclotomic binary forms.
Acta Arithmetica, 20p. Online First March 2018
arXiv: 712.09019 [math.NT]

The homogeneous form $\Phi_{n}(X, Y)$ of degree $\varphi(n)$ which is associated with the cyclotomic polynomial $\phi_{n}(t)$ is dubbed a cyclotomic binary form. A positive integer $m \geq 1$ is said to be representable by a cyclotomic binary form if there exist integers n, x, y with $n \geq 3$ and $\max \{|x|,|y|\} \geq 2$ such that $\Phi_{n}(x, y)=m$. These definitions give rise to a number of questions that we plan to address.

Cyclotomic polynomials
Definition by induction :

$$
\phi_{1}(t)=t-1, \quad t^{n}-1=\prod_{d \mid n} \phi_{d}(t)
$$

For p prime,

$$
t^{p}-1=(t-1)\left(t^{p-1}+t^{p-2}+\cdots+t+1\right)=\phi_{1}(t) \phi_{p}(t)
$$

SO

$$
\phi_{p}(t)=t^{p-1}+t^{p-2}+\cdots+t+1
$$

For instance
$\phi_{2}(t)=t+1, \quad \phi_{3}(t)=t^{2}+t+1, \quad \phi_{5}(t)=t^{4}+t^{3}+t^{2}+t+1$.

Cyclotomic polynomials

$$
\phi_{n}(t)=\frac{t^{n}-1}{\prod_{\substack{d \neq n \\ d \mid n}} \phi_{d}(t)}
$$

For instance

$$
\phi_{4}(t)=\frac{t^{4}-1}{t^{2}-1}=t^{2}+1=\phi_{2}\left(t^{2}\right)
$$

$$
\phi_{6}(t)=\frac{t^{6}-1}{\left(t^{3}-1\right)(t+1)}=\frac{t^{3}+1}{t+1}=t^{2}-t+1=\phi_{3}(-t)
$$

The degree of $\phi_{n}(t)$ is $\varphi(n)$ ，where φ is the Euler totient function．

Properties of $\phi_{n}(t)$

－For $n \geq 2$ we have

$$
\phi_{n}(t)=t^{\varphi(n)} \phi_{n}(1 / t)
$$

－Let $n=2^{e_{0}} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ where p_{1}, \ldots, p_{r} are different odd primes，$e_{0} \geq 0, e_{i} \geq 1$ for $i=1, \ldots, r$ and $r \geq 1$ ．Denote by R the radical of n ，namely

$$
R=\left\{\begin{aligned}
2 p_{1} \cdots p_{r} & \text { if } e_{0} \geq 1 \\
p_{1} \cdots p_{r} & \text { if } e_{0}=0
\end{aligned}\right.
$$

Then，

$$
\phi_{n}(t)=\phi_{R}\left(t^{n / R}\right)
$$

－Let $n=2 m$ with m odd ≥ 3 ．Then

$$
\phi_{n}(t)=\phi_{m}(-t)
$$

Cyclotomic polynomials and roots of unity

For $n \geq 1$ ，if ζ is a primitive n－th root of unity，

$$
\phi_{n}(t)=\prod_{\operatorname{gcd}(j, n)=1}\left(t-\zeta^{j}\right)
$$

For $n \geq 1, \phi_{n}(t)$ is the irreducible polynomial over \mathbb{Q} of the primitive n－th roots of unity，

Let K be a field and let n be a positive integer．Assume that K has characteristic either 0 or else a prime number p prime to n ．Then the polynomial $\phi_{n}(t)$ is separable over K and its roots in K are exactly the primitive n－th roots of unity which belong to K ．

For $n \geq 2$ ，we have $\phi_{n}(1)=e^{\Lambda(n)}$ ，where the von Mangoldt function is defined for $n \geq 1$ as

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{r} \text { with } p \text { prime and } r \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

In other terms we have

$$
\phi_{n}(1)= \begin{cases}p & \text { if } n=p^{r} \text { with } p \text { prime and } r \geq 1 \\ 1 & \text { otherwise }\end{cases}
$$

$\phi_{n}(-1)$

For $n \geq 3$,

$$
\phi_{n}(-1)= \begin{cases}1 & \text { if } n \text { is odd } ; \\ \phi_{n / 2}(1) & \text { if } n \text { is even. }\end{cases}
$$

In other terms, for $n \geq 3$,

$$
\phi_{n}(-1)= \begin{cases}p & \text { if } n=2 p^{r} \text { with } p \text { a prime and } r \geq 1 \\ 1 & \text { otherwise. }\end{cases}
$$

Hence $\phi_{n}(-1)=1$ when n is odd or when $n=2 m$ where m has at least two distinct prime divisors.

$$
\phi_{n}(t) \geq 2^{-\varphi(n)} \text { for } n \geq 3 \text { and } t \in \mathbb{R}
$$

Proof.
Let ζ_{n} be a primitive n-th root of unity in \mathbb{C};

$$
\phi_{n}(t)=\mathrm{N}_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}\left(t-\zeta_{n}\right)=\prod_{\sigma}\left(t-\sigma\left(\zeta_{n}\right)\right),
$$

where σ runs over the embeddings $\mathbb{Q}\left(\zeta_{n}\right) \rightarrow \mathbb{C}$. We have

$$
\left|t-\sigma\left(\zeta_{n}\right)\right| \geq\left|\Im m\left(\sigma\left(\zeta_{n}\right)\right)\right|>0
$$

$$
\left.(2 i) \Im m\left(\sigma\left(\zeta_{n}\right)\right)=\sigma\left(\zeta_{n}\right)-\overline{\sigma\left(\zeta_{n}\right.}\right)=\sigma\left(\zeta_{n}-\overline{\zeta_{n}}\right) .
$$

Now $(2 i) \Im m\left(\zeta_{n}\right)=\zeta_{n}-\overline{\zeta_{n}} \in \mathbb{Q}\left(\zeta_{n}\right)$ is an algebraic integer :

$$
2^{\varphi(n)} \phi_{n}(t) \geq\left|\mathbb{N}_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}\left((2 i) \Im m\left(\zeta_{n}\right)\right)\right| \geq 1 .
$$

Lower bound for $\phi_{n}(t)$

For $n \geq 3$, the polynomial $\phi_{n}(t)$ has real coefficients and no real root, hence it takes only positive values (and its degree $\varphi(n)$ is even).
For $n \geq 3$ and $t \in \mathbb{R}$, we have

$$
\phi_{n}(t) \geq 2^{-\varphi(n)} .
$$

Consequence : from

$$
\phi_{n}(t)=t^{\varphi(n)} \phi_{n}(1 / t)
$$

we deduce, for $n \geq 3$ and $t \in \mathbb{R}$,

$$
\phi_{n}(t) \geq 2^{-\varphi(n)} \max \{1,|t|\}^{\varphi(n)} .
$$

The cyclotomic binary forms

For $n \geq 2$, define

$$
\Phi_{n}(X, Y)=Y^{\varphi(n)} \phi_{n}(X / Y) .
$$

This is a binary form in $\mathbb{Z}[X, Y]$ of degree $\varphi(n)$.
Consequence of the lower bound for $\phi_{n}(t)$: for $n \geq 3$ and $(x, y) \in \mathbb{Z}^{2}$,

$$
\Phi_{n}(x, y) \geq 2^{-\varphi(n)} \max \{|x|,|y|\}^{\varphi(n)}
$$

Therefore, if $\Phi_{n}(x, y)=m$, then

$$
\max \{|x|,|y|\} \leq 2 m^{1 / \varphi(n)}
$$

If $\max \{|x|,|y|\} \geq 3$, then n is bounded :

$$
\varphi(n) \leq \frac{\log m}{\log (3 / 2)}
$$

Generalization to CM fields (Győry, 1977)

Let K be a CM field of degree d over \mathbb{Q}. Let $\alpha \in K$ be such that $K=\mathbb{Q}(\alpha)$; let f be the irreducible polynomial of α over \mathbb{Q} and let $F(X, Y)=Y^{d} f(X / Y)$ the associated
homogeneous binary form :

$$
\begin{gathered}
f(t)=a_{0} t^{d}+a_{1} t^{d-1}+\cdots+a_{d} \\
F(X, Y)=a_{0} X^{d}+a_{1} X^{d-1} Y+\cdots+a_{d} Y^{d} .
\end{gathered}
$$

For $(x, y) \in \mathbb{Z}^{2}$ we have

$$
x^{d} \leq 2^{d} a_{d}^{d-1} F(x, y) \quad \text { and } \quad y^{d} \leq 2^{d} a_{0}^{d-1} F(x, y)
$$

Best possible for CM fields

Let $n \geq 3$, not of the form p^{a} nor $2 p^{a}$ with p prime and $a \geq 1$, so that $\phi_{n}(1)=\phi_{n}(-1)=1$.
Then the binary form

$$
F_{n}(X, Y)=\Phi_{n}(X, Y-X)
$$

has degree $d=\varphi(n)$ and $a_{0}=a_{d}=1$. For $x \in \mathbb{Z}$ we have $F_{n}(x, 2 x)=\Phi_{n}(x, x)=x^{d}$.
Hence, for $y=2 x$, we have

$$
y^{d}=2^{d} a_{0}^{d-1} F(x, y)
$$

Kálmán Győry, László Lovász

K. GyŐRy \& L. Lovász, Representation of integers by norm forms II, Publ. Math. Debrecen 17, 173-181, (1970). K. Győry, Représentation des nombres entiers par des formes binaires, Publ. Math. Debrecen 24 , 363-375, (1977).

Binary cyclotomic forms (EF-CL-MW 2018)

Let m be a positive integer and let n, x, y be rational integers satisfying $n \geq 3, \max \{|x|,|y|\} \geq 2$ and $\Phi_{n}(x, y)=m$. Then $\max \{|x|,|y|\} \leq \frac{2}{\sqrt{3}} m^{1 / \varphi(n)}, \quad$ hence $\quad \varphi(n) \leq \frac{2}{\log 3} \log m$.

These estimates are optimal, since for $\ell \geq 1$,

$$
\Phi_{3}(\ell,-2 \ell)=3 \ell^{2}
$$

If we assume $\varphi(n)>2$, namely $\varphi(n) \geq 4$, then

$$
\varphi(n) \leq \frac{4}{\log 11} \log m
$$

which is best possible since $\Phi_{5}(1,-2)=11$.

Lower bound for the cyclotomic polynomials

The upper bound

$$
\max \{|x|,|y|\} \leq \frac{2}{\sqrt{3}} m^{1 / \varphi(n)}
$$

for $\Phi_{n}(x, y)=m$ is equivalent to the following result :
For $n \geq 3$ and $t \in \mathbb{R}$,

$$
\phi_{n}(t) \geq\left(\frac{\sqrt{3}}{2}\right)^{\varphi(n)}
$$

End of the proof of $\phi_{n}(t) \geq\left(\frac{\sqrt{3}}{2}\right)^{\varphi(n)}$.

Lemma. For any odd squarefree integer $n=p_{1} \cdots p_{r}$ with $p_{1}<p_{2}<\cdots<p_{r}$ satisfying $n \geq 11$ and $n \neq 15$, we have

$$
\varphi(n)>2^{r+1} \log p_{1}
$$

The sequence $\left(c_{n}\right)_{n \geq 3}$

$$
c_{n}=\inf _{t \in \mathbb{R}} \phi_{n}(t) \quad(n \geq 3) .
$$

Let $n \geq 3$. Write

$$
n=2^{e_{0}} p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

where p_{1}, \ldots, p_{r} are odd primes with $p_{1}<\cdots<p_{r}, e_{0} \geq 0$,
$e_{i} \geq 1$ for $i=1, \ldots, r$ and $r \geq 0$.
(i) For $r=0$, we have $e_{0} \geq 2$ and $c_{n}=c_{2^{e}{ }_{0}}=1$.
(ii) For $r \geq 1$ we have

$$
c_{n}=c_{p_{1} \cdots p_{r}} \geq p_{1}^{-2^{r-2}}
$$

The sequence $\left(c_{n}\right)_{n \geq 3}$

$$
\begin{aligned}
\Phi_{n}(x, y) & \geq c_{n} \max \{|x|,|y|\}^{\varphi(n)} \\
c_{n} & \geq\left(\frac{\sqrt{3}}{2}\right)^{\varphi(n)}
\end{aligned}
$$

- $\liminf _{n \rightarrow \infty} c_{n}=0$ and $\limsup c_{n}=1$.
- The sequence $\left(c_{p}\right)_{p \text { odd prime }}$ is decreasing from $3 / 4$ to $1 / 2$.
- For p_{1} and p_{2} primes, $c_{p_{1} p_{2}} \geq \frac{1}{p_{1}}$.
- For any prime $p_{1}, \lim _{p_{2} \rightarrow \infty} c_{p_{1} p_{2}}=\frac{1}{p_{1}}$.

The sequence $\left(a_{m}\right)_{m \geq 1}$
For each integer $m \geq 1$, the set
$\left\{(n, x, y) \in \mathbb{N} \times \mathbb{Z}^{2} \mid n \geq 3, \max \{|x|,|y|\} \geq 2, \Phi_{n}(x, y)=m\right\}$
is finite. Let a_{m} the number of its elements.

The sequence of integers $m \geq 1$ such that $a_{m} \geq 1$ starts with the following values of a_{m}

m	3	4	5	7	8	9	10	11	12	13	16	17
a_{m}	8	16	8	24	4	16	8	8	12	40	40	16

OEIS A296095

https://oeis.org/A296095
Integers represented by cyclotomic binary forms.
$a_{m} \neq 0$ for $m=$
$3,4,5,7,8,9,10,11,12,13,16,17,18,19,20,21,25,26,27$, $28,29,31,32,34,36,37,39,40,41,43,45,48,49,50,52,53$, $55,57,58,61,63,64,65,67,68,72,73,74,75,76,79,80,81$, $82,84,85,89,90,91,93,97,98,100,101,103,104,106,108$, $109,111,112,113,116,117,121,122, \ldots$

OEIS A299214

https://oeis.org/A299214
Number of representations of integers by cyclotomic binary forms.

The sequence $\left(a_{m}\right)_{m \geq 1}$ starts with
$0,0,8,16,8,0,24,4,16,8,8,12,40,0,0,40,16,4,24,8,24$,
$0,0,0,24,8,12,24,8,0,32,8,0,8,0,16,32,0,24,8,8,0,32$,
$0,8,0,0,12,40,12,0,32,8,0,8,0,32,8,0,0,48,0,24,40$,
$16,0,24,8,0,0,0,4,48,8,12,24, \ldots$
https://oeis.org/A293654
Integers not represented by cyclotomic binary forms.
$a_{m}=0$ for $m=$
$1,2,6,14,15,22,23,24,30,33,35,38,42,44,46,47,51,54$, $56,59,60,62,66,69,70,71,77,78,83,86,87,88,92,94,95$, $96,99,102,105,107,110,114,115,118,119,120,123,126$, $131,132,134,135,138,140,141,142,143,150, \ldots$

Integers represented by cyclotomic binary forms

For $N \geq 1$, let $\mathcal{A}(N)$ be the number of $m \leq N$ which are represented by cyclotomic binary forms:

$$
\mathcal{A}(N)=\#\left\{m \in \mathbb{N} \mid m \leq N, a_{m} \neq 0\right\}
$$

We have

$$
\mathcal{A}(N)=\alpha \frac{N}{(\log N)^{\frac{1}{2}}}-\beta \frac{N}{(\log N)^{\frac{3}{4}}}+O\left(\frac{N}{(\log N)^{\frac{3}{2}}}\right)
$$

as $N \rightarrow \infty$.

The Landau-Ramanujan constant

Edmund Landau 1877-1938

Srinivasa Ramanujan 1887-1920

The number of positive integers $\leq N$ which are sums of two squares is asymptotically $\alpha_{4} N(\log N)^{-1 / 2}$, where

$$
\alpha_{4}=\frac{1}{2^{\frac{1}{2}}} \cdot \prod_{p \equiv 3 \bmod 4}\left(1-\frac{1}{p^{2}}\right)^{-\frac{1}{2}}
$$

$$
\alpha=\alpha_{3}+\alpha_{4}
$$

The number of positive integers $\leq N$ represented by Φ_{4} (namely the sums of two squares) is

$$
\alpha_{4} \frac{N}{(\log N)^{\frac{1}{2}}}+O\left(\frac{N}{(\log N)^{\frac{3}{2}}}\right)
$$

The number of positive integers $\leq N$ represented by Φ_{3} (namely $x^{2}+x y+y^{2}$: Loeschian numbers) is

$$
\alpha_{3} \frac{N}{(\log N)^{\frac{1}{2}}}+O\left(\frac{N}{(\log N)^{\frac{3}{2}}}\right)
$$

The number of positive integers $\leq N$ represented by Φ_{4} and by Φ_{3} is

$$
\beta \frac{N}{(\log N)^{\frac{3}{4}}}+O\left(\frac{N}{(\log N)^{\frac{7}{4}}}\right)
$$

OEIS A064533

OEIS A064533 Decimal expansion of Landau-Ramanujan constant.

$$
\alpha_{4}=0.764223653589220 \ldots
$$

- Ph. Flajolet and I. Vardi, Zeta function expansions of some classical constants, Feb 181996.
- Xavier Gourdon and Pascal Sebah, Constants and records of computation.
- David E. G. Hare, 125079 digits of the Landau-Ramanujan constant.

The Landau-Ramanujan constant

References: https://oeis.org/A064533

- B. C. Berndt, Ramanujan's notebook part IV,

Springer-Verlag, 1994.

- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
- G. H. Hardy, "Ramanujan, Twelve lectures on subjects
suggested by his life and work", Chelsea, 1940.
- Institute of Physics, Constants - Landau-Ramanujan

Constant.

- Simon Plouffe, Landau Ramanujan constant.
- Eric Weisstein's World of Mathematics, Ramanujan
constant.
- https://en.wikipedia.org/wiki/Landau-Ramanujan_constant.

Loeschian numbers: $m=x^{2}+x y+y^{2}$
An integer $m \geq 1$ is of the form

$$
m=\Phi_{3}(x, y)=\Phi_{6}(x,-y)=x^{2}+x y+y^{2}
$$

if and only if there exist integers $b \geq 0, N_{2,3}$ and $N_{1,3}$ such that

$$
m=3^{b} N_{2,3}^{2} N_{1,3}
$$

The number of positive integers $\leq N$ which are represented by the quadratic form $X^{2}+X Y+Y^{2}$ is asymptotically $\alpha_{3} N(\log N)^{-1 / 2}$ where

$$
\alpha_{3}=\frac{1}{2^{\frac{1}{2}} 3^{\frac{1}{4}}} \cdot \prod_{p \equiv 2 \bmod 3}\left(1-\frac{1}{p^{2}}\right)^{-\frac{1}{2}}
$$

Sums of two squares

If a and q are two integers, we denote by $N_{a, q}$ any integer ≥ 1 satisfying the condition

$$
p \mid N_{a, q} \Longrightarrow p \equiv a \bmod q .
$$

An integer $m \geq 1$ is of the form

$$
m=\Phi_{4}(x, y)=x^{2}+y^{2}
$$

if and only if there exist integers $a \geq 0, N_{3,4}$ and $N_{1,4}$ such that

$$
m=2^{a} N_{3,4}^{2} N_{1,4}
$$

OEIS A301429

OEIS A301429 Decimal expansion of an analog of the Landau-Ramanujan constant for Loeschian numbers.

$$
\alpha_{3}=\frac{1}{2^{\frac{1}{2}} 3^{\frac{1}{4}}} \cdot \prod_{p \equiv 2 \bmod 3}\left(1-\frac{1}{p^{2}}\right)^{-\frac{1}{2}} .
$$

$$
\alpha_{3}=0.63890940544 \ldots
$$

$$
\alpha=\alpha_{3}+\alpha_{4}=1.403133059 \ldots
$$

Zeta function expansions of some classical constants, Feb 181996.

Philippe Flajolet

Ilan Vardi

$\alpha_{3}=0.63890940544534388$ 22549426749282450937 54975508029123345421 69236570807631002764 96582468971791125286 $64388141687519107424 \ldots$

Bill Allombert

Zeta function expansions of some classical constants, Feb 181996.

Philippe Flajolet

Bill Allombert

OEIS A301430 Decimal expansion of an analog of the Landau-Ramanujan constant for Loeschian numbers which are sums of two squares.
$\beta=\frac{3^{\frac{1}{4}}}{2^{\frac{5}{4}}} \cdot \pi^{\frac{1}{2}} \cdot(\log (2+\sqrt{3}))^{\frac{1}{4}} \cdot \frac{1}{\Gamma(1 / 4)} \cdot \prod_{p \equiv 5,7,11 \bmod 12}\left(1-\frac{1}{p^{2}}\right)^{-\frac{1}{2}}$.

$$
\beta=0.30231614235 \ldots
$$

Only 11 digits after the decimal point are known.

Further developments

- Prove similar estimates for the number of integers represented by other binary forms (done for quadratic forms); e.g. : prove similar estimates for the number of integers which are sums of two cubes, two biquadrates,...
- Prove similar estimates for the number of integers which are represented by Φ_{n} for a given n.
- Prove similar estimates for the number of integers which are represented by Φ_{n} for some n with $\varphi(n) \geq d$.

Ilan Vardi

$\beta=0.302316142357065637$ 94776990048019971560 24127951893696454588 67841288865448752410 51089948746781397927 27085677659132725910...

Let F be a binary form of degree $d \geq 3$ with nonzero discriminant.
There exists a positive constant $C_{F}>0$ such that the number of integers of absolute value at most N which are represented by $F(X, Y)$ is asymptotic to $C_{F} N^{2 / d}$.

K. Mahler (1933)

Let F be a binary form of degree $d \geq 3$ with nonzero discriminant.
Denote by A_{F} the area (Lebesgue measure) of the domain

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid F(x, y) \leq 1\right\}
$$

For $Z>0$ denote by $N_{F}(Z)$ the number of $(x, y) \in \mathbb{Z}^{2}$ such that $0<|F(x, y)| \leq Z$.
Then

$$
N_{F}(Z)=A_{F} Z^{2 / d}+O\left(Z^{1 /(d-1)}\right)
$$

as $Z \rightarrow \infty$

Cam Stewart and Stanley Yao Xiao

Cam Stewart

Stanley Yao Xiao
C.L. Stewart and S. Yao Xiao, On the representation of integers by binary forms,
arXiv:1605.03427v2 (March 23, 2018).

Kurt Mahler

Kurt Mahler
1903-1988

Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen,
Acta Math. 62 (1933), 91-166.
https://carma.newcastle.edu.au/mahler/biography.html

Higher degree

The situation for positive definite forms of degree ≥ 3 is different for the following reason :

- If a positive integer m is represented by a positive definite quadratic form, it usually has many such representations; while if a positive integer m is represented by a positive definite binary form of degree $d \geq 3$, it usually has few such representations.
If F is a positive definite quadratic form, the number of (x, y) with $F(x, y) \leq N$ is asymptotically a constant times N, but the number of $F(x, y)$ is much smaller.

If F is a positive definite binary form of degree $d \geq 3$, the number of (x, y) with $F(x, y) \leq N$ is asymptotically a constant times $N^{1 / d}$, the number of $F(x, y)$ is also asymptotically a constant times $N^{1 / d}$.
$635318657=158^{4}+59^{4}=134^{4}+133^{4}$.

The smallest integer represented by $x^{4}+y^{4}$ in two essentially different ways was found by Euler, it is
$635318657=$
$41 \times 113 \times 241 \times 569$.
Leonhard Euler 1707-1783

Sums of k-th powers

If a positive integer m is a sum of two squares, there are many such representations.
Indeed, the number of (x, y) in $\mathbb{Z} \times \mathbb{Z}$ with $x^{2}+y^{2} \leq N$ is asymptotic to πN, while the number of values $\leq N$ taken by the quadratic form Φ_{4} is asymptotic to $\alpha_{4} N / \sqrt{\log N}$ where α_{4} is the Landau-Ramanujan constant. Hence Φ_{4} takes each of these values with a high multiplicity, on the average $(\pi / \alpha) \sqrt{\log N}$.
On the opposite, it is extremely rare that a positive integer is a sum of two biquadrates in more than one way (not counting symmetries).

Sums of k-th powers

One conjectures that given $k \geq 5$, if an integer is of the form $x^{k}+y^{k}$, there is essentially a unique such representation. But there is no value of k for which this has been proved.
[OEIS A216284] Number of solutions to the equation $x^{4}+y^{4}=n$ with $x \geq y>0$.
An infinite family with one parameter is known for non trivial solutions to $x_{1}^{4}+x_{2}^{4}=x_{3}^{4}+x_{4}^{4}$.
http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

Higher degree

The situation for positive definite forms of degree ≥ 3 is different also for the following reason.

A necessary and sufficient condition for a number m to be represented by one of the quadratic forms Φ_{3}, Φ_{4}, is given by a congruence.

By contrast, consider the quartic binary form $\Phi_{8}(X, Y)=X^{4}+Y^{4}$. On the one hand, an integer represented by Φ_{8} is of the form

$$
N_{1,8}\left(N_{3,8} N_{5,8} N_{7,8}\right)^{4} .
$$

On the other hand, there are many integers of this form which are not represented by Φ_{8}.

Primes of the form $x^{2^{k}}+y^{2^{k}}$

Quartan primes

[OEIS A002645] Quartan primes: primes of the form $x^{4}+y^{4}, x>0, y>0$.

The list of prime numbers represented by Φ_{8} start with $2,17,97,257,337,641,881,1297,2417,2657,3697,4177$, 4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, ...

It is not known whether this list is finite or not.
The largest known quartan prime is currently the largest known generalized Fermat prime: The 1353265 -digit $\left(145310^{65536}\right)^{4}+1^{4}$.

Primes of the form $X^{2}+Y^{4}$

John Friedlander

Étienne Fouvry

But it is known that there are infinitely many prime numbers of the form $X^{2}+Y^{4}$.
Friedlander, J. \& Iwaniec, H. The polynomial $X^{2}+Y^{4}$
captures its primes, Ann. of Math. (2) 148 (1998), no. 3, 945-1040.
https://arxiv.org/pdf/math/9811185.pdf

