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Diophantine approximation
and Diophantine equations

Michel Waldschmidt

1 First course, November 29, 2011

The first course is devoted to the basic setup of Diophantine approximation:
we start with rational approximation to a single real number. Firstly, positive
results tell us that a real number x has “good” rational approximation p/q,
where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s
result in 1842 (see [?] Course N◦2 §2.1) and the Markoff–Lagrange spectrum
([?] Course N◦10).

Next we consider negative results for rational approximation, with Liouville’s
estimate for the approximation of a real algebraic number by rational numbers.
We state explicit versions of Liouville’s inequality (see [?] §3.5 and exercise 3.6;
[?] Course N◦3 §4.1 Lemma 24 and Proposition 26 and Course N◦4 §4.1.2),
involving the absolute logarithmic height ([?] §3.2).

2 Second course, November 30, 2011

The second course includes a short historical survey of the improvements of
Liouville’s inequality: in the lower bound∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d of q in the denomi-
nator of the right hand side is replaced by κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√
d by C.L. Siegel in 1921,

•
√

2d by Dyson and Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.
See [?] Course N◦4 §4.1.3.
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Theorem 1 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any real
algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

An equivalent statement is that, for any real algebraic number α and for
any ε > 0, there exists q0 > 0 such that, for p/q ∈ Q with q ≥ q0, we have
|α− p/q| > q−2−ε.

We now explain that, if one restricts the denominators q of the rational
approximations p/q by requesting that their prime factors belong to a given
finite set, then the exponent 2 can be replaced by 1 (D. Ridout, 1957). See ([?]
Course N◦4 §4.1.3 Th. 47).

Let S be a finite set of primes. A rational number is called an S–integer if
it can be written a/b where all prime factors of the denominator b belong to S.
The set of S–integers is the subring of Q generated by the elements 1/p with
p ∈ S. We denote it by S−1Z. The group of units of S−1Z is a multiplicative
subgroup (S−1Z)× of Q×, its elements are the S–units. If S = {p1, . . . , ps},
then

(S−1Z)× =
{
pk11 · · · pkss | (k1, . . . , ks) ∈ Zs

}
⊂ Q×

and
S−1Z =

{a
b
| a ∈ Z, b ∈ (S−1Z)×

}
⊂ Q.

A corollary to Ridout’s Theorem ?? below is the following:

Let S be a finite set of prime numbers. Let α be a real algebraic
number. For any ε > 0, the set of S–integers a/b such that |α −
a/b| < b−1−ε, is finite.

Actually, the statement by Ridout is more general (see for instance [?] §2.1).

Theorem 2 (D. Ridout, 1957). Let α and β be two algebraic numbers with
(α, β) 6= (0, 0). For 1 ≤ i ≤ s, let αi and βi be two rational numbers with
(αi, βi) 6= (0, 0). Let ε > 0. Then the set of rational numbers p/q such that

q|qα− pβ|
s∏
i=1

|qαi − pβi|pi <
1

max{|p|, q}ε

is finite.

The previous corollary follows by taking β = 1, αi = 0 and βi = 1 for
1 ≤ i ≤ s: if q is a positive integer which is an S–unit, then

s∏
i=1

|q|pi =
1

q
·
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3 Third course, December 5, 2011

The third course is devoted to Schmidt’s Subspace Theorem and one of its many
applications to exponential Diophantine equations. We first state a special case
of Schmidt’s Subspace Theorem (1972) together with its p-adic extension by
H.P. Schlickewei (1976).

For x a nonzero rational number, write the decomposition of x into prime
factors

x = ±
∏
p

pvp(x),

where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

The product formula is

|x|
∏
p

|x|p = 1

for all x ∈ Q× (see [?] §3.1.1 for the rational field case and §3.1.5 for algebraic
number fields).

For x = (x1, . . . , xm) ∈ Zm, define

|x| = max{|x1|, . . . , |xm|}.

Here is a simplified version of this fundamental result ([?] Course N◦4 §4.1.3
Th. 49; see also Theorem 2.3 of [?]).

Theorem 3 (Schmidt’s Subspace Theorem, simplified form). Let m ≥ 2 be
a positive integer, S a finite set of prime numbers. Let L1, . . . , Lm be m in-
dependent linear forms in m variables with algebraic coefficients. Further, for
each p ∈ S let L1,p, . . . , Lm,p be m independent linear forms in m variables with
rational coefficients. Let ε > 0. Then the set of x = (x1, . . . , xm) ∈ Zm such
that

|L1(x) · · ·Lm(x)|
∏
p∈S
|L1,p(x) · · ·Lm,p(x)|p ≤ |x|

−ε

is contained in the union of finitely many proper subspaces of Qm.

Thue–Siegel–Roth’s Theorem ?? follows from Theorem ?? by taking

S = ∅, m = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

A Q-vector subspace of Q2 which is not {0} nor Q2 (that is, a proper subspace) is
generated by an element (q0, p0) ∈ Q2. There is one such subspace with q0 = 0,
namely Q× {0} generated by (1, 0), the other ones have q0 6= 0. Mapping such
a rational subspace to the rational number p0/q0 yields a 1 to 1 correspondence.
Hence Theorem ?? says that there is only a finite set of exceptions p/q in Thue–
Siegel–Roth’s Theorem ??.
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Ridout’s Theorem ?? is the special case n = 1 of Schmidt’s Subspace Theo-
rem ??. Indeed, a subset E of Z2 is contained in a finite union of hyperplanes of
Q2 if and only if the set of y/x ∈ Q, where (x, y) ranges over the set of elements
in E with x 6= 0, is finite. Hence Thue–Siegel–Roth’s Theorem ?? is the special
case (n = 1, S = ∅) of Theorem ??.

We derive a further consequence, dealing with exponential Diophantine equa-
tions, of the special case of Schmidt’s Subspace Theorem ?? where the linear
forms L1, . . . , Lk also have rational coefficients. We start with an exercise.

Exercise 1. Show that the only solutions of the equation 2a + 3b = 5c in non-
negative integers a, b and c are given by

2 + 3 = 5, 22 + 1 = 5, 24 + 32 = 52.

The finiteness of the set of solutions of such an equation is a general fact:
we deduce from Ridout’s Theorem ?? the following statement:

Corollary 4. Let S = {p1, . . . , ps} be a finite set of prime numbers and let
n ≥ 2. Then the set of solutions of the equation x1 + x2 = 1 in S–units x1, x2
is finite.

Proof. Let (x1, x2) be a solution of the equation x1 + x2 = 1 in S–units. Let y0
be the least common denominator of x1 and x2. Set y1 = y0x1 and y2 = y0x2.
Then y0, y1, y2 are relatively prime integers, they are S–units, and y1 + y2 = y0.
Introduce the three linear forms in two variables Y1, Y2

Λ1(Y1, Y2) = Y1, Λ2(Y1, Y2) = Y2, Λ0(Y1, Y2) = Y1 + Y2.

Notice that Λi(y1, y2) = yj for j = 0, 1, 2, and that any two linear forms
among Λ0,Λ1,Λ2 are linearly independent. Let k ∈ {0, 1, 2} be an index such
that max{|y0|, |y1|, |y2|} = |yk|, and let `,m be the two other indices, so that
{0, 1, 2} = {k, `,m}.

Since y0, y1, y2 are relatively prime rational integers, for j = 1, . . . , s, we have
max{|y0|pj , |y1|pj , |y2|pj} = 1; let kj ∈ {0, 1, 2} be an index such that |yk|pj = 1,
and let `j ,mj be the two other indices, so that {0, 1, 2} = {kj , `j ,mj}.

Consider the linear forms

L1 = Λ`, L2 = Λm, L1j = Λ`j , L2j = Λmj
(1 ≤ j ≤ s).

Notice that

L1(y1, y2)L2(y1, y2) = y`ym =
y0y1y2
yk

= ± y0y1y2
max{|y0|, |y1|, |y2|}

,

while
L1j(y1, y2)L2j(y1, y2) = y`jymj

=
y0y1y2
yk

and
|L1j(y1, y2)L2j(y1, y2)|pj = |y0y1y2|pj .
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From the product formula, using the fact that y0y1y2 is an S unit, one deduces

|y0y1y2|
s∏
j=1

|y0y1y2|pj = 1

Therefore

|L1(y1, y2)L2(y1, y2)|
s∏
j=1

|L1j(y1, y2)L2j(y1, y2)|pj =
1

max{|y0|, |y1|, |y2|}
·

From Ridout’s Theorem ?? with ε = 1, one deduces that the set of y1/y2 is
finite, and Corollary ?? follows.

We come back to this S–unit equation X + Y = 1 in §??. In particular, we
will see there that the result of Corollary ?? is effective: one can bound from
above the (numerators and denominators of the) solutions x1 and x2.

We now consider the more general equation

X1 + · · ·+Xk = 1, (5)

where k is a fixed positive integer and the values x1, . . . , xk taken by the un-
known X1, . . . , Xk are S–units in Q for a fixed given finite set S of prime
numbers. This equation has infinitely many solutions as soon as k ≥ 3 and S is
nonempty: for p ∈ S and a ∈ Z,

x1 = pa, x2 = −pa, x3 = 1, pa − pa + 1 = 1.

In view of this example, we will say that a solution (x1, . . . , xk) ∈ ((S−1Z)×)k

of equation (??) is non degenerate if no nontrivial subsum vanishes:

x1 + · · ·+ xk = 1

and ∑
i∈I

xi 6= 0 for any nonempty subset I of {1, . . . , k}.

Without giving all details, we explain how to deduce, from Schmidt’s Subspace
Theorem ??, the following statement.

Corollary 6. Let S be a finite set of primes and k a positive integer. Then
the set of nondegenerate solutions (x1, . . . , xk) ∈ ((S−1Z)×)k of equation (??)
is finite.

Sketch of proof of Corollary ?? as a consequence of Theorem ??. The proof is
by induction on k. A first remark is that the statement of Corollary ?? is
equivalent to the next one (which only looks more general):
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For any finite set S of primes, any positive integer k and any rational
numbers c1, . . . , ck, the set of (x1, . . . , xk) ∈ ((S−1Z)×)k satisfying

c1x1 + · · ·+ ckxk = 1

and ∑
i∈I

cixi 6= 0 for any nonempty subset I of {1, . . . , k}

is finite.

This last statement is in fact a consequence of Corollary ??: we deduce it
by enlarging the set S of primes to a finite set S′ ⊃ S, so that c1, . . . , ck are
S′–units.

In the same vein, by reducing to the same denominator, one can phrase
Corollary ?? in an equivalent form by stating that the set of (y1, . . . , yk+1) ∈
(Z ∩ (S−1Z)×)k+1, satisfying

y1 + · · ·+ yk = yk+1 and gcd(y1, . . . , yk+1) = 1,

and ∑
i∈I

yi 6= 0 when I is a nonempty subset of {1, . . . , k},

is finite.
Starting with a solution y, using the assumption gcd(y1, . . . , yk+1) = 1, we

consider for each prime p ∈ S an index ip ∈ {1, . . . , k + 1} such that |yip |p = 1.
We also consider an index i0 such that |yi0 | = max1≤i≤k+1 |yi|. In other terms
|yi0 | = |y|. The tuple

(
i0, (ip)p∈S

)
can take only finitely many possible values –

we fix one of them.
We introduce the following k+1 linear forms Λj (1 ≤ j ≤ k+1) in Y1, . . . , Yk:

Λj = Yj for 1 ≤ j ≤ k and Λk+1 = Y1 + · · ·+ Yk.

Clearly, any k distinct linear forms among Λ1, . . . ,Λk+1 are linearly indepen-
dent. We shall use Theorem ?? with the following linear forms in the variables
Y1, . . . , Yk:

{L1, . . . , Lk} = {Λj | 1 ≤ j ≤ k + 1, j 6= i0}
and, for any prime p in S,

{L1p, . . . , Lkp} = {Λj | 1 ≤ j ≤ k + 1, j 6= ip}.

We write
k∏
i=1

|Li(y)| = 1

|y|

k+1∏
j=1

|Λj(y)|

and, for each prime p ∈ S,

k∏
i=1

|Lip(y)|p =

k+1∏
j=1

|Λj(y)|p.
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For any prime p not in S and for j = 1, . . . , k + 1, we have |Λj(y)|p = 1. From
the product formula

|Λj(y)|
∏
p

|Λj(y)|p = 1

for 1 ≤ j ≤ k + 1, we deduce the estimate

|L1(y) · · ·Lk(y)|
∏
p∈S
|L1p(y) · · ·Lkp(y)|p =

1

|y|
,

which shows that we can apply Theorem ?? with ε = 1.
It follows that the solutions (y1, . . . , yk) we are considering belong to a finite

union of proper subspaces of Zk. We are reduced to consider a finite set of
Diophantine equations of the form

c1Y1 + · · ·+ ckYk = 0,

where c1, . . . , ck are fixed elements of Z, not all 0. We fix such an equation, we
fix an index j1 ∈ {1, . . . , k} with cj1 6= 0 and we write∑

1≤i≤k
i6=j1

−ci
cj1

yi
yj1

= 1.

We use the preliminary remark of this proof (we enlarge S if necessary so that
ci/cj1 becomes an S–unit for i = 1, . . . , k). We also select one such subsum
which is non degenerate. We deduce from the induction hypothesis that there
is an index j2, (1 ≤ j2 ≤ k, j2 6= j1) such that the set of yj2/yj1 is finite. We
now write the initial equation in the form∑

1≤i≤k
i6=j1,i 6=j2

yi
yj1
− yk+1

yj1
= −1− yj2

yj1
·

The right hand side is a nonzero constant, since yj2 + yj1 6= 0 (here we use the
assumption on nonvanishing subsums for subsums of two terms only). Again,
we enlarge S if necessary, so that −1 − yj2/yj1 becomes an S–unit. The left
hand side is a sum of k − 1 terms which are S–units. This sum is non degener-
ate (no nontrivial subsum vanishes): indeed it follows from the assumption on
nonvanishing subsums (here we need the full assumption, not only for subsums
of two terms) that no sum of the form∑

i∈I
yi nor

∑
i∈I

yi − yk+1 for ∅ 6= I ⊂ {1, . . . , k} \ {i1, i2}

can vanish. We obtain the final conclusion by using the induction hypothesis
once more.
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The proof of Corollary ?? is noneffective: in general, there is no method (yet)
to derive an upper bound for the size of the solutions. But upper bounds for the
number of solutions are available. To give an upper bound for the number of
subspaces in the conclusion of Theorem ?? has been an open problem from 1970
to 1980, which has been solve by W.M. Schmidt (see the references to the works
of Evertse and Schlickewei on the quantitative versions of Schmidt’s Subspace
Theorem in [?]).

The general case of Schmidt’s Subspace Theorem ([?], Theorem 2.5) involves
a finite set of places of a number field K, containing the places at infinity, and
instead of |x|−ε it involves H(x)−ε where

H(x) =
∏

v∈MK

max
1≤i≤k

|xi|v,

where MK is the set of places of K.

4 Fourth course, December 8, 2011

The fact that the irrationality exponent is < d in Thue’s Theorem (§??) has
very important corollaries in the theory of Diophantine equations. We start
with a special example. Liouville’s estimate for the rational Diophantine ap-
proximation of 3

√
2 is ∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q. Thue was the first to achieve an improvement of the
exponent 3. An explicit estimate was then obtained by A. Baker, namely∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

106q2.955
,

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1

4 q2.5
·

From his own result (see §??), Thue deduced that for any fixed k ∈ Z \ {0},
there are only finitely many (x, y) ∈ Z× Z satisfying the Diophantine equation
x3 − 2y3 = k. The result of Baker shows more precisely that if (x, y) ∈ Z× Z
is a solution to x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

The connexion between Diophantine approximation to 3
√

2 and the Diophantine
equation x3 − 2y3 = k is explained in the next lemma.
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Lemma 7. Let η be a positive real number. The two following properties are
equivalent:
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥ c2x3−η.

Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are true
with η = 3 (for η = 3, (i) is Liouville’s estimate while (ii) is trivial); they are
true also for any η > 2 by Thue–Siegel–Roth’s Theorem ??. They are not true
with η < 2. It is expected that they are not true with η = 2. The constants
are explicit for η ≥ 2.5 by Bennett’s result, but not yet for η in the range
2 < η < 2.5.

Proof. See [?] §1 and [?] Course N◦4 §4.1.3.

The following link, between the rational approximation on the one hand and
the finiteness of the set of solutions of some diophantine equations on the other
hand, is Proposition 2.1 of [?].

Proposition 8. Let f ∈ Z[X] be an irreducible polynomial of degree d and let
F (X,Y ) = Y df(X/Y ) be the associated homogeneous binary form of degree d.
Then the following two assertions are equivalent:

(i) For any integer k 6= 0, the set of (x, y) ∈ Z2 verifying

F (x, y) = k (9)

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f , the set of

rational numbers p/q verifying ∣∣∣∣α− p

q

∣∣∣∣ ≤ κ

qd
(10)

is finite.

Exercise 2. Let α be an algebraic number of degree d ≥ 3 and minimal poly-
nomial f ∈ Z[X], let F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ] be the associated homo-
geneous polynomial. Let 0 < κ ≤ d. The following conditions are equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c1
qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 xd−κ.
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So far, we considered the basic situation of rational numbers and points with
rational integer coordinates on Thue curves. Here we consider the algebraic
numbers while the number field K may vary. We denote by ZK the ring of
algebraic integers of K and by Z×K the unit group of K. The proof of the next
result appears in [?]. See also §3 of [?].

Proposition 11. The following statements are equivalent:
• (M) For any number field K and for any nonzero element k in K, the

Mordell equation
Y 2 = X3 + k

has but a finite number of solutions (x, y) ∈ ZK × ZK .
• (E) For any number field K and for any polynomial f in K[X] of degree 3

with three distinct complex roots, the elliptic equation

Y 2 = f(X)

has but a finite number of solutions (x, y) ∈ ZK × ZK .
• (HE) For any number field K and for any polynomial f in K[X] with at

least three simple complex roots, the hyperelliptic equation

Y 2 = f(X)

has but a finite number of solutions (x, y) ∈ ZK × ZK .
• (SE) For any number field K, for any integer m ≥ 3 and for any polynomial

f in K[X] with at least two distinct complex roots whose orders of multiplicity
are prime to m, the superelliptic equation

Y m = f(X)

has but a finite number of solutions (x, y) ∈ ZK × ZK .
• (T) For any number field K, for any nonzero element k in K and for any

elements α1, . . . , αn in K with Card{α1, . . . , αn} ≥ 3, the Thue equation

(X − α1Y ) · · · (X − αnY ) = k

has but a finite number of solutions (x, y) ∈ ZK × ZK .
• (S) For any number field K and for any elements a1 and a2 in K with

a1a2 6= 0, the Siegel equation

a1E1 + a2E2 = 1

has but a finite number of solutions (ε1, ε2) ∈ Z×K × Z×K .

Each of these statements is a theorem: the first four ones are due to Siegel
who proved that the sets of integral points respectively on a Mordell curve (M),
on an elliptic curve (E), on a hyperelliptic curve (HE), on a superelliptic curve
(SE), are finite. Statement (T) is due to Thue and (S) deals with the unit
equation introduced by Siegel (see §??).
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For each of the six equivalent statements in Proposition ??, an upper bound
is known for the size of the solutions; the proofs of the equivalences between
them are elementary and effective: they allow one to deduce, from an explicit
version of any of these statements, an explicit version of the other ones.

A further result which is equivalent to the six statements of Proposition ??
is Siegel’s fundamental theorem on the finiteness of points on a curve of genus
≥ 1. See for instance [?].

5 Fifth course, December 12, 2011

We first state the special case K = Q of Proposition 5.1 in [?]. We will provide
explanations on the meaning of (iv) just after the statement.

Proposition 12. The following four assertions are equivalent:
(i) For any finite set S = {p1, . . . , ps} of prime numbers, for any k ∈ Q× and

for any binary homogeneous form F (X,Y ) ∈ Q[X,Y ] with the property that
the polynomial F (X, 1) ∈ Q[X] has at least three linear factors involving three
distinct roots in Q, the Thue-Mahler equation

F (X,Y ) = ±kpZ1
1 · · · pZs

s

has only finitely many solutions (x, y, z1, . . . , zs) in Z2+s with gcd(xy, p1 · · · ps) =
1.

(ii) For any finite set S = {p1, . . . , ps} of prime numbers, the Thue-Mahler
equation

XY (X − Y ) = ±kpZ1
1 · · · pZs

s

has but a finite number of solutions (x, y, z1, . . . , zs) in Z2+s with gcd(xy, p1 · · · ps) =
1.

(iii) For any finite set S = {p1, . . . , ps} of prime numbers, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in (S−1Z)× × (S−1Z)×.
(iv) For any finite set S = {p1, . . . , ps} of prime numbers, every set of S–

integral points of P1(Q) minus three points is finite.

We now explain the statement (iv). The projective line on the rational
number field P1(Q) can be described in several ways, one of them is to say that
it is the set of equivalence classes of pairs (a, b) where a and b are two rational
numbers, not both zero, with (a, b) being equivalent to (a′, b′) if there exists
c ∈ Q× with

a′ = ac, b′ = bc.

The class of (a, b) is denoted (a : b). Each class has a unique representative
(a, b) where a and b are in Z and are relatively prime. There are bijective maps
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between P1(Q) and the disjoint union of Q with one element, which we denote
by ∞. One of these bijective maps is

(0 : 1) 7→ ∞ and (a : b) 7→ b/a for a 6= 0.

If one removes from P1(Q) the point (0 : 1), then this mapping induces a
bijective map P1(Q) \ {(0 : 1)} 7→ Q. The inverse image of an element in S−1Z
will be called an S–integral point on P1(Q) \ {(0 : 1)}. Hence, the point (a : b)
with a, b ∈ Z and gcd(a, b) = 1 is an S–integral point on P1(Q) \ {(0 : 1)} if
and only if a is an S–unit. As a consequence, a point of P1(Q) with projective
coordinates (a : b) where a, b ∈ Z and gcd(a, b) = 1 is an S–integral point on
P1(Q) \ {(0 : 1)} is and only if, for any prime number p not in S, the image of
(a : b) in P1(Fp) (under the map P1(Q) → P1(Fp) induced by the reduction
Z→ Fp = Z/pZ modulo p) is not the point (0 : 1).

Similarly, if one removes from P1(Q) the point (1 : 0), then the mapping
given by

(1 : 0) 7→ ∞ and (a : b) 7→ a/b for b 6= 0

induces a bijective map P1(Q) \ {(1 : 0)} 7→ Q. The inverse image of an
element in S−1Z will be called an S–integral point on P1(Q) \ {(1 : 0)}. Hence,
the point (a : b) with a, b ∈ Z and gcd(a, b) = 1 is an S–integral point on
P1(Q) \ {(1 : 0)} if and only if b is an S–unit. Therefore an S–integral point
on P1(Q) \ {(0 : 1), (1 : 0)} is a projective point with coordinates (a : b) with
a, b ∈ Z and gcd(a, b) = 1 where a and b are S–units.

Now we remove from P1(Q) the point (1 : 1). Then the mapping given by

(1 : 1) 7→ ∞ and (a : b) 7→ (2a− b)/(a− b) for a− b 6= 0

is a bijective map P1(Q) \ {(1 : 1)} 7→ Q. One could replace the numerator
2a − b by λa + µb provided that (λ, µ) ∈ Z × Z satisfies λ + µ = ±1. Hence a
point (a : b) with a, b ∈ Z and gcd(a, b) = 1 of P1(Q) \ {(1 : 1)} will be called
an S–integral point on P1(Q) \ {(1 : 1)} if a− b is an S–unit. Notice that the
condition for (a : b) to be an S–integral point on P1(Q) \ {(1 : 1)} is that its
reduction in P1(Fp) is not the point (1 : 1) for all prime numbers p not in S.

Finally, the S–integral points on P1(Q) \ {(0 : 1), (1 : 0), (1 : 1)} are the
points of projective coordinates (a : b) where a, b ∈ Z, gcd(a, b) = 1 and the
three integers a, b, a− b are S–units.

Before stating an extension of Proposition ?? to number fields, we give vari-
ants of the formulations of conditions (i), (ii) and (iii).

Consider the Diophantine equation

F (X,Y ) = ±kpZ1
1 · · · pZs

s

in (i) where the unknowns (X,Y, Z1, . . . , Zs) now take their values in (S−1Z)2×
Zs. Write the right hand side as kε with ε ∈ (S−1Z)×. Two solutions (x, y, ε)
and (x, y, ε) in (S−1Z)2×(S−1Z)× of the Thue–Mahler equation F (X,Y ) = kE
are called equivalent if there exists η ∈ (S−1Z)× such that

x′ = ηx, y′ = ηy, ε′ = ηmε,
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where m is the degree of F . Notice that a solution has always (x, y) 6= 0, and
that there is only one class of solutions with x = 0 (hence y 6= 0) and one class
with y = 0 (hence x 6= 0). Therefore (i) means that the Diophantine equation

F (X,Y ) = kE

has but a finite number of classes of solutions (x, y, ε) ∈ (S−1Z)2 × (S−1Z)×.
For the same reason, assertion (ii) can be stated in an equivalent way as fol-

lows: for any finite set S = {p1, . . . , ps} of prime numbers, the Thue-Mahler
equation XY (X − Y ) = E has but a finite number of classes of solutions
(x, y, ε) ∈ (S−1Z)2 × (S−1Z)×.

Another equivalent statement to (iii) is to say that the set of solutions in
(S−1Z)3 of the homogeneous S–unit equation

E1 + E2 = E0

is the union of finitely many classes, where two solutions (ε0, ε1, ε2) and (ε′0, ε
′
1, ε
′
2)

are in the same class if they are proportional:

ε0
ε′0

=
ε1
ε′1

=
ε2
ε′2
·

The next result is Proposition 5.1 of [?], which extends Proposition ?? to
number fields. We now introduce the definitions of the ring of S–integers and
the group of S–units of a number field K, when S is a finite set of places of K
including the archimedean places. The ring OS of S-integers of K is defined by

OS = {x ∈ K | |x|v ≤ 1 for each v 6∈ S} =
⋂
v 6∈S

Ov.

The group O×S of S-units of K is the group of units of OS , namely

O×S = {x ∈ K | |x|v = 1 for each v 6∈ S} =
⋂
v 6∈S

O×v .

Thanks to the last formulas, when we will deal with S-integers α (resp. S-units
ε), then α (resp. ε) belongs to the local rings Ov (resp. to the unit groups of
the local rings Ov) at all places v outside S.

We will consider an algebraic number field K and a finite set S of places
of K containing all the archimedean places. Moreover F will denote a binary
homogeneous form with coefficients in K. We will consider the Thue–Mahler
equations F (X,Y ) = E where the two unknowns X,Y take respectively values
x, y in a given set of S–integers of K while the unknown E takes its values ε in
the set of S–units of K. If (x, y, ε) is a solution and if m denotes the degree of
F , then, for all η ∈ O×S , the triple (ηx, ηy, ηmε) is also a solution. Two solutions
(x, y, ε) and (x′, y′, ε′) in O2

S ×O
×
S of the equation F (X,Y ) = E are said to be

equivalent modulo O×S if the points of P1(K) with projective coordinates (x : y)
and (x′ : y′) are the same.

13



If the two solutions (x, y, ε) and (x′, y′, ε′) are equivalent, there exists η ∈ K×
such that x′ = ηx and y′ = ηy. Since (x, y, ε) and (x′, y′, ε′) are solutions of
the equation F (X,Y ) = E, we also have ε′ = ηmε where m is the degree of the
binary homogeneous form F (X,Y ). Since ε and ε′ are S–units, ηm is also an
S–unit, hence η ∈ O×S . In other terms, two solutions (x, y, ε) and (x′, y′, ε′) are
equivalent if there exists η ∈ O×S such that

x′ = ηx, y′ = ηy, ε′ = ηmε.

Proposition 13. Let K be an algebraic number field.
(1) The following four assertions are equivalent:

(i) For any finite set S of places of K containing all the archimedean places,
for every k ∈ K× and for any binary homogeneous form F (X,Y ) with the
property that the polynomial F (X, 1) ∈ K[X] has at least three linear factors
involving three distinct roots in K, the Thue-Mahler equation

F (X,Y ) = kE

has but a finite number of classes of solutions (x, y, ε) ∈ O2
S ×O

×
S .

(ii) For any finite set S of places of K containing all the archimedean places,
the Thue-Mahler equation

XY (X − Y ) = E

has but a finite number of classes of solutions (x, y, ε) ∈ O2
S ×O

×
S .

(iii) For any finite set S of places of K containing all the archimedean places,
the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

(iv) For any finite set S of places of K containing all the archimedean places,
every set of S–integral points of P1(K) minus three points is finite.

(2) Moreover, each of these assertions is a consequence of the following one:
(v) For any finite set S of places of K containing all the archimedean places,

every set A of S–integral points on an open variety, obtained by removing from
P2(K) four hyperplanes, is contained in a finite union of projective hyperplanes
of P2(K).

The last statement is Proposition 6.1 of [?].

Proposition 14. Let K be a number field. The following two assertions are
equivalent.

(i) Let n ≥ 1 be an integer and let S a finite set of places of K including the
archimedean places. Then the equation

E0 + · · ·+ En = 0

has only finitely many classes modulo O×S of solutions (ε0, . . . , εn) ∈ (O×S )n+1

for which no proper subsum
∑
i∈I εi vanishes, with I being a subset of {0, . . . , n},

with at least two elements and at most n.

14



(ii) Let n ≥ 1 be an integer and let S a finite set of places of K including the
archimedean places. Then for any set of n+2 distinct hyperplanes H0, . . . ,Hn+1

in Pn(K), the set of S–integral points of Pn(K)\ (H0∪· · ·∪Hn+1) is contained
in a finite union of hyperplanes of Pn(K).

One may remark that the case n = 1 of assertion (i) in Proposition ?? is
nothing else than assertion (iii) of Proposition ??, and that the case n = 1
(resp. n = 2) of assertion (ii) of Proposition ?? is nothing else than assertion
(iv) (resp. (v)) of Proposition ??.

One of the earliest statements on Siegel Generalized S–unit equation goes
back to the work of M. Laurent in 1984 (see [?] §4). Assertion (i) of Proposition
?? on the generalized unit equation has been proved independently by J.H. Ev-
ertse on the one hand, by H.P. Schlickewei and A.J. van der Poorten (1982) on
the other hand. A special (but significant) case had been obtained earlier by
E. Dubois and G. Rhin.
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