September 3， 2018 Suda Neu－Tech Institute Sanmenxia，Henan，China The 9th Expert Scientific Research Meeting of the Sanmenxia Suda Energy Conservation \＆New Energy Technology Research Institute

A basic introduction to some tools from complex analysis

Michel Waldschmidt

Sorbonne University－Paris

Institut de Mathématiques de Jussieu http：／／www．imj－prg．fr／～michel．waldschmidt／

Fundación CIDAUT

CIDAUT Foundation is a Spanish non－profit Research and Development Centre for Transport and Energy．One of CIDAUT＇s current lines of work is sustainable mobility， involving the electric vehicle and its infrastructure．

Content

Math and EV
Some notions
From rational numbers to real numbers
Cauchy limits

Math tools

Infinitesimal analysis ：differential and integral calculus
Real analysis：functions，series
From rational numbers to real numbers to complex numbers
Complex analytic functions，Cauchy and Weierstrass
Cauchy－Riemann equations
Differential operators ：Laplacian，divergence，curl
Maxwell equations
Periodic functions，Fourier series
Trigonometric series，Chebyshev polynomials
A digression：Pafnuty Chebyshev
Chebyshev＇s contributions to prime number theory
Chebyshev mechanisms
Orthogonal polynomials

Fundación CIDAUT

E．Cañibano Álvarez，M．I．González Hernández，L．de Prada Martín，J．Romo García，J．Gutiérrez Diez，J．C．Merino Senovilla．
Development of Mathematical Models for an Electric Vehicle With 4 In－Wheel Electric Motors
Chapter 2 of ：Advanced Microsystems for Automotive Applications 2011，Springer Verlag

[^0]
Development of Mathematical Models for an

 Electric Vehicle With 4 In－Wheel Electric Motors
https：／／link．springer．com／chapter／10．1007／978－3－642－21381－6＿2

Advanced Microsystems for Automotive
Applications $2011 \quad$ Math and EV

References

［1］Esmailzadeh，E．，Vossoughi，G．R．and Goodarzi，A．＂Dynamic modelling and analysis of a four motorized wheels electric vehicle＂， Vehicle System Dynamics，Vol．35，No．3，pp．163－194， 2001.
［2］Hori，Y．，＂Future Vehicle Driven by Electricity and Control－Research on Four－Wheel－Motored＇UOT Electric March II＇＂，IEEE Trans．Ind． Electronics，Vol．51，954－962， 2004.
［3］Kiencke U．，Nielsen L．，＂Automotive control systems for engine，
driveline and vehicle＂，Springer－Verlag，2nd Edition，Berlin， 2005.
［4］Rajamani，R．＂Vehicle dynamics and control＂，Springer－Verlag， 2006.
［5］Bosch，R．，＂Safety，comfort and convenience Systems＂，John Wiley \＆ Sons，Plochingen， 2006.
［6］Ehsani M．，Gao Y．，Gay S．E．，Emadi A．，＂Modern Electric，Hybrid Electric，and Fuel Cell Vehicles：Fundamentals，Theory，and Design＂， CRC Press，Boca Raton，FL， 2005.
［7］Larminie J．，Lowry J．，＂Electric Vehicle Technology Explained＂，John Wiley \＆Sons，Ltd．，West Sussex， 2003.
［8］Guillespie T．D．，＂Fundamentals of Vehicle Dynamics＂，Society of Automotive Engineers，Inc．，Warrendale，PA， 1992.
https：／／link．springer．com／chapter／10．1007／978－3－642－21381－6＿2

https://fr.slideshare.net/enrich_ed/maths-in-electric-cars-gillett

Maths in Electric Cars - Gillett

Electric Gars

Electric cars are just normal cars. Except they do not consume fuel. These cars will prevent the cars from producing carbon dioxide. These cars can also be recharged by solar panels, or charging stations is some places.

https://fr.slideshare.net/enrich_ed/maths-in-electric-cars-gillett

Maths in Electric Cars - Gillett

From rational numbers to real numbers

$$
\begin{aligned}
& \mathbb{N}=\{0,1,2,3, \ldots\} \\
& \mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\} \\
& \mathbb{Q}=\{a / b, a \in \mathbb{Z}, b>0\} . \quad a / b=c / d \Leftrightarrow a d=b c .
\end{aligned}
$$

\mathbb{R} : Cauchy limits
Cauchy's criterion for convergence of a sequence $\left(u_{n}\right)_{n \geq 0}$:

$$
\left|u_{n}-u_{m}\right|<\epsilon \quad \text { for } \quad n \geq m \geq N(\epsilon)
$$

Infinite products, integrals

$$
\begin{aligned}
\frac{\pi}{2} & =\prod_{n \geq 1}\left(\frac{4 n^{2}}{4 n^{2}-1}\right)=\frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot 9 \cdots} \\
\pi & =\int_{x^{2}+y^{2} \leq 1} \mathrm{~d} x \mathrm{~d} y \quad=2 \int_{-1}^{1} \sqrt{1-x^{2}} \mathrm{~d} x \\
& =\int_{-1}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}=\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{1+x^{2}} \\
& =\frac{22}{7}-\int_{0}^{1} \frac{x^{4}\left(1-x^{4}\right) \mathrm{d} x}{1+x^{2}}=4 \int_{0}^{1} \frac{\mathrm{~d} x}{1+x^{2}}
\end{aligned}
$$

Convergent sequences, convergent series Some notions

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

$$
e=1+\frac{1}{1}+\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{n!}+\cdots
$$

Another example : continued fraction

$$
(\sqrt{2}-1)(\sqrt{2}+1)=1,
$$

$$
\begin{gathered}
\sqrt{2}=1+\frac{1}{1+\sqrt{2}} \\
\sqrt{2}=1+\frac{1}{2+\frac{1}{1+\sqrt{2}}} \\
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ddots}}}=[1,2,2,2, \ldots]=[1,2] . \\
e=[2,1,2,1,1,4,1,1,6, \ldots]=[2, \overline{1,2 m, 1}]_{m \geq 1} .
\end{gathered}
$$

Infinitesimal analysis
（differential and integral calculus）
Math tools

Isaac Newton （1642－1727）

Gottfried Wilhelm Leibniz （1646－1716）

Gregory series for π

James Gregory （1638－1675）

Math tools

$$
\pi=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

Kerala School of Astronomy and Mathematics

14th－16th Century ：Madhava of Sangamagrama

Madhava （1340－1425）

Parameshvara （1380－1450）

Neelakanta Somayaji （1444－1544）

Jyeshtadeva，Achyuta Pisharati，Melpathur，Achyuta Panikkar Narayana Bhattathiri（1559－1632）．

Kerala School of Mathematics（KSoM）

http：／／www．ksom．res．in／

Continuous fonctions $\mathbb{R} \rightarrow \mathbb{R}$ ．
C^{n} functions $\mathbb{R} \rightarrow \mathbb{R}$（ n－times continuously derivable）
$1 \leq n \leq \infty$

Analytic functions：
$a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots+a_{n}\left(x-x_{0}\right)^{n}+\cdots$
Taylor series ：$a_{n}=(1 / n!) f^{(n)}\left(x_{0}\right)$ ．

There exist C^{∞} functions which are not analytic：for instance $F(x)=e^{-1 / x^{2}}$ with $F(0)=0$ ．

Complex analysis

Math tools
Two points of view ：
－Cauchy，holomorphic functions of a complex variable
－Weierstrass ：analytic functions of a complex variable．
They are the same！

Augustin Cauchy （1789－1857）

Karl Weierstrass
（1815－1897）

Laplacian ：

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

Given a vector field $\vec{F}=\left(F_{x}, F_{y}, F_{z}\right)$ ，
Gradient ：

$$
\nabla=(\partial / \partial x, \partial / \partial y, \partial / \partial z)
$$

Divergence ：

$$
\nabla \cdot \vec{F}=\partial F_{x} / \partial x+\partial F_{y} / \partial y+\partial F_{z} / \partial z
$$

Curl ：

$$
\nabla \wedge \vec{F}=\left(\begin{array}{l}
\partial F_{z} / \partial y-\partial F_{y} / \partial z \\
\partial F_{x} / \partial z-\partial F_{z} / \partial x \\
\partial F_{y} / \partial x-\partial F_{x} / \partial y
\end{array}\right)
$$

Fourier analysis

An entire function $\mathbb{C} \rightarrow \mathbb{C}$ is a sum of a Taylor series $\sum_{n \geq 0} a_{n} z^{n}$ which is convergent for all $z \in \mathbb{C}$ ．
If an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ is periodic of period ω ，namely $f(z+\omega)=f(z)$ ，then there exists an entire function $g: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(z)=g\left(e^{2 i \pi z / \omega}\right)$ ．

Hence f has an expansion as
a Fourier series

$$
f(z)=\sum_{n \geq 0} a_{n} e^{2 i \pi n z / \omega} .
$$

James Maxwell （1831－1879）

One can take other bases than the sequence $e^{2 i \pi n z / \omega}, n \geq 0$ ． This yields to the theory of wavelets．

Yves Meyer Abel Prize 2017

Joseph Fourier
（1768－1830）

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left(A_{n} \cos (n x)+B_{n} \sin (n x)\right) \\
e^{i t}=\cos t+i \sin t \\
e^{i n t}=\cos (n t)+i \sin (n t)=(\cos t+i \sin t)^{n} \\
\cos (n t)=T_{n}(\cos t), \quad \sin (n t)=(\sin t) U_{n-1}(\cos t)
\end{gathered}
$$

$$
T_{n}^{\prime}(t)=n U_{n-1}(t)
$$

Chebyshev polynomials of the first kind

$$
T_{n}\left(\frac{z+z^{-1}}{2}\right)=\frac{z^{n}+z^{-n}}{2}
$$

Proof By analytic continuation, it suffices to check the formula for $|z|=1$.
$z=e^{i t}=\cos t+i \sin t$,
$z^{-1}=e^{-i t}=\cos t-i \sin t$,
$z+z^{-1}=2 \cos t$,
$z^{n}+z^{-n}=2 \cos (n t)=2 T_{n}(\cos t)$.

The map $z \mapsto\left(z+z^{-1}\right) / 2$ is a 2 to 1 map from the circle $|z|=1$ to the real interval $[-1,1]$.

Niels Henrik Abel

$$
(1802-1829)
$$

David Masser
avid Nasser

Torsion points on families of simple abelian surfaces and Pell＇s equation over polynomial rings．

1826，integration in＇finite terms＇of hyperelliptic differentials．

Umberto Zannier

J．Eur．Math．Soc．（JEMS） 17 （2015），no．9，2379－2416．

Explicit formula for Chebyshev polynomials Math tools

$$
2^{-n+1} T_{n}(X)=X^{n}+\sum_{k=1}^{\lfloor n / 2\rfloor}(-1)^{k} \frac{n}{k}\binom{n-k-1}{k-1} X^{n-2 k} .
$$

Raphael M．Robinson 1911－1995

R．M．Robinson，Intervals containing infinitely many sets of conjugate algebraic integers Studies in Mathematical Analysis and related topics Essays in honor of George Pólya，Stanford 1962， 305 － 215.

Quoted by Serre，Bourbaki Seminar（March 2018）．

If n is even，then $T_{n}(X)$ is an even function of X ：
$T_{n}(-X)=T_{n}(X)$ ，
T_{n} is a polynomial in X^{2} ．

If n is odd，then $T_{n}(X)$ is an odd function of X ：
$T_{n}(-X)=-T_{n}(X)$ ，
T_{n} is X times a polynomial in X^{2}
$T_{n}(0)=0$ is n is odd，$T_{n}(0)=(-1)^{n / 2}$ if n is even．
$T_{n}(1)=1, \quad T_{n}(-1)=(-1)^{n}$.

のac
$34 / 70$

Properties of Chebyshev polynomials
Math tools

For $n \geq 1$ ，the leading coefficient of T_{n} is 2^{n-1} ．Hence $2^{-n+1} \bar{T}_{n}(X)$ is a monic polynomial of degree n ．

The roots of $T_{n}(X)$ are

$$
\cos \left(\frac{2 k-1}{2 n} \pi\right), \quad k=1,2, \ldots, n
$$

They all lie in the real interval $[-1,1]$ ．

Extremal values of Chebyshev polynomials on

$[-1,1]$

The roots of $U_{n}(X)$ are

$$
\cos \left(\frac{k}{n+1} \pi\right), \quad k=1,2, \ldots, n
$$

The extremal values of T_{n} on $[-1,1]$ are all equal to ± 1, they are attained at the points $\cos \left(\frac{k}{n} \pi\right), \quad k=0,1,2, \ldots, n$.

Chebyshev differential equations

First kind :

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

Second kind :

$$
\left(1-x^{2}\right) y^{\prime \prime}-3 x y^{\prime}+n(n+2) y=0
$$

(Sturm - Liouville differential equations).
Hypergeometric functions :

$$
T_{n}(x)={ }_{2} F_{1}\left(-n, n ; \frac{1}{2} ; \frac{1}{2}(1-x)\right)
$$

Fundamental property of Chebyshev polynomials

Define $c_{n}=\min _{P}\|P\|$ where $\|P\|=\sup _{-1 \leq x \leq 1}|P(x)|$ and the minimum is over the set of monic polynomials with real coefficients of degree n.
Then

$$
c_{n}=2^{-n+1}
$$

The Chebyshev polynomial T_{n} is the polynomial in $\mathbb{Z}[X]$ of degree n, with the largest possible leading coefficient, among the polynomials $P \in \mathbb{Z}[X]$ of degree n such that

$$
\|P\| \leq 1
$$

Also, $2^{-n+1} T_{n}$ is the monic polynomial in $\mathbb{Q}[X]$ of degree n with the smallest $\|P\|$.

Chebyshev polynomials were first presented in :
Chebyshev, P. L. (1854). "Théorie des mécanismes connus sous le nom de parallélogrammes".
Mémoires des Savants étrangers présentés à l'Académie de Saint-Pétersbourg. 7:539-586.
Oeuvres I, 111-143
https://en.wikipedia.org/wiki/Chebyshev_polynomials

Problème（important pour les constructeurs de locomotives）： comment utiliser certains quadrangles articulés（les mécanismes de Chebyshev）pour transformer aussi bien que possible un mouvement circulaire en un mouvement rectiligne， et inversement？C＇est en essayant d＇optimiser le＂aussi bien que possible＂que Chebyshev a été conduit aux polynômes qui portent son nom，ainsi qu＇à l＇équation
$P(x)^{2}-D(x) Q(x)^{2}=c$ ．Le lecteur curieux trouvera sur internet des reproductions（avec vidéo）de certains de ces mécanismes．
http：／／www．bourbaki．ens．fr／TEXTES／1146．pdf

Pafnouty Lvovich Tchebychev

Math tools

Pafnouty Chebyshev （1821－1894）

[^1]

Jean－Pierre Serre

Jean－Pierre SERRE．
Distribution asymptotique des valeurs propres des endomorphismes de Frobenius ［d＇après Abel，Chebyshev， Robinson，．．．］

Séminaire Bourbaki，Mars 2018，70e année，2017－2018，no 1146.

Bertrand＇s Postulate（1845）：
between n and $2 n$ there is a prime number

Proved by Chebyshev in 1850.

Joseph Bertrand （1822－1900）

The number $\pi(x)$ of primes $\leq x$ satisfies

$$
c_{1} x(\log x)^{-1} \leq \pi(x) \leq c_{2} x(\log x)^{-1}
$$

If $\pi(x)(\log x) / x$ has a limit，then this limit is 1 ．

Chebyshev bias

Denote by $\pi(x ; 4,1)$ the number of prime numbers congruent to 1 modulo 4 and by $\pi(x ; 4,3)$ the number of prime numbers congruent to 3 modulo 4 . Asymptotically, both of them are $\frac{1}{2} x(\log x)^{-1}$. However for $x<26833$ we always have $\pi(x ; 4,1) \geq \pi(x ; 4,3)$ with equality only for $x=5,17,41$ and 461.

Assuming Riemann's hypothesis, the inequality $\pi(x ; q, a)>\pi(x ; q, b)$ occurs more often than the opposite when a is a square modulo q and b is not.

Lettre de M . le Professeur Tchébychev à M . Fuss sur un nouveaux théorème relatif aux nombres premiers contenus dans les formes $4 n+1$ et $4 n+3$, Bull. Classe Phys. Acad. Imp. Sci. St.
Petersburg, 11 (1853), 208.

Images des mathématiques
Chebyshev mechanisms

La tribune des mathématiciens

Etienne Ghys

Les mécanismes de
Tchebychev
un site remarquable
(http ://tcheb.ru)
Le 27 août 2011 - Ecrit par Étienne Ghys

Mechanisms by Chebyshev http://en.tcheb.ru/

Mechanism for transforming rotation into translation motion

Chebyshev mechanisms

http://images.math.cnrs.fr/+Les-mecanismes-de-Tchebychev+ http://fr.etudes.ru/fr/

Mechanism for transforming rotation into translation motion 1

http：／／en．tcheb．ru／10

Mechanism for transforming rotation into
 translation motion 3
 Chebyshev mechanisms

http：／／en．tcheb．ru／10

Mechanism for transforming rotation into translation motion 2

http：／／en．tcheb．ru／10

Connecting rod

Evidence for the connecting rod appears in the late 3rd century Hierapolis sawmill in Roman Asia（modern Turkey）．It also appears in two 6th century Byzantine－era saw mills excavated at Ephesus，Asia Minor（modern Turkey）and Gerasa，Roman Syria．The crank and connecting rod mechanism of these Roman－era watermills converted the rotary motion of the waterwheel into the linear movement of the saw blades． Sometime between 1174 and 1206 in the Artuqid State （Turkey），the Arab inventor and engineer Al－Jazari described a machine which incorporated the connecting rod with a crankshaft to pump water as part of a water－raising machine， though the device was complex．

Connecting rod

In Renaissance Italy，the earliest evidence of a（albeit mechanically misunderstood）compound crank and connecting－rod is found in the sketch books of Taccola．A sound understanding of the motion involved is displayed by the painter Pisanello（d．1455）who showed a piston－pump driven by a water－wheel and operated by two simple cranks and two connecting－rods．
By the 16th century，evidence of cranks and connecting rods in the technological treatises and artwork of Renaissance Europe becomes abundant ；Agostino Ramelli＇s The Diverse and Artifactitious Machines of 1588 alone depicts eighteen examples，a number which rises in the Theatrum Machinarum Novum by Georg Andreas Böckler to 45 different machines．
https：／／en．wikipedia．org／wiki／Connecting＿rod

https：／／en．wikipedia．org／wiki／Connecting＿rod

Steam engines
Steam engines Beam engine，with twin connecting rods （almost vertical）between the horizontal beam and the flywheel cranks
The first steam engines，Newcomen＇s atmospheric engine，was single－acting ：its piston only did work in one direction and so these used a chain rather than a connecting rod．Their output rocked back and forth，rather than rotating continuously． Steam engines after this are usually double－acting ：their internal pressure works on each side of the piston in turn．This requires a seal around the piston rod and so the hinge between the piston and connecting rod is placed outside the cylinder，in a large sliding bearing block called a crosshead．
https：／／en．wikipedia．org／wiki／Connecting＿rod
https：／／commons．wikimedia．org／wiki／File： 4－Stroke－Engine．gif

http://en.tcheb.ru/1

Plantigrade Machine 2

http://en.tcheb.ru/1

Plantigrade Machine 3
http://en.tcheb.ru/1

http://en.tcheb.ru/1

http://en.tcheb.ru/1

A related open problem: Bracing rectangular frameworks

Chebyshev mechanisms

How many non intersecting connected unit rods in the plane are sufficient for making rigid a square?
Is 23 optimal?

Jean-Paul Delahaye, Pour la Science, N ${ }^{\circ}$ 490, Août 2018.

Martin Gardner's Sixth Book of Mathematical Diversions from Scientific American, University of Chicago Press, 1971.

http://en.tcheb.ru/4

Allowing intersections : 19 unit rods are sufficient

Suppose we have a collection of unit rods in the plane that can only be joined at their endpoints. With 3 rods we can make an equilateral triangle. A rigid square can be made using a total of 19 rods.
https://www2.stetson.edu/~efriedma/mathmagic/0100.html

Chebyshev polynomials are orthogonal polynomials

$$
\begin{aligned}
& \frac{1}{\pi} \int_{-1}^{1} T_{n}(x) T_{m}(x) \frac{\mathrm{d} x}{\sqrt{1-x^{2}}}= \begin{cases}0 & \text { if } n \neq m \\
1 & \text { if } n=m \geq 1 \\
\frac{1}{2} & \text { if } n=m=0\end{cases} \\
& \frac{1}{\pi} \int_{-1}^{1} U_{n}(x) U_{m}(x) \sqrt{1-x^{2}} \mathrm{~d} x= \begin{cases}0 & \text { if } n \neq m \\
1 & \text { if } n=m\end{cases}
\end{aligned}
$$

E.T. Whittaker and G.N. Watson :

A course of Modern Analysis
Orthogonal polynomials
p. 224 : Murphy, Camb. Phil.

Soc. Trans. iv (1833) 353-408 and $v(1835) 113-148,315-$ 394.

First systematic study of continuous real orthogonal functions

$$
\int_{a}^{b} P_{m}(x) P_{n}(x) d x=0
$$

for $m \neq n$.
p. 311 Murphy's expression of Legendre polynomials as hypergeometric functions: Murphy, Electricity, 1833.

Orthogonal polynomials

Leopold Gegenbauer (1849-1903)

Adrien-Marie Legendre (1752-1833)

Robert Murphy Orthogonal polynomials
In 1830 Murphy was commissioned to write a book on the mathematical theory of electricity, for the use of students at Cambridge. Elementary Principles of Electricity, Heat, and Molecular Actions, part i. On Electricity (Cambridge) was published in 1833 (Deighton, 145 pages).

Robert Murphy
(1806-1843)

Dickson polynomials
Fibonacci polynomials, Lucas polynomials, Pell polynomials, Pell - Lucas polynomials, Fermat polynomials polynomials,
Fermat - Lucas polynomials, Morgan - Voyce polynomials,
Vieta polynomials, Vieta - Lucas polynomials.
Cyclotomic polynomials.

Cyclotomic Dickson polynomials.
Representation of integers by special families of polynomials.
Diophantine equations.

September 3, 2018 Suda Neu-Tech Institute Sanmenxia, Henan, China, The 9th Expert Scientific Research Meeting of the Sanmenxia Suda
Energy Conservation \& New Energy Technology Research Institute

A basic introduction to some tools from complex analysis

Michel Waldschmidt

Sorbonne University - Paris
Institut de Mathématiques de Jussieu
http://www.imj-prg.fr/~michel.waldschmidt/

[^0]: https：／／link．springer．com／chapter／10．1007／978－3－642－21381－6＿2

[^1]: https：／／en．wikipedia．org／wiki／Pafnuty＿Chebyshev
 https：／／www．britannica．com／biography／Pafnuty－Lvovich－Chebyshev http：／／www－history．mcs．st－andrews．ac．uk／Biographies／Chebyshev．ht

