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Abstract

One of the main open problems in transcendental number
theory is Schanuel’s Conjecture which was stated in the
1960’s :

If x1, . . . , xn are Q–linearly independent complex
numbers, then among the 2n numbers x1, . . . , xn,
ex1 , . . . , exn , at least n are algebraically independent.

We first give a list of consequences of this statement ; next we
describe the state of the art by giving special cases of the
conjecture which have been proved, and finally we introduce a
promising approach which has been initiated in 1999 by
D. Roy.
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Algebraic and transcendental numbers
Algebraic numbers : Roots of polynomials with rational
coefficients. Algebraic closure of Q in C :

Q ⊂ Q ⊂ C

Transcendental numbers : Complex numbers that are not
algebraic.

The set of algebraic numbers behaves well with respect to
addition, multiplication, division : It is a field.
The set of transcendental numbers is the complement in the
field C of the field Q. The sum of transcendental numbers
may be rational, algebraic or transcendental. The same for the
product.
However, the sum of a transcendental number and an algebraic
number is transcendental, and the product of a transcendental
number and a non–zero algebraic number is transcendental.
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The exponential function

For z ∈ C,

ez = exp(z) = 1 + z +
z2

2
+
z3

6
+ · · · =

∑
n≥0

zn

n!
·

Addition Theorem : ez1+z2 = ez1ez2 , e2iπ = 1.

exp : C −→ C×, ker(exp) = 2iπZ, C/2iπZ ' C×.

Differential equation :

d

dz
ez = ez.
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First examples of transcendental numbers

∑
n≥1 2−n! : Liouville, 1844

e : Hermite, 1872

π : Lindemann, 1881
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Ch. Hermite – F. Lindemann – C. Weierstraß

log 2, e
√

2 : Theorem of Hermite–Lindemann

e
√

2 +
√

3e
√

6 : Lindemann–Weierstraß, 1888
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Question of Euler and Hilbert

Leonhard Euler (1707 – 1783)
Introductio in analysin infinitorum (1737)

Transcendence of 2
√

2

David Hilbert (1862 - 1943)
ICM 1900 : 7–th Problem

Transcendence of log a/ log 2.

7 / 59



A.O. Gel’fond – Th. Schneider – A. Baker

eπ : Gel’fond, 1929

2
√

2, log 2/ log 3 : Gel’fond and Schneider, 1934

log 2 +
√

3 log 3, e
√

22
√

35
√

7 : Baker, 1968.
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Some open problems

For each of the following numbers, it is expected that it is
transcendental, but it is not even known whether it is rational
or not.

e+ π, eπ, πe, ee, ee
2

, . . . , ee
e

, . . . , ππ, ππ
2

, . . . ππ
π

. . .

log π, log(log 2), π log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

In other words we do not know whether a degree 1 polynomial
could vanish at the corresponding point, but we expect that
no non–zero polynomial of any degree vanishes at this point.
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Algebraic independence

Algebraicity and transcendence deal with a single complex
number and one variable polynomials.
Algebraic dependence or independence is the same but for
tuples and multivariate polynomials.

Let K ⊃ k be an extension of fields and (θ1, . . . , θm) be a
m–tuple of elements in K. We say that θ1, . . . , θm are
algebraically dependent over k if there exists a non–zero
polynomial f ∈ k[X1, . . . , Xm] which vanishes at the point
(θ1, . . . , θm) ∈ Km.
Otherwise we say that θ1, . . . , θm are algebraically independent
over k.
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Special cases

In the case m = 1, to say that θ1 is algebraically independent
over k just means that it is transcendental over k.

Dealing with complex numbers K = C, the words algebraic,
transcendental, algebraically dependent, algebraically
independent refer to the case k = Q.
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Examples

The numbers
√

2 and π are algebraically dependent :
The polynomial X2 − 2 ∈ Z[X, Y ] vanishes at (

√
2, π).

The numbers π and
√
π2 + 1 are algebraically dependent (and

both are transcendental numbers) :
The polynomial Y −X2 − 1 vanishes at (π,

√
π2 + 1).

The two numbers e and e
√

2 are algebraically independent,
which means that for any non–zero polynomial f ∈ Z[X, Y ]

with rational integer coefficients, the number f(e, e
√

2) is not
zero.
Special case of the Lindemann-Weierstraß Theorem.
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Transcendence degree

Let K/k be a field extension. The maximal number of
elements in K which are algebraically independent over k is
called the transcendence degree of K over k and denoted
tr degkK.

Let t = tr degkK. A subset {θ1, . . . , θt} of K with t elements
which are algebraically independent is called a transcendence
basis of K over k. It is the same as a maximal subset of
k–algebraically independent elements in K.
Hence K is an algebraic extension of k(θ1, . . . , θt).
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Transcendence degree of extensions

Assume
k ⊂ K ⊂ L.

The union of a transcendence basis of K over k and of a
transcendence basis of L over K produces a transcendence
basis of L over k.
Hence

tr degkL = tr degkK + tr degKL.

An algebraic extension K/k is an extension of transcendence
degree 0 : This means that there is no transcendental element
in K over k (any element in K is algebraic over k).
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Algebraic independence of complex numbers

For complex numbers, algebraic independence over Q or over
Q is the same. In particular if θ1, . . . , θm are algebraically
independent complex numbers, then for any non-constant
polynomial f with algebraic coefficients the number
f(θ1, . . . , θm) is transcendental.

For instance, the two numbers e and e
√

2 are algebraically
independent. As a consequence for any non–constant
polynomial f ∈ Q[X, Y ] with algebraic coefficients, the

number f(e, e
√

2) is transcendental.
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Schanuel’s Conjecture

Let x1, . . . , xn be Q-linearly independent complex numbers.
Then at least n of the 2n numbers x1, . . . , xn, e

x1 , . . . , exn are
algebraically independent.

Since there are 2n numbers only, the transcendence degree
over Q of the field

Q
(
x1, . . . , xn, e

x1 , . . . , exn
)

is at most 2n. The conjecture is that this transcendence
degree is always ≥ n :

n ≤? tr degQQ
(
x1, . . . , xn, e

x1 , . . . , exn
)
≤ 2n.
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Origin of Schanuel’s Conjecture
Course given by Serge Lang (1927–2005) at Yale in the 60’s

S. Lang – Introduction to transcendental numbers,
Addison-Wesley 1966.

also attended by M. Nagata (1927–2008)
(14th Problem of Hilbert).

Nagata’s Conjecture solved by E. Bombieri.
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Schanuel’s Conjecture

Let x1, . . . , xn be Q-linearly independent complex numbers.
Then

tr degQQ
(
x1, . . . , xn, e

x1 , . . . , exn
)
≥ n.

Remark : For almost all tuples (with respect to the Lebesgue
measure) the transcendence degree is 2n.
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A.O. Gel’fond CRAS 1934
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Statement by Gel’fond (1934)

Let β1, . . . , βn be Q-linearly independent algebraic numbers
and let logα1, . . . , logαm be Q-linearly independent
logarithms of algebraic numbers. Then the numbers

eβ1 , . . . , eβn , logα1, . . . , logαm

are algebraically independent over Q.
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Further statement by Gel’fond

Let β1, . . . , βn be algebraic numbers with β1 6= 0 and let
α1, . . . , αm be algebraic numbers with α1 6= 0, 1, α2 6= 0, 1,
αi 6= 0. Then the numbers

eβ1eβ2e
. ..βn−1e

βn

and α
α. ..αm

2
1

are transcendental, and there is no nontrivial algebraic relation
between such numbers.

Remark : The condition on α2 should be that it is irrational.
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Easy consequence of Schanuel’s Conjecture

According to Schanuel’s Conjecture, the following numbers are
algebraically independent :

e+ π, eπ, πe, ee, ee
2

, . . . , ee
e

, . . . , ππ, ππ
2

, . . . ππ
π

. . .

log π, log(log 2), π log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

Proof : This is an easy exercise.
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Lang’s exercise

Define E0 = Q. Inductively,
for n ≥ 1, define En as the
algebraic closure of the field
generated over En−1 by the
numbers exp(x) = ex, where
x ranges over En−1. Let E be
the union of En, n ≥ 0.
Then Schanuel’s Conjecture
implies that the number π
does not belong to E.

More precisely : Schanuel’s Conjecture implies that the
numbers π, log π, log log π, log log log π, . . . are algebraically
independent over E.
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A variant of Lang’s exercise

Define L0 = Q. Inductively, for n ≥ 1, define Ln as the
algebraic closure of the field generated over Ln−1 by the
numbers y, where y ranges over the set of complex numbers
such that ey ∈ Ln−1. Let L be the union of Ln, n ≥ 0.
Then Schanuel’s Conjecture implies that the number e does
not belong to L.

More precisely : Schanuel’s Conjecture implies that the

numbers e, ee, ee
e
, ee

ee

. . . are algebraically independent over L.
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Arizona Winter School AWS2008, Tucson

Theorem [Jonathan Bober, Chuangxun Cheng, Brian Dietel,
Mathilde Herblot, Jingjing Huang, Holly Krieger, Diego
Marques, Jonathan Mason, Martin Mereb and Robert Wilson.]
Schanuel’s Conjecture implies that the fields E and L are
linearly disjoint over Q.

Definition Given a field extension F/K and two
subextensions F1, F2 ⊆ F , we say F1, F2 are linearly disjoint
over K when the following holds : Any set {x1, . . . , xn} ⊆ F1

of K– linearly independent elements is linearly independent
over F2.

Reference : arXiv.0804.3550 [math.NT] 2008.
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Formal analogs

W.D. Brownawell
(was a student of Schanuel)

J. Ax’s Theorem (1968) :
Version of Schanuel’s
Conjecture for power series
over C
(and R. Coleman for power
series over Q)

Work by W.D. Brownawell
and K. Kubota on the elliptic
analog of Ax’s Theorem.
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Conjectures by A. Grothendieck and Y. André

Generalized Conjecture on
Periods by Grothendieck :
Dimension of the
Mumford–Tate group of a
smooth projective variety.

Generalization by Y. André to
motives.

Case of 1–motives :
Elliptico-Toric Conjecture of
C. Bertolin.
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Ubiquity of Schanuel’s Conjecture

Other contexts : p–adic numbers, Leopoldt’s Conjecture on
the p–adic rank of the units of an algebraic number field
Non-vanishing of Regulators
Non–degenerescence of heights
Conjecture of B. Mazur on rational points
Diophantine approximation on tori

Dipendra Prasad Gopal Prasad
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Methods from logic
Ehud Hrushovski Boris Zilber Jonathan Kirby

Calculus of ”predimension functions” (E. Hrushovski)

Zilber’s construction of a ”pseudoexponentiation”

Also : A. Macintyre, D.E. Marker, G. Terzo, A.J. Wilkie,
D. Bertrand. . .
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Methods from logic : Model theory

Exponential algebraicity in exponential fields
by

Jonathan Kirby

The dimension of the exponential algebraic closure operator in
an exponential field satisfies a weak Schanuel property.

A corollary is that there are at most countably many essential
counterexamples to Schanuel’s conjecture.

arXiv :0810.4285v2
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Known

Lindemann–Weierstraß Theorem = case where x1, . . . , xn are
algebraic.

Let β1, . . . , βn be algebraic numbers which are linearly
independent over Q. Then the numbers eβ1 , . . . , eβn are
algebraically independent over Q.
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Problem of Gel’fond and Schneider
Raised by A.O. Gel’fond in 1948 and Th. Schneider in 1952.

Conjecture : If α is an algebraic number, α 6= 0, α 6= 1 and if
β is an irrational algebraic number of degree d, then the d− 1
numbers

αβ, αβ
2

, . . . , αβ
d−1

are algebraically independent.

Special case of Schanuel’s Conjecture : Take xi = βi−1 logα,
n = d, so that

{
x1, . . . , xn, e

x1 , . . . , exn
}

is{
logα, β logα, . . . , βd−1 logα, α, αβ, . . . , αβ

d−1}
.

The conclusion of Schanuel’s Conjecture is

tr degQQ
(
logα, αβ, αβ

2

, . . . , αβ
d−1)

= d.

32 / 59



Algebraic independence method of Gel’fond

A.O. Gel’fond (1948)

The two numbers 2
3√2 and

2
3√4 are algebraically

independent.
More generally, if α is an
algebraic number, α 6= 0,
α 6= 1 and if β is a algebraic
number of degree d ≥ 3, then
two at least of the numbers

αβ, αβ
2

, . . . , αβ
d−1

are algebraically independent.
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Tools

Transcendence criterion : Replaces Liouville’s inequality in
transcendence proofs.
Liouville : A non–zero rational integer n ∈ Z satisfies |n| ≥ 1.
Gel’fond : Needs to give a lower bound for |P (θ)| with
P ∈ Z[X] \ {0} when θ is transcendental.

Zero estimate for exponential polynomials :
C. Hermite, P. Turan, K. Mahler, R. Tijdeman,. . .

Small transcendence degree :
A.O. Gel’fond, A.A. Smelev, R. Tijdeman, W.D. Brownawell. . .
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Large transcendence degree

G.V. Chudnovsky (1976)
Among the numbers

αβ, αβ
2

, . . . , αβ
d−1

at least [log2 d] are
algebraically independent.

G.V. Chudnovsky – On the path to Schanuel’s
conjecture. Algebraic curves close to a point.
I. General theory of colored sequences.
II. Fields of finite transcendence type and colored
sequences. Resultants.
Studia Sci. Math. Hungar. 12 (1977), 125–157 (1980).
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Partial result on the problem of Gel’fond and

Schneider

A.O. Gel’fond, G.V. Chudnovskii, P. Philippon, Yu.V. Nesterenko.

G. Diaz : If α is an algebraic number, α 6= 0, α 6= 1 and if β is
an irrational algebraic number of degree d, then

tr degQQ
(
αβ, αβ

2

, . . . , αβ
d−1) ≥ [d+ 1

2

]
.
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Conjecture of algebraic independence of logarithms

of algebraic numbers

Denote by L the set of complex numbers λ for which eλ is
algebraic :

L = {logα ; α ∈ Q
×}.

Hence L is a Q-vector subspace of C.
The most important special case of Schanuel’s Conjecture is :

Conjecture. Let λ1, . . . , λn be Q-linearly independent elements
in L. Then the numbers λ1, . . . , λn are algebraically
independent over Q.

Not yet known that the transcendence degree is ≥ 2 :
Open problem : Among all logarithms of algebraic numbers,
one at least is transcendental over Q(π).

37 / 59



Structural rank of a matrix

Let K be a field, k a subfield and M a matrix with entries in K.
Consider the k-vector subspace E of K spanned by the entries
of M. Choose an injective morphism ϕ of E into a k-vector
space kX1 + · · ·+ kXn. The image ϕ(M) of M is a matrix
whose entries are in the field k(X1, . . . , Xn) of rational
fractions. Its rank does not depend on the choice of ϕ.

This is the structural rank of M with respect to k.
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Example

Let
M =

(
bij + λij

)
1≤i≤d
1≤j≤`

be a matrix with coefficients in Q + L. Consider a basis of the
Q–vector spanned by the entries, and replace the elements in
this basis by unknowns : This gives a new matrix M̃ with
coefficients in a field of rational fractions, the rank of which is
the structural rank of M (with respect to Q).

As a consequence of the conjecture of algebraic independence
of logarithms of algebraic numbers, the rank of M̃ should be
the same as the rank of its specialization M.
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Equivalence between the two conjectures

Following D. Roy, the
conjecture on algebraic
independence of logarithms of
algebraic numbers is
equivalent to :

Conjecture. Any matrix(
bij + λij

)
1≤i≤d
1≤j≤`

with bij ∈ Q and λij ∈ L has a rank equal to its structural
rank.
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Any Polynomial is the Determinant of a Matrix

The proof of the equivalence uses the nice auxiliary result :

For any P ∈ k[X1, . . . , Xn] there exists a square matrix with
entries in the k-vector space k + kX1 + · · ·+ kXn whose
determinant is P .
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Half of the Conjecture is solved

From a certain point of view, half of the conjecture of algebraic
independence of logarithms of algebraic numbers is solved :

Theorem [D. Roy]. The rank of any matrix(
bij + λij

)
1≤i≤d
1≤j≤`

with bij ∈ Q and λij ∈ L is at least half its structural rank.
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Reformulation by D. Roy

Instead of taking logarithms
of algebraic numbers and
looking for the algebraic
independence relations,
D. Roy fixes a polynomial and
looks at the points, with
coordinates logarithms of
algebraic numbers, on the
corresponding hypersurface.
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Reformulation by D. Roy

Roy’s reformulation of the conjecture of algebraic
independence of logarithms is :

Conjecture. For any algebraic subvariety V of Cn defined
over the field Q of algebraic numbers, the set V ∩ Ln is the
union of the sets E ∩ Ln, where E ranges over the set of
vector subspaces of Cn which are defined over Q and
contained in V .

Trivial : Any element in E ∩ Ln, where E is a vector subspace
of Cn defined over Q and contained in V , belongs to V ∩ Ln.
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Example : The Four Exponentials Conjecture
Take for V the hypersurface of C4 defined by the equation

z1z4 = z2z3.

The maximal C–vector subspaces of C4 defined over Q and
contained in V are the planes

az1 = bz2, bz4 = az3

and the planes
az1 = bz3, bz4 = az2

with (a, b) ∈ Q2 \ {(0, 0)}.
Hence Schanuel’s Conjecture implies that if λ1, λ2, λ3, λ4 are
logarithms of algebraic numbers satisfying

λ1λ4 = λ2λ3,

then either λ1, λ2 are linearly dependent over Q, or else λ1, λ3

are linearly dependent over Q.
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Six Exponentials Theorem

and Four Exponentials Conjecture

A. Selberg C.L. Siegel S. Lang K. Ramachandra
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The Four Exponentials Conjecture

Conjecture (Th. Schneider, S. Lang, K. Ramachandra). If
x1, x2 are Q–linearly independent complex numbers and y1, y2

are Q–linearly independent complex numbers, then one at
least of the four numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2

is transcendental.
Equivalent statement : Any 2× 2 matrix(

λ1 λ2

λ3 λ4

)
with entries in L and with Q–linearly independent rows and
Q–linearly independent columns has maximal rank 2.
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How could we attack Schanuel’s Conjecture ?

Let x1, . . . , xn be Q–linearly independent complex numbers.
Following the transcendence methods of Hermite, Gel’fond,
Schneider. . ., one may start by introducing an auxiliary
function

F (z) = P (z, ez)

where P ∈ Z[X0, X1] is a non–zero polynomial. One considers
the derivatives (

d

dz

)k
F = (DkP )(z, ez)

at the points
m1x1 + · · ·+mnxn

for various values of (m1, . . . ,mn) ∈ Zn.
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Auxiliary function
Let D denote the derivation

D =
∂

∂X0

+X1
∂

∂X1

over the ring C[X0, X1]. Recall that x1, . . . , xn are Q–linearly
independent complex numbers. Let α1, . . . , αn be non–zero
complex numbers.
The transcendence machinery produces a sequence (PN)N≥0

of polynomials with integer coefficients satisfying∣∣∣∣∣(DkPN)(
n∑
j=1

mjxj,
n∏
j=1

α
mj
j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mn with k ≤ N s0 and
max{m1, . . . ,mn} ≤ N s1 .
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Roy’s approach to Schanuel’s Conjecture (1999)

If the number of equations we produce is too small, such a set
of relations does not contain any information : The existence
of a sequence of non–trivial polynomials (PN)N≥0 follows from
linear algebra.

On the other hand, following D. Roy, one may expect that the
existence of such a sequence (PN)N≥0 producing sufficiently
many such equations will yield the desired conclusion :

tr degQQ
(
x1, . . . , xn, α1, . . . , αn

)
≥ n.
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Roy’s Conjecture (1999)
Let s0, s1, t0, t1, u positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1}
and

max{s0, s1 + t1} < u <
1

2
(1 + t0 + t1).

Assume that, for any sufficiently large positive integer N ,
there exists a non–zero polynomial PN ∈ Z[X0, X1] with
partial degree ≤ N t0 in X0, partial degree ≤ N t1 in X1 and
height ≤ eN which satisfies∣∣∣∣∣(DkPN)(

n∑
j=1

mjxj,
n∏
j=1

α
mj
j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mn with k ≤ N s0 and
max{m1, . . . ,mn} ≤ N s1 . Then

tr degQQ(x1, . . . , xn, α1, . . . , αn) ≥ n.
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Roy’s Theorem (1999)

Roy’s conjecture is equivalent to Schanuel’s Conjecture.
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Equivalence between Schanuel and Roy

Let (x, α) ∈ C×C×, and let s0, s1, t0, t1, u be positive real
numbers satisfying the inequalities of Roy’s Conjecture. Then
the following conditions are equivalent :
(a) The number αe−x is a root of unity.

(b) For any sufficiently large positive integer N , there exists a
non–zero polynomial QN ∈ Z[X0, X1] with partial degree
≤ N t0 in X0, partial degree ≤ N t1 in X1 and height
H(QN) ≤ eN such that∣∣(DkQN)(mx, αm)

∣∣ ≤ exp(−Nu)

for any k,m ∈ N with k ≤ N s0 and m ≤ N s1 .
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Gel’fond’s transcendence criterion

Simple form : Given a complex number ϑ, if there exists a
sequence (Pn)n≥1 of non–zero polynomials in Z[X], with Pn
of degree ≤ n and height ≤ en, such that

|Pn(ϑ)| ≤ e−7n2

for all n ≥ 1, then ϑ is algebraic and Pn(ϑ) = 0 for all n ≥ 1.

First extension : Replace the bound for the degree by ≤ dn,
the bound for the height by ebn , and the bound for |Pn(ϑ)| by
e−cdnbn with some constant c > 0 independent of n.

Some mild conditions are required on the sequences (dn)n≥1 and
(bn)n≥1.
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Transcendence criterion with multiplicities
With derivatives : Given a complex number ϑ, if there exists a
sequence (Pn)n≥1 of non–zero polynomials in Z[X], with Pn
of degree ≤ dn and height ≤ ebn , such that∣∣P (j)

n (ϑ)
∣∣ ≤ e−cdnbn/tn

for all j in the range 0 ≤ j < tn and all n ≥ 1, then ϑ is
algebraic.
Due to M. Laurent and D. Roy, applications to algebraic
independence.
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Criterion with several points

Goal : Given a sequence of complex numbers (ϑi)i≥1, if there
exists a sequence (Pn)n≥1 of non–zero polynomials in Z[X],
with Pn of degree ≤ dn and height ≤ ebn , such that∣∣P (j)

n (ϑi)
∣∣ ≤ e−cdnbn/tnsn

for 0 ≤ j < tn, 1 ≤ i ≤ sn and all n ≥ 1, then the numbers ϑi
are algebraic.

D. Roy : Not true in general, but true in some special cases
with a structure on the sequence (ϑi)i≥1.
Combines the elimination arguments used for criteria of
algebraic independence and for zero estimates.
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Small value estimates for the additive group

D. Roy. Small value estimates for the additive group. Intern. J.
Number Theory, to appear.

Let ξ be a transcendental complex number, let β, σ, τ and ν
be non-negative real numbers, let n0 be a positive integer, and
let (Pn)n≥n0 be a sequence of non–zero polynomials in Z[T ]
satisfying deg(Pn) ≤ n and H(Pn) ≤ exp(nβ) for each
n ≥ n0. Suppose that β > 1, (3/4)σ + τ < 1 and
ν > 1 + β − (3/4)σ − τ . Then for infinitely many n, we have

max
{
|P [j]
n (iξ)| ; 0 ≤ i ≤ nσ, 0 ≤ j ≤ nτ

}
> exp(−nν).
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Small value estimates for the multiplicative group

D. Roy. Small value estimates for the multiplicative group.
Acta Arith., to appear.

Let ξ1, . . . , ξm be multiplicatively independent complex
numbers in a field of transcendence degree 1. Under suitable
assumptions on the parameters β, σ, τ, ν, for infinitely many
positive integers n, there exists no non–zero polynomial
P ∈ Z[T ] satisfying deg(P ) ≤ n, H(P ) ≤ exp(nβ) and

max
{
|P [j](ξi11 · · · ξimm )| ; 0 ≤ i1, . . . , im ≤ nσ, 0 ≤ j ≤ nτ

}
> exp(−nν).
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