Gauss fields A field with finitely many elements is also called a Gauss Field.
For instance, given a prime number p, the quotient $\mathbf{Z} / p \mathbf{Z}$ is a Gauss field. Given two fields F and $F^{\prime \prime}$ with p elements, p prime, there is a unique isomorphism $F \rightarrow F$.
denote by \mathbf{F}_{p} the unique field with p elements.
The characteristic of finite field F is a prime number p, hence, its prime field is \mathbf{F}_{p}. Moreover, F is a finite vector space over \mathbf{F}_{p}; if the dimension of this space is s, which means that F is a finite extension of \mathbf{F}_{p} of degree $\left[F: \mathbf{F}_{p}\right]=s$, then F has p^{s} elements. Therefore, the number of elements of a finite field is always a power of a prime number p, and this prime number is the characteristic of F.

- to ms!ydıomozne ue s!

Proposition 6
Proof of $f \in \mathbf{F}_{q}[X] \Longleftrightarrow f\left(X^{q}\right)=f(X)^{q}$
Proof of Lemma 5.
According to (1), for $a \in F$, the relation $a^{q}=a$ holds if and
only if $a \in \mathbf{F}_{q}$. Since q is a power of the characteristic p of F,
if we write

$$
f(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n},
$$

then, by Lemma 4,

$$
f(X)^{p}=a_{0}^{p}+a_{1}^{p} X^{p}+\cdots+a_{n}^{p} X^{n p}
$$

and by induction

$$
f(X)^{q}=a_{0}^{q}+a_{1}^{q} X^{q}+\cdots+a_{n}^{q} X^{n q} .
$$

Therefore, $f(X)^{q}=f\left(X^{q}\right)$ if and only if $a_{i}^{q}=a_{i}$ for all
$i=0,1, \ldots, n$.
This automorphism of F is called the Frobenius of F over \mathbf{F}_{p}.
It extends to an automorphism of the algebraic closure of F.
If s is a non-negative integer, we denote by Frob p_{p}^{s} or by
$\operatorname{Frob}_{p^{s}}$ the iterated automorphism

$$
\operatorname{Frob}_{p}^{0}=1, \quad \operatorname{Frob}_{p^{s}}=\operatorname{Frob}_{p^{s-1}} \circ \operatorname{Frob}_{p} \quad(s \geq 1),
$$

so that, for $x \in F$,
$\operatorname{Frob}_{p}^{0}(x)=x, \operatorname{Frob}_{p}(x)=x^{p}, \operatorname{Frob}_{p^{2}}(x)=x^{p^{2}}, \ldots$,
$\operatorname{Frob}_{p^{s}}(x)=x^{p^{s}} \quad(s \geq 0)$.

As a consequence, if F is a field with q elements and K a by Frob_{p}.

Galois, with Galois group the cyclic group of order s generated $\operatorname{Frob}_{p}^{\ell}(\alpha) \neq \alpha$. Therefore, Frob_{p} has order s in the group of
automorphisms of F. It follows that the extension F / \mathbf{F}_{p} is

 Le

sn!uəqo^」

Frobenius
 n. Prove that $a^{r}-1$ is the remainder of the Euclidean division Hint Denote r the remainder of the Euclidean division of m by (ii') In $F[X]$, the polynomial $X^{a^{n}}-X$ divides $X^{a^{m}}-X$.
(iii') $b^{a^{n}}-b$ divides $b^{a^{m}}-b$. (iii) $a^{n}-1$ divides $a^{m}-1$. (ii) In $F[X]$, the polynomial $X^{n}-1$ divides $X^{m}-1$. equivalent.
(i) n divides integers ≥ 2. Prove that the following conditions are Let F be a field, m and n two positive integers, a and b two Exercise 8.

When does $X^{n}-1$ divides $X^{m}-1$?
$E=\left\{\alpha \in K ; \operatorname{Frob}_{q^{d}}(\alpha)=\alpha\right\}$. - Conversely, if d divides s, then K has a unique subfield E
with q^{d} elements, which is the fixed field by Frob $p_{p^{d}}$ and this
field E contains F : - If E is a subfield of K containing F, then the number of
elements in E is of the form q^{d} where d divides s. containing F and the divisors
d of s. between the subfields E of K extension of F of degree s.
Then there is a bijection
 Theorem 7.

Galois theory for finite fields

0	I	\bigcirc	$z^{\text {b }}$	$z^{\text {D }}$
I	0	$z^{\text {D }}$	0	0
\bigcirc	$z^{\text {b }}$	0	I	I
$z^{\text {P }}$	0	I	0	0
$z^{\text {D }}$	0	I	0	$(+' H)$

> (indeed, it has s elements). the set of automorphisms of $\mathbf{F}_{p^{s}}$ has more than one element but if $s \geq 2$, there is no unicity of such an isomorphic, because Two fields with p^{s} elements are isomorphic (cf. Theorem 9), Frobenius $\operatorname{Frob}_{q^{i}}, i \geq 0$. over F, and these are exactly the images of x by the iterated over F are the roots in $\overline{\mathbf{F}}_{p}$ of the irreducible polynomial of x elements, and let x be an element in $\overline{\mathbf{F}}_{p}$. The conjugates of x Let $F \subset \overline{\mathbf{F}}_{p}$ be a finite field of characteristic p with q

Finite subfields of $\overline{\mathbf{F}}_{p}$ (continued) Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorpism of F : this is nothing else than Frob 2 . Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F : this is nothing else than Frob ${ }_{2}$. Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F : this is nothing else than Frob ${ }_{2}$. Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F : this is nothing else than Frob ${ }_{2}$. Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F : this is nothing else than Frob ${ }_{2}$. Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F : this is nothing else than Frob ${ }_{2}$. Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Simplest example of a finite field $\neq \mathbf{F}_{p}$
A field F with 4 elements has two elements besides 0 and 1 .
These two elements play exactly the same role: the map which
permutes them and sends 0 to 0 and 1 to 1 is an
automorphism of F : this is nothing else than Frob ${ }_{2}$. Select
one of these two elements, call it α. Then α is a generator of
the multiplicative group F^{\times}, which means that Here is the addition table of this field F : zero divisor). (which is equivalent to saying that $\mathbf{Z} / q \mathbf{Z}$ has no
zero divisor). (which is equivalent to saying that $\mathbf{Z} / q \mathbf{Z}$ has no $\operatorname{ring} \mathbf{Z} / q \mathbf{Z}$ if and only if q is a prime number

- A finite field F with q elements is isomorphic to the

$$
\begin{aligned}
& \text { the additive group } \mathbf{Z} /(q-1) \mathbf{Z} \text {. } \\
& \text { о7 כ!̣ч } \\
& \text { - }
\end{aligned}
$$ elements is cyclic, generated by 1 , hence, is

isomorphic to $\mathbf{Z} / q \mathbf{Z}$.

 positive integers, we have the following equivalence $\mathbf{F}_{p^{s}}$ the unique subfield of Ω with p^{s} elements. For n and m Fix an algebraic closure $\overline{\mathbf{F}}_{p}$ of \mathbf{F}_{p}. For each $s \geq 1$, denote by -
,
Finite subfields of $\overline{\mathbf{F}}_{p}$

Theorem of the primitive element
Recall (Theorem 7) that any finite extension of a finite field is
Galois. Hence, in a finite field F, any irreducible polynomial is
separable: finite fields are perfect.
Proposition 11 .
Let F be a finite field and K a finite extension of F. Then
there exist $\alpha \in K$ such that $K=F(\alpha)$.
Proof.
Let $q=p^{s}$ be the number of elements in K, where p is the
characteristic of F and K; the multiplicative group K^{\times}is cyclic
(Proposition 3); let α be a generator. Then

$$
K=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}\right\}=\mathbf{F}_{p}(\alpha),
$$

and, therefore, $K=F(\alpha)$.
Theorem of the primitive element

