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Abstract

To decide the arithmetic nature of a constant from analysis is
almost always a di�cult problem. Most often, the answer is
not known. This is indeed the case for Euler’s constant, the
value of which is approximately

0, 577 215 664 901 532 860 606 512 090 082 402 431 042 1 . . .

However we know several properties of this number. We survey
a few of them.
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Archives Euler and index Eneström

http://eulerarchive.maa.org/

Gustaf Eneström (1852–1923)
Die Schriften Euler’s
chronologisch nach den Jahren
geordnet, in denen sie verfasst
worden sind
Jahresbericht der Deutschen
Mathematiker–Vereinigung,
1913.

http://www.math.dartmouth.edu/~euler/index/enestrom.html
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Harmonic numbers
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The online encyclopaedia of integer sequences

https://oeis.org/

Neil J. A. Sloane
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Numerators et denominators

Numerators : https://oeis.org/A001008

1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993,

1171733, 1195757, 2436559, 42142223, 14274301, 275295799,

55835135, 18858053, 19093197, 444316699, 1347822955, . . .

Denominators : https://oeis.org/A002805

1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360,

360360, 360360, 720720, 12252240, 4084080, 77597520,

15519504, 5173168, 5173168, 118982864, 356948592, . . .
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Euler (1731)
De progressionibus harmonicis observationes

The sequence

Hn � log n

has a limit � = 0, 577 218 . . .
when n tends to infinity.

Leonhard Euler
(1707–1783)

Moreover,

� =
1X

m=2

(�1)m
⇣(m)

m
·
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Riemann zeta function

⇣(s)=
X

n�1

1
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=
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p

1

1� p�s

Euler : s 2 R. Riemann : s 2 C.
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Numerical value of the Euler constant

The online encyclopaedia of integer sequences
https://oeis.org/A001620

Decimal expansion of Euler’s constant
(or Euler–Mascheroni constant) gamma.

Yee (2010) computed 29 844 489 545 decimal digits of gamma.

� = 0, 577 215 664 901 532 860 606 512 090 082 402 431 042 . . .
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Nicholas Mercator (1668)

Nicholas Mercator (1620–1687)
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Gerardus Mercator (1512–1594)

Nicholas is not Gerardus, the Mercator of the eponymus
projection :
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Mercator_Gerardus.html
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Computation of his constant by Euler in 1731
Euler replaces x by 1/m with m = 1, 2, 3, 4 . . . in Mercator’s
formula for log(1 + x) :
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Adding the first n terms of this sequence of formulae
(telescoping series), Euler finds

log(n+ 1) = Hn �
1

2
Hn,2 +

1

3
Hn,3 � · · ·
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Euler’s m–harmonic numbers

We have

log(n+ 1) = Hn �
1

2
Hn,2 +

1

3
Hn,3 � · · ·

with

Hn,m =
nX

j=1

1

jm

for n � 1 and m � 1.

Hence, Hn,1 = Hn and, for m � 2,

lim
n!1

Hn,m = ⇣(m).
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Euler’s proof (1731)

In the formula

Hn � log(n+ 1) =
1

2
Hn,2 �

1

3
Hn,3 + · · · ,

when n tends to infinity,
the right hand side tends to

1X

m=2

(�1)m
⇣(m)

m

which is the sum of an alternating series with a decreasing
general term. Hence the left hand side has a limit, which is �.
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Lorenzo Mascheroni (1792)
He produced 32 decimals

� = 0, 577 215 664 901 532 860 618 112 090 082 39

the first 19 of them are
correct ; the first 15 decimal
were already found by Euler in
1755 and then in 1765.

Von Soldner (1809) : 22 decimals

� = 0, 577 215 664 901 532 860 606 5

C.F. Gauss, F.G.B. Nicolai : 40 decimals
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Computation of the decimal of Euler’s constant

1872 : J.W.L. Glaisher 100 decimals

1878 : J.C. Adams 263 decimals

1952 : J.W. Wrench Jr 328 decimals

1962 : D. Knuth 1272 decimals

1963 : D.W. Sweeney 3566 decimals

1964 : W.A. Beyer and M.S. Waterman 7114 decimals
(4879 correct)

1977 : R.P. Brent 20 700 decimals

1980 : R.P. Brent and E.M. McMillan 30 000 decimals

2010 : Yee 29 844 489 545 decimals.
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Euler Gamma function (1765)

De curva hypergeometrica hac aequationes expressa
y = 1 · 2 · 3 · · · x.
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Letter from Daniel Bernoulli to Christian Goldbach
Octobre 6, 1729

http://fr.wikipedia.org/wiki/Fonction_gamma

Daniel Bernoulli
(1700 - 1782)

Christian Goldbach
(1690 - 1764)
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Euler’s formulae (1768)
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Quoting Euler (1768)
“O = 0, 5772156649015325 qui numerus eo maiori attentione
dignus videtur, quod eum, cum olim in hac investigatione
multum studii consumsissem, nullo modo ad cognitum
quantitatum genus reducere valui.”

This number seems also the more noteworthy because
even though I have spent much e↵ort in investigating it,
I have not been able to reduce it to a known kind of
quantity.

“Manet ergo quaestio magni momenti, cujusdam indolis sit
numerus iste O et ad quodnam genus quantitatum sit
referendus.”

Therefore the question remains of great moment, of
what character the number O is and among what
species of quantities it can be classified.
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Jonathan Sondow http://home.earthlink.net/~sondow/
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Jonathan Sondow and Wadim Zudilin

Jonathan Sondow & Wadim Zudilin, Euler’s
constant, q-logarithms, and formulas of Ramanujan and
Gosper, Ramanujan J. 12 (2006), 225–244.
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Irrationality of Euler’s constant

Conjecture. Euler constant is irrational.

If � = p/q, then q > 1015 000.
Continued fraction expansion : 30 000 first terms have been
computed.
http://oeis.org/A002852

� = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, . . . ]
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http://mathworld.wolfram.com/Euler-MascheroniConstant.html

The famous English mathematician G.H. Hardy is
alleged to have o↵ered to give up his Savilian Chair
at Oxford to anyone who proved gamma to be
irrational, although no written reference for this
quote seems to be known. Hilbert mentioned the
irrationality of gamma as an unsolved problem that
seems “unapproachable” and in front of which
mathematicians stand helpless. Conway and Guy
(1996) are “prepared to bet that it is
transcendental,” although they do not expect a proof
to be achieved within their lifetimes.
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Hendrik W. Lenstra (1977)

At least one of the two numbers �, e� is transcendental.

Euclidische getallenlichamen
Ph.D. thesis,
Mathematisch Centrum,
Universiteit van Amsterdam,
1977.

http://www.math.leidenuniv.nl/~hwl/PUBLICATIONS/1977c/art.pdf

Stellingen. Behorende bij het proefschrift van H.W. Lenstra Jr.
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Theorems of Hermite and Lindemann

Charles Hermite (1873) :
transcendence of e.

Ferdinand Lindemann (1882) :
transcendence of ⇡.

Hermite–Lindemann Theorem

For any non–zero complex number z, one at least of the two
numbers z, ez is transcendental.

Corollaries : transcendence of log↵ and of e� for ↵ and �
nonzero algebraic numbers with log↵ 6= 0.
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e
�

http://oeis.org/A073004

e
� = 1, 781 072 417 990 197 985 236 504 103 107 179 549 169 . . .

Conjecture. The number e� is irrational.

If e� = p/q, then q > 1015 000.
Continued fraction expansion of e� : 30 000 first terms
computed.
http://oeis.org/A094644

e
� = [1, 1, 3, 1, 1, 3, 5, 4, 1, 1, 2, 2, 1, 7, 9, 1, 16, 1, 1, 1, 2, 6, 1, . . . ]
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Conjectures on the arithmetic nature of �

Conjecture 1. The Euler constant is irrational.

Conjecture 2. The Euler constant is transcendental.

Conjecture 3. The Euler constant is not a period in the sense
of Kontsevich and Zagier.
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Periods : Maxime Kontsevich and Don Zagier

Periods,
Mathematics
unlimited—2001
and beyond,
Springer 2001,
771–808.

A period is a complex number with real and imaginary parts
given by absolutely convergent integrals of rational fractions
with rational coe�cients on domains of Rn defined by
(in)equalities involving polynomials with rational coe�cients.
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Periods

Benjamin Friedrich
Periods and Algebraic de Rham Cohomology
Diplomarbeit im Studiengang Diplom-Mathematik
Universität Leipzig, Fakultät für Mathematik und Informatik
Mathematisches Institut
http://arxiv.org/abs/math/0506113

Joseph Ayoub
Periods and the Conjectures of Grothendieck and
Kontsevich–Zagier
European Mathematical Society, Newsletter N�91, March
2014, 12–18.
http://www.ems-ph.org/journals/journal.php?jrn=news
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Examples of periods

p
2 =

Z

2x21

dx

and all algebraic numbers are periods.

log 2 =

Z

1<x<2

dx

x

and all logarithms of algebraic numbers are periods.

⇡ =
1

2i

Z

|z|=1

dz

z
= 2

Z 1

0

dt

1 + t2
·

The set of periods is a subalgebra of the field of complex
numbers over the field of algebraic numbers ; it is expected
that it is not a field.
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Euler Gamma and Beta functions

For p/q 2 Q,
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⇣(s) is a period

For s an integer � 2,

⇣(s) =

Z
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Maxime Kontsevich and Francis Brown

Multizeta values MZV
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Numbers which are not periods ?

Problem (Kontsevich – Zagier) : Produce an explicit example
of a number which is not a period.

Several levels :

I analog of Cantor : the set of periods is countable.

I analog of Liouville : find a property which is satisfied by all
periods and construct a number which does not satisfy it.

I analog of Hermite : prove that given constants arising
from analysis are not periods.
Candidates : 1/⇡, e, �, e

�, �(p/q), �(1/2) =
p
⇡, . . .
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Elementary numbers Masahiko Yoshinaga

Analog of Liouville : find a property which is satisfied by all
periods and construct a number which does not satisfy it.

Masahiko Yoshinaga (2008)

I defines the class of elementary functions and the class of
elementary numbers

I proves that any real period is an elementary number

I produces an example of a number which is not an
elementary number (hence is not a period).

http://arxiv.org/abs/0805.0349v1
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Masahiko Yoshinaga

The set of elementary
functions is countable, the
construction of a number
which is not a period rests on
an enumeration of this set.
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Euler constant and arithmetic functions

The function sum of divisors

�(n) =
X

d|n

d.

T.H. Grönwall
(1877- 1932)

T.H. Grönwall (1913)

lim sup
n!1

�(n)

n log log n
= e

�
.
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Guy Robin

Criterion of Guy Robin (1984) : Riemann hypothesis is
equivalent to

�(n) < e
�
n log log n

for all n � 5 041.

Grandes valeurs de la fonction
somme des diviseurs et
hypothèse de Riemann, J.
Math. Pures Appl. 63 (1984),
187–213.
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Je↵rey C. Lagarias (2001)

Riemann hypothesis is
equivalent to

�(n) < Hn + e
Hn logHn

for all n > 1.

http://arxiv.org/pdf/math/0008177v2.pdf
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The function number of divisors

The function number of divisors d(n) is defined for n a
positive integer by

d(n) =
X

d|n

1 = Card{d | d|n, 1  d  n}.

https://oeis.org/A000005

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4,

2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, . . .
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Average value of the function number of divisors

In 1849, Dirichlet gave an
estimate for the average value
of this function

nX

k=1

d(k) = n log n+ (2� � 1)n+O(
p
n).

J.P.G. Lejeune Dirichlet
(1805–1859)

sequence
nX

k=1

d(k), n � 0 : http://oeis.org/A006218

0, 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, 29, 35, 37, 41, 45, 50, . . .
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Dirichlet’s proof (1849)

Denote by bxc the integral part of x :

nX

k=1

d(k) =
nX

k=1

X

d|k

1 =
X

1j,dn
jdn

1 =
nX

j=1

�
n

j

⌫

The right hand side is approximately

nX

j=1

n

j
= nHn = n log n+ �n+O(1).
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Method of the hyperbola (Dirichlet)

The di↵erence between the
sum of the integral parts and
the harmonic sum is the sum
of the fractional parts that
Dirichlet estimates using his
hyperbola method :

nX

j=1

⇢
n

j

�
= (1� �)n+O(

p
n).
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Dirichlet divisor problem
Let ✓ be the infimum of the exponents � for which

nX

k=1

d(k) = n log n+ (2� � 1)n+O(n�).

Dirichlet’s Theorem yields ✓ 
1

2
·

This estimate was improved by Voronoi in 1903 : ✓ 
1

3
,

and van der Corput in 1922 : ✓ 
33

100
·

In 1915, Hardy and Landau proved ✓ �
1

4
·

The exact value of ✓ is not yet known.
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0, 25  ✓  0, 33

Georgy Voronoy
(1868 - 1908)

Johannes van der Corput
(1890 - 1975)

Edmund Landau
(1877 - 1938)

Godfrey Harold Hardy
(1877 - 1947)
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0, 25  ✓  0, 3149

✓ is the infimum of the numbers � for which

nX

k=1

d(k) = n log n+ (2� � 1)n+O(n�).

The best known upper bound
is due to Martin Huxley in
2003 :

✓ 
131

416
⇠ 0, 314 903 8 . . .

One conjectures ✓ =
1

4
·
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Florian Luca and Jorge Jimenez Urroz (2012)

F. Luca, J.J. Urroz & M. Waldschmidt
Gaps in binary expansions of some arithmetic functions, and
the irrationality of the Euler constant,
Journal of Prime Research in Mathematics, GCU, Lahore,
Pakistan, Vol. 8 (2012), 28–35.
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The sequence Tk

For k � 0, set
Tk =

X

n2k

d(n).

Consider the binary expansion

Tk =
vkX

i=0

ai2
i
.

If a`+i = 0 for 0  i  L� 1, we say that the binary
expansion of Tk has a gap of length at least L starting with `.
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Connection with the irrationality of Euler’s
constant

Proposition. Assume that for infinitely many positive k, there
exist ` and L satisfying

2 +
3 log k

log 2
 k � `  L

and that the binary expansion of Tk has a gap of length at
least L starting at `. Then Euler’s constant is irrational.

In other terms, one at least of the following two properties is
true :
(i) the binary expansion of Tk does not have extremely long
gaps ;
(ii) the Euler constant is irrational.
One expects that both properties are true !
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Proof
The relation

nX

j=1

d(j) = n log n+ (2� � 1)n+O(n✓)

for n = 2k and ✓ = 1/2 can be written

Tk = 2kk log 2 + 2k(2� � 1) +O(2k/2).

To say that the binary expansion of Tk has a gap of length at
least L starting at ` means

Tk =
vkX

i=`+L

ai2
i +

`�1X

i=0

ai2
i
.
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Proof (continued)
Setting

b = 1 +
vkX

i=`+L

ai2
i�k

and dividing by 2k yields

|k log 2 + 2� + b| < 2`�k + c2�k/2

with a constant c > 0.
Using the irrationality measure for log 2 :

����log 2�
p

q

���� �
1

q3,58

which is valid for su�ciently large q, we deduce, under the
assumptions of the proposition, that the number � is irrational.
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Irrationality measure for log 2
����log 2�

p

q

���� �
1

q
pour q � q0.

D. Mordukhai-Boltovskoi (1923), K. Mahler (1932),
N.I. Fel’dman (1949 – 1966)
A. Baker (1964) :  = 12, 5
E.A. Rukhadze (1987) :  = 3, 891 399 78 . . .
R. Marcovecchio (2009) :  = 3, 574 553 91 . . .

Method of Rhin–Viola (1996)
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F. Luca, J.J. Urroz, M. Waldschmidt (2012)

More generally, assume that there exist  > 0 and B0 > 0
such that, if b0, b1, b2 are integers with b1 6= 0, we have

|b0 + b1 log 2 + b2�| � B
�

with
B = max{|b0|, |b1|, |b2|, B0}.

Then for su�ciently large k, if ` and L satisfy

2 +
 log k

log 2
 k � `  L,

the binary expansion of Tk does not have a gap of length at
least L starting at `.
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Vincel Hoang Ngoc Minh (2013)

http://hal.archives-ouvertes.fr/hal-00423455

On a conjecture by Pierre
Cartier about a group of
associators.
Acta Math. Vietnam (2013)
38 :339–398.

. . .we give a complete description of the kernel of polyzêta and
draw some consequences about a structure of the algebra of
convergent polyzêtas and about the arithmetical nature of the
Euler constant.
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Irrationality

Lemma. Let � be a real number. Assume that for any
subfield K of R, the number � is either in K, or else is
transcendental over K. Then � is a rational number.

Proof. If the number � is irrational, from the hypothesis it
follows that it is transcendental over Q. In this case � is
algebraic over the field K = Q(�2) and does not belong to K.
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Divergent series

Euler (1760) : On divergent series. Four methods for
evaluating

1� 1 + 2� 6 + 24� 120 + · · ·

=

0!� 1! + 2!� 3! + 4!� 5! + ...

Wallis hypergeometric series
John Wallis
(1616 - 1703)
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Hypergeometric series of Wallis
The divergent power series

0!� 1!x+ 2!x2
� 3!x3 + 4!x4

� 5!x5 + ...

satisfies the linear di↵erential equation

y
0 +

1

x2
y =

1

x
;

a solution which is convergent at x = 1 is given by the integral

e
1
x

Z
x

0

1

t
e
� 1

t dt

which can be expanded into a continued fraction

[1, x, x, 2x, 2x, 3x, 3x, . . . ]

for which Euler gives the value at x = 1

0, 596 347 362 123 7 . . .
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Benjamin Gompertz (1779–1865)

� = �

Z 1

0

e
�t log t dt

� =

Z 1

0

e
�t log(t+ 1) dt

(A.I. Aptekarev)
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The Euler–Gompertz constant

0!� 1! + 2!� 3! + 4!� 5! + · · ·

� =

Z 1

0

dt

1� log t
=

Z 1

0

e
�t log(t+ 1) dt =

0, 596 347 362 323 194 074 341 078 499 369 279 376 074 177 . . .

https://oeis.org/A073003
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Letter of Ramanujan to Hardy (January 16, 1913)

Srinivasa Ramanujan Godfrey Harold Hardy
(1887 – 1920) (1877 – 1947)

1� 2 + 3� 4 + · · · =
1

4
1� 1! + 2!� 3! + · · · = 0, 596 . . .
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G.H. Hardy : Divergent Series (1949)

Niels Henrik Abel
(1802 – 1829)

Divergent series are
the invention of the
devil, and it is
shameful to base on
them any
demonstration
whatsoever.
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Andrei Borisovich Shidlovskii (1959)

One at least of the two numbers �, � is irrational. .
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K. Mahler (1968)

The number

⇡

2

Y0(2)

J0(2)
� �

is transcendental.

The Bessel functions of first and second kind

J0(z) =
1X

n=0

(�1)n

(n!)2

⇣
z

2

⌘2n
,

Y0(z) =
2

⇡

⇣
log
⇣
z

2

⌘
+ �

⌘
J0(z) +

2

⇡

 1X

n=0

(�1)n
Hn

(n!)2

✓
z
2

4

◆n
!
.
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Alexander Ivanovich Aptekarev (2007)

A.I. Aptekarev

Quantitative version of the
irrationality result due to
A.B. Shidlovskii for at least
one of the two numbers �, �.

Construction of (linear recurrent) sequences (un)n�0 , (vn)n�0

and (wn)n�0 of rational integers with upper bounds for

max{|un|, |vn|, |wn|}

and for
max{|wn + un(e� + �)| , |vn + eun|}.
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Tanguy Rivoal (2009)

Approximation of the function � + log x.
Consequence : rational approximations for � and ⇣(2)� �

2.

67 / 85

T. Rivoal, Kh. Pilehrood, T. Pilehrood (2012)

At least one of the two numbers �, � is transcendental.

Tanguy
Rivoal

Khodabakhsh
Hessami Pilehrood

Tatiana
Hessami Pilehrood
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Tanguy Rivoal (2012)

Simultaneous rational approximations for the Euler constant
and for the Euler–Gompertz constant.

����� �
p

q

����+
����� �

r

q

���� >
C(✏)

q3+✏
·

Method of Mahler :
Two of the numbers e, �, � are algebraically independent.
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Peter Bundschuh (1979)

.

For p/q 2 Q \ Z, the number

�0

�

✓
p

q

◆
+ �

is transcendental.
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The harmonic series

1� x
n

1� x
= 1 + x+ x

2 + · · · ,

Z 1

0

x
j
dx =

1

j + 1
,

hence

Hn =
nX

j=1

1

j
=

Z 1

0

1� x
n

1� x
dx.

L. Euler (1729) : for z � 0,

Hz =

Z 1

0

1� x
z

1� x
dx.

H 1
2
= 2� 2 log 2 = 0, 613 705 638 880 . . .
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The harmonic series and the digamma function

The function

Hz =

Z 1

0

1� x
z

1� x
dx

which is defined for z � 0 and satisfies

Hn =
nX

j=1

1

j
for n 2 Z, n � 0

is related with the digamma function

 (z) =
d

dz
log�(z)

by
 (z + 1) = �� +Hz.
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The digamma function

For z 2 C \ {0,�1,�2, . . .},

 (z) =
d

dz
log�(z) =

�0(z)

�(z)
·

 (z) = �� �
1

z
�

1X

n=1

✓
1

n+ z
�

1

n

◆

 (z + 1) = �� +
1X

n=2

(�1)n⇣(n)zn�1
.
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Special values of the digamma function

 (1) = �� = �0, 577 215 . . . ,

 

✓
1

2

◆
= �2 log(2)� � = �1, 963 510 . . . ,

 

✓
1

4

◆
= �

⇡

2
� 3 log(2)� � = �4, 227 453 . . . ,

 

✓
3

4

◆
=
⇡

2
� 3 log(2)� � = �1, 085 860 . . . .

Hence

 (1) +  (1/4)� 3 (1/2) +  (3/4) = 0.
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Ram Murty and N. Saradha (2007)

Conjecture (2007) : Let K be a number field over which the
q-th cyclotomic polynomial is irreducible. Then the '(q)
numbers  (a/q) with 1  a  q and (a, q) = 1 are linearly
independent over K.
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Baker periods, following (Ram Murty and
N. Saradha)

�1 log↵1 + · · ·+ �n log↵n

A Baker period
is an element of the Q–vector
space spanned by the
logarithms of nonzero
algebraic numbers.

A Baker period is a period in the sense of Kontsevich and
Zagier.
According to Baker’s Theorem, such a number is either 0 or
transcendental. 76 / 85



Ram Murty and N. Saradha (2007)

Murty and Saradha : at least one of the following statement is
true :

• The Euler constant � is not a Baker period.

• The '(q) numbers  (a/q) with 1  a  q and (a, q) = 1
are linearly independent over any number field over which the
q–th cyclotomic polynomial is irreducible.
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Transcendental Numbers

Ram Murty and Purusottam Rath, Springer–Verlag, (2014), 217 p.

Let q > 1. For any integer a satisfying gcd(a, q) = 1, the
number

�
�0

�

✓
a

q

◆
+ �

is transcendental (it is a Baker period and > 0)
and at most one of the '(q) numbers

�0

�

✓
a

q

◆

(1  a  q satisfying gcd(a, q) = 1) is algebraic.
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Euler–Lehmer constants

�(h, k) =

lim
x!1

0

@
X

1nx
n⌘h mod k

1

n
�

log x

k

1

A

�(2, 4) =
1

4
� Derrick Henry Lehmer

(1905 - 1991)

At most one of the numbers

�(h, k), 1  h < k, k � 2

is algebraic (Ram Murty and N. Saradha, 2010).
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Euler and the digamma function (1765)

 (n) = �� +Hn�1

for n � 1, with
H0 = H�1 = 0.
For n � 0,

 

✓
n+

1

2

◆
= �� � 2 log 2 + 2H2n�1 �Hn�1.

For |z| < 1,

 (z + 1) = �� +
1X

k=1

(�1)k+1
⇣(k + 1)zk.
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⇣(1) = � ?

We have

�(1 + t) = exp

 
��t+

1X

n=2

(�1)n
⇣(n)

n
t
n

!
.

We can write

�(1 + t) = exp

 1X

n=1

(�1)n
⇣(n)

n
t
n

!
.

provided that we set ⇣(1) = �.
This normalisation is sometimes used in the study of multizeta
values ; another option is to replace ⇣(1) by an unknown in the
formulae involving ⇣(n).
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Thomas Johannes Stieltjes (1885)

The Laurent expansion of the
Riemann zeta function at the
pole s = 1 is

⇣(s) =
1

s� 1
+

1X

n=0

(�1)n

n!
�n(s� 1)n

with �0 = � and, for n � 1,
T. Stieltjes
(1856- 1894)

�n = lim
m!1

 
mX

k=1

(log k)n

k
�

(logm)n+1

n+ 1

!

82 / 85

Exponential periods

Paper by Kontsevich and Zagier :

The last chapter, which is at a more advanced level and also
more speculative than the rest of the text, is by the first
author only.

There have been some recent indications that one
can extend the exponential motivic Galois group still
further, adding as a new the Euler constant �, which
is, incidentally, the constant term of ⇣(s) at s = 1.
Then all classical constants are periods in an
appropriate sense.
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Exponential periods

Lagarias quotes Kontsevich : the Euler constant is an
exponential period :

� =

Z 1

0

Z 1

x

e
�x

y
dydx�

Z 1

1

Z
x

1

e
�x

y
dydx.

Rests on

�� =

Z 1

0

e
�x log xdx.

The Euler–Gompertz constant is an exponential period :

� =

Z 1

0

e
�t

1 + t
dt,

One conjectures that � is not a period.
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Surat University, SVNIT December 1, 2017

Is the Euler constant a rational number,

an algebraic irrational number

or else a transcendental number ?

Michel Waldschmidt

Université Pierre et Marie Curie (Paris 6) France

http://www.math.jussieu.fr/~miw/
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