CIMPA School of Number Theory in Cryptography and Its Applications School of Science, Kathmandu University, Dhulikhel, Nepal July 19th - July 31th, 2010

Finite fields

Michel Waldschmidt Course 4: July 25, 2010

These notes are extracted from the full text, the pdf of which is available from the web site http://www.math.jussieu.fr/~miw/

<ロ・</p>
・コ・
・< 三・< 三・ 三 のへで</p>
25/88

What I told you on Friday

Examples of finite fields are the fields $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$ with p elements.

The ring $\mathbf{Z}/n\mathbf{Z}$ has characteristic n: that means that adding 1 less than n times produces a non-zero element of the ring, but adding it n times produces 0:

$$+1+\cdots+1=0$$

On the other hand, the characteristic of a field is a prime number. Hence $\mathbf{Z}/n\mathbf{Z}$ is a field if and only if n is a prime number.

Also if n is composite, say n = ab with a > 1 and b > 1, then the class of a is a zero divisor in $\mathbb{Z}/n\mathbb{Z}$, hence this ring is not a field.

What I told you on Friday (continued)

If F is a field with q elements, then the characteristic of F is a prime number p, which means that F contains \mathbf{F}_p , and the number of elements of F is a power of p, say p^s . This number s is the degree of the \mathbf{F}_p - vector space F.

Conversely, for any prime number p and any positive integer s, there exists a field F with p^s elements. To construct such a field, we start with an irreducible polynomial $f \in \mathbf{F}_p[X]$ of degree s (there is at least one), one considers the ideal (f) in $\mathbf{F}_p[X]$ generated by f. The field F we are looking for can be viewed as $\mathbf{F}_p[X]/(f)$. If α denotes the class of X modulo f, then $F = \mathbf{F}_p(\alpha) = \mathbf{F}_p[\alpha]$.

For instance the field with 4 elements can be written as

$$\mathbf{F}_4 = \{0, 1, \alpha, \alpha^2\}$$

with
$$\alpha^2 = \alpha + 1$$
.

What I told you on Friday (continued)

Given a finite field \mathbf{F}_q with q elements and an element α which is algebraic over \mathbf{F}_q of degree n, the irreducible polynomial of α over \mathbf{F}_q splits completely in the field $\mathbf{F}_q(\alpha)$ into

$$(X - \alpha)(X - \alpha^q) \cdots (X - \alpha^{q^{n-1}})$$

Hence n is the smallest integer such that $\alpha^{q^n} = \alpha$. For $i \ge 0$ we write $\operatorname{Frob}_{q^i}(\alpha) = \alpha^{q^i}$.

Now the goal is to find the irreducible polynomials over \mathbf{F}_q . We shall see that they are the irreducible factors of $X^m - X$, where m a power of q. This is a reason to study the polynomials $X^{m-1} - 1$ where m - 1 and q are relatively prime. We first factor them over \mathbf{Z} , and after that over \mathbf{F}_q .

Cyclotomic Polynomials

is a torsion element of order dividing n. A primitive n-th root of unity is an element of K^\times of order nis an element of K^{\times} which satifies $x^n = 1$. This means that it Let n be a positive integer. A n-th root of unity in a field K

just one element, like for $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$ or $\mathbf{F}_2(X)$ for instance. union of all these subgroups of $K_{\mathrm{tors}}^{\times}$ is just the torsion group a finite subgroup of $K_{\rm tors}^{\times}$ having at most n elements. The For each positive integer n, the n-th roots of unity in K form for k in **Z**, the equality $x^k = 1$ holds if and only if n divides k \mathbf{C}^{\times} is infinite. $K_{\rm tors}^{\times}$ itself. This group contains 1 and -1, but it could have The torsion subgroup of \mathbf{R}^{\times} is $\{\pm 1\},$ the torsion subgroup of

jiji 29 / 88

<u>du</u>l

31 / 88

X^m-1 with m multiple of p

positive integer. Write $n = p^r m$ with $r \ge 0$ and Let K be a field of finite characteristic p and let n be a pgcd(p, m) = 1. In K[X], we have

$$^{n} - 1 = (X^{m} - 1)^{p^{r}}$$

 X_{i}

of a finite subgroup of K^\times is prime to pIf $x \in K$ satisfies $x^n = 1$, then $x^m = 1$. Therefore, the order

of $X^m - 1$ with m prime to p. It also follows that the study of $X^n - 1$ reduces to the study

Cyclotomic polynomials and roots of unity

n-th roots of unity in Ω : cyclic subgroup C_n of order n of Ω^{\times} , which is the group of n. Then the number of primitive n-th roots of unity in Ω is field of characteristic either 0 or a prime number not dividing $\varphi(n)$. These $\varphi(n)$ elements are the generators of the unique Let n be a positive integer and Ω be an algebraically closed

$$C_n = \{ x \in \Omega \ ; \ x^n = 1 \}.$$

Cyclotomic polynomials over ${f C}[X]$

 $\mathbf{Z}/n\mathbf{Z}$ is the set of classes of integers prime to n. Its order is $z\mapsto e^{2i\pi z/n}.$ The multiplicative group $(\mathbf{Z}/n\mathbf{Z})^{\times}$ of the ring morphism from the group $\mathbf{C}/n\mathbf{Z}$ to $\mathbf{C}^{\times}:$ we denote it also by morphism is periodic with period n. Hence, it factors to a $\varphi(n)\text{, where }\varphi$ is Euler's function. the additive group C to the multiplicative group $C^{\times};$ this The map $\mathbf{C}
ightarrow \mathbf{C}^{ imes}$ defined by $z \mapsto e^{2i\pi z/n}$ is a morphism from

The $\varphi(n)$ complex numbers

 $e^{2i\pi k/n}, \qquad k \in (\mathbf{Z}/n\mathbf{Z})^{\times},$

are the primitive roots of unity in ${f C}$

Cyclotomic polynomial of index n

For n a positive integer, we define a polynomial $\Phi_n(X)\in {\bf C}[X]$ by

(16)
$$\Phi_n(X) = \prod_{k \in (\mathbf{Z}/n\mathbf{Z})^{\times}} (X - e^{2i\pi k/n}).$$

This polynomial is called the *cyclotomic polynomial of index* n; it is monic and has degree $\varphi(n)$. Since

$$(n-1 = \prod_{k=0}^{n-1} (X - e^{2i\pi k/n}),$$

the partition of the set of roots of unity according to their order shows that

(17)
$$X^n - 1 = \prod_{\substack{1 \le d \le n \\ d|n}} \Phi_d(X).$$

▲□▶▲伊▶▲王》 とのので 33/88

A lemma of Euler

The degree of $X^n - 1$ is n, and the degree of $\Phi_d(X)$ is $\varphi(d)$, hence, from (17) one deduces:

Lemma 18.

For any positive integer n,

$$n = \sum \varphi(d).$$

d|n

Cyclotomy

The name **cyclotomy** comes from the Greek and means *divide* the circle. The complex roots of $X^n - 1$ are the vertices of a regular polygon with n sides.

From (17), it follows that an equivalent definition of the polynomials Φ_1, Φ_2, \ldots in $\mathbb{Z}[X]$ is by induction on n:

(19)
$$\Phi_1(X) = X - 1, \quad \Phi_n(X) = \frac{X^n - 1}{\prod \Phi_d(X)}$$

 $d \neq n$ d|n

This is the most convenient way to compute the cyclotomic polynomials Φ_n for small values of n.

▲□▼
 ●▼
 ●▼
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Möbius function

The Möbius function μ (see, for instance, [3] § 2.9) is the map from the positive integers to $\{0, 1, -1\}$ defined by the properties $\mu(1) = 1$, $\mu(p) = -1$ for p prime, $\mu(p^m) = 0$ for pprime and $m \ge 2$, and $\mu(ab) = \mu(a)\mu(b)$ if a and b are relatively prime. Hence, $\mu(a) = 0$ if and only if a has a square factor, while for a squarefree number a which is a product of sdistinct primes we have $\mu(a) = (-1)^s$:

$$\mu(p_1\cdots p_s)=(-1)^s.$$

Möbius inversion formula

Here is the most classical one: There are several variants of the Möbius inversion formula.

Lemma 20.

on the set of positive integers with values in an additive group (i) For any integer $n \ge 1$, [Möbius inversion formula] Let f and g be two maps defined Then the two following properties are equivalent:

$$g(n) = \sum_{d|n} f(d)$$

(ii) For any integer $n \ge 1$,

$$f(n) = \sum_{d|n} \mu(n/d)g(d).$$

37 / 88

Möbius inversion formula

For instance, Lemma 18

$$\sum arphi(d) = n$$
 for all $n \ge 1$

 $\frac{d}{n}$

is equivalent to

$$\varphi(n) = \sum_n \mu(n/d) d \quad \text{ for all } n \ge 1.$$

$$\frac{d|n}{d|n} \sum_{m=1}^{m} \frac{d|n}{m} \sum_{m=1}^$$

王 38/88

 $\Phi_6(X) = \frac{X^6 - 1}{(X^3 - 1)(X + 1)} = \frac{X^3 + 1}{X + 1} = X^2 - X + 1 = \Phi_3(-X).$

40 / 88

 $\Phi_4(X) = \frac{X^4 - 1}{X^2 - 1} = X^2 + 1 = \Phi_2(X^2),$

Möbius inversion formula (again)

An equivalent statement of the Möbius inversion formula is group. The two following properties are equivalent: the following multiplicative version, which deals with two maps (i) For any integer $n \ge 1$, f, g from the positive integers into an abelian multiplicative

$$g(n) = \prod_{d|n} f(d).$$

(ii) For any integer $n \ge 1$,

$$f(n) = \prod_{d|n} g(d)^{\mu(n/d)}.$$

For instance, when G is the multiplicative group $\mathbf{Q}(X)^{\times},$ we

have

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}.$$

39 / 88

First examples

One has

$$\Phi_2(X) = \frac{X^2 - 1}{X - 1} = X + 1, \quad \Phi_3(X) = \frac{X^3 - 1}{X - 1} = X^2 + X + 3$$

$$\Phi_2(X) = \frac{X^2 - 1}{X - 1} = X + 1, \quad \Phi_3(X) = \frac{X^3 - 1}{X - 1} = X^2 + X + 1,$$

and more generally, for p prime

The next cyclotomic polynomials are

 $\Phi_p(X) = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + X + 1.$

$$\Phi_2(X) = \frac{X^2 - 1}{X - 1} = X + 1, \quad \Phi_3(X) = \frac{X^3 - 1}{X - 1} = X^2 + X + 1,$$

$$X) = \frac{X^2 - 1}{X - 1} = X + 1, \quad \Phi_3(X) = \frac{X^3 - 1}{X - 1} = X^2 + X + 1,$$

Exercise

Exercise 21.

a) Let n be a positive integer. Prove

$$\varphi(2n) = \begin{cases} \varphi(n) & \text{if } n \text{ is odd,} \\ 2\varphi(n) & \text{if } n \text{ is even,} \end{cases}$$

$$\Phi_{2n}(X) = \begin{cases} (-1)^n \Phi_n(-X) & \text{if } n \text{ is odd,} \\ \Phi_n(X^2) & \text{if } n \text{ is even.} \end{cases}$$

the roots of the two degree n polynomials $X^n - 1$ and in place of n. Compare the positions on the unit circle of Hint: $X^{n} + 1.$ For a geometric proof, cut the circle in 2n pieces

41/88

di d 43 / 88

Exercise (continued) b) Deduce

$$\Phi_8(X) = X^4 + 1, \quad \Phi_{12}(X) = X^4 - X^2 + 1$$

c) Let p be a prime and $m \ge 1$. Prove that if p|m, then and $\Phi_{2^\ell}(X) = X^{2^{\ell-1}} + 1$ for $\ell \geq 1$.

$$\Phi_m(X^p) = \Phi_{pm}(X) \quad \text{ and } \quad \varphi(pm) = p\varphi(m)$$

while if gcd(p, m) = 1, then

$$\Phi_m(X^p) = \Phi_{pm}(X) \Phi_m(X) \quad \text{and} \quad \varphi(pm) = (p-1)\varphi(m).$$

d) Prove that

$$\Phi_{p^r}(X) = X^{p^{r-1}(p-1)} + X^{p^{r-1}(p-2)} + \dots + X^{p^{r-1}} + 1$$

when p is a prime and $r \ge 1$.

The cyclotomic polynomial over ${f Z}$

Theorem 22.

coefficients in **Z**. Moreover, $\Phi_n(X)$ is irreducible in $\mathbf{Z}[X]$. For any positive integer n, the polynomial $\Phi_n(X)$ has its

 $\Phi_n(X) \in \mathbf{Z}[X]$

Proof of the first part of Theorem 22.

all m < n. From the induction hypothesis, it follows that We check $\Phi_n(X) \in \mathbb{Z}[X]$ by induction on n. The results holds for n = 1, since $\Phi_1(X) = X - 1$. Assume $\Phi_m(X) \in \mathbb{Z}[X]$ for

$$h(X) = \prod_{d \neq n \atop d \neq n} \Phi_d(X)$$

is monic with coefficients in Z. We divide $X^n - 1$ by h in remainder: $\mathbf{Z}[X]$: let $Q \in \mathbf{Z}[X]$ be the quotient and $R \in \mathbf{Z}[X]$ the

$$X^n - 1 = h(X)Q(X) + R(X).$$

hence, $\Phi_n \in \mathbb{Z}[X]$. Euclidean division in $\mathbb{C}[X]$, we deduce $Q = \Phi_n$ and R = 0, (17). From the unicity of the quotient and remainder in the We also have $X^n - 1 = h(X)\Phi_n(X)$ in $\mathbb{C}[X]$, as shown by

Irreducibility of Φ_n over \mathbf{Z}

 $\mathbf{Q}[X].$ its content is 1. It remains to check that it is irreducible in We now show that Φ_n is irreducible in $\mathbb{Z}[X]$. Since it is monic

number p. It rests on Eisenstein's Criterion: polynomial in the special case where the index is a prime Here is a proof of the irreducibility of the cyclotomic

Proposition 23 (Eisenstein criterion)

Let

$$C(X) = c_0 X^d + \dots + c_d \in \mathbf{Z}[X]$$

divides c_d . divides c_i for $1 \leq i \leq d$ but that p does not divide c_0 . Then p^2 polynomials in $\mathbb{Z}[X]$ of positive degrees. Assume also that pand let p be a prime number. Assume C to be product of two

45 / 88

Proof of Eisenstein criterion

modulo p): We denote by Ψ_p the surjective morphism of rings (reduction

(24)
$$\Psi_p: \mathbf{Z}[X] \to \mathbf{F}_p[X]$$

Let $\mathbf{Z}[X]$ generated by p. the coefficients. Its kernel is the principal ideal $p\mathbf{Z}[X] = (p)$ of which maps X to X and ${\bf Z}$ onto ${\bf F}_p$ by reduction modulo p of

 $A(X) = a_0 X^n + \dots + a_n$ and $B(X) = b_0 X^m + \dots + b_m$

C = AB. Hence, d = m + n, $c_0 = a_0b_0$, $c_d = a_nb_m$. be two polynomials in $\mathbf{Z}[X]$ of degrees m and n such that

Proof of Eisenstein criterion (continued)

Write
$$\tilde{A} = \Psi_p(A)$$
, $\tilde{B} = \Psi_p(B)$, $\tilde{C} = \Psi_p(C)$,
 $\tilde{A}(X) = \tilde{a}_0 X^n + \dots + \tilde{a}_n$, $\tilde{B}(X) = \tilde{b}_0 X^m + \dots + \tilde{b}_m$

and

$$\tilde{C}(X) = \tilde{c}_0 X^d + \dots + \tilde{c}_d.$$

 $c_d = a_n b_m$. means that p divides a_n and b_m , and, therefore, p^2 divides By assumption $\tilde{c}_0 \neq 0$, $\tilde{c}_1 = \cdots = \tilde{c}_d = 0$, hence, $\tilde{C}(X) = \tilde{c}_0 X^d = \tilde{A}(X)\tilde{B}(X)$ with $\tilde{c}_0 = \tilde{a}_0 \tilde{b}_0 \neq 0$. Now \tilde{A} and B have positive degrees n and m, hence, $\tilde{a}_n = b_m = 0$, which

▲山▼ ▲山▼ lul 47 / 88

Irreducibility of Φ_p over ${f Z}$

We set X - 1 = Y, so that, in $\mathbb{Z}[X]$, Proof of the irreducibility of Φ_p over \mathbf{Z}

$$b_p(Y+1) = \frac{(Y+1)^p - 1}{Y} = Y^{p-1} + \binom{p}{1}Y^{p-2} + \dots + \binom{p}{2}Y + p.$$

divide the constant term. We conclude by using Eisenstein's – of the monic polynomial $\Phi_p(Y+1)$ and that $p^2 \mbox{ does not }$ Criterion Proposition 23 We observe that p divides all coefficients – but the leading one

Proof of the irreducibility of Φ_n over \mathbf{Z}

of Φ_n . divide n. Since ζ^p is a primitive n-th root of unity, it is a zero root of f in \mathbf{C} and let p be a prime number which does not Since Φ_n is monic, the same is true for f and g. Let ζ be a is to prove $f = \Phi_n$ and g = 1. leading coefficient and let $g \in \mathbf{Z}[X]$ satisfy $fg = \Phi_n$. Our goal $f(\zeta^p) = 0$. If ζ^p is not a root of f, then it is a root of g. We Let $f \in \mathbf{Z}[X]$ be an irreducible factor of Φ_n with a positive We now consider the general case. The first and main step of the proof is to check that

assume $g(\zeta^p) = 0$ and we shall reach a contradiction

< □ > < @ > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ψ 49 / 88

Proof of the irreducibility of Φ_n over ${f Z}$ (continued)

factor in $\mathbf{F}_p[X]$. that p does not divide n implies that $X^n - 1$ has no square G, H the images of f, g, h. Recall that $fg = \Phi_n$ in $\mathbb{Z}[X]$, hence, F(X)G(X) divides $X^n - 1$ in $\mathbb{F}_p[X]$. The assumption $g(X^p)=f(X)h(X)$ and consider the morphism Ψ_p of reduction modulo p already introduced in (24). Denote by Ffrom $g(\zeta^p) = 0$, we infer that f(X) divides $g(X^p)$. Write Since f is irreducible, f is the minimal polynomial of ζ , hence,

Proof of the irreducibility of Φ_n over ${f Z}$ (continued)

We have checked that for any root ζ of f in ${f C}$ and any prime which is a contradiction. therefore, P divides G(X). Now P^2 divides the product FG, But $G \in \mathbf{F}_p[X]$, hence (see Lemma 5), $G(X^p) = G(X)^p$ and $G(X^p) = F(X)H(X)$, it follows that P(X) divides $G(X^p)$. Let $P \in \mathbf{Z}[X]$ be an irreducible factor of F. From

roots of unity, hence, $f = \Phi_n$ and g = 1. number ζ^m is a root of f. Now f vanishes at all the primitive it follows that for any integer m with $\gcd(m,n)=1$ the root of $f.\ \mbox{By induction}$ on the number of prime factors of mnumber p which does not divide n, the number ζ^p is again a

101 51/88

Second proof of Proposition 3

polynomials. Proposition 3 is instructive, since it involves cyclotomic The following alternative proof (not using the exponent) of

By Lagrange's Theorem elements in G of order d. For any divisor d of n, denote by $N_G(d)$ the number of Let K be a field and G a finite subgroup of K^{\times} of order n.

(25)
$$n = \sum_{d|n} N_G(d).$$

Let d be a divisor of n. If $N_G(d) > 0$, that is, if there exists an element ζ in G of order d, then the cyclic subgroup of G generated by ζ has order d, hence it has $\varphi(d)$ generators. These $\varphi(d)$ elements in K are roots of Φ_d and, therefore, they are all the roots of Φ_d in K. It follows that there are exactly $\varphi(d)$ elements of order d in G.

Cyclotomic field of level n

Let n be a positive integer. The cyclotomic field of level n over \mathbf{Q} is

$$R_n = \mathbf{Q}(\left\{e^{2i\pi k/n} ; k \in (\mathbf{Z}/n\mathbf{Z})^{\times}\right\}) \subset \mathbf{C}.$$

This is the splitting field of Φ_n over Q. If $\zeta \in \mathbf{C}$ is any primitive root of unity, then $R_n = \mathbf{Q}(\zeta)$ and $\{1, \zeta, \dots, \zeta^{\varphi(n)-1}\}$ is a basis of R_n as a Q-vector space

□▼▲**□**▼▲吉▼▲吉▼ 吉 のへぐ 53/88

dul

55 / 88

Second proof of Proposition 3 (Continued)

This proves that $N_G(d)$ is either 0 or $\varphi(d)$. From (25) and Lemma 18, we deduce

$$n = \sum_{d|n} N_G(d) \le \sum_{d|n} \varphi(d) =$$

n,

hence, $N_G(d) = \varphi(d)$ for all d|n. In particular $N_G(n) > 0$, which means that G is cyclic.

$\operatorname{Aut}(R_n/\mathbf{Q})$

Proposition 26.

There is a canonical isomorphism between $\operatorname{Aut}(R_n/\mathbf{Q})$ and the multiplicative group $(\mathbf{Z}/n\mathbf{Z})^{\times}$.

Proof.

Let ζ_n be a primitive *n*-th root of unity. For $\varphi \in \operatorname{Aut}(R_n/\mathbb{Q})$, define $\theta(\varphi) \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ by

$$\varphi(\zeta_n) = \zeta_n^{\theta(\varphi)}$$

Then θ is a group isomorphism from $\operatorname{Aut}(R_n/\mathbf{Q})$ onto $(\mathbf{Z}/n\mathbf{Z})^{\times}$.

-vamnle 9

Example 27. The subfield of R_n fixed by the element $\theta^{-1}(\{1, -1\})$ of $\operatorname{Aut}(R_n/\mathbf{Q})$ is the maximal real subfield of R_n .

년 54/88

Cyclotomic Polynomials over a finite field

Since Φ_n has coefficients in \mathbb{Z} , for any field K, we can view $\Phi_n(X)$ as an element in K[X]: in zero characteristic, this is plain since K contains \mathbb{Q} ; in finite characteristic p, one considers the image of Φ_n under the morphism Ψ_p introduced in (24): we denote again this image by Φ_n .

Exercise 28.

Prove that in characteristic p, for $r \ge 1$ and $m \ge 1$,

$$\Phi_{mp^r}(X) = \Phi_m(X)^{p^{r-1}(p-1)}$$

*ロ・

Roots of $\Phi_n(X)$

Proposition 29.

Let K be a field and let n be a positive integer. Assume that K has characteristic either 0 or else a prime number p prime to n. Then the polynomial $\Phi_n(X)$ is separable over K and its roots in K are exactly the primitive n-th roots of unity which belong to K.

Proof.

The derivative of the polynomial $X^n - 1$ is nX^{n-1} . In K, we have $n \neq 0$ since p does not divide n, hence, $X^n - 1$ is separable over K. Since $\Phi_n(X)$ is a factor of $X^n - 1$, it is also separable over K. The roots in K of $X^n - 1$ are precisely the n-th roots of unity contained in K. A n-th root of unity is primitive if and only if it is not a root of Φ_d when $d|n, d \neq n$. From (19), this means that it is a root of Φ_n .

58 / 88

$X^{q^n} - X$ over ${f F}$

According to (1), given $q = p^r$, the unique subfield of $\overline{\mathbf{F}}_p$ with q elements is the set \mathbf{F}_q of roots of $X^q - X$ in $\overline{\mathbf{F}}_p$. The set $\{X - x ; x \in \mathbf{F}_q\}$ is the set of all monic degree 1 polynomials with coefficients in \mathbf{F}_q . Hence, (1) is the special case n = 1 of the next statement.

Theorem 30.

Let F be a finite field with q elements and let n be a positive integer. The polynomial $X^{q^n} - X$ is the product of all irreducible polynomials in F[X] whose degree divides n. In other terms, for any $n \ge 1$,

$$X^{q^n} - X = \prod_{d|n} \prod_{f \in E_q(d)} f(X)$$

where $E_q(d)$ is the set all monic irreducible polynomials in $\mathbf{F}_q[X]$ of degree d.

▲ □ ▼ ▲ □ ▼ ▲ □ ▼ ▲ □ ▼ ▲ □ ▼ ▲ □ ▼ ▲ □ ▼ ▲ □ ▼ ● の Q ()

Proof of Theorem 30

The derivative of $X^{q^n} - X$ is -1, which has no root, hence, $X^{q^n} - X$ has no multiple factor in characteristic p. Let $f \in \mathbf{F}_q[X]$ be an irreducible factor of $X^{q^n} - X$ and α be a root of f in $\overline{\mathbf{F}}_p$. The polynomial $X^{q^n} - X$ is a multiple of f, therefore, it vanishes at α , hence, $\alpha^{q^n} = \alpha$ which means $\alpha \in \mathbf{F}_{q^n}$. From the field extensions

$$\mathbf{F}_q \subset \mathbf{F}_q(\alpha) \subset \mathbf{F}_{q^n},$$

we deduce that the degree of α over \mathbf{F}_q divides the degree of \mathbf{F}_{q^n} over \mathbf{F}_q , that is d divides n.

Proof of Theorem 30 (Continued)

Conversely, let f be an irreducible polynomial in $\mathbf{F}_q[X]$ of degree d where d divides n. Let α be a root of f in $\overline{\mathbf{F}}_p$. Since d divides n, the field $\mathbf{F}_q(\alpha)$ is a subfield of \mathbf{F}_{q^n} , hence, $\alpha \in \mathbf{F}_{q^n}$ satisfies $\alpha^{q^n} = \alpha$, and, therefore, f divides $X^{q^n} - X$. Since d divides n, the polynomial $X^{q^n} - X$ is a multiple of $X^{q^d} - X$, hence (see exercise 8), a multiple of f. This shows that $X^{q^n} - X$ is a multiple of all irreducible polynomials of degree dividing n. In the factorial ring $\mathbf{F}_q[X]$, the polynomial $X^{q^n} - X$, having

In the factorial ring $\mathbf{F}_q[X]$, the polynomial $X^{q^n} - X$, having no multiple factor, is the product of the monic irreducible polynomials which divide it. Theorem 30 follows.

< (回)< (回)< (回)< (回)
 < ((u))
 < ((u))

$N_q(d)$

Denote by $N_q(d)$ the number of elements in $E_q(d)$, that is the number of monic irreducible polynomials of degree d in $\mathbf{F}_q[X]$. Theorem 30 yields, for $n \geq 1$,

$$=\sum_{q}dN_{q}(d)$$

d|n

 q^n

From Möbius inversion formula (Lemma 20), one deduces:

$$N_q(n) = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}.$$

For instance, when ℓ is a prime number not equal to the characteristic p of $\mathbf{F}_q,$

(31)
$$N_q(\ell) = \frac{q^\ell - q}{\ell}.$$

Exercise

Exercise 32.

Let F be a finite field with q elements. a) Give the values of $N_2(n)$ for $1 \le n \le 6$. b) Check

$$\frac{q^n}{2n} \le N_q(n) \le \frac{q^n}{n}.$$

c) Denote by p the characteristic of F and by \mathbf{F}_p the prime subfield of F. Check that more than half of the elements α in F satisfy $F = \mathbf{F}_p(\alpha)$.

▲□▼▲**□**▼▲世▼▲世▼ 一回 ののの 63/88

Decomposition of cyclotomic polynomials over a finite field

In all this section, we assume that n is not divisible by the characteristic p of \mathbf{F}_q . We apply Theorem 14 to the cyclotomic polynomials.

Theorem 33.

Let \mathbf{F}_q be a finite field with q elements and let n be a positive integer not divisible by the characteristic of \mathbf{F}_q . Then the cyclotomic polynomial Φ_n splits in $\mathbf{F}_q[X]$ into a product of irreducible factors, all of the same degree d, where d is the order of q modulo n.

Proof of Theorem 33

By definition, the order of q modulo n is the order of the class of q in the multiplicative group $(\mathbf{Z}/n\mathbf{Z})^{\times}$ (hence, it is defined if and only if n and q are relatively prime), it is the smallest integer ℓ such that q^{ℓ} is congruent to 1 modulo n.

Proof.

Let ζ be a root of Φ_n in a splitting field K of the polynomial Φ_n over \mathbf{F}_q . The order of ζ in the multiplicative group K^{\times} is n. According to Theorem 14, the degree of ζ over \mathbf{F}_q is he smallest integer $s \geq 1$ such that $\zeta^{q^s-1} = 1$. Hence it is the smallest positive integer s such that n divides $q^s - 1$, and this is the order of the image of q in the multiplicative group $(\mathbf{Z}/n\mathbf{Z})^{\times}$.

65 / 88

Corollaries

Since an element $\zeta \in \overline{F}_p^{\times}$ has order n in the multiplicative group \overline{F}_p^{\times} if and only if ζ is a root of Φ_n , an equivalent statement to Theorem 33 is the following.

Corollary 34.

If $\zeta \in \overline{\mathbf{F}}_p^{\times}$ has order n in the multiplicative group $\overline{\mathbf{F}}_p^{\times}$, then its degree $d = [\mathbf{F}_q(\zeta) : \mathbf{F}_q]$ over \mathbf{F}_q is the order of q modulo n.

Corollary 35.

The polynomial $\Phi_n(X)$ splits completely in $\mathbf{F}_q[X]$ (into a product of polynomials all of degree 1) if and only if $q \equiv 1 \mod n$.

This follows from Theorem 33, but it is also plain from Proposition 3 and the fact that the cyclic group \mathbf{F}_q^{\times} of order q-1 contains a subgroup of order n if and only if n divides q-1, which is the condition $q \equiv 1 \mod n$.

цц

88 / 99

Irreducible cyclotomic polynomials

Corollary 36.

The following conditions are equivalent: (i) The polynomial $\Phi_n(X)$ is irreducible in $\mathbf{F}_q[X]$. (ii) The class of q modulo n has order $\varphi(n)$. (iii) q is a generator of the group $(\mathbf{Z}/n\mathbf{Z})^{\times}$. This can be true only when this multiplicative group is cyclic

 $2,\,4,\,\ell^s,\,2\ell^s$

which means n is either

where ℓ is an odd prime and $s \ge 1$.

88/770 今らら 国 《画》《画》《回》

s divides $\varphi(q^s-1)$

Corollary 37.

Let q be a power of a prime, s a positive integer, and $n = q^s - 1$. Then q has order s modulo n. Hence, Φ_n splits in $\mathbf{F}_q[X]$ into irreducible factors, all of which have degree s. Notice that the number of factors in this decomposition is $\varphi(q^s - 1)/s$, hence it follows that s divides $\varphi(q^s - 1)$.

algebraic closure of \mathbf{F}_q . ${\bf F}_p,$ and for q a power of p we denote by ${\bf F}_q$ the unique subfield of $\overline{{\bf F}}_p$ with q elements. Of course, $\overline{{\bf F}}_p$ is also an Recall that we fix an algebraic closure $\overline{\mathbf{F}}_p$ of the prime field

μŋ 88 / 69

\mathbf{F}_4

Example 38.

other root is ζ^2 with $\zeta^2=\zeta+1$ and unique irreducible polynomial of degree 2 over \mathbf{F}_2 , which is $\Phi_3 = X^2 + X + 1$. Denote by ζ one of its roots in \mathbf{F}_4 . The We consider the quadratic extension $\mathbf{F}_4/\mathbf{F}_2$. There is a

$$\mathbf{F}_4 = \{0, \ 1, \ \zeta, \ \zeta^2\}.$$

with $\eta^2 = \eta + 1$ and If we set $\eta = \zeta^2$, then the two roots of Φ_3 are η and η^2 ,

$$\mathbf{F}_4 = \{0, 1, \eta, \eta^2\}.$$

the same role. It is the same situation as with the two roots $\pm i$ of $X^2 + 1$ in **C**. There is no way to distinguish these two roots, they play

70/88

F 8

Example 39.

are the only irreducible polynomials of degree 3 over \mathbf{F}_2 : polynomials of degree 3 in $\mathbf{F}_2[X]$. Indeed, from (31), it degree 3 over \mathbf{F}_2 , hence, there are two irreducible elements in \mathbf{F}_8 which are not in \mathbf{F}_2 , each of them has follows that $N_2(3) = 2$. The two irreducible factors of Φ_7 We consider the cubic extension $\mathbf{F}_8/\mathbf{F}_2$. There are 6

$$X^{8} - X = X(X + 1)(X^{3} + X + 1)(X^{3} + X^{2} + 1).$$

of Φ_7 , hence, they have order 7. If ζ is any of them, then The $6 = \varphi(7)$ elements in \mathbf{F}_8^{\times} of degree 3 are the six roots

$$s_{8}^{2} = \{0, 1, \zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}, \zeta^{6}\}.$$

71/88

\mathbf{F}_{8} (Continued)

roots are ζ^2 and ζ^4 , while the roots of $Q_2(X) = X^3 + X^2 + 1$ are ζ^3 , ζ^5 and ζ^6 . Notice that $\zeta^6 = \zeta^{-1}$ and $Q_2(X) = X^3 Q_1(1/X)$. Set $\eta = \zeta^{-1}$. Then If ζ is a root of $Q_1(X) = X^3 + X + 1$, then the two other

$$Q_1(X) = (X - \zeta)(X - \zeta^2)(X - \zeta^4)$$

 $\mathbf{F}_8 = \{0, \ 1, \ \eta, \ \eta^2, \ \eta^3, \ \eta^4, \ \eta^5, \ \eta^6\}$

and

$$Q_1(X) = (X - \zeta)(X - \zeta^2)(X - \zeta^4),$$

$$Q_1(X) = (X - \zeta)(X - \zeta^2)(X - \zeta^4),$$

$$Q_2(X) = (X - \eta)(X - \eta^2)(X - \eta^4).$$

\mathbf{F}_8 (Continued)

with $\eta = \zeta^{-1}$. For instance, the map $x \mapsto x + 1$ is given by For transmission of data, it is not the same to work with ζ or

$$egin{array}{lll} & \zeta+1=\zeta^3,\; \zeta^2+1=\zeta^6,\; \zeta^3+1=\zeta, \ & \zeta^4+1=\zeta^5,\; \zeta^5+1=\zeta^4,\; \zeta^6+1=\zeta^2 \end{array}$$

and by

$$\eta + 1 = \eta^5, \ \eta^2 + 1 = \eta^3, \ \eta^3 + 1 = \eta^2,$$

 $\eta^4 + 1 = \eta^6, \ \eta^5 + 1 = \eta, \ \eta^6 + 1 = \eta^4$

μŋ 73 / 88

\mathbf{F}_{9}

Example 40.

We consider the quadratic extension $\mathbf{F}_9/\mathbf{F}_3$. Over \mathbf{F}_3 .

$$X^9 - X = X(X - 1)(X + 1)(X^2 + 1)(X^2 + X - 1)(X^2 - X - 1).$$

irreducible factors of Φ_8 . polynomials of degree 2 over \mathbf{F}_3 are Φ_4 and the two follows that $N_3(2) = 3$: the three monic irreducible 2 over \mathbf{F}_3 , their square is -1. There is one element of order the squares of the elements of order 8 and they have degree elements of order 4, which are the roots of Φ_4 ; they are also roots of Φ_8) which have degree 2 over \mathbf{F}_3 . There are two 2, namely -1, and one of order 1, namely 1. From (31), it In \mathbf{F}_{9}^{\times} , there are $4 = \varphi(8)$ elements of order 8 (the four

\mathbf{F}_9 (continued)

Let ζ be a root of X^2+X-1 and let $\eta=\zeta^{-1}.$ Then $\eta=\zeta^7,$ $\eta^3=\zeta^5$ and

$$X^{2} + X - 1 = (X - \zeta)(X - \zeta^{3}), \quad X^{2} - X - 1 = (X - \eta)(X - \eta^{3}).$$

We have

$$\mathbf{F}_{9} = \{0, \ 1, \ \zeta, \ \zeta^{2}, \ \zeta^{3}, \ \zeta^{4}, \ \zeta^{5}, \ \zeta^{6}, \ \zeta^{7}\}$$

and also

$$\mathbb{F}_9 = \{0, \ 1, \ \eta, \ \eta^2, \ \eta^3, \ \eta^4, \ \eta^5, \ \eta^6, \ \eta^7 \}$$

degree 1, and the two elements of order 4 (and degree 2), roots of $X^2 + 1$, are $\zeta^2 = \eta^6$ and $\zeta^6 = \eta^2$. The element $\zeta^4 = \eta^4 = -1$ is the element of order 2 and

Decomposition of Φ_{11} over ${f F}3$

Exercise 41.

Check that 3 has order 5 modulo 11 and that

 F_{3} is the decomposition of $X^{11} - 1$ into irreducible factors over

$$^{11}-1 = (X-1)(X^5-X^3+X^2-X-1)(X^5+X^4-X^3+X^2-1)$$

$$(-1) = (X-1)(X^{5}-X^{3}+X^{2}-X-1)(X^{5}+X^{4}-X^{3}+X^{2}-1)$$

References

W. CHEN – *Discrete Mathematics*, 201 pp. (web edition, 2008).

 $\texttt{http://www.maths.mq.edu.au/}{\sim}\texttt{wchen/ln.html/}$

- M. DEMAZURE, Cours d'algèbre, Nouvelle Bibliothèque Mathématique [New Mathematics Library], 1, Cassini, Paris, 1997.Primalité. Divisibilité. Codes. [Primality. Divisibility.
- D. S. DUMMIT & R. M. FOOTE, Abstract algebra, John Wiley & Sons Inc., Hoboken, NJ, third ed., 2004.

Codes].

S. LANG – Algebra, vol. 211 of Graduate Texts in Mathematics, Springer-Verlag, New York, third ed., 2002. In French: Algèbre, Third edition, Dunod, 2004.

77 / 88

References

R. LIDL & H. NIEDERREITER – Introduction to finite fields and their applications, Cambridge Univ. Press, 1994.

http://www.amazon.com/gp/reader/0521460948/ref=sib_dp_ptu#re

- G.L. MULLEN, C. MUMMERT *Finite Fields and Applications*, Student mathematical library, **41**, AMS 2007.
- V. SHOUP A Computational Introduction to Number Theory and Algebra (Version 2) second print editon, Fall 2008.

http://shoup.net/ntb/

On projective planes of order n (after Claude Levesque)

The rows of the incidence matrix of a projective plane of order n form a code.

Definition. Let $n \ge 2$ be an integer. A projective plane of order n is given by $n^2 + n + 1$ *points* and $n^2 + n + 1$ *lines* with the property that

- Each line contains exactly n + 1 points,
- Each point belongs to exactly n + 1 lines
- Two different lines intersect in exactly one point,
 There exist for a point on there of which helper to a start of the second seco
- There exist four points no three of which belong to the same line.

88/62 신하오 홈 소료 > 소립 > 소립 > 소

Latin squares

Definition. A *latin square* of order n is a $n \times n$ matrix with entries in $\{1, 2, ..., n\}$ with the property that

- Each line contains n different elements,
- Each column contains n different elements,

NOTE. Instead of $\{1, 2, \ldots, n\}$ one can use a set of n elements.

order n are said to be *orthogonal* if the cardinality of **Definition**. The two latin squares $A = (a_{ij})$ and $B = (b_{ij})$ of

$$\{(a_{ij}, b_{ij}) \ ; \ 1 \le i \le n, \ 1 \le j \le n\}$$

is equal to n^2 .

EXAMPLE

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$$

are orthogonal.

81/88

Mutually orthogonal latin squares

EXAMPLE. Let

and
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

squares.

Then $\{A, B, C\}$ is a set of three mutually orthogonal latin

$$C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \end{pmatrix}.$$

Two theorems, one conjecture

Theorem 42.

there exist n-1 mutually orthogonal latin squares $n \times n$. There exists a projective finite plane of order n if and only if

squares $n \times n$, then $n = p^s$ with p prime and $s \ge 1$. **Conjecture.** If there exist n-1 mutually orthogonal latin

Theorem 43.

q-1 mutually orthogonal latin squares $q \times q$. Suppose that $q = p^s$ with p prime and $s \ge 1$. Then there exist

dul 83 / 88

Proof of Theorem 43

Let

$$\mathbf{F}_q = \{a_0 = 0, \; a_1 = 1, \; a_2, \dots, a_{q-1}\}$$

of size $q \times q$ by specifying that be the field with q elements. Let us define q-1 matrices ${\cal M}^{({\rm s})}$

$$M_{ii}^{(s)} = a_i a_s + a_i$$

orthogonal latin squares $q \times q$. for $1 \le s \le q-1$, $0 \le i \le q-1$, $0 \le j \le q-1$. We want to prove that $M^{(1)}, \ldots, M^{(q-1)}$ form a set of q-1 mutually

Proof of Theorem 43: latin squares

(i) Let us consider a given $s \in \{1, \ldots, q-1\}$ and let us prove that $M^{(s)}$ is a latin square. It is clear that for any given row, say the *i*-th row, its elements

$$a_i a_s + a_0, \ a_i a_s + a_1, \dots, a_i a_s + a_{q-1}$$

are all different. Similarly, for a given column, say the j-th column, its elements

$$a_0a_s + a_j, \ a_1a_s + a_j, \dots, a_{q-1}a_s + a_j$$

are all different.

▲□▼▲□▼▲□▼▲□▼▲□>へへ)

dul

87 / 88

Proof of Theorem 43: orthogonality

(ii) Now, let us prove that for s_1 , s_2 in $\{1, \ldots, q-1\}$ with $s_1 \neq s_2$, the couples of latin squares $M^{(s_1)}$ and $M^{(s_2)}$ are mutually orthogonal, namely let us prove that the couples

$$\left\{ \left(M_{ij}^{(\mathrm{s}_{1})}, M_{ij}^{(\mathrm{s}_{2})} \right) \; ; \; 0 \leq i \leq q-1, \; 0 \leq j \leq q-1 \right\}$$

are all different. We will do it by contradiction. So let us suppose that there exist $i,\ j,\ u,\ v$ in $\{1,\ldots,q-1\}$ such that $(i,j)\neq(u,v)$ and

$$(M_{ij}^{(s_1)}, M_{ij}^{(s_2)}) = (M_{uv}^{(s_1)}, M_{uv}^{(s_2)}).$$

Hence there exist i, j, u, v in $\{1, \ldots, q-1\}$ such that

$$M_{ij}^{(s_1)} = M_{uv}^{(s_1)} \quad \text{and} \quad M_{ij}^{(s_2)} = M_{uv}^{(s_2)}.$$

End of the proof of Theorem 43

Hence

$$\begin{cases} a_i a_{s_1} + a_j = a_u a_{s_1} + a_v \\ a_i a_{s_2} + a_j = a_u a_{s_2} + a_v, \end{cases}$$

namely

$$a_{s_1}(a_i - a_u) = a_v - a_j = a_{s_2}(a_i - a_u).$$

If $a_i = a_u$, then $a_v = a_j$, a contradiction. So suppose $a_i \neq a_u$. Then, after cancellation, $a_{s_1} = a_{s_2}$, a contradiction.

Reference for finite projective planes

D. STINSON – Combinatorial designs. Constructions and *analysis*. Springer-Verlag, New York, 2004.