Heidelberg Colloquium organized by the Institute for Mathematics.
http://www.mathi.uni-heidelberg.de/vortrag.html?s=1 January 22, 2009

Transcendental Number Theory: Schanuel's Conjecture

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI
http://www.math.jussieu.fr/~miw/

Abstract

One of the main open problems in transcendental number theory is Schanuel's Conjecture which was stated in the 1960's :

If x_{1}, \ldots, x_{n} are Q -linearly independent complex numbers, then among the $2 n$ numbers x_{1}, \ldots, x_{n}, $e^{x_{1}}, \ldots, e^{x_{n}}$, at least n are algebraically independent.

We first give a list of consequences of this statement; next we describe the state of the art by giving special cases of the conjecture which have been proved, and finally we introduce a promising approach which has been initiated in 1999 by
D. Roy.

Algebraic and transcendental numbers

Algebraic numbers: Roots of polynomials with rational coefficients. Algebraic closure of Q in C :

$$
\mathbf{Q} \subset \overline{\mathbf{Q}} \subset \mathbf{C}
$$

Transcendental numbers: Complex numbers that are not algebraic.
The set of algebraic numbers behaves well with respect to addition, multiplication, division: It is a field.
The set of transcendental numbers is the complement in the field \mathbf{C} of the field $\overline{\mathbf{Q}}$. The sum of transcendental numbers may be rational, algebraic or transcendental. The same for the product.
However, the sum of a transcendental number and an algebraic number is transcendental, and the product of a transcendental number and a non-zero algebraic number is transcendental.

The exponential function

For $z \in \mathbf{C}$,

$$
e^{z}=\exp (z)=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots=\sum_{n \geq 0} \frac{z^{n}}{n!} .
$$

Addition Theorem : $e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}, e^{2 i \pi}=1$.

$$
\exp : \mathbf{C} \longrightarrow \mathbf{C}^{\times}, \quad \operatorname{ker}(\exp)=2 i \pi \mathbf{Z}, \quad \mathbf{C} / 2 i \pi \mathbf{Z} \simeq \mathbf{C}^{\times} .
$$

Differential equation :

$$
\frac{d}{d z} e^{z}=e^{z}
$$

First examples of transcendental numbers

$\sum_{n \geq 1} 2^{-n!}: \quad$ Liouville, 1844
e :
Hermite, 1872
$\pi: \quad$ Lindemann, 1881

Ch. Hermite - F. Lindemann - C. Weierstraß

$\log 2, e^{\sqrt{2}}: \quad$ Theorem of Hermite-Lindemann
$e^{\sqrt{2}}+\sqrt{3} e^{\sqrt{6}}: \quad$ Lindemann-Weierstraß, 1888

Question of Euler and Hilbert

Leonhard Euler (1707-1783)
Introductio in analysin infinitorum (1737)
Transcendence of $2^{\sqrt{2}}$

David Hilbert (1862-1943)
ICM 1900: 7-th Problem
Transcendence of $\log a / \log 2$.

A.O. Gel'fond - Th. Schneider - A. Baker

$e^{\pi}: \quad$ Gel'fond, 1929
$2^{\sqrt{2}}, \log 2 / \log 3: \quad G e l ' f o n d$ and Schneider, 1934
$\log 2+\sqrt{3} \log 3, e^{\sqrt{2}} 2^{\sqrt{3}} 5^{\sqrt{7}}: \quad$ Baker, 1968.

Some open problems

For each of the following numbers, it is expected that it is transcendental, but it is not even known whether it is rational or not.

$$
\begin{array}{llll}
e+\pi, & e \pi, \quad \pi^{e}, \quad e^{e}, e^{e^{2}}, \ldots, \quad e^{e^{e}}, \ldots, \quad \pi^{\pi}, \pi^{\pi^{2}}, \ldots \quad \pi^{\pi^{\pi}} \ldots \\
\log \pi, & \log (\log 2), \quad \pi \log 2, \quad(\log 2)(\log 3), \quad 2^{\log 2}, \quad(\log 2)^{\log 3} .
\end{array}
$$

In other words we do not know whether a degree 1 polynomial could vanish at the corresponding point, but we expect that no non-zero polynomial of any degree vanishes at this point.

Algebraic independence

Algebraicity and transcendence deal with a single complex number and one variable polynomials.
Algebraic dependence or independence is the same but for tuples and multivariate polynomials.

Let $K \supset k$ be an extension of fields and $\left(\theta_{1}, \ldots, \theta_{m}\right)$ be a m-tuple of elements in K. We say that $\theta_{1}, \ldots, \theta_{m}$ are algebraically dependent over k if there exists a non-zero polynomial $f \in k\left[X_{1}, \ldots, X_{m}\right]$ which vanishes at the point $\left(\theta_{1}, \ldots, \theta_{m}\right) \in K^{m}$.
Otherwise we say that $\theta_{1}, \ldots, \theta_{m}$ are algebraically independent over k.

Special cases

In the case $m=1$, to say that θ_{1} is algebraically independent over k just means that it is transcendental over k.

Dealing with complex numbers $K=\mathbf{C}$, the words algebraic, transcendental, algebraically dependent, algebraically independent refer to the case $k=\mathbf{Q}$.

Examples

The numbers $\sqrt{2}$ and π are algebraically dependent: The polynomial $X^{2}-2 \in \mathbf{Z}[X, Y]$ vanishes at $(\sqrt{2}, \pi)$.

The numbers π and $\sqrt{\pi^{2}+1}$ are algebraically dependent (and both are transcendental numbers) :
The polynomial $Y-X^{2}-1$ vanishes at $\left(\pi, \sqrt{\pi^{2}+1}\right)$.
The two numbers e and $e^{\sqrt{2}}$ are algebraically independent, which means that for any non-zero polynomial $f \in \mathbf{Z}[X, Y]$ with rational integer coefficients, the number $f\left(e, e^{\sqrt{2}}\right)$ is not zero.
Special case of the Lindemann-Weierstraß Theorem.

Transcendence degree

Let K / k be a field extension. The maximal number of elements in K which are algebraically independent over k is called the transcendence degree of K over k and denoted $\operatorname{tr} \operatorname{deg}_{k} K$.

Let $t=\operatorname{tr} \operatorname{deg}_{k} K$. A subset $\left\{\theta_{1}, \ldots, \theta_{t}\right\}$ of K with t elements which are algebraically independent is called a transcendence basis of K over k. It is the same as a maximal subset of k-algebraically independent elements in K.
Hence K is an algebraic extension of $k\left(\theta_{1}, \ldots, \theta_{t}\right)$.

Transcendence degree of extensions

Assume

$$
k \subset K \subset L
$$

The union of a transcendence basis of K over k and of a transcendence basis of L over K produces a transcendence basis of L over k.
Hence

$$
\operatorname{tr} \operatorname{deg}_{k} L=\operatorname{tr} \operatorname{deg}_{k} K+\operatorname{tr} \operatorname{deg}_{K} L
$$

An algebraic extension K / k is an extension of transcendence degree 0 : This means that there is no transcendental element in K over k (any element in K is algebraic over k).

Algebraic independence of complex numbers

For complex numbers, algebraic independence over Q or over $\overline{\mathbf{Q}}$ is the same. In particular if $\theta_{1}, \ldots, \theta_{m}$ are algebraically independent complex numbers, then for any non-constant polynomial f with algebraic coefficients the number $f\left(\theta_{1}, \ldots, \theta_{m}\right)$ is transcendental.

For instance, the two numbers e and $e^{\sqrt{2}}$ are algebraically independent. As a consequence for any non-constant polynomial $f \in \overline{\mathbf{Q}}[X, Y]$ with algebraic coefficients, the number $f\left(e, e^{\sqrt{2}}\right)$ is transcendental.

Schanuel's Conjecture

Let x_{1}, \ldots, x_{n} be \mathbf{Q}-linearly independent complex numbers. Then at least n of the $2 n$ numbers $x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}$ are algebraically independent.

Since there are $2 n$ numbers only, the transcendence degree over Q of the field

$$
\mathbf{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right)
$$

is at most $2 n$. The conjecture is that this transcendence degree is always $\geq n$:

$$
n \leq ? \operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \leq 2 n
$$

Origin of Schanuel's Conjecture

Course given by Serge Lang (1927-2005) at Yale in the 60's

目 S. LANG - Introduction to transcendental numbers, Addison-Wesley 1966.
also attended by M. Nagata (1927-2008)
(14th Problem of Hilbert).
Nagata's Conjecture solved by E. Bombieri.

Schanuel's Conjecture

Let x_{1}, \ldots, x_{n} be Q-linearly independent complex numbers. Then

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \geq n
$$

Remark: For almost all tuples (with respect to the Lebesgue measure) the transcendence degree is $2 n$.

A.O. Gel'fond CRAS 1934

Statement by Gel'fond (1934)

Let $\beta_{1}, \ldots, \beta_{n}$ be \mathbf{Q}-linearly independent algebraic numbers and let $\log \alpha_{1}, \ldots, \log \alpha_{m}$ be Q-linearly independent logarithms of algebraic numbers. Then the numbers

$$
e^{\beta_{1}}, \ldots, e^{\beta_{n}}, \log \alpha_{1}, \ldots, \log \alpha_{m}
$$

are algebraically independent over Q .

Further statement by Gel'fond

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers with $\beta_{1} \neq 0$ and let $\alpha_{1}, \ldots, \alpha_{m}$ be algebraic numbers with $\alpha_{1} \neq 0,1, \alpha_{2} \neq 0,1$, $\alpha_{i} \neq 0$. Then the numbers

are transcendental, and there is no nontrivial algebraic relation between such numbers.

Remark : The condition on α_{2} should be that it is irrational.

Easy consequence of Schanuel's Conjecture

According to Schanuel's Conjecture, the following numbers are algebraically independent:
$e+\pi, \quad e \pi, \quad \pi^{e}, \quad e^{e}, e^{e^{2}}, \ldots, \quad e^{e^{e}}, \ldots, \quad \pi^{\pi}, \pi^{\pi^{2}}, \ldots \quad \pi^{\pi^{\pi}} \ldots$
$\log \pi, \quad \log (\log 2), \quad \pi \log 2, \quad(\log 2)(\log 3), \quad 2^{\log 2}, \quad(\log 2)^{\log 3}$.

Proof: This is an easy exercise.

Lang's exercise

Define $E_{0}=\mathrm{Q}$. Inductively, for $n \geq 1$, define E_{n} as the algebraic closure of the field generated over E_{n-1} by the numbers $\exp (x)=e^{x}$, where x ranges over E_{n-1}. Let E be the union of $E_{n}, n \geq 0$.
Then Schanuel's Conjecture implies that the number π does not belong to E.

More precisely : Schanuel's Conjecture implies that the numbers $\pi, \log \pi, \log \log \pi, \log \log \log \pi, \ldots$ are algebraically independent over E.

A variant of Lang's exercise

Define $L_{0}=\mathbf{Q}$. Inductively, for $n \geq 1$, define L_{n} as the algebraic closure of the field generated over L_{n-1} by the numbers y, where y ranges over the set of complex numbers such that $e^{y} \in L_{n-1}$. Let L be the union of $L_{n}, n \geq 0$. Then Schanuel's Conjecture implies that the number e does not belong to L.

More precisely : Schanuel's Conjecture implies that the numbers $e, e^{e}, e^{e^{e}}, e^{e^{e^{e}}} \ldots$ are algebraically independent over L.

Arizona Winter School AWS2008, Tucson

Theorem [Jonathan Bober, Chuangxun Cheng, Brian Dietel, Mathilde Herblot, Jingjing Huang, Holly Krieger, Diego Marques, Jonathan Mason, Martin Mereb and Robert Wilson.] Schanuel's Conjecture implies that the fields E and L are linearly disjoint over $\overline{\mathbf{Q}}$.

Definition Given a field extension F / K and two subextensions $F_{1}, F_{2} \subseteq F$, we say F_{1}, F_{2} are linearly disjoint over K when the following holds: Any set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq F_{1}$ of K - linearly independent elements is linearly independent over F_{2}.

Reference : arXiv. 0804.3550 [math.NT] 2008.

Formal analogs

J. Ax's Theorem (1968) :

Version of Schanuel's
Conjecture for power series over C (and R. Coleman for power series over $\overline{\mathbf{Q}}$)

Work by W.D. Brownawell and K. Kubota on the elliptic analog of Ax's Theorem.

Conjectures by A. Grothendieck and Y. André

Generalized Conjecture on Periods by Grothendieck : Dimension of the Mumford-Tate group of a smooth projective variety. Generalization by Y. André to motives.

Case of 1-motives : Elliptico-Toric Conjecture of C. Bertolin.

Ubiquity of Schanuel's Conjecture

Other contexts: p-adic numbers, Leopoldt's Conjecture on the p-adic rank of the units of an algebraic number field Non-vanishing of Regulators
Non-degenerescence of heights
Conjecture of B. Mazur on rational points
Diophantine approximation on tori

Dipendra Prasad

Gopal Prasad

Methods from logic

 Ehud Hrushovski

Calculus of "predimension functions" (E. Hrushovski)
Zilber's construction of a "pseudoexponentiation"
Also : A. Macintyre, D.E. Marker, G. Terzo, A.J. Wilkie,
D. Bertrand...

Methods from logic: Model theory

Exponential algebraicity in exponential fields
by
Jonathan Kirby

The dimension of the exponential algebraic closure operator in an exponential field satisfies a weak Schanuel property.

A corollary is that there are at most countably many essential counterexamples to Schanuel's conjecture.
arXiv :0810.4285v2

Known

Lindemann-Weierstraß Theorem $=$ case where x_{1}, \ldots, x_{n} are algebraic.

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers which are linearly independent over \mathbf{Q}. Then the numbers $e^{\beta_{1}}, \ldots, e^{\beta_{n}}$ are algebraically independent over Q.

Problem of Gel'fond and Schneider

 Raised by A.O. Gel'fond in 1948 and Th. Schneider in 1952.Conjecture : If α is an algebraic number, $\alpha \neq 0, \alpha \neq 1$ and if β is an irrational algebraic number of degree d, then the $d-1$ numbers

$$
\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}
$$

are algebraically independent.
Special case of Schanuel's Conjecture : Take $x_{i}=\beta^{i-1} \log \alpha$, $n=d$, so that $\left\{x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right\}$ is

$$
\left\{\log \alpha, \beta \log \alpha, \ldots, \beta^{d-1} \log \alpha, \quad \alpha, \alpha^{\beta}, \ldots, \alpha^{\beta^{d-1}}\right\}
$$

The conclusion of Schanuel's Conjecture is

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(\log \alpha, \alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}\right)=d
$$

Algebraic independence method of Gel'fond

A.O. Gel'fond (1948)

The two numbers $2^{\sqrt[3]{2}}$ and
$2^{\sqrt[3]{4}}$ are algebraically
independent.
More generally, if α is an algebraic number, $\alpha \neq 0$, $\alpha \neq 1$ and if β is a algebraic number of degree $d \geq 3$, then two at least of the numbers

$$
\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}
$$

are algebraically independent.

Tools

Transcendence criterion: Replaces Liouville's inequality in transcendence proofs.
Liouville : A non-zero rational integer $n \in \mathbf{Z}$ satisfies $|n| \geq 1$.
Gel'fond : Needs to give a lower bound for $|P(\theta)|$ with $P \in \mathbf{Z}[X] \backslash\{0\}$ when θ is transcendental.

Zero estimate for exponential polynomials:
C. Hermite, P. Turan, K. Mahler, R. Tijdeman,...

Small transcendence degree :
A.O. Gel'fond, A.A. Smelev, R. Tijdeman, W.D. Brownawell. . .

Large transcendence degree

G.V. Chudnovsky (1976)

Among the numbers

$$
\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}
$$

at least $\left[\log _{2} d\right]$ are algebraically independent.

嗇 G.V. Chudnovsky - On the path to Schanuel's conjecture. Algebraic curves close to a point.
I. General theory of colored sequences.
II. Fields of finite transcendence type and colored sequences. Resultants.
Studia Sci. Math. Hungar. 12 (1977), 125-157 (1980).

Partial result on the problem of Gel'fond and Schneider

A.O. Gel'fond, G.V. Chudnovskii, P. Philippon, Yu.V. Nesterenko.

G. Diaz: If α is an algebraic number, $\alpha \neq 0, \alpha \neq 1$ and if β is an irrational algebraic number of degree d, then

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(\alpha^{\beta}, \alpha^{\beta^{2}}, \ldots, \alpha^{\beta^{d-1}}\right) \geq\left[\frac{d+1}{2}\right]
$$

Conjecture of algebraic independence of logarithms

 of algebraic numbersDenote by \mathcal{L} the set of complex numbers λ for which e^{λ} is algebraic:

$$
\mathcal{L}=\left\{\log \alpha ; \alpha \in \overline{\mathbf{Q}}^{\times}\right\} .
$$

Hence \mathcal{L} is a Q-vector subspace of C .
The most important special case of Schanuel's Conjecture is :
Conjecture. Let $\lambda_{1}, \ldots, \lambda_{n}$ be Q-linearly independent elements in \mathcal{L}. Then the numbers $\lambda_{1}, \ldots, \lambda_{n}$ are algebraically independent over Q .

Not yet known that the transcendence degree is ≥ 2 :
Open problem : Among all logarithms of algebraic numbers, one at least is transcendental over $\mathbf{Q}(\pi)$.

Structural rank of a matrix

Let K be a field, k a subfield and M a matrix with entries in K. Consider the k-vector subspace \mathcal{E} of K spanned by the entries of M. Choose an injective morphism φ of \mathcal{E} into a k-vector space $k X_{1}+\cdots+k X_{n}$. The image $\varphi(\mathrm{M})$ of M is a matrix whose entries are in the field $k\left(X_{1}, \ldots, X_{n}\right)$ of rational fractions. Its rank does not depend on the choice of φ.

This is the structural rank of M with respect to k.

Example

Let

$$
\mathrm{M}=\left(b_{i j}+\lambda_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}^{\substack{ \\1 \leq 2}}
$$

be a matrix with coefficients in $\mathrm{Q}+\mathcal{L}$. Consider a basis of the Q-vector spanned by the entries, and replace the elements in this basis by unknowns: This gives a new matrix \widetilde{M} with coefficients in a field of rational fractions, the rank of which is the structural rank of M (with respect to Q).

As a consequence of the conjecture of algebraic independence of logarithms of algebraic numbers, the rank of \widetilde{M} should be the same as the rank of its specialization M.

Equivalence between the two conjectures

Following D. Roy, the conjecture on algebraic independence of logarithms of algebraic numbers is equivalent to :

Conjecture. Any matrix

$$
\left(b_{i j}+\lambda_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}
$$

with $b_{i j} \in \mathbf{Q}$ and $\lambda_{i j} \in \mathcal{L}$ has a rank equal to its structural rank.

Any Polynomial is the Determinant of a Matrix

The proof of the equivalence uses the nice auxiliary result :
For any $P \in k\left[X_{1}, \ldots, X_{n}\right]$ there exists a square matrix with entries in the k-vector space $k+k X_{1}+\cdots+k X_{n}$ whose determinant is P.

Half of the Conjecture is solved

From a certain point of view, half of the conjecture of algebraic independence of logarithms of algebraic numbers is solved:

Theorem [D. Roy]. The rank of any matrix

$$
\left(b_{i j}+\lambda_{i j}\right)_{\substack{1 \leq i \leq d \\ 1 \leq j \leq \ell}}
$$

with $b_{i j} \in \mathbf{Q}$ and $\lambda_{i j} \in \mathcal{L}$ is at least half its structural rank.

Reformulation by D. Roy

Instead of taking logarithms of algebraic numbers and looking for the algebraic independence relations,
D. Roy fixes a polynomial and looks at the points, with coordinates logarithms of algebraic numbers, on the corresponding hypersurface.

Reformulation by D. Roy

Roy's reformulation of the conjecture of algebraic independence of logarithms is :

Conjecture. For any algebraic subvariety V of C^{n} defined over the field $\overline{\mathrm{Q}}$ of algebraic numbers, the set $V \cap \mathcal{L}^{n}$ is the union of the sets $E \cap \mathcal{L}^{n}$, where E ranges over the set of vector subspaces of C^{n} which are defined over Q and contained in V.

Trivial: Any element in $E \cap \mathcal{L}^{n}$, where E is a vector subspace of C^{n} defined over Q and contained in V, belongs to $V \cap \mathcal{L}^{n}$.

Example: The Four Exponentials Conjecture

Take for V the hypersurface of C^{4} defined by the equation

$$
z_{1} z_{4}=z_{2} z_{3}
$$

The maximal C -vector subspaces of C^{4} defined over Q and contained in V are the planes

$$
a z_{1}=b z_{2}, \quad b z_{4}=a z_{3}
$$

and the planes

$$
a z_{1}=b z_{3}, \quad b z_{4}=a z_{2}
$$

with $(a, b) \in \mathbf{Q}^{2} \backslash\{(0,0)\}$. Hence Schanuel's Conjecture implies that if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ are logarithms of algebraic numbers satisfying

$$
\lambda_{1} \lambda_{4}=\lambda_{2} \lambda_{3}
$$

then either λ_{1}, λ_{2} are linearly dependent over \mathbf{Q}, or else λ_{1}, λ_{3} are linearly dependent over Q .

Six Exponentials Theorem

 and Four Exponentials ConjectureA. Selberg C.L. Siegel S. Lang K. Ramachandra

The Four Exponentials Conjecture

Conjecture (Th. Schneider, S. Lang, K. Ramachandra). If x_{1}, x_{2} are \mathbf{Q}-linearly independent complex numbers and y_{1}, y_{2} are Q-linearly independent complex numbers, then one at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.
Equivalent statement : Any 2×2 matrix

$$
\left(\begin{array}{ll}
\lambda_{1} & \lambda_{2} \\
\lambda_{3} & \lambda_{4}
\end{array}\right)
$$

with entries in \mathcal{L} and with Q -linearly independent rows and Q -linearly independent columns has maximal rank 2.

How could we attack Schanuel's Conjecture?

Let x_{1}, \ldots, x_{n} be Q-linearly independent complex numbers.
Following the transcendence methods of Hermite, Gel'fond, Schneider..., one may start by introducing an auxiliary function

$$
F(z)=P\left(z, e^{z}\right)
$$

where $P \in \mathbf{Z}\left[X_{0}, X_{1}\right]$ is a non-zero polynomial. One considers the derivatives

$$
\left(\frac{d}{d z}\right)^{k} F=\left(\mathcal{D}^{k} P\right)\left(z, e^{z}\right)
$$

at the points

$$
m_{1} x_{1}+\cdots+m_{n} x_{n}
$$

for various values of $\left(m_{1}, \ldots, m_{n}\right) \in \mathbf{Z}^{n}$.

Auxiliary function

Let \mathcal{D} denote the derivation

$$
\mathcal{D}=\frac{\partial}{\partial X_{0}}+X_{1} \frac{\partial}{\partial X_{1}}
$$

over the ring $\mathbf{C}\left[X_{0}, X_{1}\right]$. Recall that x_{1}, \ldots, x_{n} are \mathbf{Q}-linearly independent complex numbers. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero complex numbers.
The transcendence machinery produces a sequence $\left(P_{N}\right)_{N \geq 0}$ of polynomials with integer coefficients satisfying

$$
\left|\left(\mathcal{D}^{k} P_{N}\right)\left(\sum_{j=1}^{n} m_{j} x_{j}, \prod_{j=1}^{n} \alpha_{j}^{m_{j}}\right)\right| \leq \exp \left(-N^{u}\right)
$$

for any non-negative integers k, m_{1}, \ldots, m_{n} with $k \leq N^{s_{0}}$ and $\max \left\{m_{1}, \ldots, m_{n}\right\} \leq N^{s_{1}}$.

Roy's approach to Schanuel's Conjecture (1999)

If the number of equations we produce is too small, such a set of relations does not contain any information: The existence of a sequence of non-trivial polynomials $\left(P_{N}\right)_{N \geq 0}$ follows from linear algebra.

On the other hand, following D. Roy, one may expect that the existence of such a sequence $\left(P_{N}\right)_{N \geq 0}$ producing sufficiently many such equations will yield the desired conclusion :

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(x_{1}, \ldots, x_{n}, \alpha_{1}, \ldots, \alpha_{n}\right) \geq n
$$

Roy's Conjecture (1999)

Let $s_{0}, s_{1}, t_{0}, t_{1}, u$ positive real numbers satisfying

$$
\max \left\{1, t_{0}, 2 t_{1}\right\}<\min \left\{s_{0}, 2 s_{1}\right\}
$$

and

$$
\max \left\{s_{0}, s_{1}+t_{1}\right\}<u<\frac{1}{2}\left(1+t_{0}+t_{1}\right)
$$

Assume that, for any sufficiently large positive integer N, there exists a non-zero polynomial $P_{N} \in \mathbf{Z}\left[X_{0}, X_{1}\right]$ with partial degree $\leq N^{t_{0}}$ in X_{0}, partial degree $\leq N^{t_{1}}$ in X_{1} and height $\leq e^{N}$ which satisfies

$$
\left|\left(\mathcal{D}^{k} P_{N}\right)\left(\sum_{j=1}^{n} m_{j} x_{j}, \prod_{j=1}^{n} \alpha_{j}^{m_{j}}\right)\right| \leq \exp \left(-N^{u}\right)
$$

for any non-negative integers k, m_{1}, \ldots, m_{n} with $k \leq N^{s_{0}}$ and $\max \left\{m_{1}, \ldots, m_{n}\right\} \leq N^{s_{1}}$. Then

$$
\operatorname{tr} \operatorname{deg}_{\mathbf{Q}} \mathbf{Q}\left(x_{1}, \ldots, x_{n}, \alpha_{1}, \ldots, \alpha_{n}\right) \geq n
$$

Roy's Theorem (1999)

Roy's conjecture is equivalent to Schanuel's Conjecture.

Equivalence between Schanuel and Roy

Let $(x, \alpha) \in \mathbf{C} \times \mathbf{C}^{\times}$, and let $s_{0}, s_{1}, t_{0}, t_{1}, u$ be positive real numbers satisfying the inequalities of Roy's Conjecture. Then the following conditions are equivalent :
(a) The number αe^{-x} is a root of unity.
(b) For any sufficiently large positive integer N, there exists a non-zero polynomial $Q_{N} \in \mathbf{Z}\left[X_{0}, X_{1}\right]$ with partial degree $\leq N^{t_{0}}$ in X_{0}, partial degree $\leq N^{t_{1}}$ in X_{1} and height $\mathrm{H}\left(Q_{N}\right) \leq e^{N}$ such that

$$
\left|\left(\mathcal{D}^{k} Q_{N}\right)\left(m x, \alpha^{m}\right)\right| \leq \exp \left(-N^{u}\right)
$$

for any $k, m \in \mathbf{N}$ with $k \leq N^{s_{0}}$ and $m \leq N^{s_{1}}$.

Gel'fond's transcendence criterion

Simple form : Given a complex number ϑ, if there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq n$ and height $\leq e^{n}$, such that

$$
\left|P_{n}(\vartheta)\right| \leq e^{-7 n^{2}}
$$

for all $n \geq 1$, then ϑ is algebraic and $P_{n}(\vartheta)=0$ for all $n \geq 1$.

First extension : Replace the bound for the degree by $\leq d_{n}$, the bound for the height by $e^{b_{n}}$, and the bound for $\left|P_{n}(\vartheta)\right|$ by $e^{-c d_{n} b_{n}}$ with some constant $c>0$ independent of n.

Some mild conditions are required on the sequences $\left(d_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$.

Transcendence criterion with multiplicities

 With derivatives: Given a complex number ϑ, if there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{b_{n}}$, such that$$
\left|P_{n}^{(j)}(\vartheta)\right| \leq e^{-c d_{n} b_{n} / t_{n}}
$$

for all j in the range $0 \leq j<t_{n}$ and all $n \geq 1$, then ϑ is algebraic.
Due to M. Laurent and D. Roy, applications to algebraic independence.

Criterion with several points

Goal: Given a sequence of complex numbers $\left(\vartheta_{i}\right)_{i \geq 1}$, if there exists a sequence $\left(P_{n}\right)_{n \geq 1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P_{n} of degree $\leq d_{n}$ and height $\leq e^{b_{n}}$, such that

$$
\left|P_{n}^{(j)}\left(\vartheta_{i}\right)\right| \leq e^{-c d_{n} b_{n} / t_{n} s_{n}}
$$

for $0 \leq j<t_{n}, 1 \leq i \leq s_{n}$ and all $n \geq 1$, then the numbers ϑ_{i} are algebraic.
D. Roy: Not true in general, but true in some special cases with a structure on the sequence $\left(\vartheta_{i}\right)_{i \geq 1}$.
Combines the elimination arguments used for criteria of algebraic independence and for zero estimates.

Small value estimates for the additive group

D. Roy. Small value estimates for the additive group. Intern. J. Number Theory, to appear.
Let ξ be a transcendental complex number, let β, σ, τ and ν be non-negative real numbers, let n_{0} be a positive integer, and let $\left(P_{n}\right)_{n \geq n_{0}}$ be a sequence of non-zero polynomials in $\mathbf{Z}[T]$ satisfying $\operatorname{deg}\left(P_{n}\right) \leq n$ and $H\left(P_{n}\right) \leq \exp \left(n^{\beta}\right)$ for each
$n \geq n_{0}$. Suppose that $\beta>1$, $(3 / 4) \sigma+\tau<1$ and
$\nu>1+\beta-(3 / 4) \sigma-\tau$. Then for infinitely many n, we have

$$
\max \left\{\left|P_{n}^{[j]}(i \xi)\right| ; 0 \leq i \leq n^{\sigma}, 0 \leq j \leq n^{\tau}\right\}>\exp \left(-n^{\nu}\right)
$$

Small value estimates for the multiplicative group

D. Roy. Small value estimates for the multiplicative group. Acta Arith., to appear.

Let ξ_{1}, \ldots, ξ_{m} be multiplicatively independent complex numbers in a field of transcendence degree 1 . Under suitable assumptions on the parameters β, σ, τ, ν, for infinitely many positive integers n, there exists no non-zero polynomial $P \in \mathbf{Z}[T]$ satisfying $\operatorname{deg}(P) \leq n, H(P) \leq \exp \left(n^{\beta}\right)$ and

$$
\begin{aligned}
\max \left\{\left|P^{[j]}\left(\xi_{1}^{i_{1}} \cdots \xi_{m}^{i_{m}}\right)\right| ; 0\right. & \left.\leq i_{1}, \ldots, i_{m} \leq n^{\sigma}, 0 \leq j \leq n^{\tau}\right\} \\
& >\exp \left(-n^{\nu}\right)
\end{aligned}
$$

Heidelberg Colloquium organized by the Institute for Mathematics.
http://www.mathi.uni-heidelberg.de/vortrag.html?s=1 January 22, 2009

Transcendental Number Theory: Schanuel's Conjecture

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI
http://www.math.jussieu.fr/~miw/

