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the
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W
hat

I
told

you
on

Friday

E
xam

ples
of

finite
fields

are
the

fields
F

p
=

Z
/pZ

w
ith

p
elem

ents.

T
he

ring
Z

/n
Z

has
characteristic

n
:

that
m

eans
that

adding
1

less
than

n
tim

es
produces

a
non–zero

elem
ent

of
the

ring,
but

adding
it

n
tim

es
produces

0:

1
+

1
+

···+
1

=
0.

O
n

the
other

hand,
the

characteristic
of

a
field

is
a

prim
e

num
ber.

H
ence

Z
/n

Z
is

a
field

if
and

only
if

n
is

a
prim

e
num

ber.

A
lso

if
n

is
com

posite,
say

n
=

ab
w

ith
a

>
1

and
b

>
1,

then
the

class
of

a
is

a
zero

divisor
in

Z
/n

Z
,
hence

this
ring

is
not

a
field.
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W
hat

I
told

you
on

Friday
(continued)

If
F

is
a

field
w

ith
q

elem
ents,

then
the

characteristic
of

F
is

a
prim

e
num

ber
p,

w
hich

m
eans

that
F

contains
F

p ,
and

the
num

ber
of

elem
ents

of
F

is
a

pow
er

of
p,

say
p

s.
T

his
num

ber
s

is
the

degree
of

the
F

p –
vector

space
F

.
C
onversely,

for
any

prim
e

num
ber

p
and

any
positive

integer
s,

there
exists

a
field

F
w

ith
p

s
elem

ents.
T
o

construct
such

a
field,

w
e

start
w

ith
an

irreducible
polynom

ial
f
∈

F
p [X

]
of

degree
s

(there
is

at
least

one),
one

considers
the

ideal
(f

)
in

F
p [X

]
generated

by
f
.

T
he

field
F

w
e

are
looking

for
can

be
view

ed
as

F
p [X

]/(f
).

If
α

denotes
the

class
of

X
m

odulo
f
,

then
F

=
F

p (α
)

=
F

p [α
].

For
instance

the
field

w
ith

4
elem

ents
can

be
w

ritten
as

F
4

=
{0,

1,
α
,

α
2}

w
ith

α
2

=
α

+
1.
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W
hat

I
told

you
on

Friday
(continued)

G
iven

a
finite

field
F

q
w

ith
q

elem
ents

and
an

elem
ent

α
w

hich
is

algebraic
over

F
q

of
degree

n
,
the

irreducible
polynom

ial
of

α
over

F
q

splits
com

pletely
in

the
field

F
q (α

)
into

(X
−

α
)(X

−
α

q)···(X
−

α
q

n
−

1).

H
ence

n
is

the
sm

allest
integer

such
that

α
q

n
=

α
.

For
i≥

0
w
e

w
rite

F
rob

q
i(α

)
=

α
q

i.

N
ow

the
goal

is
to

find
the

irreducible
polynom

ials
over

F
q .

W
e

shall
see

that
they

are
the

irreducible
factors

of
X

m
−

X
,

w
here

m
a

pow
er

of
q.

T
his

is
a

reason
to

study
the

polynom
ials

X
m
−

1−
1

w
here

m
−

1
and

q
are

relatively
prim

e.
W

e
first

factor
them

over
Z

,
and

after
that

over
F

q .
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C
yclotom

ic
P
olynom

ials

Let
n

be
a

positive
integer.

A
n
–th

root
of

unity
in

a
field

K
is

an
elem

ent
of

K
×

w
hich

satifies
x

n
=

1.
T

his
m

eans
that

it
is

a
torsion

elem
ent

of
order

dividing
n
.

A
prim

itive
n
–th

root
of

unity
is

an
elem

ent
of

K
×

of
order

n
:

for
k

in
Z

,
the

equality
x

k
=

1
holds

if
and

only
if

n
divides

k
.

For
each

positive
integer

n
,
the

n
–th

roots
of

unity
in

K
form

a
finite

subgroup
of

K
×to

rs
having

at
m

ost
n

elem
ents.

T
he

union
of

all
these

subgroups
of

K
×tors

is
just

the
torsion

group
K
×to

rs
itself.

T
his

group
contains

1
and

−
1,

but
it

could
have

just
one

elem
ent,

like
for

F
2

=
Z

/2Z
or

F
2 (X

)
for

instance.
T

he
torsion

subgroup
of

R
×

is
{±

1},
the

torsion
subgroup

of
C
×

is
infinite.
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X
m
−

1
w

ith
m

m
ultiple

of
p

Let
K

be
a

field
of

finite
characteristic

p
and

let
n

be
a

positive
integer.

W
rite

n
=

p
rm

w
ith

r
≥

0
and

p
gcd

(p,m
)

=
1.

In
K

[X
],

w
e

have

X
n
−

1
=

(X
m
−

1)
p

r.

If
x
∈

K
satisfies

x
n

=
1,

then
x

m
=

1.
T

herefore,
the

order
of

a
finite

subgroup
of

K
×

is
prim

e
to

p.

It
also

follow
s

that
the

study
of

X
n
−

1
reduces

to
the

study
of

X
m
−

1
w

ith
m

prim
e

to
p.
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C
yclotom

ic
polynom

ials
and

roots
of

unity

Let
n

be
a

positive
integer

and
Ω

be
an

algebraically
closed

field
of

characteristic
either

0
or

a
prim

e
num

ber
not

dividing
n
.

T
hen

the
num

ber
of

prim
itive

n
-th

roots
of

unity
in

Ω
is

ϕ
(n

).
T

hese
ϕ
(n

)
elem

ents
are

the
generators

of
the

unique
cyclic

subgroup
C

n
of

order
n

of
Ω
×
,
w

hich
is

the
group

of
n
-th

roots
of

unity
in

Ω
:

C
n

=
{x
∈

Ω
;

x
n

=
1}.
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C
yclotom

ic
polynom

ials
over

C
[X

]

T
he

m
ap

C
→

C
×

defined
by

z
%→

e
2
iπ

z
/n

is
a

m
orphism

from
the

additive
group

C
to

the
m

ultiplicative
group

C
×
;
this

m
orphism

is
periodic

w
ith

period
n
.

H
ence,

it
factors

to
a

m
orphism

from
the

group
C

/n
Z

to
C
×
:

w
e

denote
it

also
by

z
%→

e
2
iπ

z
/n.

T
he

m
ultiplicative

group
(Z

/n
Z

) ×
of

the
ring

Z
/n

Z
is

the
set

of
classes

of
integers

prim
e

to
n
.

Its
order

is
ϕ
(n

),
w

here
ϕ

is
E
uler’s

function.

T
he

ϕ
(n

)
com

plex
num

bers

e
2
iπ

k
/n,

k
∈

(Z
/n

Z
) ×

,

are
the

prim
itive

roots
of

unity
in

C
.
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C
yclotom

ic
polynom

ial
of

index
n

For
n

a
positive

integer,
w
e

define
a

polynom
ial

Φ
n (X

)∈
C

[X
]
by

(16)
Φ

n (X
)

=
∏

k∈
(Z

/
n
Z

) × (X
−

e
2
iπ

k
/n).

T
his

polynom
ial

is
called

the
cyclotom

ic
polynom

ial
of

index
n
;
it

is
m

onic
and

has
degree

ϕ
(n

).
S
ince

X
n
−

1
=

n−
1

∏k
=

0 (X
−

e
2
iπ

k
/n),

the
partition

of
the

set
of

roots
of

unity
according

to
their

order
show

s
that

(17)
X

n
−

1
=

∏1≤
d≤

n
d|n

Φ
d (X

).
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A
lem

m
a

of
E
uler

T
he

degree
of

X
n
−

1
is

n
,
and

the
degree

of
Φ

d (X
)

is
ϕ
(d),

hence,
from

(17)
one

deduces:

L
em

m
a

1
8
.

For
any

positive
integer

n
,

n
=

∑d|n

ϕ
(d).
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C
yclotom

y

T
he

nam
e

cyclo
to

m
y

com
es

from
the

G
reek

and
m

eans
divide

the
circle.

T
he

com
plex

roots
of

X
n
−

1
are

the
vertices

of
a

regular
polygon

w
ith

n
sides.

From
(17),

it
follow

s
that

an
equivalent

definition
of

the
polynom

ials
Φ

1 ,Φ
2 ,...

in
Z

[X
]
is

by
induction

on
n
:

(19)
Φ

1 (X
)

=
X
−

1,
Φ

n (X
)

=
X

n
−

1
∏d$=

n
d|n

Φ
d (X

) ·

T
his

is
the

m
ost

convenient
w
ay

to
com

pute
the

cyclotom
ic

polynom
ials

Φ
n

for
sm

all
values

of
n
.
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M
öbius

function

T
he

M
öbius

function
µ

(see,
for

instance,
[3]§

2.9)
is

the
m

ap
from

the
positive

integers
to

{0,1,−
1}

defined
by

the
properties

µ
(1)

=
1,

µ
(p)

=
−

1
for

p
prim

e,
µ
(p

m
)

=
0

for
p

prim
e

and
m
≥

2,
and

µ
(ab)

=
µ
(a)µ

(b)
if

a
and

b
are

relatively
prim

e.
H

ence,
µ
(a)

=
0

if
and

only
if

a
has

a
square

factor,
w

hile
for

a
squarefree

num
ber

a
w

hich
is

a
product

of
s

distinct
prim

es
w
e

have
µ
(a)

=
(−

1)
s:

µ
(p

1 ···p
s )

=
(−

1)
s.
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M
öbius

inversion
form

ula
T

here
are

several
variants

of
the

M
öbius

inversion
form

ula.
H

ere
is

the
m

ost
classical

one:

L
em

m
a

2
0
.

[M
öbius

inversion
form

ula]
Let

f
and

g
be

tw
o

m
aps

defined
on

the
set

of
positive

integers
w

ith
values

in
an

additive
group.

T
hen

the
tw

o
follow

ing
properties

are
equivalent:

(i)
For

any
integer

n
≥

1,

g(n
)

=
∑d|n

f
(d).

(ii)
For

any
integer

n
≥

1,

f
(n

)
=

∑d|n

µ
(n

/d)g(d).
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M
öbius

inversion
form

ula

For
instance,

Lem
m

a
18

∑d|n

ϕ
(d)

=
n

for
all

n
≥

1

is
equivalent

toϕ
(n

)
=

∑d|n

µ
(n

/d)d
for

all
n
≥

1.
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M
öbius

inversion
form

ula
(again)

A
n

equivalent
statem

ent
of

the
M

öbius
inversion

form
ula

is
the

follow
ing

m
ultiplicative

version,
w

hich
deals

w
ith

tw
o

m
aps

f
,
g

from
the

positive
integers

into
an

abelian
m

ultiplicative
group.

T
he

tw
o

follow
ing

properties
are

equivalent:
(i)

For
any

integer
n
≥

1,

g(n
)

=
∏d|n

f
(d).

(ii)
For

any
integer

n
≥

1,

f
(n

)
=

∏d|n

g(d)
µ
(n

/d
).

For
instance,

w
hen

G
is

the
m

ultiplicative
group

Q
(X

) ×
,
w
e

have
Φ

n (X
)

=
∏d|n

(X
d−

1)
µ
(n

/d
).
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First
exam

ples
O

ne
has

Φ
2 (X

)
=

X
2−

1

X
−

1
=

X
+

1,
Φ

3 (X
)

=
X

3−
1

X
−

1
=

X
2+

X
+

1,

and
m

ore
generally,

for
p

prim
e

Φ
p (X

)
=

X
p−

1

X
−

1
=

X
p−

1
+

X
p−

2
+

···+
X

+
1.

T
he

next
cyclotom

ic
polynom

ials
are

Φ
4 (X

)
=

X
4−

1

X
2−

1
=

X
2
+

1
=

Φ
2 (X

2),

Φ
6 (X

)
=

X
6−

1

(X
3−

1)(X
+

1)
=

X
3
+

1

X
+

1
=

X
2−

X
+

1
=

Φ
3 (−

X
).40
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E
xercise

E
xercise

2
1
.

a)
L
et

n
b
e

a
p
ositive

integer.
P

rove

ϕ
(2n

)
=

{
ϕ
(n

)
if

n
is

od
d
,

2ϕ
(n

)
if

n
is

even
,

Φ
2
n (X

)
=

{
(−

1)
nΦ

n (−
X

)
if

n
is

od
d
,

Φ
n (X

2)
if

n
is

even
.

H
i
n
t
:

F
or

a
geom

etric
p
roof,

cu
t

th
e

circle
in

2n
p
ieces

in
p
lace

of
n
.

C
om

p
are

th
e

p
osition

s
on

th
e

u
n
it

circle
of

th
e

roots
of

th
e

tw
o

d
egree

n
p
olyn

om
ials

X
n
−

1
an

d
X

n
+

1.
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E
xercise

(continued)
b)

D
educeΦ

8 (X
)

=
X

4
+

1,
Φ

12 (X
)

=
X

4−
X

2
+

1

and
Φ

2
! (X

)
=

X
2

!−
1
+

1
for

#≥
1.

c)
Let

p
be

a
prim

e
and

m
≥

1.
P
rove

that
if

p|m
,
then

Φ
m

(X
p)

=
Φ

p
m

(X
)

and
ϕ
(pm

)
=

pϕ
(m

)

w
hile

if
gcd

(p,m
)

=
1,

then

Φ
m

(X
p)

=
Φ

p
m

(X
)Φ

m
(X

)
and

ϕ
(pm

)
=

(p
−

1)ϕ
(m

).

d)
P
rove

that

Φ
p

r(X
)

=
X

p
r−

1(p−
1
)
+

X
p

r−
1(p−

2
)
+

···+
X

p
r−

1
+

1

w
hen

p
is

a
prim

e
and

r
≥

1.
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T
he

cyclotom
ic

polynom
ial

over
Z

T
h
eorem

2
2
.

For
any

positive
integer

n
,
the

polynom
ial

Φ
n (X

)
has

its
coeffi

cients
in

Z
.

M
oreover,

Φ
n (X

)
is

irreducible
in

Z
[X

].
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Φ
n (X

)∈
Z

[X
]

P
roof

of
the

first
part

of
T

heorem
22.

W
e

check
Φ

n (X
)∈

Z
[X

]
by

induction
on

n
.

T
he

results
holds

for
n

=
1,

since
Φ

1 (X
)

=
X
−

1.
A
ssum

e
Φ

m
(X

)∈
Z

[X
]
for

all
m

<
n
.

From
the

induction
hypothesis,

it
follow

s
that

h
(X

)
=

∏d|n
d$=

n

Φ
d (X

)

is
m

onic
w

ith
coeffi

cients
in

Z
.

W
e

divide
X

n
−

1
by

h
in

Z
[X

]:
let

Q
∈

Z
[X

]
be

the
quotient

and
R
∈

Z
[X

]
the

rem
ainder:

X
n
−

1
=

h
(X

)Q
(X

)
+

R
(X

).

W
e

also
have

X
n
−

1
=

h
(X

)Φ
n (X

)
in

C
[X

],
as

show
n

by
(17).

From
the

unicity
of

the
quotient

and
rem

ainder
in

the
E
uclidean

division
in

C
[X

],
w
e

deduce
Q

=
Φ

n
and

R
=

0,
hence,

Φ
n
∈

Z
[X

].
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Irreducibility
of

Φ
n

over
Z

W
e

now
show

that
Φ

n
is

irreducible
in

Z
[X

].
S
ince

it
is

m
onic,

its
content

is
1.

It
rem

ains
to

check
that

it
is

irreducible
in

Q
[X

].
H

ere
is

a
proof

of
the

irreducibility
of

the
cyclotom

ic
polynom

ial
in

the
special

case
w

here
the

index
is

a
prim

e
num

ber
p.

It
rests

on
E
isenstein’s

C
riterion:

P
ro

p
o
sitio

n
2
3

(E
isen

stein
criterio

n
).

Let
C

(X
)

=
c
0 X

d
+

···+
c
d ∈

Z
[X

]

and
let

p
be

a
prim

e
num

ber.
A
ssum

e
C

to
be

product
of

tw
o

polynom
ials

in
Z

[X
]
of

positive
degrees.

A
ssum

e
also

that
p

divides
c
i
for

1
≤

i≤
d

but
that

p
does

not
divide

c
0 .

T
hen

p
2

divides
c
d .
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P
roof

of
E
isenstein

criterion

W
e

denote
by

Ψ
p

the
surjective

m
orphism

of
rings

(reduction
m

odulo
p):

(24)
Ψ

p
:
Z

[X
]→

F
p [X

],

w
hich

m
aps

X
to

X
and

Z
onto

F
p

by
reduction

m
odulo

p
of

the
coeffi

cients.
Its

kernel
is

the
principal

ideal
pZ

[X
]
=

(p)
of

Z
[X

]
generated

by
p.

Let

A
(X

)
=

a
0 X

n
+

···+
a

n
and

B
(X

)
=

b
0 X

m
+

···+
b
m

be
tw

o
polynom

ials
in

Z
[X

]
of

degrees
m

and
n

such
that

C
=

A
B

.
H

ence,
d

=
m

+
n
,
c
0

=
a

0 b
0 ,

c
d

=
a

n b
m

.
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P
roof

of
E
isenstein

criterion
(continued)

W
rite

Ã
=

Ψ
p (A

),
B̃

=
Ψ

p (B
),

C̃
=

Ψ
p (C

),

Ã
(X

)
=

ã
0 X

n
+

···+
ã

n ,
B̃

(X
)

=
b̃
0 X

m
+

···+
b̃
m

and
C̃

(X
)

=
c̃
0 X

d
+

···+
c̃
d .

B
y

assum
ption

c̃
0 '=

0,
c̃
1

=
···

=
c̃
d

=
0,

hence,
C̃

(X
)

=
c̃
0 X

d
=

Ã
(X

)B̃
(X

)
w

ith
c̃
0

=
ã

0 b̃
0 '=

0.
N

ow
Ã

and
B̃

have
positive

degrees
n

and
m

,
hence,

ã
n

=
b̃
m

=
0,

w
hich

m
eans

that
p

divides
a

n
and

b
m

,
and,

therefore,
p

2
divides

c
d

=
a

n b
m

.

47
/
88

Irreducibility
of

Φ
p

over
Z

P
roof

of
the

irreducibility
of

Φ
p

over
Z

.
W

e
set

X
−

1
=

Y
,
so

that,
in

Z
[X

],

Φ
p (Y

+
1)

=
(Y

+
1)

p−
1

Y
=

Y
p−

1+

(
p1 )

Y
p−

2+
···+

(
p2 )

Y
+

p.

W
e

observe
that

p
divides

all
coeffi

cients
–

but
the

leading
one

–
of

the
m

onic
polynom

ial
Φ

p (Y
+

1)
and

that
p

2
does

not
divide

the
constant

term
.

W
e

conclude
by

using
E
isenstein’s

C
riterion

P
roposition

23.
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P
roof

of
the

irreducibility
of

Φ
n

over
Z

W
e

now
consider

the
general

case.
Let

f
∈

Z
[X

]
be

an
irreducible

factor
of

Φ
n

w
ith

a
positive

leading
coeffi

cient
and

let
g
∈

Z
[X

]
satisfy

f
g

=
Φ

n .
O

ur
goal

is
to

prove
f

=
Φ

n
and

g
=

1.
S
ince

Φ
n

is
m

onic,
the

sam
e

is
true

for
f

and
g.

Let
ζ

be
a

root
of

f
in

C
and

let
p

be
a

prim
e

num
ber

w
hich

does
not

divide
n
.

S
ince

ζ
p

is
a

prim
itive

n
-th

root
of

unity,
it

is
a

zero
of

Φ
n .

T
he

first
and

m
ain

step
of

the
proof

is
to

check
that

f
(ζ

p)
=

0.
If

ζ
p

is
not

a
root

of
f
,
then

it
is

a
root

of
g.

W
e

assum
e

g(ζ
p)

=
0

and
w
e

shall
reach

a
contradiction.
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P
roof

of
the

irreducibility
of

Φ
n

over
Z

(continued)

S
ince

f
is

irreducible,
f

is
the

m
inim

al
polynom

ial
of

ζ,
hence,

from
g(ζ

p)
=

0,
w
e

infer
that

f
(X

)
divides

g(X
p).

W
rite

g(X
p)

=
f
(X

)h
(X

)
and

consider
the

m
orphism

Ψ
p

of
reduction

m
odulo

p
already

introduced
in

(24).
D

enote
by

F
,

G
,
H

the
im

ages
of

f
,
g,

h
.

R
ecall

that
f
g

=
Φ

n
in

Z
[X

],
hence,

F
(X

)G
(X

)
divides

X
n
−

1
in

F
p [X

].
T

he
assum

ption
that

p
does

not
divide

n
im

plies
that

X
n
−

1
has

no
square

factor
in

F
p [X

].
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P
roof

of
the

irreducibility
of

Φ
n

over
Z

(continued)

Let
P
∈

Z
[X

]
be

an
irreducible

factor
of

F
.

From
G

(X
p)

=
F

(X
)H

(X
),

it
follow

s
that

P
(X

)
divides

G
(X

p).
B
ut

G
∈

F
p [X

],
hence

(see
Lem

m
a

5),
G

(X
p)

=
G

(X
)
p

and,
therefore,

P
divides

G
(X

).
N

ow
P

2
divides

the
product

F
G

,
w

hich
is

a
contradiction.

W
e

have
checked

that
for

any
root

ζ
of

f
in

C
and

any
prim

e
num

ber
p

w
hich

does
not

divide
n
,
the

num
ber

ζ
p

is
again

a
root

of
f
.

B
y

induction
on

the
num

ber
of

prim
e

factors
of

m
,

it
follow

s
that

for
any

integer
m

w
ith

gcd
(m

,n
)

=
1

the
num

ber
ζ

m
is

a
root

of
f
.

N
ow

f
vanishes

at
all

the
prim

itive
roots

of
unity,

hence,
f

=
Φ

n
and

g
=

1.
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Second
proof

of
P
roposition

3

T
he

follow
ing

alternative
proof

(not
using

the
exponent)

of
P
roposition

3
is

instructive,
since

it
involves

cyclotom
ic

polynom
ials.

Let
K

be
a

field
and

G
a

finite
subgroup

of
K
×

of
order

n
.

For
any

divisor
d

of
n
,
denote

by
N

G
(d)

the
num

ber
of

elem
ents

in
G

of
order

d.
B
y

Lagrange’s
T

heorem

(25)
n

=
∑d|n

N
G
(d).
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Second
proof

of
P
roposition

3
(C

ontinued)

Let
d

be
a

divisor
of

n
.

If
N

G
(d)

>
0,

that
is,

if
there

exists
an

elem
ent

ζ
in

G
of

order
d,

then
the

cyclic
subgroup

of
G

generated
by

ζ
has

order
d,

hence
it

has
ϕ
(d)

generators.
T

hese
ϕ
(d)

elem
ents

in
K

are
roots

of
Φ

d
and,

therefore,
they

are
all

the
roots

of
Φ

d
in

K
.

It
follow

s
that

there
are

exactly
ϕ
(d)

elem
ents

of
order

d
in

G
.
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Second
proof

of
P
roposition

3
(C

ontinued)

T
his

proves
that

N
G
(d)

is
either

0
or

ϕ
(d).

From
(25)

and
Lem

m
a

18,
w
e

deduce

n
=

∑d|n

N
G
(d)≤

∑d|n

ϕ
(d)

=
n
,

hence,
N

G
(d)

=
ϕ
(d)

for
all

d|n
.

In
particular

N
G
(n

)
>

0,
w

hich
m

eans
that

G
is

cyclic.
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C
yclotom

ic
field

of
level

n

Let
n

be
a

positive
integer.

T
he

cyclotom
ic

field
of

level
n

over
Q

isR
n

=
Q

({
e
2
iπ

k
/n

;
k
∈

(Z
/n

Z
) × })

⊂
C

.

T
his

is
the

splitting
field

of
Φ

n
over

Q
.

If
ζ
∈

C
is

any
prim

itive
root

of
unity,

then
R

n
=

Q
(ζ)

and
{1,ζ,...,ζ

ϕ
(n

)−
1}

is
a

basis
of

R
n

as
a

Q
–vector

space.
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A
ut(R

n /Q
)

P
ro

p
o
sitio

n
2
6
.

T
here

is
a

canonical
isom

orphism
betw

een
A

u
t(R

n /Q
)

and
the

m
ultiplicative

group
(Z

/n
Z

) ×
.

P
roof.

Let
ζ
n

be
a

prim
itive

n
-th

root
of

unity.
For

ϕ
∈

A
u
t(R

n /Q
),

define
θ(ϕ

)∈
(Z

/n
Z

) ×
by

ϕ
(ζ

n )
=

ζ
θ(ϕ

)
n

.

T
hen

θ
is

a
group

isom
orphism

from
A

u
t(R

n /Q
)

onto
(Z

/n
Z

) ×
.

E
xam

p
le

2
7
.

T
he

subfield
of

R
n

fixed
by

the
elem

ent
θ
−

1({1,−
1})

of
A

u
t(R

n /Q
)

is
the

m
axim

al
real

subfield
of

R
n :

R
+n

=
Q

(ζ
n

+
ζ
−

1
n

)
=

Q
(cos(2π

/n
) )

=
R

n
∩

R

w
ith

[R
n

:
R

+n
]
=

2.
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C
yclotom

ic
P
olynom

ials
over

a
finite

field

S
ince

Φ
n

has
coeffi

cients
in

Z
,
for

any
field

K
,
w
e

can
view

Φ
n (X

)
as

an
elem

ent
in

K
[X

]:
in

zero
characteristic,

this
is

plain
since

K
contains

Q
;
in

finite
characteristic

p,
one

considers
the

im
age

of
Φ

n
under

the
m

orphism
Ψ

p
introduced

in
(24):

w
e

denote
again

this
im

age
by

Φ
n .

E
xercise

2
8
.

P
rove

that
in

characteristic
p,

for
r
≥

1
and

m
≥

1,

Φ
m

p
r(X

)
=

Φ
m

(X
)
p

r−
1(p−

1).
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R
oots

of
Φ

n (X
)

P
ro

p
o
sitio

n
2
9
.

Let
K

be
a

field
and

let
n

be
a

positive
integer.

A
ssum

e
that

K
has

characteristic
either

0
or

else
a

prim
e

num
ber

p
prim

e
to

n
.

T
hen

the
polynom

ial
Φ

n (X
)

is
separable

over
K

and
its

roots
in

K
are

exactly
the

prim
itive

n
–th

roots
of

unity
w

hich
belong

to
K

.

P
roof.

T
he

derivative
of

the
polynom

ial
X

n
−

1
is

n
X

n−
1.

In
K

,
w
e

have
n
'=

0
since

p
does

not
divide

n
,
hence,

X
n
−

1
is

separable
over

K
.

S
ince

Φ
n (X

)
is

a
factor

of
X

n
−

1,
it

is
also

separable
over

K
.

T
he

roots
in

K
of

X
n−

1
are

precisely
the

n
–th

roots
of

unity
contained

in
K

.
A

n
-th

root
of

unity
is

prim
itive

if
and

only
if

it
is

not
a

root
of

Φ
d

w
hen

d|n
,
d
'=

n
.

From
(19),

this
m

eans
that

it
is

a
root

of
Φ

n .
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X
q
n−

X
over

F
q

A
ccording

to
(1),

given
q

=
p

r,
the

unique
subfield

of
F

p
w

ith
q

elem
ents

is
the

set
F

q
of

roots
of

X
q−

X
in

F
p .

T
he

set
{X

−
x

;
x
∈

F
q }

is
the

set
of

all
m

onic
degree

1
polynom

ials
w

ith
coeffi

cients
in

F
q .

H
ence,

(1)
is

the
special

case
n

=
1

of
the

next
statem

ent.

T
h
eorem

3
0
.

Let
F

be
a

finite
field

w
ith

q
elem

ents
and

let
n

be
a

positive
integer.T

he
polynom

ial
X

q
n
−

X
is

the
product

of
all

irreducible
polynom

ials
in

F
[X

]
w

hose
degree

divides
n
.

In
other

term
s,

for
any

n
≥

1,

X
q

n
−

X
=

∏d|n

∏

f∈
E

q (d
) f

(X
)

w
here

E
q (d)

is
the

set
all

m
onic

irreducible
polynom

ials
in

F
q [X

]
of

degree
d.
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P
roof

of
T

heorem
30

T
he

derivative
of

X
q

n
−

X
is
−

1,
w

hich
has

no
root,

hence,
X

q
n
−

X
has

no
m

ultiple
factor

in
characteristic

p.
Let

f
∈

F
q [X

]
be

an
irreducible

factor
of

X
q

n−
X

and
α

be
a

root
of

f
in

F
p .

T
he

polynom
ial

X
q

n
−

X
is

a
m

ultiple
of

f
,

therefore,
it

vanishes
at

α
,
hence,

α
q

n
=

α
w

hich
m

eans
α
∈

F
q

n.
From

the
field

extensions

F
q ⊂

F
q (α

)⊂
F

q
n,

w
e

deduce
that

the
degree

of
α

over
F

q
divides

the
degree

of
F

q
n

over
F

q ,
that

is
d

divides
n
.
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P
roof

of
T

heorem
30

(C
ontinued)

C
onversely,

let
f

be
an

irreducible
polynom

ial
in

F
q [X

]
of

degree
d

w
here

d
divides

n
.

Let
α

be
a

root
of

f
in

F
p .

S
ince

d
divides

n
,
the

field
F

q (α
)

is
a

subfield
of

F
q

n,
hence,

α
∈

F
q

n
satisfies

α
q

n
=

α
,
and,

therefore,
f

divides
X

q
n
−

X
.

S
ince

d
divides

n
,
the

polynom
ial

X
q

n
−

X
is

a
m

ultiple
of

X
q

d−
X

,
hence

(see
exercise

8),
a

m
ultiple

of
f
.

T
his

show
s

that
X

q
n
−

X
is

a
m

ultiple
of

all
irreducible

polynom
ials

of
degree

dividing
n
.

In
the

factorial
ring

F
q [X

],
the

polynom
ial

X
q

n
−

X
,
having

no
m

ultiple
factor,

is
the

product
of

the
m

onic
irreducible

polynom
ials

w
hich

divide
it.

T
heorem

30
follow

s.
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N
q (d)
D

enote
by

N
q (d)

the
num

ber
of

elem
ents

in
E

q (d),
that

is
the

num
ber

of
m

onic
irreducible

polynom
ials

of
degree

d
in

F
q [X

].
T

heorem
30

yields,
for

n
≥

1,

q
n

=
∑d|n

dN
q (d).

From
M

öbius
inversion

form
ula

(Lem
m

a
20),

one
deduces:

N
q (n

)
=

1n

∑d|n

µ
(d)q

n
/d.

For
instance,

w
hen

#
is

a
prim

e
num

ber
not

equal
to

the
characteristic

p
of

F
q ,

(31)
N

q (#)
=

q
$−

q

#
·
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E
xercise

E
xercise

3
2
.

L
et

F
b
e

a
fi
n
ite

fi
eld

w
ith

q
elem

ents.

a)
G

ive
th

e
valu

es
of

N
2 (n

)
for

1
≤

n
≤

6.

b
)

C
h
eck

q
n

2n
≤

N
q (n

)≤
q

nn
·

c)
D

en
ote

by
p

th
e

ch
aracteristic

of
F

an
d

by
F

p
th

e
p
rim

e
su

b
fi
eld

of
F

.
C

h
eck

th
at

m
ore

th
an

h
alf

of
th

e
elem

ents
α

in
F

satisfy
F

=
F

p (α
).
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D
ecom

position
of

cyclotom
ic

polynom
ials

over
a

finite
field

In
all

this
section,

w
e

assum
e

that
n

is
not

divisible
by

the
characteristic

p
of

F
q .

W
e

apply
T

heorem
14

to
the

cyclotom
ic

polynom
ials.

T
h
eorem

3
3
.

Let
F

q
be

a
finite

field
w

ith
q

elem
ents

and
let

n
be

a
positive

integer
not

divisible
by

the
characteristic

of
F

q .
T

hen
the

cyclotom
ic

polynom
ial

Φ
n

splits
in

F
q [X

]
into

a
product

of
irreducible

factors,
all

of
the

sam
e

degree
d,

w
here

d
is

the
order

of
q

m
odulo

n
.
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P
roof

of
T

heorem
33

B
y

definition,
the

order
of

q
m

odulo
n

is
the

order
of

the
class

of
q

in
the

m
ultiplicative

group
(Z

/n
Z

) ×
(hence,

it
is

defined
if

and
only

if
n

and
q

are
relatively

prim
e),

it
is

the
sm

allest
integer

#
such

that
q

$
is

congruent
to

1
m

odulo
n
.

P
roof.

Let
ζ

be
a

root
of

Φ
n

in
a

splitting
field

K
of

the
polynom

ial
Φ

n
over

F
q .

T
he

order
of

ζ
in

the
m

ultiplicative
group

K
×

is
n
.

A
ccording

to
T

heorem
14,

the
degree

of
ζ

over
F

q
is

he
sm

allest
integer

s
≥

1
such

that
ζ

q
s−

1
=

1.
H

ence
it

is
the

sm
allest

positive
integer

s
such

that
n

divides
q

s−
1,

and
this

is
the

order
of

the
im

age
of

q
in

the
m

ultiplicative
group

(Z
/n

Z
) ×

.
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C
orollaries

S
ince

an
elem

ent
ζ
∈

F
×p

has
order

n
in

the
m

ultiplicative

group
F
×p

if
and

only
if

ζ
is

a
root

of
Φ

n ,
an

equivalent
statem

ent
to

T
heorem

33
is

the
follow

ing.

C
oro

llary
3
4
.

If
ζ
∈

F
×p

has
order

n
in

the
m

ultiplicative
group

F
×p
,
then

its
degree

d
=

[F
q (ζ)

:
F

q ]
over

F
q

is
the

order
of

q
m

odulo
n
.

C
oro

llary
3
5
.

T
he

polynom
ial

Φ
n (X

)
splits

com
pletely

in
F

q [X
]
(into

a
product

of
polynom

ials
all

of
degree

1)
if

and
only

if
q
≡

1
m

od
n
.

T
his

follow
s

from
T

heorem
33,

but
it

is
also

plain
from

P
roposition

3
and

the
fact

that
the

cyclic
group

F
×q

of
order

q
−

1
contains

a
subgroup

of
order

n
if

and
only

if
n

divides
q
−

1,
w

hich
is

the
condition

q
≡

1
m

od
n
.
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Irreducible
cyclotom

ic
polynom

ials

C
oro

llary
3
6
.

T
he

follow
ing

conditions
are

equivalent:
(i)

T
he

polynom
ial

Φ
n (X

)
is

irreducible
in

F
q [X

].
(ii)

T
he

class
of

q
m

odulo
n

has
order

ϕ
(n

).
(iii)

q
is

a
generator

of
the

group
(Z

/n
Z

) ×
.

T
his

can
be

true
only

w
hen

this
m

ultiplicative
group

is
cyclic,

w
hich

m
eans

n
is

either

2,
4,

#
s,

2#
s

w
here

#
is

an
odd

prim
e

and
s
≥

1.
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s
divides

ϕ
(q

s−
1)

C
oro

llary
3
7
.

Let
q

be
a

pow
er

of
a

prim
e,

s
a

positive
integer,

and
n

=
q

s−
1.

T
hen

q
has

order
s

m
odulo

n
.

H
ence,

Φ
n

splits
in

F
q [X

]
into

irreducible
factors,

all
of

w
hich

have
degree

s.

N
otice

that
the

num
ber

of
factors

in
this

decom
position

is
ϕ
(q

s−
1)/s,

hence
it

follow
s

that
s

divides
ϕ
(q

s−
1).
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N
um

erical
exam

ples

R
ecall

that
w
e

fix
an

algebraic
closure

F
p

of
the

prim
e

field
F

p ,
and

for
q

a
pow

er
of

p
w
e

denote
by

F
q

the
unique

subfield
of

F
p

w
ith

q
elem

ents.
O

f
course,

F
p

is
also

an
algebraic

closure
of

F
q .
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F
4E

xam
p
le

3
8
.

W
e

con
sid

er
th

e
qu

ad
ratic

exten
sion

F
4 /F

2 .
T

h
ere

is
a

u
n
iqu

e
irred

u
cib

le
p
olyn

om
ial

of
d
egree

2
over

F
2 ,

w
h
ich

is
Φ

3
=

X
2
+

X
+

1.
D

en
ote

by
ζ

on
e

of
its

roots
in

F
4 .

T
h
e

oth
er

root
is

ζ
2

w
ith

ζ
2

=
ζ

+
1

an
d

F
4

=
{0,

1,
ζ,

ζ
2}.

If
w

e
set

η
=

ζ
2,

th
en

th
e

tw
o

roots
of

Φ
3

are
η

an
d

η
2,

w
ith

η
2

=
η

+
1

an
d

F
4

=
{0,

1,
η,

η
2}.

T
h
ere

is
n
o

w
ay

to
d
istin

gu
ish

th
ese

tw
o

roots,
th

ey
p
lay

th
e

sam
e

role.
It

is
th

e
sam

e
situ

ation
as

w
ith

th
e

tw
o

roots
±

i
of

X
2
+

1
in

C
.
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F
8E

xam
p
le

3
9
.

W
e

con
sid

er
th

e
cu

b
ic

exten
sion

F
8 /F

2 .
T

h
ere

are
6

elem
ents

in
F

8
w

h
ich

are
n
ot

in
F

2 ,
each

of
th

em
h
as

d
egree

3
over

F
2 ,

h
en

ce,
th

ere
are

tw
o

irred
u
cib

le
p
olyn

om
ials

of
d
egree

3
in

F
2 [X

].
In

d
eed

,
from

(31),
it

follow
s

th
at

N
2 (3)

=
2.

T
h
e

tw
o

irred
u
cib

le
factors

of
Φ

7

are
th

e
on

ly
irred

u
cib

le
p
olyn

om
ials

of
d
egree

3
over

F
2 :

X
8−

X
=

X
(X

+
1)(X

3
+

X
+

1)(X
3
+

X
2
+

1).

T
h
e

6
=

ϕ
(7)

elem
ents

in
F
×8

of
d
egree

3
are

th
e

six
roots

of
Φ

7 ,
h
en

ce,
th

ey
h
ave

ord
er

7.
If

ζ
is

any
of

th
em

,
th

en

F
8

=
{0,

1,
ζ,

ζ
2,

ζ
3,

ζ
4,

ζ
5,

ζ
6}.
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F
8

(C
ontinued)

If
ζ

is
a

root
of

Q
1 (X

)
=

X
3
+

X
+

1,
then

the
tw

o
other

roots
are

ζ
2

and
ζ

4,
w

hile
the

roots
of

Q
2 (X

)
=

X
3
+

X
2
+

1
are

ζ
3,

ζ
5

and
ζ

6.
N

otice
that

ζ
6

=
ζ
−

1
and

Q
2 (X

)
=

X
3Q

1 (1/X
).

S
et

η
=

ζ
−

1.
T

hen

F
8

=
{0,

1,
η,

η
2,

η
3,

η
4,

η
5,

η
6}

and
Q

1 (X
)

=
(X
−

ζ)(X
−

ζ
2)(X

−
ζ

4),

Q
2 (X

)
=

(X
−

η)(X
−

η
2)(X

−
η

4).
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F
8

(C
ontinued)

For
transm

ission
of

data,
it

is
not

the
sam

e
to

w
ork

w
ith

ζ
or

w
ith

η
=

ζ
−

1.
For

instance,
the

m
ap

x
%→

x
+

1
is

given
by

ζ
+

1
=

ζ
3,

ζ
2
+

1
=

ζ
6,

ζ
3
+

1
=

ζ,

ζ
4
+

1
=

ζ
5,

ζ
5
+

1
=

ζ
4,

ζ
6
+

1
=

ζ
2

and
by

η
+

1
=

η
5,

η
2
+

1
=

η
3,

η
3
+

1
=

η
2,

η
4
+

1
=

η
6,

η
5
+

1
=

η,
η

6
+

1
=

η
4.
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F
9E

xam
p
le

4
0
.

W
e

con
sid

er
th

e
qu

ad
ratic

exten
sion

F
9 /F

3 .
O

ver
F

3 ,

X
9−

X
=

X
(X
−

1)(X
+

1)(X
2+

1)(X
2+

X
−

1)(X
2−

X
−

1).

In
F
×9
,
th

ere
are

4
=

ϕ
(8)

elem
ents

of
ord

er
8

(th
e

fou
r

roots
of

Φ
8 )

w
h
ich

h
ave

d
egree

2
over

F
3 .

T
h
ere

are
tw

o
elem

ents
of

ord
er

4,
w

h
ich

are
th

e
roots

of
Φ

4 ;
th

ey
are

also
th

e
squ

ares
of

th
e

elem
ents

of
ord

er
8

an
d

th
ey

h
ave

d
egree

2
over

F
3 ,

th
eir

squ
are

is
−

1.
T

h
ere

is
on

e
elem

ent
of

ord
er

2,
n
am

ely
−

1,
an

d
on

e
of

ord
er

1,
n
am

ely
1.

F
rom

(31),
it

follow
s

th
at

N
3 (2)

=
3:

th
e

th
ree

m
on

ic
irred

u
cib

le
p
olyn

om
ials

of
d
egree

2
over

F
3

are
Φ

4
an

d
th

e
tw

o
irred

u
cib

le
factors

of
Φ

8 .
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F
9

(continued)
Let

ζ
be

a
root

of
X

2
+

X
−

1
and

let
η

=
ζ
−

1.
T

hen
η

=
ζ

7,
η

3
=

ζ
5

and

X
2+

X
−

1
=

(X
−

ζ)(X
−

ζ
3),

X
2−

X
−

1
=

(X
−

η)(X
−

η
3).

W
e

have

F
9

=
{0,

1,
ζ,

ζ
2,

ζ
3,

ζ
4,

ζ
5,

ζ
6,

ζ
7}

and
also

F
9

=
{0,

1,
η,

η
2,

η
3,

η
4,

η
5,

η
6,

η
7}.

T
he

elem
ent

ζ
4

=
η

4
=
−

1
is

the
elem

ent
of

order
2

and
degree

1,
and

the
tw

o
elem

ents
of

order
4

(and
degree

2),
roots

of
X

2
+

1,
are

ζ
2

=
η

6
and

ζ
6

=
η

2.
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D
ecom

position
of

Φ
11

over
F

3

E
xercise

4
1
.

C
h
eck

th
at

3
h
as

ord
er

5
m

od
u
lo

11
an

d
th

at

X
11−

1
=

(X
−

1)(X
5−

X
3+

X
2−

X
−

1)(X
5+

X
4−

X
3+

X
2−

1)

is
th

e
d
ecom

p
osition

of
X

11−
1

into
irred

u
cib

le
factors

over
F

3 .
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R
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.
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O
n

projective
planes

of
order

n
(after

C
laude

Levesque)

T
he

row
s

of
the

incidence
m

atrix
of

a
projective

plane
of

order
n

form
a

code.

D
efi

n
itio

n
.

Let
n
≥

2
be

an
integer.

A
projective

plane
of

order
n

is
given

by
n

2
+

n
+

1
points

and
n

2
+

n
+

1
lines

w
ith

the
property

that
•

E
ach

line
contains

exactly
n

+
1

points,
•

E
ach

point
belongs

to
exactly

n
+

1
lines,

•
T

w
o

diff
erent

lines
intersect

in
exactly

one
point,

•
T

here
exist

four
points

no
three

of
w

hich
belong

to
the

sam
e

line.
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Latin
squares

D
efi

n
itio

n
.

A
latin

square
of

order
n

is
a

n
×

n
m

atrix
w

ith
entries

in
{1,2,...,n}

w
ith

the
property

that
•

E
ach

line
contains

n
diff

erent
elem

ents,
•

E
ach

colum
n

contains
n

diff
erent

elem
ents,

N
O

T
E
.
Instead

of{1,2,...,n}
one

can
use

a
set

of
n

elem
ents.
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O
rthogonal

latin
squares

D
efi

n
itio

n
.

T
he

tw
o

latin
squares

A
=

(a
ij )

and
B

=
(b

ij )
of

order
n

are
said

to
be

orthogonal
if

the
cardinality

of

{
(a

ij ,b
ij )

;
1
≤

i≤
n
,

1
≤

j
≤

n }

is
equal

to
n

2.

E
X
A
M

P
LE


1

2
3

2
3

1
3

1
2 

and


1

2
3

3
1

2
2

3
1 

are
orthogonal.
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M
utually

orthogonal
latin

squares

E
X
A
M

P
LE

.
Let

A
=



1
2

3
4

2
1

4
3

3
4

1
2

4
3

2
1 

B
=



1
2

3
4

3
4

1
2

4
3

2
1

2
1

4
3 

and

C
=



1
2

3
4

4
3

2
1

2
1

4
3

3
4

1
2 

.

T
hen

{A
,

B
,

C
}

is
a

set
of

three
m

utually
orthogonal

latin
squares.
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T
w
o

theorem
s,

one
conjecture

T
h
eorem

4
2
.

T
here

exists
a

projective
finite

plane
of

order
n

if
and

only
if

there
exist

n
−

1
m

utually
orthogonal

latin
squares

n
×

n
.

C
o
n
jectu

re.
If

there
exist

n
−

1
m

utually
orthogonal

latin
squares

n
×

n
,
then

n
=

p
s

w
ith

p
prim

e
and

s
≥

1.

T
h
eorem

4
3
.

S
uppose

that
q

=
p

s
w

ith
p

prim
e

and
s
≥

1.
T

hen
there

exist
q
−

1
m

utually
orthogonal

latin
squares

q
×

q.
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P
roof

of
T

heorem
43

Let
F

q
=

{a
0

=
0,

a
1

=
1,

a
2 ,...,a

q−
1 }

be
the

field
w

ith
q

elem
ents.

Let
us

define
q−

1
m

atrices
M

(s)

of
size

q
×

q
by

specifying
that

M
(s)
ij

=
a

i a
s
+

a
j

for
1
≤

s
≤

q
−

1,
0
≤

i≤
q
−

1,
0
≤

j
≤

q
−

1.
W

e
w
ant

to
prove

that
M

(1),...,M
(q−

1)
form

a
set

of
q
−

1
m

utually
orthogonal

latin
squares

q
×

q.

84
/
88



P
roof

of
T

heorem
43:

latin
squares

(i)
Let

us
consider

a
given

s
∈

{1,...,q
−

1}
and

let
us

prove
that

M
(s)

is
a

latin
square.

It
is

clear
that

for
any

given
row

,
say

the
i–th

row
,
its

elem
ents

a
i a

s
+

a
0 ,

a
i a

s
+

a
1 ,...,a

i a
s
+

a
q−

1

are
all

diff
erent.

S
im

ilarly,
for

a
given

colum
n,

say
the

j–th
colum

n,
its

elem
ents

a
0 a

s
+

a
j ,

a
1 a

s
+

a
j ,...,a

q−
1 a

s
+

a
j

are
all

diff
erent.
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P
roof

of
T

heorem
43:

orthogonality
(ii)

N
ow

,
let

us
prove

that
for

s
1 ,

s
2

in
{1,...,q

−
1}

w
ith

s
1 '=

s
2 ,

the
couples

of
latin

squares
M

(s
1 )

and
M

(s
2 )

are
m

utually
orthogonal,

nam
ely

let
us

prove
that

the
couples

{(M
(s

1 )
ij

,M
(s

2 )
ij

)
;

0
≤

i≤
q
−

1,
0
≤

j
≤

q
−

1 }

are
all

diff
erent.

W
e

w
ill

do
it

by
contradiction.

S
o

let
us

suppose
that

there
exist

i,
j,

u
,
v

in
{1,...,q

−
1}

such
that

(i,j)'=
(u

,v)
and

(M
(s

1 )
ij

,M
(s

2 )
ij

)
=

(M
(s

1 )
u
v

,M
(s

2 )
u
v

).

H
ence

there
exist

i,
j,

u
,
v

in
{1,...,q

−
1}

such
that

M
(s

1 )
ij

=
M

(s
1 )

u
v

and
M

(s
2 )

ij
=

M
(s

2 )
u
v

.
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E
nd

of
the

proof
of

T
heorem

43

H
ence

{
a

i a
s
1
+

a
j
=

a
u a

s
1
+

a
v

a
i a

s
2
+

a
j
=

a
u a

s
2
+

a
v ,

nam
ely

a
s
1 (a

i −
a

u )
=

a
v −

a
j
=

a
s
2 (a

i −
a

u ).

If
a

i
=

a
u ,

then
a

v
=

a
j ,

a
contradiction.

S
o

suppose
a

i '=
a

u .
T

hen,
after

cancellation,
a

s
1

=
a

s
2 ,

a
contradiction.
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R
eference

for
finite

projective
planes

D
.
S
t
in

so
n

–
C
om

binatorial
designs.

C
onstructions

and
analysis.

S
pringer-V

erlag,
N

ew
Y
ork,

2004.
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