http://www.rnta.eu/ThirdRNTA/index.html

The third mini symposium of the Roman Number Theory Association

## Diophantine approximation and power series.

## Michel Waldschmidt

Institut de Mathématiques de Jussieu - Paris VI http://webusers.imj-prg.fr/~michel.waldschmidt/

Abstract

We give an introduction to the theory of Diophantine approximation of power series, starting with continued fractions and culminating with parametric geometry of numbers.

Next we give a survey of a joint work with D. Roy, where we consider an analog for power series of the parametric geometry of numbers, initiated by W.M. Schmidt in 1982 and developed in 2009 and 2013 by W.M. Schmidt and L. Summerer and in 2015 by D. Roy.
http://webusers.imj-prg.fr/~michel.waldschmidt/

## Introduction

In the introduction of his paper in 1873 where he proved the transcendence of $e$, Ch. Hermite starts by recalling the theory of simultaneous Diophantine approximation to several real numbers by rational tuples. He points out that the case of a single number is nothing else than the algorithm of continued fractions. He claims that he will do something similar with functions. This is the birth of the theory of Padé approximation, and Hermite pursues by giving an explicit solution for what is called now Padé approximants of type II for the exponential function.

Charles Hermite and Ferdinand Lindemann


Hermite (1873) :
Transcendence of $e$
$e=2.7182818284 \ldots$


Lindemann (1882)
Transcendence of $\pi$ $\pi=3.1415926535 \ldots$

Charles Hermite 1873
analyse．－Sur la fonction exponentielle；par M．Henmite．
＂I．Étant donné un nombre quelconque de quantités numériques $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ ，on sait qu＇on peut en approcher simultanément par des frac－

$$
\begin{aligned}
& \alpha_{1}=\frac{A_{1}}{A}+\frac{\partial_{1}}{A \sqrt{A}}, \\
& \alpha_{2}=\frac{A_{2}}{A}+\frac{\partial_{2}}{A \sqrt{A}}, \\
& \ldots \ldots \ldots . . . . . . \\
& \alpha_{n}=\frac{A_{A}}{A}+\frac{\partial_{n}}{A \sqrt{A}},
\end{aligned}
$$

$\delta_{0}, \delta_{2}, \ldots, \delta_{n}$ ne pouvant dépasser une limite qui dépend seulement de $n$ ． C＇est，comme on voit，une extension du mode d＇approximation résultant de de $n=$ I．Or on peut se proposer une généralisation semblable de la thérie des fractions continues algébriques，en cherchant les expressions appro－ chées de $n$ fonctions，$\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{n}(x)$ par des fractions rationnelles $\frac{\Phi_{1}(x)}{\Phi(x)}, \frac{\phi_{3}(x)}{\Phi(x)}, \ldots, \frac{\Phi_{n}(x)}{\Phi(x)}$, de manière que les développements en série suivant les puissances croissantes de la variable coincident jusqu＇à une puissance déterminée $x^{\mathrm{u}}$ ．Voici d＇abord à cet égard un premier résultat qui s＇offre toutes développables en séries de la forme $\alpha+\beta x+\gamma x^{2}+\ldots$ et faisont

Felix Müller Jahrbuch der Mathematik

```
M,
```







```
            \phi(x)=A\mp@subsup{x}{}{m}+B\mp@subsup{x}{}{m-1}+\cdots+Kx+L.
```



```
wo m, rygend dine ganmo Zahl ist, wersdwwiden. So bildet man m; homogene Gledcungen enten Gradeo
```




```
    \varphi(x)= 曾(x)
```




```
SSt, so genight te, die cimzige Bedingung
hinauunfigen, wo die ganzzahligen \mu}\mp@subsup{\mu}{i}{}\mathrm{ bis daliin gnuz wilkürlich geblieben sind. Diese Betrachtung is 
```



```
function
            \mp@subsup{\varphi}{1}{\prime}}(x)=\mp@subsup{e}{}{e=,},\mp@subsup{\varphi}{2}{\prime}(x)=\mp@subsup{e}{}{tx,\ldots,
                                    Reviewer: Mäller, Felix, Dr. (Bertin)
```

mes.

## Felix Müller Jahrbuch der Mathematik

## Lindemann， F

On the number $\pi$ ．（Ueber die Zahl $\pi$ ．）（German）Fan ze：30 ©
Klein Ann．xx， 213.225 （1882）．



$f_{1}(z)=0 . f_{2}(z)=0 .-f(z)=0$
$z^{*}+a_{i} z^{-1-1}+a_{0}=$

sezechnot wird kurz
$\Sigma e^{1}=e^{k^{i}}+e^{e^{i}}+e^{i}+$

dee Form



$$
\begin{aligned}
& z_{1}=z_{1}, z_{2}=z_{1}+z_{2}, z_{1}=z_{1}+z_{3}+z_{2} \quad z_{1}=z_{1}+z_{2}, z_{2}
\end{aligned}
$$







## Hermite p． 77

＊Il en résulte qu＇on ne peut，en général，admettre que le déterminant proposé $\Delta$ s＇annule，car les quantités $\mathrm{P}=f(p), \mathrm{Q}=\boldsymbol{f}(q), \ldots$ ，fonctions entières semblables des racines $p, q, \ldots$ ，de l＇équation dérivée $f^{\prime}(x)=0$ seront comme ces racines différentes entre elles．C＇est ce qu＇il fallait éta－ blir pour démontrer l＇impossibilité de toute relation de la forme

$$
\mathrm{N}+e^{a} \mathrm{~N}_{1}+e^{b} \mathrm{~N}_{2}+\ldots+e^{h} \mathbf{N}_{n}=0
$$

et arriver ainsi à prouver que le nombre e ne peut étre racine d＇une équation algébrique de degré quelconque à coefficients entiers．
n Il en résulte qu’on ne peut, en général, admettre que le déterminant proposé $\Delta$ s'annule, car les quantités $\mathrm{P}=f(p), \mathrm{Q}=f(q), \ldots$, fonctions entières semblables des racines $p, q, \ldots$, de l'équation dérivée $f^{\prime}(x)=0$ seront comme ces racines différentes entre elles. C'est ce qu'il fallait établir pour démontrer l'impossibilité de toute relation de la forme

$$
\mathbf{N}+e^{a} \mathbf{N}_{1}+e^{b} \mathbf{N}_{2}+\ldots+e^{h} \mathbf{N}_{n}=0,
$$

et arriver ainsi à prouver que le nombre e ne peut étre racine d'une équation algébrique de degré quelconque à coefficients entiers.
" Mais une autre voie conduira à une seconde démonstration plus rigoureuse; on peut en effet, comme on va le voir, étendre aux fractions ration-

## Rational approximations to a real number

If $x$ is a rational number, there is a constant $c>0$ such that for any $p / q \in \mathbb{Q}$ with $p / q \neq x$, we have $|x-p / q| \geq c / q$.

Proof : write $x=a / b$ and set $c=1 / b$.

If $x$ is a real irrational number, there are infinitely many $p / q \in \mathbb{Q}$ with $|x-p / q|<1 / q^{2}$.

The best rational approximations $p / q$ are given by the algorithm of continued fraction.

With a single real number $x$, it amounts to the same to investigate $\left|x-\frac{p}{q}\right|$ or $|q x-p|$ for $p, q$ in $\mathbb{Z}, q>0$.

Hermite p. 77 - 78

* 11 en résulte qu'on ne peut, en général, admettre que le déterminant proposé $\Delta$ s'annule, car les quantités $\mathrm{P}=f(p), \mathrm{Q}=\boldsymbol{f}(q), \ldots$, fonction seront comme ces racines différentes entre elles. C'est ce qu'il fallait établir pour démontrer l'impossibilité de toute relation de la forme

$$
\mathbf{N}+e^{a} \mathbf{N}_{1}+e^{b} \mathbf{N}_{2}+\ldots+e^{t} \mathbf{N}_{n}=0,
$$

et arriver ainsi à prouver que le nombre e ne peut ére racine d'une équation algébrique de degré quelconque à coefficients entiers.

- Mais une autre voie conduira à une seconde démonstration plus rigou nelles

$$
\frac{\phi_{1}(x)}{\phi(x)}, \frac{\phi_{0}(x)}{\phi(x)}, \ldots, \frac{\phi_{0}(x)}{\phi(x)}
$$

le mode de formation des réduites donné par la théorie des fractions continues, et par là mettre plus complétement en évidence le caractère arithme tique d'une irrationnelle non algébrique. Dans cet ordre d'idées, M. Liouville a déja obtenu un théorème remarquable qui est l'objet de son travail intitulé : Sur des classes trèsettendues de quantites dont la valeur $n$ 'est $n i$ a algebrique, ni méme réductiblè des irrationnelles algébriques ( ${ }^{\circ}$ ), et je rappellerai
aussi que l'illustre géomètre a démontré le premier la proposition qui est le sujet de ces recherches pour les cas de l'équation du second degré et de

| I'équation bicarrée [Journal de Mathématigues (Note sur l'irrationnalite du |
| :--- |
| 8 ) | . ${ }^{2}$ ) Sous le point de vue auquel je me suis placé, voici la première proposiion à é établir.

## Simultaneous approximation to a tuple of real numbers

Two generalisations of the problem in higher dimension.
Given real numbers $x_{1}, \ldots, x_{m}$, we may either consider

$$
\max _{1 \leq i \leq m}\left|x_{i}-\frac{p_{i}}{q}\right|,
$$

for $p_{1}, \ldots, p_{m}, q$ in $\mathbb{Z}$ with $q>0$, which is the simultaneous approximation of the tuple $\left(x_{1}, \ldots, x_{m}\right)$ by rational numbers with the same denominator, or else

$$
\left|p_{1} x_{1}+\cdots+p_{m} x_{m}-q\right|
$$

$p_{1}, \ldots, p_{m}, q$ in $\mathbb{Z}$ not all zero.
For power series, the first one corresponds to Pade approximants of type II, the second one corresponds to Padé approximants of type $I$.

## Padé approximants


Charles Hermite (1822-1901)


Henri Padé
(1863-1953)


Kurt Mahler (1903-1988)

1873, Hermite : type II, transcendence of $e$
1893, Hermite : type I, linear forms exponential function
1967, Mahler : application of type I to transcendence.

The algorithm of continued fractions
Let $x \in \mathbb{R}$. Euclidean division of $x$ by 1 :

$$
x=\lfloor x\rfloor+\{x\} \quad \text { with }\lfloor x\rfloor \in \mathbb{Z} \text { and } 0 \leq\{x\}<1 .
$$

If $x$ is not an integer, then $\{x\} \neq 0$. Set $x_{1}=\frac{1}{\{x\}}$, so that

$$
x=\lfloor x\rfloor+\frac{1}{x_{1}} \quad \text { with }\lfloor x\rfloor \in \mathbb{Z} \text { and } x_{1}>1 .
$$

If $x_{1}$ is not an integer, set $x_{2}=\frac{1}{\left\{x_{1}\right\}}$ :

$$
x=\lfloor x\rfloor+\frac{1}{\left\lfloor x_{1}\right\rfloor+\frac{1}{x_{2}}} \quad \text { with } x_{2}>1
$$

Rational approximation to a single number
Continued fractions (Leonhard Euler)
Farey dissection (Sir John Farey)
Dirichlet's Box Principle (Gustav Lejeune - Dirichlet)
Geometry of numbers (Hermann Minkowski)


Euler
(1707-1783)


Farey


Dirichlet
(1805-1859)


Minkowski (1864-1909)

## Continued fraction expansion

Set $a_{0}=\lfloor x\rfloor$ and $a_{i}=\left\lfloor x_{i}\right\rfloor$ for $i \geq 1$.
Then :

$$
x=\lfloor x\rfloor+\frac{1}{\left[x_{1}\right]+\frac{1}{\left\lfloor x_{2}\right\rfloor+\frac{1}{\ddots}}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}
$$

the algorithm stops after finitely many steps if and only if $x$ is rational.
We use the notation

$$
x=\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right]
$$

Remark: if $a_{k} \geq 2$, then
$\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right]=\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}-1,1\right]$

## Continued fractions : the convergents

Given rational integers $a_{0}, a_{1}, \ldots, a_{n}$ with $a_{i} \geq 1$ for $i \geq 1$, the finite continued fraction

$$
\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right]
$$

can be written

$$
\frac{P_{n}\left(a_{0}, a_{1}, \ldots, a_{n}\right)}{Q_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)}
$$

where $P_{n}$ and $Q_{n}$ are polynomials with integer coefficients. We wish to write these polynomials explicitly.



## Continued fractions : the convergents

$$
\begin{gathered}
P_{3}=Z_{0} Z_{1} Z_{2} Z_{3}+Z_{2} Z_{3}+Z_{0} Z_{3}+Z_{0} Z_{1}+1 \\
Q_{3}=Z_{1} Z_{2} Z_{3}+Z_{3}+Z_{1} \\
\frac{P_{3}}{Q_{3}}=Z_{0}+\frac{1}{Z_{1}+\frac{1}{Z_{2}+\frac{1}{Z_{3}}}} \\
P_{2}=Z_{2} P_{1}+P_{0}, \quad Q_{2}=Z_{2} Q_{1}+Q_{0}
\end{gathered}
$$

$$
P_{3}=Z_{3} P_{2}+P_{1}, \quad Q_{3}=Z_{3} Q_{2}+Q_{1}
$$

## Continued fractions : the convergents

Let $\mathbb{F}$ be a field, $Z_{0}, Z_{1}, \ldots$ variables. We will define
polynomials $P_{n}$ and $Q_{n}$ in $\mathbb{F}\left[Z_{0}, \ldots, Z_{n}\right]$ and $\mathbb{F}\left[Z_{1}, \ldots, Z_{n}\right]$
respectively such that

$$
\left[Z_{0}, Z_{1}, \ldots, Z_{n}\right]=\frac{P_{n}}{Q_{n}}
$$

Here are the first values

$$
\begin{gathered}
P_{0}=Z_{0}, \quad Q_{0}=1, \quad \frac{P_{0}}{Q_{0}}=Z_{0} \\
P_{1}=Z_{0} Z_{1}+1, \quad Q_{1}=Z_{1}, \quad \frac{P_{1}}{Q_{1}}=Z_{0}+\frac{1}{Z_{1}} \\
P_{2}=Z_{0} Z_{1} Z_{2}+Z_{2}+Z_{0}, \quad Q_{2}=Z_{1} Z_{2}+1, \quad \frac{P_{2}}{Q_{2}}=Z_{0}+\frac{1}{Z_{1}+\frac{1}{Z_{2}}}
\end{gathered}
$$

## Continued fractions: the convergents

For $n=2$ and $n=3$, we observe that

$$
P_{n}=Z_{n} P_{n-1}+P_{n-2}, \quad Q_{n}=Z_{n} Q_{n-1}+Q_{n-2}
$$

This will be our definition of $P_{n}$ and $Q_{n}$.

In matrix form, it is

$$
\binom{P_{n}}{Q_{n}}=\left(\begin{array}{ll}
P_{n-1} & P_{n-2} \\
Q_{n-1} & Q_{n-2}
\end{array}\right)\binom{Z_{n}}{1} .
$$

Definition of $P_{n}$ and $Q_{n}$

With $2 \times 2$ matrices:

$$
\left(\begin{array}{ll}
P_{n} & P_{n-1} \\
Q_{n} & Q_{n-1}
\end{array}\right)=\left(\begin{array}{ll}
P_{n-1} & P_{n-2} \\
Q_{n-1} & Q_{n-2}
\end{array}\right)\left(\begin{array}{cc}
Z_{n} & 1 \\
1 & 0
\end{array}\right)
$$

Hence :

$$
\left(\begin{array}{cc}
P_{n} & P_{n-1} \\
Q_{n} & Q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
Z_{0} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
Z_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
Z_{n} & 1 \\
1 & 0
\end{array}\right)
$$

Simple continued fraction of a real number

For

$$
x=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]
$$

we have

$$
x=\frac{p_{n}}{q_{n}}
$$

with

$$
p_{n}=P_{n}\left(a_{0}, a_{1}, \ldots, a_{n}\right) \quad \text { and } \quad q_{n}=Q_{n}\left(a_{1}, \ldots, a_{n}\right)
$$

Continued fractions: definition of $P_{n}$ and $Q_{n}$
$\left(\begin{array}{cc}P_{n} & P_{n-1} \\ Q_{n} & Q_{n-1}\end{array}\right)=\left(\begin{array}{cc}Z_{0} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}Z_{1} & 1 \\ 1 & 0\end{array}\right) \cdots\left(\begin{array}{cc}Z_{n} & 1 \\ 1 & 0\end{array}\right) \quad$ for $n \geq-1$.

In particular

$$
\left(\begin{array}{ll}
P_{-1} & P_{-2} \\
Q_{-1} & Q_{-2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

One checks $\left[Z_{0}, Z_{1}, \ldots, Z_{n}\right]=P_{n} / Q_{n}$ for all $n \geq 0$.


Simple continued fraction of a real number For

$$
x=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]
$$

the rational numbers in the sequence

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right] \quad(k=1,2, \ldots)
$$

give rational approximations for $x$ which are the best ones when comparing the quality of the approximation and the size of the denominator.
$a_{0}, a_{1}, a_{2}, \ldots$ are the partial quotients,
$p_{n} / q_{n}(n \geq 0)$ are the convergents.
$x_{n}=\left[a_{n}, a_{n+1}, \ldots\right](n \geq 0)$ are the complete quotients.
Hence

$$
x=\left[a_{0}, a_{1}, \ldots, a_{n-1}, x_{n}\right]=\frac{x_{n} p_{n-1}+p_{n-2}}{x_{n} q_{n-1}+q_{n-2}}
$$

## Connection with the Euclidean algorithm

If $x$ is rational, $x=\frac{p}{q}$, this process is nothing else than Euclidean algorithm of dividing $p$ by $q$ :
$p=a_{0} q+r_{0}, \quad 0 \leq r_{0}<q$.
If $r_{0} \neq 0$,


Euclide : $x_{1}=\frac{q}{r_{0}}>1$.
( $\sim-306, \sim-283)$

$$
q=a_{1} r_{0}+r_{1}, \quad x_{2}=\frac{r_{0}}{r_{1}}
$$

## Convergents are the best rational approximations

Let $p_{n} / q_{n}$ be the $n$-th convergent of the continued fraction expansion of an irrational number $x$.
Theorem. Let $a / b$ be any rational number such that $1 \leq b \leq q_{n}$. Then :

$$
\left|q_{n} x-p_{n}\right| \leq|b x-a|
$$

with equality if and only if $(a, b)=\left(p_{n}, q_{n}\right)$.
Corollary. For $1 \leq b \leq q_{n}$ we have

$$
\left|x-\frac{p_{n}}{q_{n}}\right| \leq\left|x-\frac{a}{b}\right|
$$

with equality if and only if $(a, b)=\left(p_{n}, q_{n}\right)$.

Continued fractions and rational approximation

From

$$
q_{n}=a_{n} q_{n-1}+q_{n-2} \quad \text { and } \quad q_{n} x-p_{n}=\frac{(-1)^{n}}{a_{n+1} q_{n}+q_{n-1}}
$$

one deduces the inequalities

$$
a_{n} q_{n-1} \leq q_{n} \leq\left(a_{n}+1\right) q_{n-1}
$$

and

$$
\frac{1}{\left(a_{n+1}+2\right) q_{n}}<\frac{1}{q_{n+1}+q_{n}}<\left|q_{n} x-p_{n}\right|<\frac{1}{q_{n+1}}<\frac{1}{a_{n+1} q_{n}}
$$

## Power series

Let $\mathbb{F}$ be a field. For $P / Q \in \mathbb{F}(T)$, define

$$
\left|\frac{P}{Q}\right|=e^{\operatorname{deg} P-\operatorname{deg} Q}
$$

with $|0|=0$. The completion of $\mathbb{F}(T)$ for this absolute value is $\mathbb{F}((1 / T))$; for $x \in \mathbb{F}((1 / T))$ with $x \neq 0$ write

$$
x=a_{k_{0}} T^{k_{0}}+a_{k_{0}-1} T^{k_{0}-1}+\cdots=\sum_{k \leq k_{0}} a_{k} T^{k}
$$

with $k_{0} \in \mathbb{Z}, a_{k} \in \mathbb{F}$ for all $k \leq k_{0}$ and $a_{k_{0}} \neq 0$. Then $|x|=e^{k_{0}}$.

Analogy : numbers - series

$$
\begin{array}{ccccc}
\mathbb{Z} & \subset & \mathbb{Q} & \subset & \mathbb{R} \\
\mathfrak{\imath} & & \mathfrak{\imath} & & \uparrow \\
\mathbb{F}[T] & \subset & \mathbb{F}(T) & \subset & \mathbb{F}((1 / T)) \\
\left|\frac{a}{b}\right|= & \max \{|a|,|b|\}, & & \sum_{n \geq-k} a_{n} g^{-n} \\
\left|\frac{P}{Q}\right|=e^{\operatorname{deg} P-\operatorname{deg} Q} & & \sum_{n \geq-k} a_{n} T^{-n}
\end{array}
$$



Rolf Nevanlinna


Paul Vojta


Wolfgang M. Schmidt

There is a formal analogy between Nevanlinna theory and Diophantine approximation. Via Vojta's dictionary, the Second Main Theorem in Nevanlinna theory corresponds to Schmidt's Subspace Theorem in Diophantine approximation.

## Diophantine approximation and continued fractions

```
For \(x=\left[A_{0}, A_{1}, \ldots\right] \in \mathbb{F}((1 / T))\),
    \(P_{n}=P_{n}\left(A_{0}, A_{1}, \ldots, A_{n}\right), \quad Q_{n}=Q_{n}\left(A_{1}, \ldots, A_{n}\right)\),
```

we have

$$
\left|Q_{n}\right|=\left|A_{n}\right| \cdot\left|A_{n-1}\right| \cdots\left|A_{1}\right| \quad(n \geq 1)
$$

and

$$
\left|x-\frac{P_{n}}{Q_{n}}\right|=\frac{1}{\left|Q_{n}\right|\left|Q_{n+1}\right|}=\frac{1}{\left|A_{n+1}\right|\left|Q_{n}\right|^{2}} \quad(n \geq 0)
$$

## Convergents are the best rational approximations

Let $P_{n} / Q_{n}$ be the $n$-th convergent of the continued fraction expansion of $x \in \mathbb{F}\left(\left(T^{-1}\right)\right) \backslash \mathbb{F}(T)$.
Theorem. Let $A / B$ be any element in $\mathbb{F}(T)$ such that $|B| \leq\left|Q_{n}\right|$. Then :

$$
\left|Q_{n} x-P_{n}\right| \leq|B x-A|
$$

with equality if and only if $(A, B)=\left(P_{n}, Q_{n}\right)$.
Corollary. For $|B| \leq\left|Q_{n}\right|$ we have

$$
\left|x-\frac{P_{n}}{Q_{n}}\right| \leq\left|x-\frac{A}{B}\right|
$$

with equality if and only if $(A, B)=\left(P_{n}, Q_{n}\right)$.

## Lagrange Theorem



## Real numbers: The

 continued fraction expansion of a real irrational number $x$ is ultimately periodic if and only if $x$ is quadratic.> | Lagrange |
| :---: |
| $(1736-1813)$ |

Power series: If the continued fraction expansion of an element $x \in \mathbb{F}\left(\left(T^{-1}\right)\right) \backslash \mathbb{F}(T)$ is ultimately periodic, then $x$ is quadratic over $\mathbb{F}(T)$.
The converse is true when the field has nonzero characteristic and is an algebraic extension of its prime field $\mathbb{F}_{p}$, but not otherwise.

## Legendre Theorem



Adrien-Marie Legendre
(1752-1833)

Real numbers: If

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{2 q^{2}}
$$

then $p / q$ is a convergent of $x$.

Power series: If

$$
\left|x-\frac{P}{Q}\right|<\frac{1}{|Q|^{2}}
$$

then $P / Q$ is a convergent of $x$.

## Pseudo-periodic expansion

An element $x \in \mathbb{F}\left(\left(T^{-1}\right)\right) \backslash \mathbb{F}(T)$ has a pseudo periodic expansion

$$
\begin{gathered}
{\left[A_{0}, A_{1}, \ldots, A_{n-1}, B_{1}, \ldots, B_{2 t}, a B_{1}, a^{-1} B_{2}, a B_{3}, \ldots, a^{-1} B_{2 t}\right.} \\
\left.a^{2} B_{1}, a^{-2} B_{2}, \ldots, a^{-2} B_{2 t}, a^{3} B_{1}, a^{-3} B_{2}, \ldots\right]
\end{gathered}
$$

if and only if there exist $R, S, T, U$ in $\mathbb{F}[T]$ with

$$
x=\frac{R x+S}{T x+U}
$$

where $\left(\begin{array}{cc}R & S \\ T & U\end{array}\right)$ has determinant 1 and is not a multiple of the identity matrix.
If $D$ is polynomial which is irreducible over any quadratic extension of $\mathbb{F}$ then the regular continued fraction expansion of $\sqrt{D}$ is not pseudo-periodic.

References on continued fractions of power series
References on continued fractions of power series


Alain Lasjaunias

R A．Lasjaunias
A survey of Diophantine approximation in fields of power series． Monatsh．Math．， 130（3）：211－229， 2000

A．Lasjaunias
A short survey on diophantine approximation in fields of formal numbers．
https：／／www．math．u－bordeaux．fr／～alasjaun／survey．pdf

## Geometry of numbers



Hermann Minkowsk （1864－1909）

## Reference

Eva Bayer－Fluckiger．
Hermann Minkowski，Grand prix de l＇Académie à 18 ans．

Tangente， $\mathrm{n}^{\circ} 111$ ，Juillet－Août 2006.
http：／／alg－geo．epfl．ch／～bayer／files／MINKOWSKI．pdf


Wolfgang M．Schmidt

W．M．Schmidt．
On continued fractions and Diophantine approximation in power series fields．
Acta Arith．，
95（2）：139－166， 2000.

## Minkowski geometry of numbers

## xx．

## Zur Geometrie der Zahlen．

（ual Projehticonsolen onf then Dopellaftu）
 8．144－172）
Im folgeadea mblehto ich versuehen，in kurnen 2 Ag gen sinem Berieht aber ein eigeaartiges，sablreicher Anwesdargen fuhiges Kapitel der Zahlen－ theorie xa gebees，ein Kapitel，von den Charles Hermite einmal als der iatrodaction des warishles continues dans is thforie des nombres ge prochen hat．Einige herrortecheode Probleme darin betrefen die Ab－ elstrang der kleinstea Betrige kontizvierlich verinderticher Ausdrleke fir gasmahlige Werte der Varialle

Die in dieses Gebiet falleslen Tassachen sind momeist einer geo－ metrischen Dasstellang fahig，uod dieser Umatand ist far die is letater
 dus ganse Geblet als die Geomerrie dir Zailm beasichnet habe

H．Minkowski ICM 1904

Parametric geometry of numbers ：references


嗇 W．M．Schmidt．
Open problems in
Diophantine
approximation．
§1：a viewpoint．
Wolfgang M．Schmidt

In Diophantine approximations and transcendental numbers （Luminy，1982），volume 31 of Progr．Math．，pages 271－287． Birkhäuser Boston，Boston，MA， 1983.

Parametric geometry of numbers ：references


Wolfgang M．Schmidt


Leo Summerer

國 W．M．Schmidt and L．Summerer．
Parametric geometry of numbers and applications．
Acta Arith．，140（1）：67－91， 2009.
W．M．Schmidt and L．Summerer．
Diophantine approximation and parametric geometry of numbers．
Monatsh．Math．，169（1）：51－104，2013．

## Parametric geometry of numbers



Aminata Keita

A．Keita
Continued fractions and parametric geometry of numbers．
J．Théor．Nombres
Bordeaux 29 （2017），
129－135．

目 A．Keita．
On a conjecture of Schmidt for the parametric geometry of numbers．
Moscow Journal of Combinatorics and Number Theory 6 （2016），166－176．

## Simultaneous approximation to a tuple of real

 numbersFor $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{R}^{n}$, set

$$
\|\mathbf{u}\|=\max _{1 \leq i \leq n}\left|u_{i}\right| \quad \text { and } \quad \mathbf{x} \cdot \mathbf{u}=x_{1} u_{1}+\cdots+x_{n} u_{n}
$$

Given $\mathbf{u} \in \mathbb{R}^{n}$, we are interested in finding $\mathbf{x} \in \mathbb{Z}^{n}$ where $\|\mathrm{x}\|$ is not too large and $|\mathbf{x} \cdot \mathbf{u}|$ is as small as possible. In case $n=2$, the answer is given by the theory of continued fractions. Say $\mathbf{u}=\left(u_{1}, u_{2}\right)$ with $u_{1} \neq 0$, the best rational approximations are given by the quotients $p_{n} / q_{n}$ associated with the continued fraction of $u_{2} / u_{1}$.

## Successive minima

Let $\mathbf{u} \in \mathbb{R}^{n}$ with $\|\mathbf{u}\|=1$.
Consider the successive minima of $\mathbb{Z}^{n}$ with respect to this body: define $L_{\mathbf{u}, i}(q)$ the logarithm of the $i$-th minimum ; hence $L_{\mathbf{u}, i}(q)$ is the smallest $t \geq 0$ such that the solutions $\mathbf{x} \in \mathbb{Z}^{n}$ of

$$
\|\mathbf{x}\| \leq e^{t},|\mathbf{x} \cdot \mathbf{u}| \leq e^{t-q}
$$

span a subspace of dimension $\geq i$. The combined graph is the map

$$
\begin{array}{rlc}
\mathrm{L}_{\mathbf{u}}:[0, \infty) & \longrightarrow & \mathbb{R}^{n} \\
q & \longmapsto\left(L_{\mathbf{u}, 1}(q), \ldots, L_{\mathbf{u}, n}(q)\right)
\end{array}
$$

## A convex body

For $n \geq 2$, in order to use Minkowski's geometry of numbers, we need a symmetric convex body. The idea behind parametric geometry of numbers (in $\mathbb{R}^{n}$ ) is to introduce a parameter $q \geq 0$ and to consider a family of convex bodies.
For $q>0$, set

$$
\mathcal{C}\left(e^{q}\right)=\left\{\mathbf{x} \in \mathbb{R}^{n}\left|\|\mathbf{x}\| \leq 1,|\mathbf{x} \cdot \mathbf{u}| \leq e^{-q}\right\}\right.
$$

Best approximations : given $q$, find $t$ as small as possible such that there exists $\mathbf{x} \in e^{t} \mathcal{C}\left(e^{q}\right) \backslash\{0\}$. In other words, $e^{t}$ is the first minimum of $\mathbb{Z}^{n}$ with respect to $\mathcal{C}\left(e^{q}\right)$.

## Trajectory of a point

Trajectory of a point $\mathrm{x} \in \mathbb{Z}^{n}$ :

$$
q \longmapsto L_{\mathbf{x}}(q)=\max \{\log |\mathbf{x}|, q+\log |\mathbf{x} \cdot \mathbf{u}|\}
$$

Graph: straight horizontal segment from 0 to $\log |\mathbf{x}|-\log |\mathbf{x} \cdot \mathbf{u}|$ with value $\log |\mathbf{x}|$, next a half line with slope 1 .


## Trajectories in a box

Consider all such trajectories for $\mathrm{x} \in \mathbb{Z}^{n}$ ．

Given a bounded subset of $\mathbb{R}^{2}$ ，only finitely many trajectories intersect it．

The intersection consists of horizontal segments and segments with slope 1.

The combined graph $L_{\mathbf{u}}$ consists to a union of subsets of some of these trajectories．
There are $n$ points above a given $q$ ．

$k=\ell$
$k<\ell$
$k>\ell$.
Not allowed in case $k>\ell$ ：

## $n$－systems（according to D．Roy）

An $n$－system is a map

$$
\begin{array}{rlc}
P:[0, \infty) & \longrightarrow & \mathbb{R}^{n} \\
q & \longmapsto\left(P_{1}(q), \ldots, P_{n}(q)\right)
\end{array}
$$

such that，for each $q \geq 0$ ，
（S1）we have $0 \leq P_{1}(q) \leq \cdots \leq P_{n}(q)$ and $P_{1}(q)+\cdots+P_{n}(q)=q$,
（S2）there exist $\epsilon>0$ and integers $k, \ell \in\{1, \ldots, n\}$ such that

$$
\mathbf{P}(t)= \begin{cases}\mathbf{P}(q)+(t-q) \mathbf{e}_{\ell} & \text { when } \max \{0, q-\epsilon\} \leq t \leq q \\ \mathbf{P}(q)+(t-q) \mathbf{e}_{k} & \text { when } q \leq t \leq q+\epsilon\end{cases}
$$

$$
\text { where } \mathbf{e}_{1}=(1,0, \ldots, 0), \ldots, \mathbf{e}_{n}=(0, \ldots, 0,1)
$$

（S3）if $q>0$ and if the integers $k$ and $\ell$ from（S2）satisfy $k>\ell$ ，then $P_{\ell}(q)=\cdots=P_{k}(q)$ ．

よのल $50 / 64$

## An example of a 3－system

three segments（one horizontal，two with slope 1） three half lines（two horizontal，one with slope 1）


Theorem (D. Roy, 2015) Modulo the additive group of bounded functions, the class of combined graphs $\mathrm{L}_{\mathbf{u}}$ is the same as the class of $n$-systems.

## Power series

$$
\begin{aligned}
K=\mathbb{F}(T), K_{\infty}=\mathbb{F}((1 / T)), \mathbf{u} \in K_{\infty}^{n},\|\mathbf{u}\|=1 \\
\mathcal{C}\left(e^{q}\right)=\left\{\mathbf{x} \in \mathbb{K}_{\infty}^{n}\left|\|\mathbf{x}\| \leq 1,|\mathbf{x} \cdot \mathbf{u}| \leq e^{-q}\right\}\right.
\end{aligned}
$$

Combined graph

$$
\mathrm{L}_{\mathbf{u}}:[0, \infty) \longrightarrow \mathbb{R}^{n}
$$

Main Theorem (with D. Roy) : The set of maps $\mathrm{L}_{\mathbf{u}}$ with $\|\mathbf{u}\|=1$ is the set of $n$-systems.

## Perfect systems

This figure shows the union of the graphs of $P_{1}, \ldots, P_{n}$ over an interval of the form $[m n,(m+1) n]$ with $m \in \mathbb{N}$.


When $q \equiv 0 \bmod n$, such a system necessarily has $P_{1}(q)=\cdots=P_{n}(q)=q / n$.

Example of a perfect system

Suppose that $\mathbb{F}$ has characteristic zero．Let $\omega_{1}, \ldots, \omega_{n}$ be distinct elements of $\mathbb{F}$ ，and let $\mathbf{u}=\left(e^{\omega_{1} / T}, \ldots, e^{\omega_{n} / T}\right)$ ，where

$$
e^{\omega / T}=\sum_{j=0}^{\infty} \frac{\omega^{j}}{j!} T^{-j} \in \mathbb{F}[[1 / T]] \quad(\omega \in \mathbb{F})
$$

Then，we have $\|\mathbf{u}\|=1$ and the combined graph $\mathbf{L}_{\mathbf{u}}$ is a perfect $n$－system．

## Combined graph of a perfect continued fraction

Perfect continued fractions：$\left[a_{0}, a_{1}, \ldots, a_{m}, \ldots\right]$ with $\operatorname{deg} a_{0}=0, \operatorname{deg} a_{i}=1(i \geq 1)$ ．


## Littlewood＇s Conjecture



John Edensor Littlewood
（1885－1977）

Littlewood＇s Conjecture
for any real numbers $\theta$ and $\phi$ ， for any $\epsilon>0$ ，there exists $n \geq 1$ such that

$$
n\|n \theta\|\|n \phi\| \leq \epsilon
$$

Here，$\|\cdot\|$ is the distance to the nearest integer．

Example（Fibonacci－like power series）：
$\theta=[0, T, T, \ldots]=1 /(T+\theta)$ ，root of $\theta^{2}+T \theta-1=0$ ．

Counterexample for power series


Harold Davenport
（1907－1969）


Donald J．Lewis （1926－2015）

H．Davenport－D．Lewis ：there exists $\Theta$ and $\Phi$ in $\mathbb{R}((1 / T))$ such that for any $N \in \mathbb{R}[T]$ ，we have

$$
|N|\|N \Theta\|\|N \Phi\| \geq e^{-2}
$$

Here，$|\cdot|$ is the ultrametric absolute value on $\mathbb{R}((1 / T))$ which is $e^{\operatorname{deg}(\cdot)}$ on $\mathbb{R}[T]$ ，while $\|\cdot\|$ is the distance to the nearest element in $\mathbb{R}[T]$ ．

Consequence of an adelic estimate（with Damien Roy）

Let $a_{1}(T), \ldots, a_{n}(T)$ be nonzero polynomials in $\mathbb{C}[T]$ ．Then， we have

$$
\left|a_{1}(T) e^{\omega_{1} / T}+\cdots+a_{n}(T) e^{\omega_{n} / T}\right| \prod_{i=2}^{n}\left|a_{i}(T)\right| \geq C(n)^{-1}
$$

and

$$
\left|a_{1}(T)\right| \prod_{i=2}^{n}\left|a_{1}(T) e^{\omega_{i} / T}-a_{i}(T) e^{\omega_{1} / T}\right| \geq C(n)^{-(n-1)}
$$

with $C(n)=\exp (n(n-1) / 2)$ ．

## Explicit counterexample



A．Baker：For any $N \in \mathbb{R}[T]$ ，we have
$|N|\left\|N e^{1 / T}\right\|\left\|N e^{2 / T}\right\| \geq e^{-5}$.

More generally，for any nonzero distinct real numbers $\lambda_{1}, \ldots, \lambda_{r}$ ，for any $N \in \mathbb{R}[T]$ ，we have

$$
|N|\left\|N e^{\lambda_{1} / T}\right\| \cdots\left\|N e^{\lambda_{r} / T}\right\| \geq e^{-\left(r^{3}+r\right) / 2} .
$$

Universita degli Studi Roma Tre

The third mini symposium of the
Roman Number Theory Association

Diophantine approximation and power series．

## Michel Waldschmidt

Institut de Mathématiques de Jussieu－Paris VI http：／／webusers．imj－prg．fr／～michel．waldschmidt／

