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Abstract

We give an introduction to the theory of Diophantine
approximation of power series, starting with continued
fractions and culminating with parametric geometry of
numbers.

Next we give a survey of a joint work with D. Roy, where we
consider an analog for power series of the parametric geometry
of numbers, initiated by W.M. Schmidt in 1982 and developed
in 2009 and 2013 by W.M. Schmidt and L. Summerer and in
2015 by D. Roy.

http://webusers.imj-prg.fr/~michel.waldschmidt/
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Introduction

In the introduction of his paper in 1873 where he proved the
transcendence of e, Ch. Hermite starts by recalling the theory
of simultaneous Diophantine approximation to several real
numbers by rational tuples. He points out that the case of a
single number is nothing else than the algorithm of continued
fractions. He claims that he will do something similar with
functions. This is the birth of the theory of Padé
approximation, and Hermite pursues by giving an explicit
solution for what is called now Padé approximants of type II
for the exponential function.
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Charles Hermite and Ferdinand Lindemann

Hermite (1873) :
Transcendence of e
e = 2.718 281 828 4 . . .

Lindemann (1882) :
Transcendence of ⇡
⇡ = 3.141 592 653 5 . . .
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Charles Hermite 1873
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Felix Müller Jahrbuch der Mathematik
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Felix Müller Jahrbuch der Mathematik
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Hermite p.77
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Hermite p.77
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Hermite p.77 – 78
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Rational approximations to a real number

If x is a rational number, there is a constant c > 0 such that
for any p/q 2 Q with p/q 6= x, we have |x� p/q| � c/q.

Proof : write x = a/b and set c = 1/b.

If x is a real irrational number, there are infinitely many
p/q 2 Q with |x� p/q| < 1/q

2.

The best rational approximations p/q are given by the
algorithm of continued fraction.

With a single real number x, it amounts to the same to
investigate |x�

p
q | or |qx� p| for p, q in Z, q > 0.
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Simultaneous approximation to a tuple of real

numbers
Two generalisations of the problem in higher dimension.
Given real numbers x1, . . . , xm, we may either consider

max

1im

����xi �
pi

q

���� ,

for p1, . . . , pm, q in Z with q > 0, which is the simultaneous
approximation of the tuple (x1, . . . , xm) by rational numbers
with the same denominator, or else

|p1x1 + · · ·+ pmxm � q|

p1, . . . , pm, q in Z not all zero.
For power series, the first one corresponds to Padé
approximants of type II, the second one corresponds to Padé
approximants of type I.
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Padé approximants

Charles Hermite
(1822 – 1901)

Henri Padé
(1863 – 1953)

Kurt Mahler
(1903 – 1988)

1873, Hermite : type II, transcendence of e

1893, Hermite : type I, linear forms exponential function

1967, Mahler : application of type I to transcendence.
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Rational approximation to a single number
Continued fractions (Leonhard Euler)

Farey dissection (Sir John Farey)

Dirichlet’s Box Principle (Gustav Lejeune – Dirichlet)

Geometry of numbers (Hermann Minkowski)

Euler

(1707 – 1783)

Farey

(1766 – 1826)

Dirichlet

(1805 – 1859)

Minkowski

(1864–1909)
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The algorithm of continued fractions
Let x 2 R. Euclidean division of x by 1 :

x = bxc+ {x} with bxc 2 Z and 0  {x} < 1.

If x is not an integer, then {x} 6= 0. Set x1 =
1

{x}

, so that

x = bxc+

1

x1
with bxc 2 Z and x1 > 1.

If x1 is not an integer, set x2 =
1

{x1}
:

x = bxc+

1

bx1c+
1

x2

with x2 > 1
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Continued fraction expansion
Set a0 = bxc and ai = bxic for i � 1.
Then :

x = bxc+

1

[x1] +
1

bx2c+
1

. . .

= a0 +
1

a1 +
1

a2 +
1

. . .

the algorithm stops after finitely many steps if and only if x is
rational.
We use the notation

x = [a0, a1, a2, a3, . . . ]

Remark : if ak � 2, then
[a0, a1, a2, a3, . . . , ak] = [a0, a1, a2, a3, . . . , ak � 1, 1].
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Continued fractions : the convergents

Given rational integers a0, a1, . . . , an with ai � 1 for i � 1, the
finite continued fraction

[a0, a1, a2, a3, . . . , an]

can be written
P n(a0, a1, . . . , an)

Qn(a1, a2, . . . , an)

where P n and Qn are polynomials with integer coe�cients.
We wish to write these polynomials explicitly.
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Continued fractions : the convergents
Let F be a field, Z0, Z1, . . . variables. We will define
polynomials P n and Qn in F[Z0, . . . , Zn] and F[Z1, . . . , Zn]

respectively such that

[Z0, Z1, . . . , Zn] =
P n

Qn
·

Here are the first values :

P 0 = Z0, Q0 = 1,

P 0

Q0
= Z0;

P 1 = Z0Z1 + 1, Q1 = Z1,
P 1

Q1
= Z0 +

1

Z1
;

P 2 = Z0Z1Z2+Z2+Z0, Q2 = Z1Z2+1,

P 2

Q2
= Z0+

1

Z1 +
1

Z2

·
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Continued fractions : the convergents

P 3 = Z0Z1Z2Z3 + Z2Z3 + Z0Z3 + Z0Z1 + 1,

Q3 = Z1Z2Z3 + Z3 + Z1,

P 3

Q3
= Z0 +

1

Z1 +
1

Z2 +
1

Z3

·

P 2 = Z2P 1 + P 0, Q2 = Z2Q1 +Q0.

P 3 = Z3P 2 + P 1, Q3 = Z3Q2 +Q1.
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Continued fractions : the convergents

For n = 2 and n = 3, we observe that

P n = ZnP n�1 + P n�2, Qn = ZnQn�1 +Qn�2.

This will be our definition of P n and Qn.

In matrix form, it is
✓
P n

Qn

◆
=

✓
P n�1 P n�2

Qn�1 Qn�2

◆✓
Zn

1

◆
.
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Definition of P
n

and Q

n

With 2⇥ 2 matrices :
✓
P n P n�1

Qn Qn�1

◆
=

✓
P n�1 P n�2

Qn�1 Qn�2

◆✓
Zn 1

1 0

◆
.

Hence :
✓
P n P n�1

Qn Qn�1

◆
=

✓
Z0 1

1 0

◆✓
Z1 1

1 0

◆
· · ·

✓
Zn 1

1 0

◆
.
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Continued fractions : definition of P
n

and Q

n

✓
P n P n�1

Qn Qn�1

◆
=

✓
Z0 1

1 0

◆✓
Z1 1

1 0

◆
· · ·

✓
Zn 1

1 0

◆
for n � �1.

In particular ✓
P�1 P�2

Q�1 Q�2

◆
=

✓
1 0

0 1

◆
.

One checks [Z0, Z1, . . . , Zn] = P n/Qn for all n � 0.
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Simple continued fraction of a real number

For
x = [a0, a1, a2, . . . , an]

we have
x =

pn

qn

with

pn = P n(a0, a1, . . . , an) and qn = Qn(a1, . . . , an).
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Simple continued fraction of a real number
For

x = [a0, a1, a2, . . . , an, . . .]

the rational numbers in the sequence

pn

qn
= [a0, a1, a2, . . . , an] (k = 1, 2, . . .)

give rational approximations for x which are the best ones
when comparing the quality of the approximation and the size
of the denominator.
a0, a1, a2, . . . are the partial quotients,
pn/qn (n � 0) are the convergents.
xn = [an, an+1, . . . ] (n � 0) are the complete quotients.
Hence

x = [a0, a1, . . . , an�1, xn] =
xnpn�1 + pn�2

xnqn�1 + qn�2
·
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Connection with the Euclidean algorithm

If x is rational, x =

p

q

, this

process is nothing else than
Euclidean algorithm of
dividing p by q :

p = a0q + r0, 0  r0 < q.

If r0 6= 0,

x1 =
q

r0
> 1.

Euclide :
(⇠ -306, ⇠ -283)

q = a1r0 + r1, x2 =
r0

r1
·
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Continued fractions and rational approximation

From

qn = anqn�1 + qn�2 and qnx� pn =

(�1)

n

an+1qn + qn�1

one deduces the inequalities

anqn�1  qn  (an + 1)qn�1

and

1

(an+1 + 2)qn
<

1

qn+1 + qn
< |qnx� pn| <

1

qn+1
<

1

an+1qn
·
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Convergents are the best rational approximations

Let pn/qn be the n–th convergent of the continued fraction
expansion of an irrational number x.
Theorem. Let a/b be any rational number such that
1  b  qn. Then :

|qnx� pn|  |bx� a|

with equality if and only if (a, b) = (pn, qn).

Corollary. For 1  b  qn we have
����x�

pn

qn

���� 
���x�

a

b

���

with equality if and only if (a, b) = (pn, qn).
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Power series

Let F be a field. For P/Q 2 F(T ), define
����
P

Q

���� = e

degP�degQ

with |0| = 0. The completion of F(T ) for this absolute value is
F((1/T )) ; for x 2 F((1/T )) with x 6= 0 write

x = ak0T
k0
+ ak0�1T

k0�1
+ · · · =

X

kk0

akT
k

with k0 2 Z, ak 2 F for all k  k0 and ak0 6= 0. Then
|x| = e

k0 .
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Analogy : numbers – series

Z ⇢ Q ⇢ R
l l l

F[T ] ⇢ F(T ) ⇢ F((1/T ))

���
a

b

��� = max{|a|, |b|},

X

n��k

ang
�n

,

����
P

Q

���� = e

degP�degQ
X

n��k

anT
�n

.
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Analogy : numbers – functions

Rolf Nevanlinna Paul Vojta Wolfgang M. Schmidt

There is a formal analogy between Nevanlinna theory and
Diophantine approximation. Via Vojta’s dictionary, the Second
Main Theorem in Nevanlinna theory corresponds to Schmidt’s
Subspace Theorem in Diophantine approximation.
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Regular continued fraction of a power series
Notice that any element in F(T ) has a unique continued
fraction expansion [A0, A1, . . . , An] with Ai 2 F[T ] for i � 0

and degAi � 1 for i � 1.
For x 2 F((1/T )) :

x = [A0, A1, . . . ].

Partial quotients : An.
Convergents : P n/Qn with P n = P n(A0, A1, . . . , An) and
Qn = Qn(A1, . . . , An).
Complete quotients : xn = [An, An+1, . . . ].
Hence

x = [A0, A1, . . . , An�1, xn] =
xnP n�1 + P n�2

xnQn�1 +Qn�2
·
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Diophantine approximation and continued fractions

For x = [A0, A1, . . . ] 2 F((1/T )),

P n = P n(A0, A1, . . . , An), Qn = Qn(A1, . . . , An),

we have

|Qn| = |An| · |An�1| · · · |A1| (n � 1)

and
����x�

P n

Qn

���� =
1

|Qn| |Qn+1|
=

1

|An+1| |Qn|
2

(n � 0).
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Convergents are the best rational approximations

Let P n/Qn be the n–th convergent of the continued fraction
expansion of x 2 F((T�1

)) \ F(T ).
Theorem. Let A/B be any element in F(T ) such that
|B|  |Qn|. Then :

|Qnx� P n|  |Bx� A|

with equality if and only if (A,B) = (P n, Qn).

Corollary. For |B|  |Qn| we have
����x�

P n

Qn

���� 
����x�

A

B

����

with equality if and only if (A,B) = (P n, Qn).
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Legendre Theorem

Adrien–Marie Legendre
(1752 – 1833)

Real numbers : If

����x�

p

q

���� 
1

2q

2
,

then p/q is a convergent of x.

Power series : If ����x�

P

Q

���� <
1

|Q|

2
,

then P/Q is a convergent of x.
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Lagrange Theorem

Lagrange
(1736 – 1813)

Real numbers : The
continued fraction expansion
of a real irrational number x
is ultimately periodic if and
only if x is quadratic.

Power series : If the continued fraction expansion of an
element x 2 F((T�1

)) \ F(T ) is ultimately periodic, then x is
quadratic over F(T ).
The converse is true when the field has nonzero characteristic
and is an algebraic extension of its prime field Fp, but not
otherwise.
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Pseudo–periodic expansion
An element x 2 F((T�1

)) \ F(T ) has a pseudo periodic
expansion

[A0, A1, . . . , An�1, B1, . . . , B2t, aB1, a
�1
B2, aB3, . . . , a

�1
B2t,

a

2
B1, a

�2
B2, . . . , a

�2
B2t, a

3
B1, a

�3
B2, . . . ]

if and only if there exist R, S, T , U in F[T ] with

x =

Rx+ S

Tx+ U

where

✓
R S

T U

◆
has determinant 1 and is not a multiple of the

identity matrix.
If D is polynomial which is irreducible over any quadratic
extension of F then the regular continued fraction expansion of
p

D is not pseudo–periodic.
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References on continued fractions of power series

Alain Lasjaunias

A. Lasjaunias.
A survey of Diophantine
approximation in fields of
power series.
Monatsh. Math.,
130(3) :211–229, 2000.

A. Lasjaunias.
A short survey on diophantine approximation in fields of
formal numbers.
https://www.math.u-bordeaux.fr/

~

alasjaun/survey.pdf.
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References on continued fractions of power series

Wolfgang M. Schmidt

W. M. Schmidt.
On continued fractions
and Diophantine
approximation in power
series fields.
Acta Arith.,
95(2) :139–166, 2000.
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Geometry of numbers

Hermann Minkowski
(1864–1909)

Reference :
Eva Bayer–Fluckiger.

Hermann Minkowski, Grand
prix de l’Académie à 18 ans.

Tangente, n�111, Juillet-Août
2006.

http://alg-geo.epfl.ch/~bayer/files/MINKOWSKI.pdf
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Minkowski geometry of numbers

H. Minkowski ICM 1904
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Parametric geometry of numbers : references

Wolfgang M. Schmidt

W. M. Schmidt.
Open problems in
Diophantine
approximation.
§1 : a viewpoint.

In Diophantine approximations and transcendental numbers
(Luminy, 1982), volume 31 of Progr. Math., pages 271–287.
Birkhäuser Boston, Boston, MA, 1983.
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Parametric geometry of numbers : references

Wolfgang M. Schmidt Leo Summerer

W. M. Schmidt and L. Summerer.
Parametric geometry of numbers and applications.
Acta Arith., 140(1) :67–91, 2009.

W. M. Schmidt and L. Summerer.
Diophantine approximation and parametric geometry of
numbers.
Monatsh. Math., 169(1) :51–104, 2013.
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Parametric geometry of numbers

Damien Roy

D. Roy.
On Schmidt and
Summerer parametric
geometry of numbers.
Ann. of Math. (2),
182(2) :739–786, 2015.
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Parametric geometry of numbers

Aminata Keita

A. Keita.
Continued fractions and
parametric geometry of
numbers.
J. Théor. Nombres
Bordeaux 29 (2017),
129–135.

A. Keita.
On a conjecture of Schmidt for the parametric geometry
of numbers.
Moscow Journal of Combinatorics and Number Theory 6
(2016), 166–176.

https://www.idrc.ca/fr/article/preparer-la-prochaine-generation-de-scientifiques-africains
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Simultaneous approximation to a tuple of real

numbers

For u = (u1, . . . , un) and x = (x1, . . . , xn) in Rn, set

kuk = max

1in
|ui| and x · u = x1u1 + · · ·+ xnun.

Given u 2 Rn, we are interested in finding x 2 Zn where kxk

is not too large and |x · u| is as small as possible. In case
n = 2, the answer is given by the theory of continued
fractions. Say u = (u1, u2) with u1 6= 0, the best rational
approximations are given by the quotients pn/qn associated
with the continued fraction of u2/u1.
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A convex body

For n � 2, in order to use Minkowski’s geometry of numbers,
we need a symmetric convex body. The idea behind parametric
geometry of numbers (in Rn) is to introduce a parameter
q � 0 and to consider a family of convex bodies.
For q > 0, set

C(e

q
) =

�
x 2 Rn

| kxk  1, |x · u|  e

�q
 
.

Best approximations : given q, find t as small as possible such
that there exists x 2 e

t
C(e

q
) \ {0}. In other words, et is the

first minimum of Zn with respect to C(e

q
).
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Successive minima

Let u 2 Rn with kuk = 1.
Consider the successive minima of Zn with respect to this
body : define L

u,i(q) the logarithm of the i-th minimum ;
hence L

u,i(q) is the smallest t � 0 such that the solutions
x 2 Zn of

kxk  e

t
, |x · u|  e

t�q

span a subspace of dimension � i. The combined graph is the
map

L

u

: [0,1) �! Rn

q 7�! (L

u,1(q), . . . , Lu,n(q)).
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Trajectory of a point
Trajectory of a point x 2 Zn :

q 7�! L

x

(q) = max{log |x| , q + log |x · u|}.

Graph : straight horizontal segment from 0 to
log |x|� log |x · u| with value log |x|, next a half line with
slope 1.

Trajectory
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Trajectories in a box

Consider all such trajectories for x 2 Zn.

Given a bounded subset of
R2, only finitely many
trajectories intersect it.

The intersection consists of
horizontal segments and
segments with slope 1.

The combined graph L

u

consists to a union of subsets of some
of these trajectories.
There are n points above a given q.
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n–systems (according to D. Roy)
An n–system is a map

P : [0,1) �! Rn

q 7�! (P 1(q), . . . , P n(q))

such that, for each q � 0,

(S1) we have 0  P 1(q)  · · ·  P n(q) and
P 1(q) + · · ·+ P n(q) = q,

(S2) there exist ✏ > 0 and integers k, ` 2 {1, . . . , n} such that

P(t) =

(
P(q) + (t� q)e` when max{0, q � ✏}  t  q,

P(q) + (t� q)ek when q  t  q + ✏,

where e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1),

(S3) if q > 0 and if the integers k and ` from (S2) satisfy
k > `, then P `(q) = · · · = P k(q).
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n–systems

k = ` k < ` k > `.

Not allowed in case k > `:

51 / 64

An example of a 3–system

three segments (one horizontal, two with slope 1)
three half lines (two horizontal, one with slope 1)
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Roy’s main result (Rn)

Theorem (D. Roy, 2015) Modulo the additive group of
bounded functions, the class of combined graphs L

u

is the
same as the class of n–systems.
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Power series

K = F(T ), K1 = F((1/T )), u 2 K

n
1, kuk = 1.

C(e

q
) =

�
x 2 Kn

1 | kxk  1, |x · u|  e

�q
 
.

Combined graph :

L

u

: [0,1) �! Rn
.

Main Theorem (with D. Roy) : The set of maps L
u

with
kuk = 1 is the set of n–systems.
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Perfect systems (K. Mahler, H. Jager)

Kurt Mahler Henk Jager
(with Rob Tijdeman)

There is exactly one such n-system for which

P 1(q) =

j
q

n

k
and P n(q) =

l
q

n

m
for each q 2 N.

When q ⌘ 0 mod n, such a system necessarily has
P 1(q) = · · · = P n(q) = q/n.
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Perfect systems

This figure shows the union of the graphs of P 1, . . . , P n over
an interval of the form [mn, (m+ 1)n] with m 2 N.

m

m+ 1

qmn mn+ 1 mn+ 2 mn+ n� 1 mn+ n

Pn Pn�1 Pn�2 P 2 P 1
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Example of a perfect system

Suppose that F has characteristic zero. Let !1, . . . ,!n be
distinct elements of F, and let u =

�
e

!1/T
, . . . , e

!n/T
�
, where

e

!/T
=

1X

j=0

!

j

j!

T

�j
2 F[[1/T ]] (! 2 F).

Then, we have kuk = 1 and the combined graph L

u

is a
perfect n-system.
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Combined graph of a continued fraction

Continued fractions [a0, a1, . . . , am, . . . ] with deg a0 = 0,
deg ai � 1 (i � 1).
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Combined graph of a perfect continued fraction

Perfect continued fractions : [a0, a1, . . . , am, . . . ] with
deg a0 = 0, deg ai = 1 (i � 1).

Example (Fibonacci–like power series) :
✓ = [0, T , T , . . . ] = 1/(T + ✓), root of ✓2 + T ✓ � 1 = 0.
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Littlewood’s Conjecture

John Edensor Littlewood
(1885–1977)

Littlewood’s Conjecture :
for any real numbers ✓ and �,
for any ✏ > 0, there exists
n � 1 such that

nkn✓k kn�k  ✏.

Here, k · k is the distance to the nearest integer.
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Counterexample for power series

Harold Davenport
(1907–1969)

Donald J. Lewis
(1926–2015)

H. Davenport–D. Lewis : there exists ⇥ and � in R((1/T ))
such that for any N 2 R[T ], we have

|N | kN⇥k kN�k � e

�2
.

Here, | · | is the ultrametric absolute value on R((1/T )) which
is edeg(·) on R[T ], while k · k is the distance to the nearest
element in R[T ].
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Explicit counterexample

Alan Baker

A. Baker : For any
N 2 R[T ], we have

|N | kNe

1/T
k kNe

2/T
k � e

�5
.

More generally, for any nonzero distinct real numbers
�1, . . . ,�r, for any N 2 R[T ], we have

|N | kNe

�1/T
k · · · kNe

�r/T
k � e

�(r3+r)/2
.
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Consequence of an adelic estimate (with Damien

Roy)

Let a1(T ), . . . , an(T ) be nonzero polynomials in C[T ]. Then,
we have

��
a1(T )e

!1/T
+ · · ·+ an(T )e

!n/T
��

nY

i=2

|ai(T )| � C(n)

�1

and

|a1(T )|

nY

i=2

��
a1(T )e

!i/T
� ai(T )e

!1/T
��
� C(n)

�(n�1)

with C(n) = exp(n(n� 1)/2).
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