
 polynomials $X^{m-1}-1$ where $m-1$ and q are relatively prime
 We shall see that they are the irreducible factors of $X^{m}-X$ ，

 Given a finite field \mathbf{F}_{q} with q elements and an element α which
is algebraic over \mathbf{F}_{q} of degree n ，the irreducible polynomial of
α over \mathbf{F}_{q} splits completely in the field $\mathbf{F}_{q}(\alpha)$ into （pənu！quos）אер！л」 uo noर pןo子 I 子ечM

 For instance the field with 4 elements can be written as viewed as $\mathbf{F}_{p}[X] /(f)$ ．If α denotes the class of X modulo f ，then $F=\mathbf{F}_{p}(\alpha)=\mathbf{F}_{p}[\alpha]$ ．

 Conversely，for any prime number p and any positive integer s ，
 prime number p ，which means that F contains \mathbf{F}_{p} ，and the If F is a field with q elements，then the characteristic of F is a What I told you on Friday（continued）

If $x \in K$ satisfies $x^{n}=1$, then $x^{m}=1$. Therefore, the order
of a finite subgroup of K^{\times}is prime to p. Let K be a field of finite characteristic p and let n be a
positive integer. Write $n=p^{r} m$ with $r \geq 0$ and
$\operatorname{pgcd}(p, m)=1$. In $K[X]$, we have
$X^{m}-1$ with m multiple of p Let n be a positive integer. A n-th root of unity in a field K
is an element of K^{\times}which satifies $x^{n}=1$. This means that it
is a torsion element of order dividing n.
A primitive n-th root of unity is an element of K^{\times}of order n :
for k in \mathbf{Z}, the equality $x^{k}=1$ holds if and only if n divides k.
For each positive integer n, the n-th roots of unity in K form
a finite subgroup of $K_{\text {tors }}^{\times}$having at most n elements. The
union of all these subgroups of $K_{\text {tors }}^{\times}$is just the torsion group
$K_{\text {tors }}^{\times}$itself. This group contains 1 and -1 , but it could have
just one element, like for $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$ or $\mathbf{F}_{2}(X)$ for instance.
The torsion subgroup of \mathbf{R}^{\times}is $\{ \pm 1\}$, the torsion subgroup of
\mathbf{C}^{\times}is infinite.
Cyclotomic Polynomials

Cyclotomic polynomials over $\mathbf{C}[X]$
The map $\mathbf{C} \rightarrow \mathbf{C}^{\times}$defined by $z \mapsto e^{2 i \pi z / n}$ is
the additive group \mathbf{C} to the multiplicative gr
morphism is periodic with period n. Hence, it
morphism from the group $\mathbf{C} / n \mathbf{Z}$ to $\mathbf{C}^{\times}:$we
$z \mapsto e^{2 i \pi z / n}$. The multiplicative group $(\mathbf{Z} / n \mathbf{Z})^{\times}$
$\mathbf{Z} / n \mathbf{Z}$ is the set of classes of integers prime to
$\varphi(n)$, where φ is Euler's function.
The $\varphi(n)$ complex numbers
Cyclotomic polynomials over $\mathbf{C}[X]$

$$
\begin{aligned}
& \text { Let } n \text { be a positive integer and } \Omega \text { be an algebraically closed } \\
& \text { field of characteristic either } 0 \text { or a prime number not dividing } \\
& n \text {. Then the number of primitive } n \text {-th roots of unity in } \Omega \text { is } \\
& \varphi(n) \text {. These } \varphi(n) \text { elements are the generators of the unique } \\
& \text { cyclic subgroup } C_{n} \text { of order } n \text { of } \Omega^{\times} \text {, which is the group of } \\
& n \text {-th roots of unity in } \Omega \text { : } \\
& \qquad C_{n}=\left\{x \in \Omega ; x^{n}=1\right\} .
\end{aligned}
$$

Cyclotomic polynomials and roots of unity

$$
\text { Cyclotomic polynomial of index } n
$$

$$
\text { For } n \text { a positive integer, we define a polynomial }
$$

$$
\Phi_{n}(X) \in \mathbf{C}[X] \text { by }
$$

$$
(16)
$$

$$
\begin{aligned}
& \text { the partition of the set of roots of unity according to their } \\
& \text { order shows that }
\end{aligned}
$$ The degree of $X^{n}-1$ is n, and the degree of $\Phi_{d}(X)$ is $\varphi(d)$,

hence, from (17) one deduces:
Lemma 18 .
For any positive integer n,

$$
n=\sum_{d \mid n} \varphi(d) .
$$

$$
'\left({ }_{u / \Psi \Perp\urcorner Z^{2}} \partial-X\right) \coprod_{\mathrm{L}-u}^{0=y}=\mathrm{I}-{ }_{u} X
$$

This polynomial is called the cyclotomic polynomial of index

$$
n \text {; it is monic and has degree } \varphi(n) \text {. Since }
$$

A lemma of Euler

$$
\text { (17) } \quad X^{n}-1=\prod_{1<d<n} \Phi_{d}(X)
$$

polynomials Φ_{n} for small values of n.

$$
\begin{aligned}
& \frac{\mathrm{I}-{ }_{u} X}{}=(X)^{u} \Phi \quad{ }^{\prime} \mathrm{I}-X=(X)^{\mathrm{I}} \Phi \quad(6 \mathrm{~L})
\end{aligned}
$$

regular polygon with n sides.

$$
\begin{aligned}
& \text { The name cyclotomy comes from the Greek and means divide }
\end{aligned}
$$

${ }_{s}(\mathrm{I}-)=\left({ }^{s} d \ldots{ }^{\mathrm{I}} d\right) r$

 from the positive integers to $\{0,1,-1\}$ defined by the

$$
\begin{aligned}
& \text { Möbius inversion formula } \\
& \text { There are several variants of the Möbius inversion formula. } \\
& \text { Here is the most classical one: } \\
& \text { Lemma } 20 \text {. } \\
& \text { [Möbius inversion formula] Let } f \text { and } g \text { be two maps defined } \\
& \text { on the set of positive integers with values in an additive group. } \\
& \text { Then the two following properties are equivalent: } \\
& \text { (i) For any integer } n \geq 1 \text {, } \\
& \qquad g(n)=\sum_{d \mid n} f(d) \text {. } \\
& \text { (ii) For any integer } n \geq 1, \\
& \qquad f(n)=\sum_{d \mid n} \mu(n / d) g(d) . \\
& \text { Möbius inversion formula } \\
& \text { For instance, Lemma } 18 \\
& \qquad \sum_{d \mid n} \varphi(d)=n \quad \text { for all } n \geq 1 \\
& \text { is equivalent to } \\
& \qquad(n)=\sum_{d \mid n} \mu(n / d) d \quad \text { for all } n \geq 1 .
\end{aligned}
$$

Exercise (continued)
b) Deduce

$$
\Phi_{8}(X)=X^{4}+1, \quad \Phi_{12}(X)=X^{4}-X^{2}+1
$$

and $\Phi_{2^{\ell}}(X)=X^{2^{\ell-1}}+1$ for $\ell \geq 1$.
c) Let p be a prime and $m \geq 1$. Prove that if $p \mid m$, then

$$
\Phi_{m}\left(X^{p}\right)=\Phi_{p m}(X) \text { and } \varphi(p m)=p \varphi(m)
$$

while if $\operatorname{gcd}(p, m)=1$, then
$\Phi_{m}\left(X^{p}\right)=\Phi_{p m}(X) \Phi_{m}(X)$ and $\varphi(p m)=(p-1) \varphi(m)$.
d) Prove that
$\quad \Phi_{p^{r}}(X)=X^{p^{r-1}(p-1)}+X^{p^{r-1}(p-2)}+\cdots+X^{p^{r-1}}+1$
when p is a prime and $r \geq 1$.

coefficients in Z. Moreover, $\Phi_{n}(X)$ is irreducible in $\mathbf{Z}[X]$ For any positive integer n, the polynomial $\Phi_{n}(X)$ has its
 We observe that p divides all coefficients - but the leading one
$d+\Lambda\binom{\tau}{d}+\cdots+{ }_{\tau-d} X\binom{\mathrm{~T}}{d}+_{{ }_{\mathrm{I}-d} X}=\frac{\Lambda}{\mathrm{I}-{ }_{d}(\mathrm{I}+\Lambda)}=(\mathrm{I}+\Lambda)^{d} \Phi$
We set $X-1=Y$, so that, in $\mathbf{Z}[X]$,
Proof of the irreducibility of Φ_{p} over \mathbf{Z}. Irreducibility of Φ_{p} over \mathbf{Z}
Proof of the irreducibility o Irreducibility of Φ_{p} over \mathbf{Z} means that p divides a_{n} and b_{m}, and, therefore, p^{2} divides
$c_{d}=a_{n} b_{m}$. \tilde{B} have positive degrees n and m, hence, $\tilde{a}_{n}=\tilde{b}_{m}=0$, which
 By assumption $\tilde{c}_{0} \neq 0, \tilde{c}_{1}=\cdots=\tilde{c}_{d}=0$, hence, $\cdot{ }^{p_{\sim}}+\cdots+{ }_{p} X^{0} \underset{\sim}{\sim}=(X) \underset{\sim}{\sim}$

pue

${ }_{\sim}^{u}{\underset{\sim}{x}}+\cdots+{ }_{u} X^{0} \underset{\sim}{q}=(X) \underset{\sim}{q} \quad{ }_{\sim}^{u}+\cdots+{ }_{u} X^{0} \underset{\sim}{p}=(X) \underset{\sim}{V}$
divides c_{d}. divides c_{i} for $1 \leq i \leq d$ but that p does not divide c_{0}. Then p^{2} polynomials in $\mathbf{Z}[X]$ of positive degrees. Assume also that p and let p be a prime number. Assume C to be product of two Let Proposition 23 (Eisenstein criterion) polynomial in the special case where the index is a prime
number p. It rests on Eisenstein's Criterion: Here is a proof of the irreducibility of the cyclotomic its content is 1 . It remains to check that it is irreducible in We now show that Φ_{n} is irreducible in $\mathbf{Z}[X]$. Since it is monic,
its content is 1 . It remains to check that it is irreducible in Irreducibility of Φ_{n} over \mathbf{Z}
Since f is irreducible, f is the minimal polynomial of ζ, hence,
from $g\left(\zeta^{p}\right)=0$, we infer that $f(X)$ divides $g\left(X^{p}\right)$. Write
$g\left(X^{p}\right)=f(X) h(X)$ and consider the morphism Ψ_{p} of
reduction modulo p already introduced in (24). Denote by F,
G, H the images of f, g, h. Recall that $f g=\Phi_{n}$ in $\mathbf{Z}[X]$,
hence, $F(X) G(X)$ divides $X^{n}-1$ in $\mathbf{F}_{p}[X]$. The assumption
that p does not divide n implies that $X^{n}-1$ has no square
factor in $\mathbf{F}_{p}[X]$.
Proof of the irreducibility of Φ_{n} over \mathbf{Z} (continued)

 ${ }^{\cdot u} \Phi$ †○ ${ }^{\cdot} \mathrm{I}=6 \text { pue }{ }^{u} \Phi=f \text { әлолd of } \mathrm{S}!$ əәsеэ ןедәиә̊ әцł дәр!suoว мои әМ

$\cdot(p) \mathscr{D}_{N} \overbrace{\overbrace{}^{u \mid p}}^{\zeta}=u$
spe!moukjod

number ζ^{m} is a root of f. Now f vanishes at all the primitive
roots of unity, hence, $f=\Phi_{n}$ and $g=1$. root of f. By induction on the number of prime factors of m,
it follows that for any integer m with $\operatorname{gcd}(m, n)=1$ the number p which does not divide n, the number ζ^{p} is again a We have checked that for any root ζ of f in \mathbf{C} and any prime which is a contradiction. therefore, P divides $G(X)$. Now P^{2} divides the product $F G$, But $G \in \mathbf{F}_{p}[X]$, hence (see Lemma 5), $G\left(X^{p}\right)=G(X)^{p}$ and,
 Let $P \in \mathbf{Z}[X]$ be an irreducible factor of F. From

Proof of the irreducibility of Φ_{n} over \mathbf{Z} (continued)
econd proof of Proposition 3 (Continued)
This proves that $N_{G}(d)$ is either 0 or $\varphi(d)$.
From (25) and Lemma 18, we deduce

$$
n=\sum_{d \mid n} N_{G}(d) \leq \sum_{d \mid n} \varphi(d)=n,
$$

hence, $N_{G}(d)=\varphi(d)$ for all $d \mid n$.
In particular $N_{G}(n)>0$, which means that G is cyclic.

> These $\varphi(d)$ elements in K are roots of Φ_{d} and, therefore, they order d, hence it has $\varphi(d)$ generators. order d, then the cyclic subgroup of G generated by ζ has

> If $N_{G}(d)>0$, that is, if there exists an element ζ in G of
> Let d be a divisor of n.

Second proof of Proposition 3 (Continued)

$\left({ }^{[}-d\right)_{\mathrm{I}-\iota} d(X)^{u} \Phi=(X){ }^{d} d{ }^{d u} \Phi$

Prove that in characteristic p, for $r \geq 1$ and $m \geq 1$, Exercise 28. considers the image of Φ_{n} under the morphism Ψ_{p} introduced
in (24): we denote again this image by Φ_{n}. considers the image of Φ_{n} under the morphism Ψ_{p} intro $\Phi_{n}(X)$ as an element in $K[X]$: in zero characteristic, this is Since Φ_{n} has coefficients in \mathbf{Z}, for any field K, we can view

Cyclotomic Polynomials over a finite field

 Let F be a finite field with q elements and let n be a positive
integer. The polynomial $X^{q^{n}}-X$ is the product of all
 the next statement.

 According to (1), given $q=p^{r}$, the unique subfield of $\overline{\mathbf{F}}_{p}$ with
q elements is the set \mathbf{F}_{q} of roots of $X^{q}-X$ in $\overline{\mathbf{F}}_{p}$. The set
$N_{q}(d)$
Denote by $N_{q}(d)$ the number of elements in $E_{q}(d)$, that is the
number of monic irreducible polynomials of degree d in $\mathbf{F}_{q}[X]$.
Theorem 30 yields, for $n \geq 1$,

$$
q^{n}=\sum_{d \mid n} d N_{q}(d) .
$$

From Möbius inversion formula (Lemma 20), one deduces:

$$
N_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d} .
$$

For instance, when ℓ is a prime number not equal to the
characteristic p of \mathbf{F}_{q},
(31) $N_{q}(\ell)=\frac{q^{\ell}-q}{\ell}$.

[^0] order of q modulo n. irreducible factors, all of the same degree d, where d is the
 integer not divisible by the characteristic of \mathbf{F}_{q}. Then the Let \mathbf{F}_{q} be a finite field with q elements and let n be a positive Theorem 33. We apply Theorem 14 to the cyclotomic polynomials. In all this section, we assume that n is not divisible by the
characteristic p of \mathbf{F}_{q}. finite field Decomposition of cyclotomic polynomials over a

$$
\cdot \frac{u}{{ }_{u}^{b}}>(u)^{b} N>\frac{u_{Z}}{{ }_{u} b}
$$ b) Check a) Give the values of $N_{2}(n)$ for $1 \leq n \leq 6$ Exercise
Let F be a finit Exercise 32.
Corollaries
Since an element $\zeta \in \overline{\mathbf{F}}_{p}^{\times}$has order n in the multiplicative
group $\overline{\mathbf{F}}_{p}^{\times}$if and only if ζ is a root of Φ_{n}, an equivalent
statement to Theorem 33 is the following.
Corollary 34 .
If $\zeta \in \overline{\mathbf{F}}_{p}^{\times}$has order n in the multiplicative group $\overline{\mathbf{F}}_{p}^{\times}$, then its
degree $d=\left[\mathbf{F}_{q}(\zeta): \mathbf{F}_{q}\right]$ over \mathbf{F}_{q} is the order of q modulo n.
Corollary 35 .
The polynomial $\Phi_{n}(X)$ splits completely in $\mathbf{F}_{q}[X]$ (into a
product of polynomials all of degree 1$)$ if and only if
$q \equiv 1$ mod n.
This follows from Theorem 33 , but it is also plain from
Proposition 3 and the fact that the cyclic group \mathbf{F}_{q}^{\times}of order
$q-1$ contains a subgroup of order n if and only if n divides
$q-1$, which is the condition $q \equiv 1 \bmod n$.

[^1]s divides $\varphi\left(q^{s}-1\right)$

where ℓ is an odd prime and $s \geq 1$.
 $2,4, \ell^{s}, 2 \ell^{s}$

$$
\begin{aligned}
& \text { Corollary } 36 \text {. } \\
& \text { The following conditions are equivalent: } \\
& \text { (i) The polynomial } \Phi_{n}(X) \text { is irreducible in } \mathbf{F}_{q}[X] \text {. } \\
& \text { (ii) The class of } q \text { modulo } n \text { has order } \varphi(n) \text {. } \\
& \text { (iii) } q \text { is a generator of the group }(\mathbf{Z} / n \mathbf{Z})^{\times} \text {. } \\
& \text { This can be true only when this multiplicative group is cyclic, } \\
& \text { which means } n \text { is either }
\end{aligned}
$$

$\varphi\left(q^{s}-1\right) / s$, hence it follows that s divides $\varphi\left(q^{s}-1\right)$.
 $\mathbf{F}_{q}[X]$ into irreducible factors, all of which have degree s. $n=q^{s}-1$. Then q has order s modulo n. Hence, Φ_{n} splits in Let q be a power of a prime, s a positive integer, and Corollary 37.
-

Irreducible cyclotomic polynomials

\mathbf{F}_{4}
Example 38.
We consider the quadratic extension $\mathbf{F}_{4} / \mathbf{F}_{2}$. There is a
unique irreducible polynomial of degree 2 over \mathbf{F}_{2}, which is
$\Phi_{3}=X^{2}+X+1$. Denote by ζ one of its roots in \mathbf{F}_{4}. The
other root is ζ^{2} with $\zeta^{2}=\zeta+1$ and

$$
\mathbf{F}_{4}=\left\{0,1, \zeta, \zeta^{2}\right\} \text {. }
$$

If we set $\eta=\zeta^{2}$, then the two roots of Φ_{3} are η and η^{2},
with $\eta^{2}=\eta+1$ and
There is no way to distinguish these two roots, they play
the same role. It is the same situation as with the two roots
$\pm i$ of $X^{2}+1$ in \mathbf{C}.

[^2]
\mathbf{F}_{8} (Continued)
\[

$$
\begin{aligned}
& \cdot\left(\mathrm{I}+{ }_{8} X+{ }_{8} X\right)\left(\mathrm{I}+X+{ }_{8} X\right)(\mathrm{I}+X) X=X-{ }_{8} X
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { degree } 3 \text { over } \mathbf{F}_{2} \text {, hence, there are two irreducible }
\end{aligned}
$$

$\xrightarrow{[1]}$
irreducible factors of Φ_{8}. polynomials of degree 2 over \mathbf{F}_{3} are Φ_{4} and the two follows that $N_{3}(2)=3$: the three monic irreducible

 elements of order 4 , which are the roots of Φ_{4}; they are also roots of Φ_{8}) which have degree 2 over \mathbf{F}_{3}. There are two In \mathbf{F}_{9}^{\times}, there are $4=\varphi(8)$ elements of order 8 (the four
$\cdot\left(\mathrm{I}-X-{ }_{Z} X\right)\left(\mathrm{I}-X+{ }_{r} X\right)\left(\mathrm{I}+{ }_{r} X\right)(\mathrm{I}+X)(\mathrm{I}-X) X=X-{ }_{6} X$ Example 40.
We consider the
\mathbf{F}_{9}

$$
\begin{aligned}
& \mathbf{F}_{8}(\text { Continued }) \\
& \text { For transmission of data, it is not the same to work with } \zeta \text { or } \\
& \text { with } \eta=\zeta^{-1} \text {. For instance, the map } x \mapsto x+1 \text { is given by } \\
& \qquad+1=\zeta^{3}, \zeta^{2}+1=\zeta^{6}, \zeta^{3}+1=\zeta, \\
& \qquad \begin{array}{l}
\zeta^{4}+1=\zeta^{5}, \zeta^{5}+1=\zeta^{4}, \zeta^{6}+1=\zeta^{2} \\
\text { and by } \\
\quad \eta+1=\eta^{5}, \eta^{2}+1=\eta^{3}, \eta^{3}+1=\eta^{2} \\
\eta^{4}+1=\eta^{6}, \eta^{5}+1=\eta, \eta^{6}+1=\eta^{4}
\end{array}
\end{aligned}
$$

is the decomposition of $X^{11}-1$ into irreducible factors over
\mathbf{F}_{3}.
$X^{11}-1=(X-1)\left(X^{5}-X^{3}+X^{2}-X-1\right)\left(X^{5}+X^{4}-X^{3}+X^{2}-1\right)$ Check that 3 has order 5 modulo 11 and that Exercise 41.

 osje pue

әлец әМ
$\left({ }_{\varepsilon} u-X\right)(u-X)=\mathrm{I}-X-{ }_{Z} X \quad\left({ }_{\varepsilon} \mathcal{S}-X\right)(\Omega-X)=\mathrm{I}-X+{ }_{Z} X$ $\eta^{3}=\zeta^{5}$ and

$$
\text { Let } \zeta \text { be a root of } X^{2}+X-1 \text { and let } \eta=\zeta^{-1} \text {. Then } \eta=\zeta^{7}
$$

səયenbs u!łeך

The rows of the incidence matrix of a projective plane of order
n form a code.
Definition. Let $n \geq 2$ be an integer. A projective plane of
order n is given by $n^{2}+n+1$ points and $n^{2}+n+1$ lines with
the property that

- Each line contains exactly $n+1$ points,
- Each point belongs to exactly $n+1$ lines,
- Two different lines intersect in exactly one point,
- There exist four points no three of which belong to the same
line.
On projective planes of order n
(after Claude Levesque) http://www.maths.mq.edu.au/~wchen/ln.html/
M. Demazure, Cours d'algèbre, Nouvelle Bibliothèque
Mathématique [New Mathematics Library], 1, Cassini,
Paris, 1997 .
Primalité. Divisibilité. Codes. [Primality. Divisibility.
Codes].
D. S. Dummit \& R. M. Foote, Abstract algebra,
John Wiley \& Sons Inc., Hoboken, NJ, third ed., 2004.
S. LANG - Algebra, vol. 211 of Graduate Texts in
Mathematics, Springer-Verlag, New York, third ed., 2002 .
In French: Algèbre, Third edition, Dunod, 2004. 2008).
References
圊 W. Che
Mutually orthogonal latin squares
EXAMPLE. Let

$$
A=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1\end{array}\right) \quad B=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3\end{array}\right)
$$

and

$$
C=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2\end{array}\right) .
$$

$\begin{aligned} & \text { Then }\{A, B, C\} \\ & \text { squares. is a set of three mutually orthogonal latin }\end{aligned}$

Orthogonal latin squares

Two theorems, one conjecture

[^3]\[

$$
\begin{aligned}
& \text { Proof of Theorem 43: orthogonality } \\
& \text { (ii) Now, let us prove that for } s_{1}, s_{2} \text { in }\{1, \ldots, q-1\} \text { with } \\
& s_{1} \neq s_{2} \text {, the couples of latin squares } M^{\left(s_{1}\right)} \text { and } M^{\left(s_{2}\right)} \text { are } \\
& \text { mutually orthogonal, namely let us prove that the couples } \\
& \qquad\left\{\left(M_{i j}^{\left(s_{1}\right)}, M_{i j}^{\left(s_{2}\right)}\right) ; 0 \leq i \leq q-1,0 \leq j \leq q-1\right\} \\
& \text { are all different. We will do it by contradiction. So let us } \\
& \text { suppose that there exist } i, j, u, v \text { in }\{1, \ldots, q-1\} \text { such that } \\
& (i, j) \neq(u, v) \text { and } \\
& \qquad\left(M_{i j}^{\left(s_{1}\right)}, M_{i j}^{\left(s_{2}\right)}\right)=\left(M_{u v}^{\left(s_{1}\right)}, M_{u v}^{\left(s_{2}\right)}\right) . \\
& \text { Hence there exist } i, j, u, v \text { in }\{1, \ldots, q-1\} \text { such that }
\end{aligned}
$$
\]

End of the proof of Theorem 43
Reference for finite projective planes

Hence

[^0]: polynomials which divide it. Theorem 30 follows. no multiple factor, is the product of the monic irreducible In the factorial ring $\mathbf{F}_{q}[X]$, the polynomial $X^{q^{n}}-X$, having that $X^{q^{n}}-X$ is a multiple of all irreducible polynomials of
 degree dividing n. $X^{q^{d}}-X$, hence (see exercise 8), a multiple of f. This shows $\alpha \in \mathbf{F}_{q^{n}}$ satisfies $\alpha^{q^{n}}=\alpha$, and, therefore, f divides $X^{q^{n}}-X$.
 Since d divides n, the polynomial $X^{q^{n}}-X$ is a multiple of degree d where d divides n. Let α be a root of f in $\overline{\mathbf{F}}_{p}$. Since
 d divides n, the field $\mathbf{F}_{q}(\alpha)$ is a subfield of $\mathbf{F}_{q^{n}}$, hence,

[^1]: is the order of the image of q in the multiplicative group
 $(\mathbf{Z} / n \mathbf{Z})^{\times}$. smallest positive integer s such that n divides $q^{s}-1$, and this
 is the order of the image of q in the multiplicative group smallest integer $s \geq 1$ such that $\zeta^{q^{s}-1}=1$. Hence it is the n. According to Theorem 14, the degree of ζ over \mathbf{F}_{q} is he Φ_{n} over \mathbf{F}_{q}. The order of ζ in the multiplicative group K^{\times}is Let ζ be a root of Φ_{n} in a splitting field K of the polynomial integer ℓ such that q^{ℓ} is congruent to 1 modulo n.
 Proof. By definition, the order of q modulo n is the order of the class
 of q in the multiplicative group $(\mathbf{Z} / n \mathbf{Z})^{\times}$(hence, it is defined
 if and only if n and q are relatively prime), it is the smallest
 integer ℓ such that q^{ℓ} is congruent to 1 modulo n.

[^2]: Recall that we fix an algebraic closure $\overline{\mathbf{F}}_{p}$ of the prime field
 \mathbf{F}_{p}, and for q a power of p we denote by \mathbf{F}_{q} the unique
 subfield of $\overline{\mathbf{F}}_{p}$ with q elements. Of course, $\overline{\mathbf{F}}_{p}$ is also an
 algebraic closure of \mathbf{F}_{q}.

[^3]: $$
 a_{0} a_{s}+a_{j}, a_{1} a_{s}+a_{j}, \ldots, a_{q-1} a_{s}+a_{j}
 $$

 are all different.

 $$
 a_{0} a_{s}+a_{j}, a_{1} a_{s}+a_{j}, \ldots, a_{q-1} a_{s}+a_{j}
 $$

 are all different.

 > It is clear that for any given row, say the i-th row, its elements
 > Proof of Theorem 43: latin squares (i) Let us consider a given $s \in\{1, \ldots, q-1\}$ and let us prove
 that $M^{(s)}$ is a latin square.
 > $a_{i} a_{s}+a_{0}, a_{i} a_{s}+a_{1}, \ldots, a_{i} a_{s}+a_{q-1}$ column, its elements
 > are all different. Similarly, for a given column, say the j-th

