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Gauss fields

A field with finitely many elements is also called a Gauss Field.
For instance, given a prime number p, the quotient Z/pZ is a
Gauss field. Given two fields F' and F’ with p elements, p
prime, there is a unique isomorphism ' — F”. Hence, we
denote by F, the unique field with p elements.

The characteristic of finite field F' is a prime number p, hence,
its prime field is F,,. Moreover, F' is a finite vector space over
F,; if the dimension of this space is s, which means that F' is
a finite extension of F, of degree [F': F,| = s, then F" has p*
elements. Therefore, the number of elements of a finite field is
always a power of a prime number p, and this prime number is
the characteristic of F.

Gauss fields

The multiplicative group F'* of a field with ¢ elements has
order ¢ — 1, hence, 297! =1 for all x in F'*, and 29 = x for
all z in F'. Therefore, F'* is the set of roots of the polynomial
X%t — 1, while F is the set of roots of the polynomial
X71—-X:

1) x7'—1=J](X-2), X' -X=][(X-a).
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Exercise 2.

Prove that if F' is a finite field with ¢ elements, then the
polynomial X? — X + 1 has no root in F'. Deduce that F' is
not algebraically closed.
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Subgroups of the multiplicative group of a field

Proposition 3.

Any finite subgroup of the multiplicative group of a field K is
cyclic. If n is the order of G, then GG is the set of roots of the
polynomial X™ — 1 in K.

Proof.

Let K be a field and G a finite subgroup of K* of order n
and exponent e. By Lagrange's theorem, e divides n. Any z in
G is a root of the polynomial X¢ — 1. Since G has order n, we
get n roots in the field K of this polynomial X¢ — 1 of degree
e < n. Hence e = n. We conclude by using the fact that there
exists in G an element of order e, hence, GG is cyclic and is the
set of roots of the polynomial X — 1 in K.
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Lemma 4 Proof of f € F,|X]| <= f(XY) = f(X)*

Proof of Lemma 5.

According to (1), for a € F', the relation a? = a holds if and
only if a € F,. Since ¢ is a power of the characteristic p of F,
if we write

Lemma 4.
Let K be a field of characteristic p. For x and y in K, we
have (z + y)? = 2P + yP.

F(X) = a0+ @ X + -+ a, X",

Proof. then, by Lemma 4
When p is a prime number and n an integer in the range ‘ _
1 < n < p, the binomial coefficient FX)P =ab +aPXP + - +al X"
Py _ @‘_ and by induction
n n!(p —n)!
N‘@H q @;XA QN‘:@.
is divisible by p. 0 fX) = ag+a X0 4o+ a
Therefore, f(X)? = f(X?) if and only if a! = a; for all
1=0,1,...,n.
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Lemma 5: f € F [X] <= f(X9) = f(X)! Proposition 6
From Lemma 4, we deduce:
We shall use repeatedly the following fact: Proposition 6.
Lemma 5. If F' be a finite field of characteristic p, then
Let ¥, be a finite field with q elements, I an extension of F
and f € F[X] a polynomial with coefficients in F'. Then f Frob,: F' — F
belongs to ¥,[X] if and only if f(X9) = f(X)?. r = af

is an automorphism of F'.
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The Frobenius automorphism Frobenius

Proof of proposition 6. If " has p° elements, then the automorphism Frob, = Frob,

Indeed, this map is a morphism of fields since, by Lemma 4, of F'is the identity.
for x and y in F,

Froby(z +y) = Froby(x) + Frob(y) If F'is a finite field with ¢ elements and K a finite extension

of F, then Frob, is a F'~automorphism of K called the

and
Frob,(zy) = Frob,(z)Frob,(y). Frobenius of K over F'.
It is injective since P = 0 implies z = 0. It is surjective
because it is injective and F is finite. O
Frobenius Frobenius

. . . . Let I be a finite field of characteristic p with ¢ elements.
This automorphism of F' is called the Frobenius of I over F),. According to Proposition 3, the multiplicative group F* of F
It extends to an automorphism of the algebraic closure of F. is cyclic of order ¢ — 1. Let « be a generator of F'*, that
If s is a non—negative integer, we denote by Frobj, or by means an element of order ¢ — 1. For 1 < ¢ < s, we have
Frob,s the iterated automorphism 1<p'—1<p*—1=q—1, hence, a? ' # 1 and

ﬂwOUMAQv # « . Therefore, Frob, has order s in the group of
automorphisms of F'. It follows that the extension F'/F,, is
Galois, with Galois group the cyclic group of order s generated
by Frob,.

Frob,s = Frob,:-1 o Frob, (s >1),

)

Eo_om =1

so that, for x € F,

Frob?(z) = z, Frob,(z) = 2, Froby(z) = a#°, . .. o
roby () = &, Froby(z) = a7, Froby(w) =¥, .., As a consequence, if I is a field with ¢ elements and K a
finite extension of F', then the extension K/F is Galois with
Galois group the cyclic group generated by the Frobenius

Frob, of K over F.

Frob,s(z) = 27" (s > 0).



Galois theory for finite fields
Theorem 7.

Let I be a finite field with ¢

elements and K a finite K
extension of F' of degree s. s/d A |

Then there is a bijection

between the subfields E of K E s
containing F' and the divisors d A ;
d of s. )

o If E is a subfield of K containing I, then the number of
elements in E is of the form q¢ where d divides s.

e Conversely, if d divides s, then K has a unique subfield E
with q* elements, which is the fixed field by Frob,. and this
field £ contains F':

E ={a € K ; Frobyu(a) = a}.

When does X" — 1 divides X™ — 17

Exercise 8.
Let F be a field, m and n two positive integers, a and b two
integers > 2. Prove that the following conditions are
equivalent.

) n divides m.

i) In muﬁ ], the polynomial X™ — 1 divides X™ — 1

i) a™ — 1 divides a™ — 1.

") In Nj ], the polynomial X" — X divides X" — X.
iii”) 62" — b divides b*" — b.
Hint Denote r the remainder of the Euclidean division of m by
n. Prove that o — 1 is the remainder of the Euclidean division
of a™ — 1 by a™ — 1. See also [3], Theorems 19.2, 19.3, 19.4.
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Existence of finite fields with p°® elements

We now prove that for any prime number p and any integer
s > 1, there exists a finite field with p* elements.

Theorem 9.

Let p be a prime number and s a positive integer. Set ¢ = p°.
Then there exists a field with q elements. Two finite fields
with the same number of elements are isomorphic. If Q) is an
algebraically closed field of characteristic p, then () contains
one and only one subfield with q elements.
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Proof of Theorem 9

Proof.

Let F' be a splitting field over F,, of the polynomial X? — X.
Then F'is the set of roots of this polynomial, hence, has ¢
elements.

If F is a field with ¢ elements, then F’ is the set of roots of
the polynomial X9 — X, hence, F” is the splitting field of this
polynomial over its prime field, and, therefore, is isomorphic to
F.

If ©2 is an algebraically closed field of characteristic p, then the
unique subfield of €2 with ¢ elements is the set of roots of the
polynomial X% — X.

L]
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Finite subfields of Ww Remarks

Fix an algebraic closure F, of F,,. For each s > 1, denote by e The additive group (F,+) of a finite field F' with ¢
F,: the unique subfield of Q with p* elements. For n and m elements is cyclic, generated by 1, hence, is
positive integers, we have the following equivalence: isomorphic to Z/qZ.

(10) F,» C Fyn <= n divides m. e The multiplicative group (F*, x) of a finite field F

with ¢ elements is cyclic, hence, is isomorphic to
the additive group Z/(q¢ — 1)Z.

If these conditions are satisfied, then F,m /F,n is cyclic, with

) e A finite field I’ with ¢ elements is isomorphic to the
Galois group of order m/n generated by Frob,».

ring Z/qZ if and only if ¢ is a prime number
(which is equivalent to saying that Z/qZ has no
zero divisor).

Finite subfields of F, (continued) Simplest example of a finite field # F,,

A field F' with 4 elements has two elements besides 0 and 1.
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F': this is nothing else than Frob,. Select
one of these two elements, call it «. Then « is a generator of
the multiplicative group F'*, which means that
F*={1,a,a} and F = {0,1, a, &*}.

Here is the addition table of this field F:

Let F' C F, be a finite field of characteristic p with ¢
elements, and let = be an element in F,. The conjugates of z
over F are the roots in F, of the irreducible polynomial of x
over F', and these are exactly the images of = by the iterated
Frobenius Frobg:, ¢ > 0.

Two fields with p® elements are isomorphic (cf. Theorem 9),

but if s > 2, there is no unicity of such an isomorphic, because (F,+)] 0 I o o
the set of automorphisms of F,s has more than one element 0 0 I a o
(indeed, it has s elements). 1 1 0 o «
« a o> 0 1
a? o> a 1 0




Theorem of the primitive element

Recall (Theorem 7) that any finite extension of a finite field is
Galois. Hence, in a finite field F', any irreducible polynomial is
separable: finite fields are perfect.

Proposition 11.

Let F' be a finite field and K a finite extension of F'. Then
there exist o € K such that K = F(«).

Proof.

Let ¢ = p® be the number of elements in K, where p is the
characteristic of F' and K; the multiplicative group K* is cyclic
(Proposition 3); let « be a generator. Then

K = {o, 1,a,a?,.. ;Qelww =F,(a),

and, therefore, K = F(a).
U
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Exercises

Exercise 12.

Prove the normal basis Theorem: given a finite extension
F) C F, of finite fields, there exists an element 3 in FJ*
such that the conjugates of § over F} form a basis of the
vector space Fy over F.

Prove that, with such a basis, the Frobenius map Frob,,
(where ¢; is the number of elements in F}) becomes a shift
operator on the coordinates.

Exercise 13.
Let F' be a finite field, F an extension of [’ and «, § two
elements in £ which are algebraic over I’ of degree
respectively a and b. Assume a and b are relatively prime.
Prove that

Fla,8) = F(a+ B).
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Fundamental result
One of the main results of the theory of finite fields is the
following :
Theorem 14.
Let F' be a finite field with q elements, o an element in an
algebraic closure of F'. There exist integers { > 1 such that
a? = «. Denote by n the smallest:

n=min{¢ > 1; Frob!(a) = a}.

Then the field F(«) has q* elements, which means that the
degree of o over F' is n, and the minimal polynomial of o over
Fis

(15) mﬁm - Eovmﬁo«vv = :HH AN _ Q&v

Galois theory

Proof of Theorem 14.

Define s = [F(«) : F]. By Theorem 7, the extension F'(«)/F
is Galois with Galois group the cyclic group of order s
generated by Frob,. The conjugates of cover [ are the
elements Eo_oMAQV. 0 <i<s—1. Hence s =n.
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