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What | told you on Friday

Examples of finite fields are the fields F,, = Z/pZ with p
elements.

The ring Z /nZ has characteristic n: that means that adding 1
less than n times produces a non—zero element of the ring, but
adding it n times produces 0:

1+14-+1=0.

On the other hand, the characteristic of a field is a prime
number. Hence Z/nZ is a field if and only if n is a prime
number.

Also if n is composite, say n = ab with a > 1 and b > 1, then
the class of a is a zero divisor in Z/nZ, hence this ring is not
a field.
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What | told you on Friday (continued)

If F'is a field with ¢ elements, then the characteristic of F'is a
prime number p, which means that /' contains F,, and the
number of elements of F'is a power of p, say p®. This number
s is the degree of the F,— vector space I

Conversely, for any prime number p and any positive integer s,
there exists a field F' with p*® elements. To construct such a
field, we start with an irreducible polynomial f € F,[X] of
degree s (there is at least one), one considers the ideal (f) in
F,[X] generated by f. The field " we are looking for can be
viewed as F,[X]/(f). If a denotes the class of X modulo f,
then F' =F,(a) = F,[a].

For instance the field with 4 elements can be written as

F,={0, 1, o, wa

with a? = o + 1.
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What | told you on Friday (continued)

Given a finite field F';, with ¢ elements and an element a which
is algebraic over F, of degree n, the irreducible polynomial of
a over F splits completely in the field F,(«) into

(X —a)(X —a®) - (X —a?" ).

Hence n is the smallest integer such that a?" = a.
For i > 0 we write Frob i (a) = o

Now the goal is to find the irreducible polynomials over F,,.
We shall see that they are the irreducible factors of X™ — X,
where m a power of ¢q. This is a reason to study the
polynomials X™~* — 1 where m — 1 and ¢ are relatively prime.
We first factor them over Z, and after that over F,.
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Cyclotomic Polynomials

Let n be a positive integer. A n—th root of unity in a field K
is an element of K which satifies ™ = 1. This means that it
is a torsion element of order dividing n.

A primitive n—th root of unity is an element of K* of order n:
for k in Z, the equality 2¥ = 1 holds if and only if n divides .
For each positive integer n, the n—th roots of unity in K form

a finite subgroup of K . having at most n elements. The

union of all these subgroups of K5 . is just the torsion group
o5 itself. This group contains 1 and —1, but it could have

just one element, like for Fy = Z/2Z or Fy(X) for instance.

The torsion subgroup of R* is {£1}, the torsion subgroup of

C* is infinite.

X™ — 1 with m multiple of p

Let K be a field of finite characteristic p and let n be a
positive integer. Write n = p"m with » > 0 and
pged(p,m) = 1. In K[X], we have

T

X" 1= (X" — 1)

If x € K satisfies 2™ = 1, then ™ = 1. Therefore, the order
of a finite subgroup of K> is prime to p.

It also follows that the study of X™ — 1 reduces to the study
of X™ — 1 with m prime to p.

Cyclotomic polynomials and roots of unity

Let n be a positive integer and €2 be an algebraically closed
field of characteristic either 0 or a prime number not dividing
n. Then the number of primitive n-th roots of unity in € is
©(n). These p(n) elements are the generators of the unique
cyclic subgroup C,, of order n of 2%, which is the group of
n-th roots of unity in £2:

Ch={zeQ;a" =1}

Cyclotomic polynomials over C|X|

The map C — C* defined by z — €2™*/" is a morphism from
the additive group C to the multiplicative group C*; this
morphism is periodic with period n. Hence, it factors to a
morphism from the group C/nZ to C*: we denote it also by
2+ €2/m_ The multiplicative group (Z/nZ)* of the ring
Z/nZ is the set of classes of integers prime to n. Its order is
©(n), where ¢ is Euler's function.

The ¢(n) complex numbers
e ke (2/nZ)*,

are the primitive roots of unity in C.



Cyclotomic polynomial of index n

For n a positive integer, we define a polynomial
®,(X) € C[X] by
(16) ou(X)= [ (x—enmiim,
ke(Z/nZ)*

This polynomial is called the cyclotomic polynomial of index
n; it is monic and has degree ¢(n). Since

n—1

X" _ 1= SAX _ mwila\:vu

k=0
the partition of the set of roots of unity according to their
order shows that

(17) X"—1= ] ®ux).
1<d<n
dln

A lemma of Euler

The degree of X™ — 1 is n, and the degree of ®4(X) is p(d),
hence, from (17) one deduces:

Lemma 18.
For any positive integer n,

n= M o(d).
din

Cyclotomy

The name cyclotomy comes from the Greek and means divide
the circle. The complex roots of X™ — 1 are the vertices of a
regular polygon with n sides.

From (17), it follows that an equivalent definition of the
polynomials @, @, ... in Z[X] is by induction on n:

R Sl
[ 2a(x)

d#n
d|n

(19) & (X)=X—-1, &,(X)

This is the most convenient way to compute the cyclotomic
polynomials ®,, for small values of n.

Mobius function

The Mébius function y (see, for instance, [3] § 2.9) is the map
from the positive integers to {0, 1, —1} defined by the
properties 1(1) = 1, u(p) = —1 for p prime, u(p™) = 0 for p
prime and m > 2, and u(ab) = p(a)p(d) if a and b are
relatively prime. Hence, p(a) = 0 if and only if a has a square
factor, while for a squarefree number a which is a product of s
distinct primes we have p(a) = (—1)*:

p(pr---ps) = (=1)°.



Mobius inversion formula

There are several variants of the Mébius inversion formula.
Here is the most classical one:

Lemma 20.

[Mébius inversion formula] Let f and g be two maps defined
on the set of positive integers with values in an additive group.
Then the two following properties are equivalent:

(i) For any integern > 1,

o) = 3 £(d).
dln

(ii) For any integern > 1,

f(n) = u(n/d)g(d).
din

Mobius inversion formula

For instance, Lemma 18

MSEV =n foralln>1
din

is equivalent to

o(n) = Mtg\&& for all n > 1.
dln

M&bius inversion formula (again)

An equivalent statement of the Mdbius inversion formula is
the following multiplicative version, which deals with two maps
f, g from the positive integers into an abelian multiplicative
group. The two following properties are equivalent:

(i) For any integern > 1,

g(n) =T f(@).
dln

(ii) For any integern > 1,
f(n) =T a(@)/.
din

For instance, when G is the multiplicative group Q(X)*, we
have
d,(X) = EC@ — )M/,

din
First examples
One has
P QT%L =X+1, & QT%L = X2+ X+1
2 — X _1 - ; 3 - X —1 - ’
and more generally, for p prime
XP—1
Py X)= " =X+ XP 2 X+ 1
X -1
The next cyclotomic polynomials are
X4t -1 9 9
X0 —1 X041

Pe(X) = = X2 X+1 = &3(—X).

(X3-1D)(X+1) X+1
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Exercise

Exercise 21.
a) Let n be a positive integer. Prove

e(n)  if nis odd,

2n) =
2 (2n) 2¢(n) if n is even,
-1)"®,(—X) ifnis odd,
D, (X?) if n is even.
Hint:  For a geometric proof, cut the circle in 2n pieces

in place of n. Compare the positions on the unit circle of
the roots of the two degree n polynomials X™ — 1 and
X"+ 1.
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Exercise (continued)
b) Deduce

Pg(X)=X*+1, Pp(X)=X*"—-X*+1

and P (X) = X2 41 for 0> 1.
c) Let p be a prime and m > 1. Prove that if p|m, then

Dy (XP) = Ppr(X) and  p(pm) = pp(m)
while if ged(p,m) = 1, then
Dy (XP) = Py (X) P (X)  and  o(pm) = (p — 1)ip(m).
d) Prove that

d, (X) = XP e x4 X g

when p is a prime and r > 1.
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The cyclotomic polynomial over Z

Theorem 22.
For any positive integer n, the polynomial ®,(X) has its

coefficients in Z. Moreover, ®,,(X) is irreducible in Z][X].
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O, (X) € Z[X]
Proof of the first part of Theorem 22.
We check ®,,(X) € Z[X] by induction on n. The results holds

for n =1, since ®1(X) = X — 1. Assume ®,,(X) € Z[X] for
all m < n. From the induction hypothesis, it follows that

h(X) = [T ®a(x)
i
is monic with coefficients in Z. We divide X™ — 1 by h in
Z[X]: let Q € Z[X] be the quotient and R € Z[X] the
remainder:
X" —=1=h(X)Q(X)+ R(X).

We also have X" — 1 = h(X)®,(X) in C[X], as shown by
(17). From the unicity of the quotient and remainder in the
Euclidean division in C[X], we deduce Q@ = ®,, and R =0,
hence, ®,, € NCS L] 24/88



Irreducibility of ®,, over Z Proof of Eisenstein criterion (continued)

We now show that ®,, is irreducible in Z[X]. Since it is monic,

its content is 1. It remains to check that it is irreducible in Write A — U, (A) B = U,(B) O — 0, (C)
QLX].
Here is a proof of the irreducibility of the cyclotomic AX)=aoX™ + - +an, BX)=0 X"+ +by
polynomial in the special case where the index is a prime
number p. It rests on Eisenstein's Criterion: and
S f— - & .. -
Proposition 23 (Eisenstein criterion). CX) = QX4+
Let _mv\ assumption ¢y # 0, ¢, = -+ - = ¢4 = 0, hence,

QANV — Qo;vﬂ&nT et € NTX‘_ QANV = movwv& = \mevwhkv with mo = @owo wmxo Now \Iw and
B have positive degrees n and m, hence, @, = b,, = 0, which

and let p be a prime number. Assume C' to be product of two means that p divides a,, and b,,, and, therefore, p? divides

polynomials in Z[X] of positive degrees. Assume also that p

Cq = Apbp,.
divides c; for 1 < i < d but that p does not divide c,. Then p?
divides cg.
Proof of Eisenstein criterion Irreducibility of ®,, over Z

We denote by ¥, the surjective morphism of rings (reduction

dul : . S
modulo p) Proof of the irreducibility of ®, over Z.
(24) U, Z[X] — F,[X], We set X — 1 =Y, so that, in Z[X],
which maps X to X and Z onto F,, by reduction modulo p of Y+1P-1 1 (PN p2 D
- : P o,(Y+1)=—F——=Y7 YP o4 Y +p.
the coefficients. Its kernel is the principal ideal pZ[X] = (p) of p(YH1) Y * 1 e 2 P
Z[X]| generated by p. o o .
Let We observe that p divides all coefficients — but the leading one
— of the monic polynomial ®,(Y + 1) and that p? does not
AX)=apX" +---+a, and DB(X)=0X"+---+b, divide the constant term. We conclude by using Eisenstein's

Criterion Proposition 23. O
be two polynomials in Z[X] of degrees m and n such that
C = AB. Hence, d = m +n, ¢y = agby, cq = apby,.
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Proof of the irreducibility of ®,, over Z

We now consider the general case.

Let f € Z[X] be an irreducible factor of ®,, with a positive
leading coefficient and let g € Z[X] satisfy fg = ®,,. Our goal
is to prove f = ®, and g = 1.

Since ®,, is monic, the same is true for f and g. Let ( be a
root of f in C and let p be a prime number which does not
divide n. Since (? is a primitive n-th root of unity, it is a zero
of ®,,.

The first and main step of the proof is to check that

f(¢P) = 0. If (* is not a root of f, then it is a root of g. We
assume ¢(¢?) = 0 and we shall reach a contradiction.

Proof of the irreducibility of ®,, over Z (continued)

Since f is irreducible, f is the minimal polynomial of (, hence,
from g(¢?) = 0, we infer that f(X) divides g(X?). Write
g(X?) = f(X)h(X) and consider the morphism ¥, of
reduction modulo p already introduced in (24). Denote by I,
G, H the images of f, g, h. Recall that fg = ®,, in Z]X],
hence, F(X)G(X) divides X™ — 1 in F,[X]. The assumption
that p does not divide n implies that X™ — 1 has no square
factor in F,[X].

Proof of the irreducibility of ®,, over Z (continued)

Let P € Z[X] be an irreducible factor of F. From

G(X?) = F(X)H(X), it follows that P(X) divides G(X?).
But G € F,[X], hence (see Lemma 5), G(X?) = G(X)P and,
therefore, P divides G(X). Now P? divides the product F'G,
which is a contradiction.

We have checked that for any root ¢ of f in C and any prime
number p which does not divide n, the number (? is again a
root of f. By induction on the number of prime factors of m,
it follows that for any integer m with ged(m,n) = 1 the
number (™ is a root of f. Now f vanishes at all the primitive
roots of unity, hence, f = ®, and g = 1.

Second proof of Proposition 3

The following alternative proof (not using the exponent) of
Proposition 3 is instructive, since it involves cyclotomic
polynomials.

Let K be a field and G a finite subgroup of K* of order n.
For any divisor d of n, denote by Ng(d) the number of
elements in G of order d.

By Lagrange's Theorem

(25) n = Ng(d).
din



Second proof of Proposition 3 (Continued) Cyclotomic field of level n

Let n be a positive integer. The cyclotomic field of level n

over Q is
Let d be a divisor of n.
If No(d) > 0, that is, if there exists an element ( in G of R, = @Qmm@i\: ke AN\Svix c C.
order d, then the cyclic subgroup of GG generated by ( has
order d, hence it has ¢(d) generators.
These ¢(d) elements in K are roots of ®, and, therefore, they
are all the roots of ®; in K. This is the splitting field of ®,, over Q. If ( € C is any

It follows that there are exactly ¢(d) elements of order d in G. primitive root of unity, then R, = Q(() and
{1,¢,...,¢#™~1Y is a basis of R, as a Q-vector space.
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Second proof of Proposition 3 (Continued) Aut(R,/Q)

Proposition 26.

There is a canonical isomorphism between Aut(R,/Q) and
the multiplicative group (Z/nZ)*.
This proves that N¢(d) is either 0 or ¢(d).

Proof.
From (25) and Lemma 18, we deduce Let (,, be a primitive n-th root of unity. For ¢ € Aut(R,/Q),
n— MZQA& < Mﬁ?& —n, define 0(p) € (Z/nZ)* by
din din

Then 6 is a group isomorphism from Aut(R,,/Q) onto
(Z/nZ)*.

hence, Ng(d) = o(d) for all d|n.
In particular N¢(n) > 0, which means that G is cyclic.
L]
Example 27.

The subfield of R,, fixed by the element 6~({1,—1}) of
Aut(R,,/Q) is the maximal real subfield of R,,:
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Cyclotomic Polynomials over a finite field

Since ®,, has coefficients in Z, for any field K, we can view
®,,(X) as an element in K[X]: in zero characteristic, this is
plain since K contains Q; in finite characteristic p, one
considers the image of ®,, under the morphism ¥, introduced
in (24): we denote again this image by ®,,.

Exercise 28.
Prove that in characteristic p, forr > 1 and m > 1,

B (X) = @, (X071,

Roots of ®,,(X)

Proposition 29.

Let K be a field and let n be a positive integer. Assume that
K has characteristic either O or else a prime number p prime
to n. Then the polynomial ®,,(X) is separable over K and its
roots in K are exactly the primitive n—th roots of unity which
belong to K.

Proof.
The derivative of the polynomial X™ — 1 is nX"" 1. In K, we
have n # 0 since p does not divide n, hence, X™ — 1 is
separable over K. Since ®,,(X) is a factor of X™ — 1, it is
also separable over K. The roots in K of X™ — 1 are precisely
the n—th roots of unity contained in K. A n-th root of unity is
primitive if and only if it is not a root of ®; when d|n, d # n.
From (19), this means that it is a root of ®,,.

L]

n
X7 — X over m«\

According to (1), given ¢ = p", the unique subfield of F,, with
q elements is the set F, of roots of X7 — X in F,. The set
{X —z; x € F,} is the set of all monic degree 1 polynomials
with coefficients in F,. Hence, (1) is the special case n = 1 of
the next statement.

Theorem 30.

Let F' be a finite field with q elements and let n be a positive
integer. The polynomial X9" — X s the product of all
irreducible polynomials in F'[X| whose degree divides n. In
other terms, for any n > 1,

xt-x=11 Il rx)

din fEE,(d)

where E,(d) is the set all monic irreducible polynomials in
F,[X] of degree d.

Proof of Theorem 30

The derivative of X7 — X is —1, which has no root, hence,
X" — X has no multiple factor in characteristic p.

Let f € F,[X] be an irreducible factor of X4" — X and a be a
root of f in F,. The polynomial X¢" — X is a multiple of f,
therefore, it vanishes at «, hence, a?" = « which means

a € Fyn. From the field extensions

F, CFy(a) C Fyn,

we deduce that the degree of o over F, divides the degree of
F,» over F,, that is d divides n.



Proof of Theorem 30 (Continued)

Conversely, let f be an irreducible polynomial in F,[X] of
degree d where d divides n. Let a be a root of f in F,,. Since
d divides n, the field F,(a) is a subfield of F,», hence,

a € Fn satisfies a?" = a, and, therefore, f divides X" - X.
Since d divides n, the polynomial X¢" — X is a multiple of
X" — X, hence (see exercise 8), a multiple of f. This shows
that X" — X is a multiple of all irreducible polynomials of
degree dividing n.

In the factorial ring F,[X], the polynomial X?" — X, having
no multiple factor, is the product of the monic irreducible
polynomials which divide it. Theorem 30 follows.

N,(d)

Denote by N,(d) the number of elements in E,(d), that is the
number of monic irreducible polynomials of degree d in F,[X].
Theorem 30 yields, for n > 1,

¢" =Y dN,(d).
dln
From Mdbius inversion formula (Lemma 20), one deduces:

Nyfn) = 57 u(d)g
dn

For instance, when ¢ is a prime number not equal to the
characteristic p of F,

(31) N =114

Exercise

Exercise 32.
Let F be a finite field with ¢ elements.

a) Give the values of Ny(n) for 1 <n < 6.
b) Check

Q:
- < .\/@A:v < M

c¢) Denote by p the characteristic of F' and by F, the prime
subfield of F'. Check that more than half of the elements «
in F satisfy F' = F,(a).

Decomposition of cyclotomic polynomials over a
finite field

In all this section, we assume that n is not divisible by the
characteristic p of F,.
We apply Theorem 14 to the cyclotomic polynomials.

Theorem 33.

Let ¥, be a finite field with q elements and let n be a positive
integer not divisible by the characteristic of F,. Then the
cyclotomic polynomial ®,, splits in F,[X] into a product of
irreducible factors, all of the same degree d, where d is the
order of ¢ modulo n.
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Proof of Theorem 33

By definition, the order of ¢ modulo n is the order of the class
of ¢ in the multiplicative group (Z/nZ)* (hence, it is defined
if and only if n and ¢ are relatively prime), it is the smallest
integer ¢ such that ¢° is congruent to 1 modulo 7.

Proof.

Let ¢ be a root of ®,, in a splitting field K of the polynomial
®,, over F;. The order of ¢ in the multiplicative group K™ is
n. According to Theorem 14, the degree of ¢ over F is he
smallest integer s > 1 such that (¢ ~! = 1. Hence it is the
smallest positive integer s such that n divides ¢° — 1, and this
is the order of the image of ¢ in the multiplicative group
(Z/nZ)*. O]

Corollaries

Since an element ¢ € WM has order n in the multiplicative

group Ww if and only if ¢ is a root of ®,,, an equivalent
statement to Theorem 33 is the following.

Corollary 34.

IfC € Ww has order n in the multiplicative group Ww , then its
degree d = [F,(C) : F,| over F, is the order of ¢ modulo n.

Corollary 35.

The polynomial ®,(X) splits completely in F,[X] (into a
product of polynomials all of degree 1) if and only if

¢ = 1 mod n.

This follows from Theorem 33, but it is also plain from
Proposition 3 and the fact that the cyclic group F of order
q — 1 contains a subgroup of order n if and only if n divides
q — 1, which is the condition ¢ = 1 mod n.

Irreducible cyclotomic polynomials

Corollary 36.

The following conditions are equivalent:

(i) The polynomial ®,,(X) is irreducible in F,[X].

(ii) The class of ¢ modulo n has order p(n).

(iii) q is a generator of the group (Z/nZ)*.

This can be true only when this multiplicative group is cyclic,
which means n is either

2, 4, (5, 20°

where ( is an odd prime and s > 1.

s divides p(¢° — 1)

Corollary 37.

Let q be a power of a prime, s a positive integer, and
n =¢q° — 1. Then q has order s modulo n. Hence, ®,, splits in
F,[X] into irreducible factors, all of which have degree s.

Notice that the number of factors in this decomposition is
©(q® — 1)/s, hence it follows that s divides p(¢° — 1).



Numerical examples Fy

Example 39.

We consider the cubic extension Fg/F5. There are 6
elements in Fg which are not in Fy, each of them has
degree 3 over F5, hence, there are two irreducible

Recall that we fix an algebraic closure F,, of the prime field polynomials of degree 3 in Fy[X]. Indeed, from (31), it
F), .m:a for ¢ a power of p we denote by m,a\ﬁr.m unique follows that No(3) = 2. The two irreducible factors of @7
subfield of F), with ¢ elements. Of course, F, is also an are the only irreducible polynomials of degree 3 over Fy:

algebraic closure of F,.
XX =XX+DX*+ X+ 1)(X°+ X2+ 1).

The 6 = ¢(7) elements in F§ of degree 3 are the six roots
of @7, hence, they have order 7. If ¢ is any of them, then

H.Jw = AOQ Ha A“ A.wg va A&f A.mv ﬂmw
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F, Fs (Continued)
Example 38.
We consider the quadratic extension F4/F5y. There is a . R
unique irreducible polynomial of degree 2 over Fy, which is If Cis ﬂowﬁ of @w@mv N X+ X +1, then the ,n<<% oﬁ:mw_‘
®3 = X2 + X + 1. Denote by ¢ one of its roots in Fy. The roots are ¢~ and (%, while the roots of Qo(X) = X°+ X" +1
other root is (2 with (2 = ( + 1 and are ¢, (7 and ¢°. Notice that (? = (" and
Q2(X) = X3Q1(1/X). Set n=(""'. Then
F,={0, 1, ¢, ¢*}.
=016 ¢ Fs={0, 1, n, v*, o, 0", n°, n°}
If we set n = (2, then the two roots of ®3 are n and 7?, d
with n? =7+ 1 and an 9 4
Q(X) = (X =X = )X =),
_ 2
Fi={0, 1, n, n}. Qa(X) = (X = n)(X =) (X —n").

There is no way to distinguish these two roots, they play
the same role. It is the same situation as with the two roots
+i of X?+1in C.
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Fs (Continued) Fy (continued)
Let ¢ be a root of X2+ X — 1 and let n = (~*. Then n = (",

n® = (¢° and
For transmission of data, it is not the same to work with  or ) ,
with 7 = (™. For instance, the map z — z + 1 is given by X4+ X-1=(X-)(X-¢%), X’-X—-1=(X-—n)(X—7").
C+1=C F+1=C F+1=g, We have
A.% LT H = A.mu A.m A_v H == A.%v A.@ A_v H = h‘w ”_me - AO“ Hu h.u ﬁrw“ A.wu A&pu A.mu ﬁr@.u ﬂﬂ%
and by and also

n+l=n", P +1=n" n*+1=1"

_ 2 3 .4 .5 6 17
S»ATHHSQ“ SWITMHS“ SQITHHS& ”_m,©|ﬁ©V L, n%n’,n,n,n,n M
The element ¢(* = n* = —1 is the element of order 2 and
degree 1, and the two elements of order 4 (and degree 2),

roots of X? + 1, are (2 = 1% and (% = n%
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F, Decomposition of ®1; over F3

Example 40.

We consider the quadratic extension Fy/F3. Over F3,

X—X = X(X-1)(X+1)(X*+1)(X*+X - 1)(X* =X -1). Exercise 41.

Check that 3 has order 5 modulo 11 and that
In Fg, there are 4 = ¢(8) elements of order 8 (the four
roots of ®g) which have degree 2 over F3. There are two X"-1= ANICANUIN,&.TNMINICCmf.um%lwmflumwld
elements of order 4, which are the roots of ®4; they are also
the squares of the elements of order 8 and they have degree
2 over F3, their square is —1. There is one element of order
2, namely —1, and one of order 1, namely 1. From (31), it
follows that N3(2) = 3: the three monic irreducible
polynomials of degree 2 over F3 are @, and the two
irreducible factors of ®g.

is the decomposition of X' — 1 into irreducible factors over
Fs.
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On projective planes of order n
(after Claude Levesque)

The rows of the incidence matrix of a projective plane of order
n form a code.

Definition. Let n > 2 be an integer. A projective plane of
order n is given by n? +n + 1 points and n? +n + 1 lines with
the property that

e Each line contains exactly n + 1 points,

e Each point belongs to exactly n + 1 lines,

e Two different lines intersect in exactly one point,

e There exist four points no three of which belong to the same
line.
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Latin squares

Definition. A /atin square of order n is a n X n matrix with
entries in {1,2,...,n} with the property that

e Each line contains n different elements,

e Each column contains n different elements,

NOTE. Instead of {1,2,...,n} one can use a set of n
elements.
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Orthogonal latin squares Two theorems, one conjecture

Definition. The two latin squares A = (a;;) and B = (b;;) of

order n are said to be orthogonal if the cardinality of Theorem 42.
There exists a projective finite plane of order n if and only if
{(aij,bij); 1<i<n, 1<j<n} there exist n — 1 mutually orthogonal latin squares n x n.

is equal to n?.
Conjecture. |If there exist n — 1 mutually orthogonal latin

EXAMPLE squares n X n, then n = p*® with p prime and s > 1.
1 2 3 1 2 3
2 31 and 31 2 Theorem 43.
31 2 2 31 Suppose that ¢ = p® with p prime and s > 1. Then there exist

q — 1 mutually orthogonal latin squares q X q.
are orthogonal.
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Mutually orthogonal latin squares Proof of Theorem 43

EXAMPLE. Let

1 2 3 4 1 2 3 4 Let
A— M M MP w B— M w W w ”_”.JQHAQOHOVQH”HgQ\wg...ggn\ww
43 92 1 9 1 4 3 be the field with ¢ elements. Let us define ¢ — 1 matrices M (%)
of size ¢ x ¢ by specifying that
and (s)
12 3 4 M;;" = aas + a;
4 3 2 1 . .
C=12 1 4 3 for1<s<¢g—1,0<i<q¢g—10<j<g—1 Wewantto

3 4 1 9 prove that MM ... M= form a set of ¢ — 1 mutually

orthogonal latin squares ¢ X q.

Then {A, B, C} is a set of three mutually orthogonal latin
squares.
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Proof of Theorem 43: latin squares

(i) Let us consider a given s € {1,...,¢ — 1} and let us prove

that M) is a latin square.
It is clear that for any given row, say the i—th row, its elements

a;as + g, A;Qs + ay, ..., 005 + Qg1

are all different. Similarly, for a given column, say the j—th
column, its elements

Apls + Gj, 1G5+ Aj, ..., Qg 105 + Q5

are all different.
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Proof of Theorem 43: orthogonality

(ii) Now, let us prove that for sy, s9 in {1,...,qg — 1} with
s1 # Sg, the couples of latin squares M (1) and M(2) are

mutually orthogonal, namely let us prove that the couples
{0 M) 0<i<g—1,0<5<q-1}
are all different. We will do it by contradiction. So let us
suppose that there exist ¢, j, u, vin {1,...,¢ — 1} such that
(,j) # (u,v) and
(MY, M) = (MG, MG).
Hence there exist i, j, u, vin {1,...,q — 1} such that

MEY) = MEY and MEY = MG,

)
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End of the proof of Theorem 43

Hence
AiGsy + Q5 = Qylg, + Ay
a;Qs, + Aj = Ay sy + ay,
namely
as, (a; — ay) = ay, — aj = ag,(a; — ay).

If a; = a,, then a, = a;, a contradiction. So suppose a; # a,.

Then, after cancellation, as, = as,, a contradiction.

Reference for finite projective planes

[E D. STINSON — Combinatorial designs. Constructions and
analysis. Springer-Verlag, New York, 2004.
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