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Abstract
So far, a rather small number of families of Thue curves having
only trivial integral points have been exhibited. In a joint work
with Claude Levesque, for each number field K of degree at
least three and for each finite set S of places of K containing
the infinite places, we produce families of curves related to the
units of the number field, having only trivial S–integral points.
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Number of solutions of Thue equations

Brindza, B. ; Pintér, Á. ; van der Poorten, A. J. ; W.M. (1997)

Let F ∈ Z[X ,Y ] be an irreducible binary form of degree n ≥ 3
and let m be a positive integer having s distinct prime factors.
Then the equation

|F (x , y)| = m

has at most 2n2(s + 1) + 13n solutions with

max(|x |, |y |) ≥ 21n2M5mθ,

where

θ =
1

n − 2
+

1

(n − 1)2
·



Thue equations

Axel Thue

(1863 - 1922)

Let F ∈ Z[X ,Y ] be a
homogeneous polynomial with
rational integer coefficients
having at least 3 non
proportional linear factors over
the field of algebraic numbers.
Let m ∈ Z, m 6= 0. Then the
Diophantine equation

F (X ,Y ) = m

has only finitely many
solutions (x , y) ∈ Z× Z.



Liouville’s inequality

Liouville’s inequality. Let α
be an algebraic number of
degree d ≥ 2. There exists
c > 0 such that, for any
p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
·

Joseph Liouville, 1844



Thue equations and Diophantine approximation

Liouville’s estimate for the rational Diophantine approximation
of 3
√

2 : ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q.

Mike Bennett (1997) : for any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·
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Mike Bennett

http://www.math.ubc.ca/∼bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·

For any (x , y) ∈ Z2 with
x > 0,

|x3 − 2y 3| ≥
√

x .

http://www.math.ubc.ca/~bennett/


Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ ≤ 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y 3| ≥ c2 x3−κ

for any (x , y) ∈ Z2 having x > 0.



Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d
of q in the denominator of the right hand side was replaced by
κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√

d by C.L. Siegel in 1921,
•
√

2d by F. Dyson and A.O. Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.



Thue–Siegel–Roth Theorem

Axel Thue
(1863 - 1922)

Carl Ludwig Siegel
(1896 - 1981)

Klaus Friedrich
Roth (1925 – )

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n − aY n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a ≥ 386.

M. Bennett (2001) proved that this is true for all a and n with
n ≥ 3 and a ≥ 1.
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Families of Thue equations (continued)
E. Thomas in 1990 studied the families of equations
Fa(X ,Y ) = 1 associated with D. Shanks’ simplest cubic fields
(cf. John Friedlander’s lecture), viz.

Fa(X ,Y ) = X 3 − (a − 1)X 2Y − (a + 2)XY 2 − Y 3.

According to E. Thomas (1990) and M. Mignotte (1993), for
a ≥ 4 the only solutions are (0,−1), (1, 0) and (−1,+1),
while for the cases a = 0, 1, 3, there exist some nontrivial
solutions, too, which are given explicitly by Thomas.

For the same form Fa(X ,Y ), all solutions of the Thue
inequality |Fa(X ,Y )| ≤ 2a + 1 have been found by
M. Mignote A. Pethő and F. Lemmermeyer (1996).

The family of Thue’s equations attached to some quintic fields
by E. Lehmer do not seem to have been investigated from this
point of view so far.
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Families of Thue equations (continued)

E. Lee and M. Mignotte with N. Tzanakis studied in 1991 and
1992 the family of cubic Thue equations

X 3 − aX 2Y − (a + 1)XY 2 − Y 3 = 1.

The left hand side is X (X + Y )(X − (a + 1)Y )− Y 3.

For a ≥ 3.33 · 1023, there are only the solutions (1, 0), (0,−1),
(1,−1), (−a − 1,−1), (1,−a).

In 2000, M. Mignotte could prove the same result for all a ≥ 3.
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Families of Thue equations (continued)

I. Wakabayashi proved in 2003 that for a ≥ 1.35 · 1014, the
equation

X 3 − a2XY 2 + Y 3 = 1

has exactly the five solutions (0, 1), (1, 0), (1, a2), (±a, 1).

A. Togbé considered the family of equations

X 3 − (n3 − 2n2 + 3n − 3)X 2Y − n2XY 2 − Y 3 = ±1

in 2004. For n ≥ 1, the only solutions are (±1, 0) and (0,±1).
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A. Togbé considered the family of equations

X 3 − (n3 − 2n2 + 3n − 3)X 2Y − n2XY 2 − Y 3 = ±1

in 2004. For n ≥ 1, the only solutions are (±1, 0) and (0,±1).



Families of Thue equations (continued)

I. Wakabayashi in 2002 used Padé approximation for solving
the Diophantine inequality

|X 3 + aXY 2 + bY 3| ≤ a + |b|+ 1

for arbitrary b and a ≥ 360b4 as well as for b ∈ {1, 2} and
a ≥ 1.



Families of Thue equations (continued)

E. Thomas considered some families of Diophantine equations

X 3 − bX 2Y + cXY 2 − Y 3 = 1

for restricted values of b and c .

Family of quartic equations :

X 4 − aX 3Y − X 2Y 2 + aXY 3 + Y 4 = ±1

(A. Pethő 1991 , M. Mignotte, A. Pethő and R. Roth, 1996).
The left hand side is X (X − Y )(X + Y )(X − aY ) + Y 4.
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Families of Thue equations (continued)

Further work on equations of degrees up to 8 by J.H. Chen,
I. Gaál, C. Heuberger, B. Jadrijević, G. Lettl, C. Levesque,
M. Mignotte, A. Pethő, R. Roth, R. Tichy, E. Thomas,
A. Togbé, P. Voutier, I. Wakabayashi, P. Yuan, V. Ziegler. . .



Families of Thue equations (continued)

Split families of E. Thomas (1993) :

n∏
i=1

(X − pi(a)Y )− Y n = ±1,

where p1, . . . , pn are polynomials in Z[a].

Surveys by I. Wakabayashi (2002) and C. Heuberger (2005).
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New families of Thue equations

Let K be a number field. For each ε ∈ Z×K , let fε(X ) ∈ Z[X ]
be the irreducible polynomial of ε over Q. Denote by
d = [Q(ε) : Q] its degree.

Set Fε(X ,Y ) = Y d fε(X/Y ). Hence Fε(X ,Y ) ∈ Z[X ,Y ] is an
irreducible binary form with integer coefficients.

A corollary of our main result is the following :

Corollary
Let K be a number field and let m ∈ K , m 6= 0. Then the set{

(x , y , ε) ∈ Z2 × Z×K | xy 6= 0, [Q(ε) : Q] ≥ 3, Fε(x , y) = m
}

is finite.
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Thue–Mahler equations
Let F ∈ Z[X ,Y ] be a homogeneous polynomial with rational
integer coefficients having at least 3 non proportional linear
factors over the field of algebraic numbers. Let m ∈ Z, m 6= 0.

Let p1, . . . , ps be prime
numbers. Then the
Diophantine equation

F (X ,Y ) = mpZ1
1 . . . pZs

s

has only finitely many
solutions
(x , y , z1, . . . , zs) ∈ Z2+s with
zj ≥ 0 for j = 1, . . . , s, xy 6= 0
and gcd(xy , p1 · · · ps) = 1.



S–integers, S–units

Let K be a number field and S be a finite set of places of K
containing the infinite places. The ring OS of S-integers of K
is defined by

OS = {x ∈ K | |x |v ≤ 1 for each v 6∈ S}.

The group O×S of S-units of K is the group of units of OS ,
namely

O×S = {x ∈ K | |x |v = 1 for each v 6∈ S}.



Two special cases

• For S the set of infinite places of K , OS is the ring ZK of
integers of K and O×S is the group Z×K of units of K .

• For K = Q, S = {∞, p1, . . . , ps}, with s ≥ 0

OS = {a/b ∈ Q | b = pz1
1 · · · pzs

s with z1, . . . , zs in Z, zj ≥ 0 }

and
O×S = {pt1

1 · · · pts
s with t1, . . . , ts in Z}.

Hence

OS = {a/b ∈ Q | a ∈ Z, b ∈ Z ∩ O×S }
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Thue–Mahler equations over a number field

We will consider the Thue–Mahler equations

F (X ,Y ) = E ,

where the two unknowns X ,Y take respectively values x , y in
the ring of S–integers of K while the unknown E takes its
values ε in the group of S–units of K .

If (x , y , ε) is a solution, namely

F (x , y) = ε,

and if d denotes the degree of F , then, for all η ∈ O×S , the
triple (ηx , ηy , ηdε) is also a solution :

F (ηx , ηy) = ηdε.
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Equivalence classes

Definition. Two solutions (x , y , ε) and (x ′, y ′, ε′) in O2
S ×O×S

of the equation F (X ,Y ) = E are said to be equivalent modulo
O×S if the points of P1(K ) with projective coordinates (x : y)
and (x ′ : y ′) are the same.

In other terms, two solutions (x , y , ε) and (x ′, y ′, ε′) are
equivalent if there exists η ∈ O×S such that

x ′ = ηx , y ′ = ηy , ε′ = ηdε

where d is the degree of F .
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Thue–Mahler equations (continued)

For any finite set S of places of K containing all the
archimedean places, for every m ∈ K× and for any binary
homogeneous form F (X ,Y ) with the property that the
polynomial F (X , 1) ∈ K [X ] has at least three linear factors
involving three distinct roots in K , the Thue-Mahler equation

F (X ,Y ) = mE

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S

(namely : the set of solutions (x , y , ε) ∈ O2
S ×O×S can be

written as the union of a finite number of equivalence classes
modulo O×S ).
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A “special” case

For any finite set S of places of K containing all the
archimedean places, the Thue-Mahler equation

XY (X − Y ) = E

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S .

Fact : this special case is equivalent to the general case !
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Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Integral points on P1 minus three points

A further equivalent statement is the following one :

For any finite set S of places of K containing all the
archimedean places, every set of S–integral points of P1(K )
minus three points is finite.



Families of Thue–Mahler equations

A more general corollary of our main result is the following :

Corollary
Further, let p1, . . . , ps be finitely many primes. Then the set of
(x , y , z1, . . . , zs , ε) ∈ Z2+s × Z×K with zj ≥ 0 for j = 1, . . . , s,
xy 6= 0 and gcd(xy , p1 · · · ps) = 1 such that [Q(ε) : Q] ≥ 3
and

Fε(x , y) = mpz1
1 · · · pzs

s

is finite.



The general equation
Let K be a number field, S a finite set of places of K
containing the infinite places, µ, α1, α2, α3 nonzero elements
in K . Consider the equation

(X − α1E1Y )(X − α2E2Y )(X − α3E3Y )Z = µE ,

where the variables take for values

(x , y , z , ε1, ε2, ε3, ε) ∈ O3
S × (O×S )4.

Trivial solutions are solutions with xy = 0.
Two nontrivial solutions (x , y , z , ε1, ε2, ε3, ε) and
(x ′, y ′, z ′, ε′1, ε

′
2, ε
′
3, ε
′) are called S3–dependent if there exist

S–units η1, η2 and η3 in O×S such that

x ′ = xη1, y ′ = yη1η
−1
3 , z ′ = zη2, ε

′
i = εiη3, ε

′ = εη31η2.
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The main result

Theorem
The set of classes of S3–dependence of the nontrivial solutions

(x , y , z , ε1, ε2, ε3, ε) ∈ O3
S × (O×S )4

of the equation

(X − α1E1Y )(X − α2E2Y )(X − α3E3Y )Z = µE

satisfying Card{α1ε1, α2ε2, α3ε3} = 3 is finite.

The number of these classes is bounded by an explicit
constant depending only on K , µ, α1, α2, α3 and the rank s of
the group O×S .
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A “special” case
It turns out that the special case of the equation

(X − Y )(X − E1Y )(X − E2Y ) = E

is equivalent to the general case.

Two solutions (x , y , ε1, ε2, ε) and (x ′, y ′, ε′1, ε
′
2, ε
′) in

O2
S × (O×S )3 of this equation are called S–dependent if there

exists η ∈ O×S such that

x ′ = xη, y ′ = yη, ε′1 = ε1, ε
′
2 = ε2, ε

′ = εη3.

Theorem
The number of classes of S–dependence of the solutions
(x , y , ε1, ε2, ε) with ε1 6= 1, ε2 6= 1, ε1 6= ε2 of the equation
(X − Y )(X − E1Y )(X − E2Y ) = E is finite.
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Connection with a result of P. Vojta

Let D be a divisor of Pn with at least n + 2 distinct
components. Then any set of D–integral points on Pn is
degenerate (namely : is contained in a proper Zarisky closed
set).

With n = 4, with projective coordinates (X : Y : Z : E1 : E2)
and with the divisor

Z E1 E2 (X − Y )(XZ − E1Y )(XZ − E2Y ) = 0

on P4, one deduces that the set of solutions of the equation

(X − Y )(X − E1Y )(X − E2Y ) = E

is degenerate.
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Generalized S–unit equation

Let n ≥ 1 be an integer and let S a finite set of places of K
including the archimedean places. Then the equation

E0 + · · ·+ En = 0

has but finitely many classes modulo O×S of solutions
(ε0, . . . , εn) ∈ (O×S )n+1 for which no proper subsum

∑
i∈I εi

vanishes, with I being a subset of {0, . . . , n}, with at least two
elements and at most n.



Integral points on Pn minus n + 2 hyperplanes

Let n ≥ 1 be an integer and let S a finite set of places of K
including the archimedean places. Then for any set of n + 2
distinct hyperplanes H0, . . . ,Hn+1 in Pn(K ), the set of
S–integral points of Pn(K ) \ (H0 ∪ · · · ∪ Hn+1) is contained in
a finite union of hyperplanes of Pn(K ).

Work of P. Vojta.
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Generalized Siegel unit equation

and integral points

The finiteness of non degenerate solutions of the generalized
S–unit equation is equivalent to the statement on integral
points on Pn minus n + 2 hyperplanes, and both statements
depend on Schmidt’s Subspace Theorem.

The statement on the generalized S–unit equation is our main
tool for the proof of our finiteness results on families of
Thue–Mahler Diophantine equations.
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Schmidt’s Subspace Theorem (1970)

For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in
m variables with algebraic
coefficients. Let ε > 0. Then
the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of
finitely many proper
subspaces of Qm.

Wolfgang M. Schmidt



Schmidt’s Subspace Theorem

For x = (x0, . . . , xm−1) ∈ Zm, define |x| = max{|x0|, . . . , |xm−1|}.

W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be m
independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of
Qm.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Roth’s Theorem : for any real algebraic irrational number α, for

any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.
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Schmidt’s subspace Theorem – Several places

Let m ≥ 2 be a positive integer, S a finite set of places of Q
containing the infinite place. For each v ∈ S let
L0,v , . . . , Lm−1,v be m independent linear forms in m variables
with algebraic coefficients in the completion of Q at v . Let
ε > 0. Then the set of x = (x0, . . . , xm−1) ∈ Zm such that∏

v∈S

|L0,v (x) · · · Lm−1,v (x)|v ≤ |x|
−ε

is contained in the union of finitely many proper subspaces of
Qm.



Sketch of proof of the main theorem

Let α1, α2, α3, µ be nonzero elements of the number field K .
Consider a solution (x , y , z , ε1, ε2, ε3, ε) in O3

S × (O×S )4 of the
equation

(X − α1E1Y )(X − α2E2Y )(X − α3E3Y )Z = µE

satisfying xy 6= 0 and Card{α1ε1, α2ε2, α3ε3} = 3 :

(x − α1ε1y)(x − α2ε2y)(x − α3ε3y)z = µε.



Sketch of proof of the main theorem (continued)

Set βj = x − αjεjy ( j = 1, 2, 3), so that β1β2β3z = µε.

À la Siegel, eliminate x and y among the three equations

β1 = x − α1ε1y , β2 = x − α2ε2y , β3 = x − α3ε3y .

We deduce

u12 − u13 + u23 − u21 + u31 − u32 = 0,

where
uij = αiεiβj , (i , j = 1, 2, 3, i 6= j).

This is a generalized S–unit equation with six terms. But
nontrivial subsums may vanish. . .
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Thue’s equations and approximation

Let f ∈ Z[X ] be an irreducible polynomial of degree d and let
F (X ,Y ) = Y d f (X/Y ) be the associated homogeneous binary
form of degree d . Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x , y) ∈ Z2 verifying

F (x , y) = k

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ ≤ κ

qd

is finite.



A variant of Liouville’s inequality

Claude Levesque and M.W.,
Approximation of an algebraic number by products of rational
numbers and units,
Journal of the Australian Mathematical Society, Special Issue
dedicated to Alf van der Poorten, to appear.

Let α ∈ C be an algebraic number of degree d. There exists a
constant c1 such that, for any p/q ∈ Q and for any unit ε of
Q(α) such that εα 6= p/q, we have∣∣∣∣εα− p

q

∣∣∣∣ ≥ c1
qd ε d−1 ·



Quadratic case

Let ε0 be the fundamental unit > 1 of the real quadratic field
Q(α). For any n ≥ 0 with at most one exception, there exists
a constant c2 and infinitely many rational numbers p/q such
that ∣∣∣∣εn0α− p

q

∣∣∣∣ ≤ c2
q2εn0

and infinitely many rational numbers p/q such that∣∣∣∣ε−n0 α− p

q

∣∣∣∣ ≤ c2
q2εn0
·



Refinement in degree ≥ 3

Consequence of the finiteness result of S–integral points on
Thue’s curves :

Let α be an algebraic number of degree d. For any constant
κ > 0, the set of pairs (p/q, ε) ∈ Q× Z×K such that
[Q(εα) : Q] ≥ 3 and∣∣∣∣εα− p

q

∣∣∣∣ ≤ κ

qd ε d−1

is finite.



Corvaja–Zannier

Denote by ‖ · ‖ the distance to the nearest integer : for x ∈ R,

‖x‖ := min
n∈Z
|x − n|.

Let Q denote the field of complex numbers which are algebraic
over Q. Following P. Corvaja and U. Zannier (2004), call a
(complex) algebraic number ξ a pseudo–Pisot number if
(i) |ξ| > 1 and all its conjugates have (complex) absolute
value strictly less than 1 ;
(ii) ξ has integral trace : TrQ(ξ)/Q(ξ) ∈ Z.



Corvaja–Zannier

The main Theorem of Corvaja and Zannier, whose proof also
rests on Schmidt’s Subspace Theorem, can be stated as
follows.

Let Γ ⊂ Q
×

be a finitely generated multiplicative group of

algebraic numbers, let α ∈ Q
×

be a non–zero algebraic
number and let η > 0 be fixed. Then there are only finitely
many pairs (q, ε) ∈ Z× Γ with δ = [Q(ε) : Q] such that
|αqε| > 1, αqε is not a pseudo–Pisot number and

0 < ‖αqε‖ < 1

eηh(ε)qδ+η
·



Effectivity (work in progess)

Explicit upper bounds for the number of solutions or for the
number of classes of solutions are obtained by means of
quantitative versions of the Subspace Theorem of
W.M. Schmidt, but effective bounds for the solutions or for
the heights of the solutions are not available in general.

In a few special cases we are able to produce effective results.
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An effective refinement of Liouville’s estimate

Let K be a number field and let α ∈ K . There exists an
effectively computable constant c3 > 0 such that, for any unit
ε ∈ Z×K and any rational number p/q with εα 6= p/q,∣∣∣∣εα− p

q

∣∣∣∣ ≥ (log( ε + 2)
)−c3 logmax{|p|, q, 2}

.



On the Brahmagupta–Fermat–Pell equations

The equation x2 − dy 2 = ±1, where the unknowns x and y
are positive integers while d is a fixed positive integer which is
not a square, has been mistakenly called with the name of Pell
by Euler. It was investigated by Indian mathematicians since
Brahmagupta (628) who solved the case d = 92, next by
Bhaskara II (1150) for d = 61 and Narayana (during the 14-th
Century) for d = 103.



Brahmagupta (598 – 670)

Brahmasphutasiddhanta : Solve in integers the equation

x2 − 92y 2 = 1

The smallest solution is

x = 1151, y = 120.

Composition method : samasa – Brahmagupta identity

(a2 − db2)(x2 − dy 2) = (ax + dby)2 − d(ay + bx)2.

http://mathworld.wolfram.com/BrahmaguptasProblem.html

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html

http://mathworld.wolfram.com/BrahmaguptasProblem.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Bhaskara II or Bhaskaracharya (1114 - 1185)

Lilavati Ujjain (India)

(Bijaganita, 1150)
x2 − 61y 2 = 1

x = 1 766 319 049, y = 226 153 980.

Cyclic method (Chakravala) : produce a solution to Pell’s
equation x2 − dy 2 = 1 starting from a solution to
a2 − db2 = k with a small k .
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Pell.html
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Narayana Pandit ∼ 1340 – ∼ 1400

x2 − 103y 2 = 1

x = 227 528, y = 22 419.

227 5282 − 103 · 22 4192 = 1.
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References to Indian mathematics

André Weil
Number theory.
An approach through history.
From Hammurapi to
Legendre.
Birkhäuser Boston, Inc.,
Boston, Mass., (1984) 375 pp.
MR 85c:01004



Brahmagupta–Fermat–Pell equations

Connection with
• Continued fractions
• Linear recurrence sequences
(cf. the lecture by Hugh Williams)



Simultaneous Brahmagupta–Fermat–Pell equations

Let a and b be two nonzero distinct rational integers.
M.A. Bennett, M. Cipu, M. Mignotte and R. Okazaki (2006) :
the system of two equations

X 2 − aZ 2 = 1, Y 2 − bZ 2 = 1,

where the unknowns (X ,Y ,Z ) take positive integer values,
has at most two solutions .

An infinite family of couples (a, b) for which this system has
exactly two solutions is known explicitly.
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A result due to M. Bennett

Let a and b be two rational integers which are not square. Let
u and v be nonzero rational integers with av 6= bu.
M. Bennett (1998) : the system of two equations

X 2 − aZ 2 = u, Y 2 − bZ 2 = v ,

where the unknowns (X ,Y ,Z ) take positive integer values has
at most

c 2min{ω(u),ω(v)} log(|u|+ |v |)

solutions, with an absolute positive constant c , where ω(n) is
the number of distinct prime factors of n.



D.W. Masser and J.H. Rickert (1996)

For any N , there exist two rational integers u and v such that
the system of two equations

X 2 − 2Z 2 = u, Y 2 − 3Z 2 = v

has at least N solutions (x , y , z) in positive integers.



Bugeaud–Levesque–W.

Équations de Fermat-Pell-Mahler simultanées,
Publicationes Mathematicae Debrecen, 79 3-4 (2011),
357–366.

Let a and b be two rational integers which are not square and
such that ab is not a square. Let {p1, . . . , ps} be a finite set of
prime numbers. Then the system of two simultaneous
equations : {

X 2 − aZ 2 = ±pm1
1 · · · pms

s ,

Y 2 − bZ 2 = ±pn1
1 · · · pns

s ,

has only finitely many solutions in integers
(x , y , z ,m1, . . . ,ms , n1, . . . , ns), with x , y , z > 0 and
gcd(x , y , z , p1 · · · ps) = 1.



Brahmagupta–Fermat–Pell–Mahler equations

Let b1, b2 be rational integers, a1, a2, c1, c2 be nonzero rational
integers, S = {p1, . . . , ps} a finite set of prime numbers.

Set ∆1 = b2
1 − 4a1c1, ∆2 = b2

2 − 4a2c2 and assume that the
product ∆1∆2 is not a square.

Consider the equation

(a1X 2 + b1XZ + c1Z 2)(a2Y 2 + b2YZ + c2Z 2) = W ,

where the unknowns (X ,Y ,Z ,W ) take their values
(x , y , z ,w) in Z3

S × Z×S with xyz 6= 0.



Equivalence classes

Two solutions (x , y , z ,w) and (x ′, y ′, z ′,w ′) of the equation

(a1X 2 + b1XZ + c1Z 2)(a2Y 2 + b2YZ + c2Z 2) = W ,

are called S–equivalent if there exists a S-unit u such that

x ′ = ux , y ′ = uy , z ′ = uz , w ′ = u4w .



Bugeaud–Levesque–W.

Équations de Fermat-Pell-Mahler simultanées,
Publicationes Mathematicae Debrecen, 79 3-4 (2011),
357–366.

The set of S–equivalence classes of solutions
(x , y , z ,w) ∈ Z3

S × Z×S of the equation

(a1X 2 + b1XZ + c1Z 2)(a2Y 2 + b2YZ + c2Z 2) = W ,

with xyz 6= 0, is finite, and this set has at most κ1 elements,
where

κ1 = 2 + 2962t with t = 4(ω(a1a2p1 · · · ps) + 1).



Consequence

Let p1, . . . , ps be distinct prime numbers. The set of (2s + 3)
tuples of rational integers (x , y , z ,m1, . . . ,ms , n1, . . . , ns), with
x , y , z > 0 and gcd(x , y , z , p1 · · · ps) = 1, satisfying{

a1X 2 + b1XZ + c1Z 2 = ±pm1
1 · · · pms

s ,

a2Y 2 + b2YZ + c2Z 2 = ±pn1
1 · · · pns

s ,

is finite, and this set has at most κ2 elements, where

κ2 = 2 + 23848(ω(a1a2p1···ps)+1).
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