School of Science, Kathmandu University, Dhulikhel, Nepal in Cryptography and Its Applications **CIMPA School of Number Theory** July 19th - July 31th, 2010

Finite fields

Michel Waldschmidt Course 3: July 23, 2010

These notes are extracted from the full text, the pdf of which http://www.math.jussieu.fr/~miw/ is available from the web site

</ 1/88

Gauss fields

prime, there is a unique isomorphism $F \to F^\prime.$ Hence, we denote by \mathbf{F}_p the unique field with p elements Gauss field. Given two fields ${\cal F}$ and ${\cal F}'$ with p elements, pFor instance, given a prime number p, the quotient $\mathbf{Z}/p\mathbf{Z}$ is a A field with finitely many elements is also called a Gauss Field

the characteristic of F. always a power of a prime number p, and this prime number is elements. Therefore, the number of elements of a finite field is a finite extension of \mathbf{F}_p of degree $[F:\mathbf{F}_p]=s,$ then F has p^s \mathbf{F}_p ; if the dimension of this space is s, which means that F is its prime field is \mathbf{F}_p . Moreover, F is a finite vector space over The characteristic of finite field F is a prime number p, hence

Gauss fields

all x in F. Therefore, F^{\times} is the set of roots of the polynomial order q-1, hence, $x^{q-1} = 1$ for all x in F^{\times} , and $x^q = x$ for $X^q - X$: $X^{q-1} - 1$, while F is the set of roots of the polynomial The multiplicative group F^{\times} of a field with q elements has

)
$$X^{q-1} - 1 = \prod_{x \in F^{\times}} (X - x), \qquad X^q - X = \prod_{x \in F} (X - x)$$

 $\widehat{1}$

Exercise 2.

not algebraically closed. polynomial $X^q - X + 1$ has no root in F. Deduce that F is Prove that if F is a finite field with q elements, then the

Subgroups of the multiplicative group of a field

Proposition 3.

polynomial $X^n - 1$ in K. cyclic. If n is the order of G, then G is the set of roots of the Any finite subgroup of the multiplicative group of a field K is

Proof

exists in G an element of order e, hence, G is cyclic and is the set of roots of the polynomial $X^n - 1$ in K. $e \leq n$. Hence e = n. We conclude by using the fact that there get n roots in the field K of this polynomial $X^e - 1$ of degree G is a root of the polynomial $X^e - 1$. Since G has order n, we and exponent e. By Lagrange's theorem, e divides n. Any x in Let K be a field and G a finite subgroup of K^{\times} of order n

Lemma 4

Lemma 4.

have $(x + y)^p = x^p + y^p$. Let K be a field of characteristic p. For x and y in K, we

Proof.

 $1 \leq n < p$, the binomial coefficient When p is a prime number and n an integer in the range

$$\frac{\mathbf{i}(u-d)\mathbf{j}(u-d)}{\mathbf{j}(d)} = \begin{pmatrix} u \\ d \end{pmatrix}$$

is divisible by p.

цц 5/88 5/88

~.

Lemma 5: $f \in \mathbf{F}_q[X] \iff f(X^q) = f(X)^q$

We shall use repeatedly the following fact:

Lemma 5.

and $f \in F[X]$ a polynomial with coefficients in F. Then f belongs to $\mathbf{F}_q[X]$ if and only if $f(X^q) = f(X)^q$. Let \mathbf{F}_q be a finite field with q elements, F an extension of \mathbf{F}_q

Proof of $f \in \mathbf{F}_q[X] \Longleftrightarrow f(X^q) = f(X)^q$

only if $a \in \mathbf{F}_q$. Since q is a power of the characteristic p of F, if we write According to (1), for $a \in F$, the relation $a^q = a$ holds if and Proof of Lemma 5.

$$f(X) = a_0 + a_1 X + \dots + a_n X^n,$$

then, by Lemma 4,

$$f(X)^p = a_0^p + a_1^p X^p + \dots + a_n^p X^{np}$$

and by induction

$$(X)^q = a_0^q + a_1^q X^q + \dots + a_n^q X^{nq}.$$

Therefore,
$$f(X)^q = f(X^q)$$
 if and only if $a_i^q = a_i$ for all $= 0, 1, \ldots, n$.

7/88

Proposition 6

Proposition 6. From Lemma 4, we deduce:

If F be a finite field of characteristic p, then

 $\operatorname{Frob}_p: F \to$ F

 $x \rightarrow x$

 x^p

is an automorphism of F.

ılııl 88/8 2 2 6

The Frobenius automorphism

Proof of proposition 6

Indeed, this map is a morphism of fields since, by Lemma 4, for x and y in F,

$$\operatorname{Frob}_p(x+y) = \operatorname{Frob}_p(x) + \operatorname{Frob}_p(y)$$

and

$$\operatorname{Frob}_p(xy) = \operatorname{Frob}_p(x)\operatorname{Frob}_p(y).$$

It is injective since $x^p = 0$ implies x = 0. It is surjective because it is injective and F is finite.

lul

11/88

Frobenius

This automorphism of F is called the *Frobenius* of F over \mathbf{F}_p . It extends to an automorphism of the algebraic closure of F. If s is a non-negative integer, we denote by Frob_p^s or by $\operatorname{Frob}_{p^s}$ the iterated automorphism

$$\operatorname{Frob}_p^0 = 1, \quad \operatorname{Frob}_{p^s} = \operatorname{Frob}_{p^{s-1}} \circ \operatorname{Frob}_p \qquad (s \ge 1)$$

so that, for $x \in F$,

$$\operatorname{Frob}_p^0(x) = x$$
, $\operatorname{Frob}_p(x) = x^p$, $\operatorname{Frob}_{p^2}(x) = x^{p^2}, \dots,$
 $\operatorname{Frob}_{p^s}(x) = x^{p^s} \quad (s \ge 0).$

Frobenius

If F has p^s elements, then the automorphism $\operatorname{Frob}_p^s = \operatorname{Frob}_{p^s}$ of F is the identity.

If F is a finite field with q elements and K a finite extension of F, then Frob_q is a F-automorphism of K called the *Frobenius of* K over F.

Frobenius

Let F be a finite field of characteristic p with q elements. According to Proposition 3, the multiplicative group F^{\times} of F is cyclic of order q-1. Let α be a generator of F^{\times} , that means an element of order q-1. For $1 \leq \ell < s$, we have $1 \leq p^{\ell} - 1 < p^s - 1 = q - 1$, hence, $\alpha^{p^{\ell-1}} \neq 1$ and $\operatorname{Frob}_p^{\ell}(\alpha) \neq \alpha$. Therefore, Frob_p has order s in the group of automorphisms of F. It follows that the extension F/\mathbf{F}_p is Galois, with Galois group the cyclic group of order s generated by Frob_p .

As a consequence, if F is a field with q elements and K a finite extension of F, then the extension K/F is Galois with Galois group the cyclic group generated by the Frobenius Frob_q of K over F.

Galois theory for finite fields

Theorem 7.

Let F be a finite field with qelements and K a finite extension of F of degree s. Then there is a bijection between the subfields E of Kcontaining F and the divisors d of s. If E is a subfield of K containing F, then the number o.

 If E is a subfield of K containing F, then the number of elements in E is of the form q^d where d divides s.
Conversely, if d divides s, then K has a unique subfield E

• Conversely, if d divides s, then K has a unique subfield E with q^d elements, which is the fixed field by $\operatorname{Frob}_{p^d}$ and this field E contains F:

$$E = \{ \alpha \in K ; \operatorname{Frob}_{q^d}(\alpha) = \alpha \} \text{ for a for a formation } f \in \{\alpha, \beta\}$$

When does $X^n - 1$ divides $X^m - 1$?

Exercise 8.

Let F be a field, m and n two positive integers, a and b two integers ≥ 2 . Prove that the following conditions are equivalent. (i) n divides m. (ii) In F[X], the polynomial $X^n - 1$ divides $X^m - 1$. (iii) $a^n - 1$ divides $a^m - 1$. (iii) In F[X], the polynomial $X^{a^n} - X$ divides $X^{a^m} - X$. (iii) $b^{a^n} - b$ divides $b^{a^m} - b$. Hint Denote r the remainder of the Euclidean division n. Prove that $a^r - 1$ is the remainder of the Euclidean division of $a^m - 1$ by $a^n - 1$. See also [3], Theorems 19.2, 19.3, 19.4.

Existence of finite fields with p^s elements

We now prove that for any prime number p and any integer $s\geq 1,$ there exists a finite field with p^s elements.

Theorem 9.

Let p be a prime number and s a positive integer. Set $q = p^s$. Then there exists a field with q elements. Two finite fields with the same number of elements are isomorphic. If Ω is an algebraically closed field of characteristic p, then Ω contains one and only one subfield with q elements.

▲□▼▲□▼▲□▼▲□▼ 15/88

Proof of Theorem 9

Proof.

Let F be a splitting field over \mathbf{F}_p of the polynomial $X^q - X$. Then F is the set of roots of this polynomial, hence, has q elements.

If F' is a field with q elements, then F' is the set of roots of the polynomial $X^q - X$, hence, F' is the splitting field of this polynomial over its prime field, and, therefore, is isomorphic to F.

If Ω is an algebraically closed field of characteristic p, then the unique subfield of Ω with q elements is the set of roots of the polynomial $X^q - X$.

Finite subfields of $\overline{\mathbf{F}}_p$

Fix an algebraic closure $\overline{\mathbf{F}}_p$ of \mathbf{F}_p . For each $s \ge 1$, denote by \mathbf{F}_{p^s} the unique subfield of Ω with p^s elements. For n and m positive integers, we have the following equivalence:

(10)
$$\mathbf{F}_{p^n} \subset \mathbf{F}_{p^m} \iff n \text{ divides } m.$$

If these conditions are satisfied, then ${\bf F}_{p^m}/{\bf F}_{p^n}$ is cyclic, with Galois group of order m/n generated by ${\rm Frob}_{p^n}.$

Finite subfields of $\overline{\mathbf{F}}_p$ (continued)

Let $F \subset \mathbf{F}_p$ be a finite field of characteristic p with qelements, and let x be an element in $\overline{\mathbf{F}}_p$. The conjugates of xover F are the roots in $\overline{\mathbf{F}}_p$ of the irreducible polynomial of xover F, and these are exactly the images of x by the iterated Frobenius $\operatorname{Frob}_{q^i}$, $i \geq 0$.

Two fields with p^s elements are isomorphic (cf. Theorem 9), but if $s \ge 2$, there is no unicity of such an isomorphic, because the set of automorphisms of \mathbf{F}_{p^s} has more than one element (indeed, it has s elements).

Remarks

- The additive group (F, +) of a finite field F with q elements is cyclic, generated by 1, hence, is isomorphic to $\mathbf{Z}/q\mathbf{Z}$.
- The multiplicative group (F^{\times}, \times) of a finite field F with q elements is cyclic, hence, is isomorphic to the additive group $\mathbf{Z}/(q-1)\mathbf{Z}$.
- A finite field F with q elements is isomorphic to the ring $\mathbf{Z}/q\mathbf{Z}$ if and only if q is a prime number (which is equivalent to saying that $\mathbf{Z}/q\mathbf{Z}$ has no zero divisor).

▲□▲▲@▲▲트▲▲트▲ 19/88

Simplest example of a finite field $\neq \mathbf{F}_p$

A field F with 4 elements has two elements besides 0 and 1. These two elements play exactly the same role: the map which permutes them and sends 0 to 0 and 1 to 1 is an automorphism of F: this is nothing else than Frob_2 . Select one of these two elements, call it α . Then α is a generator of the multiplicative group F^{\times} , which means that $F^{\times} = \{1, \alpha, \alpha^2\}$ and $F = \{0, 1, \alpha, \alpha^2\}$. Here is the addition table of this field F:

$$\begin{array}{c|ccccc} (F,+) & 0 & 1 & \alpha & \alpha^2 \\ \hline 0 & 0 & 1 & \alpha & \alpha^2 \\ 1 & 1 & 0 & \alpha^2 & \alpha \\ \alpha & \alpha & \alpha^2 & 0 & 1 \\ \alpha^2 & \alpha^2 & \alpha & 1 & 0 \\ \end{array}$$

Theorem of the primitive element

Recall (Theorem 7) that any finite extension of a finite field is Galois. Hence, in a finite field F, any irreducible polynomial is separable: *finite fields are perfect*.

Proposition 11.

Let F be a finite field and K a finite extension of F. Then there exist $\alpha \in K$ such that $K = F(\alpha)$.

Proof.

Let $q = p^s$ be the number of elements in K, where p is the characteristic of F and K; the multiplicative group K^{\times} is cyclic (Proposition 3); let α be a generator. Then

$$K = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{q-2}\} = \mathbf{F}_p(\alpha)$$

and, therefore, $K = F(\alpha)$.

Exercises

Exercise 12.

Prove the normal basis Theorem: given a finite extension $F_1 \subset F_2$ of finite fields, there exists an element β in F_2^{\times} such that the conjugates of β over F_1 form a basis of the vector space F_2 over F_1 . Prove that, with such a basis, the Frobenius map $\operatorname{Frob}_{q_1}$ (where q_1 is the number of elements in F_1) becomes a shift operator on the coordinates.

Exercise 13.

Let F be a finite field, E an extension of F and α , β two elements in E which are algebraic over F of degree respectively a and b. Assume a and b are relatively prime. Prove that

$$F(\alpha,\beta) = F(\alpha+\beta).$$

ji ji

22/88

Fundamental result

One of the main results of the theory of finite fields is the following :

Theorem 14.

Let F be a finite field with q elements, α an element in an algebraic closure of F. There exist integers $\ell \geq 1$ such that $\alpha^{q^{\ell}} = \alpha$. Denote by n the smallest:

$$= \min\{\ell \ge 1 ; \operatorname{Frob}_{a}^{\ell}(\alpha) = \alpha\}.$$

ສ

Then the field $F(\alpha)$ has q^n elements, which means that the degree of α over F is n, and the minimal polynomial of α over F is

(15)
$$\prod_{\ell=0}^{n-1} \left(X - \operatorname{Frob}_q^{\ell}(\alpha) \right) = \prod_{\ell=0}^{n-1} \left(X - \alpha^{q^{\ell}} \right).$$

Galois theory

Proof of Theorem 14.

Define $s = [F(\alpha) : F]$. By Theorem 7, the extension $F(\alpha)/F$ is Galois with Galois group the cyclic group of order sgenerated by Frob_q . The conjugates of α over F are the elements $\operatorname{Frob}_q^i(\alpha)$, $0 \le i \le s - 1$. Hence s = n.