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Abstract

The very first interpolation formula for analytic functions is
given by Taylor series. There are many other ways of
interpolating analytic functions. Lagrange interpolation
polynomials involve the values of the function at several
points ; some derivatives may be included. We discuss other
types of interpolation formulae, starting with Lidstone
interpolation of a function of exponential type < π by its
derivatives of even order at 0 and 1. A new result is a lower
bound for the exponential type of a transcendental entire
function having derivatives of even order at two points taking
integer values.



The interpolation problem
An entire function is a holomorphic (=analytic) map C→ C.
The graph {(z, f(z)) | z ∈ C} has the power of continuum.

However, such a function is uniquely determined by a
countable set ; for instance by the sequence of coefficients of
its Taylor series at a given point z0 :

f(z) =
∑
n≥0

f (n)(z0)
(z − z0)n

n!
·

Notation :

f (n)(z) =
dn

dzn
f(z).

There are other sequences of numbers which determine
uniquely an entire function, at least if we restrict to some
classes of entire functions.
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Interpolation data
Given complex numbers {σi}i∈I , {ai}i∈I and nonnegative
integers {ki}i∈I , the interpolation problem is to decide
whether there exists an analytic function f satisfying

f (ki)(σi) = ai for all i ∈ I.

We will consider this question for f analytic everywhere in C
(i.e. f an entire function) and I = N.

The unicity is given by the answer to the same question with
ai = 0 for all i ∈ I.

Taylor series : σn = 0 and kn = n for all n ≥ 0. The solution,
if it exists, is unique

f(z) =
∑
n≥0

an
zn

n!
, f (n)(0) = an.
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Calculus of finite differences
Another classical interpolation problem is given by the data
kn = 0 and σn = n for all n ≥ 0. Given complex numbers an,
does there exist an entire function f satisfying

f(n) = an for all n ≥ 0 ?

The answer depends on the growth of the sequence (an)n≥0.
The example of the function sin(πz) shows that the solution is
not unique in general. However we recover unicity by adding a
condition on the growth of the solution f .

For the existence, one uses interpolation formulae based on

f(z) =f(0) + zf 1(z), f 1(z) = f 1(1) + (z − 1)f 2(z),

fn(z) = fn(n) + (z − n)fn+1(z), . . .
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Further interpolation problems
We are going to consider the following interpolation problems :

I (Lidstone) :

f (2n)(0) = an, f (2n)(1) = bn for n ≥ 0.

I (Whittaker) :

f (2n+1)(0) = an, f (2n)(1) = bn for n ≥ 0.

I (Poritsky) : For m ≥ 2 and σ0, . . . , σm−1 in C,

f (mn)(σj) = anj for n ≥ 0 and j = 0, 1, . . . ,m− 1.

I (Gontcharoff) : For (σn)n≥0 a sequence of complex
numbers,

f (n)(σn) = an for n ≥ 0.



Lidstone interpolation problem

The following interpolation problem was considered by
G.J. Lidstone in 1930.
Given two sequences of complex numbers (an)n≥0 and
(bn)n≥0, does there exist an entire function f satisfying

f (2n)(0) = an, f (2n)(1) = bn for n ≥ 0 ?

Is such a function f unique ?

The answer to unicity is plain : the function sin(πz) satisfies
these conditions with an = bn = 0, hence there is no unicity,
unless we restrict the question to entire functions satisfying
some extra condition. Such a condition is a bound on the
growth of f .

We start with unicity (an = bn = 0) and polynomials.
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Even derivatives at 0 and 1 : first proof

Lemma. Let f be a polynomial satisfying

f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.

Then f = 0.

First proof.
By induction on the degree of the polynomial f .
If f has degree ≤ 1, say f(z) = a0z + a1, the conditions
f(0) = f(1) = 0 imply a0 = a1 = 0, hence f = 0.
If f has degree ≤ n with n ≥ 2 and satisfies the hypotheses,
then f ′′ also satisfies the hypotheses and has degree < n,
hence by induction f ′′ = 0 and therefore f has degree ≤ 1.
The result follows.
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Even derivatives at 0 and 1 : second proof

Second proof.
Let f be a polynomial satisfying

f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.

The assumption f (2n)(0) = 0 for all n ≥ 0 means that f is an
odd function : f(−z) = −f(z). The assumption f (2n)(1) = 0
for all n ≥ 0 means that f(1− z) is an odd function :
f(1− z) = −f(1 + z). We deduce
f(z + 2) = f(1 + z + 1) = −f(1− z − 1) = −f(−z) = f(z),
hence the polynomial f is periodic, and therefore it is a
constant. Since f(0) = 0, we conclude f = 0.
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Even derivatives at 0 and 1 : third proof

Third proof.
Assume

f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0.

Write

f(z) = a1z + a3z
3 + a5z

5 + a7z
7 + + · · ·+ a2n+1z

2n+1 + · · ·

(finite sum). We have f(1) = f ′′(1) = f (ıv)(1) = · · · = 0 :

a1 +a3 +a5 +a7 + · · · +a2n+1 + · · · = 0
6a3 +20a5 +42a7 + · · · +2n(2n+ 1)a2n+1 + · · · = 0

120a5 +840a7 + · · · + (2n+1)!
(2n−3)!a2n+1 + · · · = 0

. . .
...

The matrix of this system is triangular with maximal rank.
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Even derivatives at 0 and 1
The fact that this matrix has maximal rank means that a
polynomial f is uniquely determined by the numbers

f (2n)(0) and f (2n)(1) for n ≥ 0.

Given numbers an and bn, all but finitely many of them are 0,
there is a unique polynomial f such that

f (2n)(0) = an and f (2n)(1) = bn for all n ≥ 0.

Involution : z 7→ 1− z :

0 7→ 1, 1 7→ 0, 1− z 7→ z.
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Lidstone expansion of a polynomial
G. J. Lidstone (1930). There exists a unique sequence of
polynomials Λ0(z),Λ1(z),Λ2(z), . . . such that any polynomial
f can be written as a finite sum

f(z) =
∑
n≥0

f (2n)(0)Λn(1− z) +
∑
n≥0

f (2n)(1)Λn(z).

This is equivalent to

Λ(2k)
n (0) = 0 and Λ(2k)

n (1) = δnk for n ≥ 0 and k ≥ 0.

(Kronecker symbol).
A basis of the Q–space of polynomials in Q[z] of degree
≤ 2n+ 1 is given by the 2n+ 2 polynomials

Λ0(z),Λ1(z), . . . ,Λn(z), Λ0(1−z),Λ1(1−z), . . . ,Λn(1−z).
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Analogy with Taylor series

Given a sequence (an)n≥0 of complex numbers, the unique
analytic solution (if it exists) f of the interpolation problem

f (n)(0) = an for all n ≥ 0

is given by the Taylor expansion

f(z) =
∑
n≥0

an
zn

n!
·

The polynomials zn/n! satisfy

dk

dzk

(
zn

n!

)
z=0

= δnk for n ≥ 0 and k ≥ 0.



Lidstone polynomials
Λ0(z) = z :

Λ0(0) = 0, Λ0(1) = 1, Λ
(2n)
0 (0) = 0 for n ≥ 1.

Induction : the sequence of Lidstone polynomials is determined
by Λ0(z) = z and

Λ′′n = Λn−1 for n ≥ 1

with the initial conditions Λn(0) = Λn(1) = 0 for n ≥ 1.
Let Ln(z) be any solution of

L′′n(z) = Λn−1(z).

Define
Λn(z) = −Ln(1)z + Ln(z).
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Let Ln(z) be any solution of

L′′n(z) = Λn−1(z).
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Lidstone polynomials
The polynomial f(z) = z2n+1 satisfies

f (2k)(0) = 0 for k ≥ 0, f (2k)(1) =

{
(2n+1)!

(2n−2k+1)!
for 0 ≤ k ≤ n,

0 for k ≥ n+ 1.

One deduces

z2n+1 =
n−1∑
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(2n− 2k + 1)!
Λk(z) + (2n+ 1)!Λn(z),

which yields the induction formula
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Order and exponential type

Order of an entire function :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

Exponential type of an entire function :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has
order < 1, then the exponential type is 0.

For τ ∈ C \ {0}, the function eτz has order 1 and exponential
type |τ |.



Order and exponential type

Order of an entire function :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

Exponential type of an entire function :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has
order < 1, then the exponential type is 0.

For τ ∈ C \ {0}, the function eτz has order 1 and exponential
type |τ |.



Order and exponential type

Order of an entire function :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

Exponential type of an entire function :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has
order < 1, then the exponential type is 0.

For τ ∈ C \ {0}, the function eτz has order 1 and exponential
type |τ |.



Order and exponential type

Order of an entire function :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

Exponential type of an entire function :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has
order < 1, then the exponential type is 0.

For τ ∈ C \ {0}, the function eτz has order 1 and exponential
type |τ |.



Order and exponential type

Order of an entire function :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|.

Exponential type of an entire function :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type is finite, then f has order ≤ 1. If f has
order < 1, then the exponential type is 0.

For τ ∈ C \ {0}, the function eτz has order 1 and exponential
type |τ |.



Exponential type

An alternative definition of the exponential type is the
following : f is of exponential type τ(f) if and only if, for all
z0 ∈ C,

lim sup
n→∞

|f (n)(z0)|1/n = τ(f).

The equivalence between the two definitions follows from
Cauchy’s inequalities and Stirling’s Formula.
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Lidstone series : exponential type < π

Theorem (H. Poritsky, 1932).
Let f be an entire function of exponential type < π satisfying
f (2n)(0) = f (2n)(1) = 0 for all sufficiently large n. Then f is a
polynomial.

This is best possible : the entire function sin(πz) has
exponential type π and satisfies f (2n)(0) = f (2n)(1) = 0 for all
n ≥ 0.
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Lidstone series : exponential type < π

Let f be an entire function of exponential type < π satisfying
f (2n)(0) = f (2n)(1) = 0 for all sufficiently large n. Then f is a
polynomial.

Proof.
Let f̃ = f − P , where P is the polynomial satisfying

P (2n)(0) = f (2n)(0) and P (2n)(1) = f (2n)(1) for n ≥ 0.

We have f̃
(2n)

(0) = f̃
(2n)

(1) = 0 for all n ≥ 0. The functions
f̃(z) and f̃(1− z) are odd, hence f̃(z) is periodic of period 2.
Therefore there exists an entire function g such that
f̃(z) = g(eiπz). Since f̃(z) has exponential type < π, we
deduce f̃ = 0 and f = P .
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Exponential type < π : Poritsky’s expansion

Theorem (H. Poritsky, 1932).
The expansion

f(z) =
∞∑
n=0

f (2n)(0)Λn(1− z) +
∞∑
n=0

f (2n)(1)Λn(z)

holds for any entire function f of exponential type < π.

We will check this formula for f t(z) = etz with |t| < π, then
deduce the general case.



Solution of the Lidstone interpolation problem

Consequence of Poritsky’s expansion formula :
Let (an)n≥0 and (bn)n≥0 be two sequences of complex
numbers satisfying

lim sup
n→∞

|an|1/n < π and lim sup
n→∞

|bn|1/n < π.

Then the function

f(z) =
∞∑
n=0

anΛn(1− z) +
∞∑
n=0

bnΛn(z)

is the unique entire function of exponential type < π satisfying

f (2n)(0) = an and f (2n)(1) = bn for all n ≥ 0.



Special case : etz for |t| < π
Consider Poritsky’s expansion formula

f(z) =
∞∑
n=0

f (2n)(0)Λn(1− z) +
∞∑
n=0

f (2n)(1)Λn(z)

for the function f t(z) = etz where |t| < π. Since

f
(2n)
t (0) = t2n and f

(2n)
t (1) = t2net it gives

etz =
∞∑
n=0

t2nΛn(1− z) + et
∞∑
n=0

t2nΛn(z).

Replacing t with −t yields

e−tz =
∞∑
n=0

t2nΛn(1− z) + e−t
∞∑
n=0

t2nΛn(z).

Hence

etz − e−tz = (et − e−t)
∞∑
n=0

t2nΛn(z).
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Generating series
Let t ∈ C, t 6∈ iπZ. The entire function

f(z) =
sinh(tz)

sinh(t)
=

etz − e−tz

et − e−t

satisfies
f ′′ = t2f, f(0) = 0, f(1) = 1,

hence f (2n)(0) = 0 and f (2n)(1) = t2n for all n ≥ 0.
For 0 < |t| < π and z ∈ C, we deduce

sinh(tz)

sinh(t)
=
∞∑
n=0

t2nΛn(z).

Notice that

etz =
sinh((1− z)t)

sinh(t)
+ et

sinh(tz)

sinh(t)
·
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Special case : etz

From Poritsky’s expansion of an entire function of exponential
type < π we deduced the formula

sinh(tz)

sinh(t)
=
∞∑
n=0

t2nΛn(z).

Let us prove this formula directly.
We will deduce
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Expansion of F (z, t) = sinh(tz)/ sinh(t)

For z ∈ C and |t| < π let

F (z, t) =
sinh(tz)

sinh(t)

with F (z, 0) = z.

Fix z ∈ C. The function t 7→ F (z, t) is analytic in the disc
|t| < π and is an even function : F (z,−t) = F (z, t). Consider
its Taylor series at the origin :

F (z, t) =
∑
n≥0

cn(z)t2n

with c0(z) = z.

We have F (0, t) = 0 and F (1, t) = 1.
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Expansion of F (z, t) = sinh(tz)/ sinh(t)
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=
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n≥0
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From

cn(z) =
1
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(
∂

∂t

)2n

F (z, 0)

it follows that cn(z) is a polynomial.

From (
∂

∂z

)2

F (z, t) = t2F (z, t)

we deduce
c′′n = cn−1 for n ≥ 1.

Since cn(0) = cn(1) = 0 for n ≥ 1 we conclude cn(z) = Λn(z).
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From etz to exponential type < π

Hence a special case of the Poritsky’s expansion formula

f(z) =
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n=0

f (2n)(0)Λn(1− z) +
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n=0

f (2n)(1)Λn(z),

which holds for any entire function f of exponential type < π,
is

etz =
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n=0

t2nΛn(1− z) + et
∞∑
n=0

t2nΛn(z)

for |t| < π.
Conversely, from this special case (that we proved directly) we
are going to deduce the general case by means of Laplace
transform (R.C. Buck, 1955, kernel expansion method).
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Laplace transform
Let

f(z) =
∑
n≥0

an
n!
zn

be an entire function of exponential type τ(f). The Laplace
transform of f , viz.

F (t) =
∑
n≥0

ant
−n−1,

is analytic in the domain |t| > τ(f). From Cauchy’s residue
Theorem, it follows that for r > τ(f) we have

f(z) =
1

2πi

∫
|t|=r

etzF (t)dt.

Hence

f (2n)(z) =
1

2πi

∫
|t|=r

t2netzF (t)dt.
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Laplace transform
Assume τ(f) < π. Let r satisfy τ(f) < r < π. For |t| = r we
have

etz =
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and therefore

f(z) =
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f (2n)(0)Λn(1− z) +
∑
n≥0

f (2n)(1)Λn(z),

where the last series are absolutely and uniformly convergent
for z on any compact in C.
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Entire functions of finite exponential type

Theorem (I.J. Schoenberg, 1936).
Let f be an entire function of finite exponential type τ(f)
satisfying f (2n)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there
exist complex numbers c1, . . . , cL with L ≤ τ(f)/π such that

f(z) =
L∑
`=1

c` sin(`πz).



Integral formula for Lidstone polynomials
Using Cauchy’s residue Theorem, we deduce the integral
formula

Λn(z) = (−1)n
2

π2n+1

S∑
s=1

(−1)s

s2n+1
sin
(
sπz
)

+
1

2πi

∫
|t|=(2S+1)π/2

t−2n−1 sinh(tz)

sinh(t)
dt

for S = 1, 2, . . . and z ∈ C.
In particular, with S = 1 we have

Λn(z) = (−1)n
2

π2n+1
sin(πz)+

1

2πi

∫
|t|=3π/2

t−2n−1 sinh(tz)

sinh(t)
dt.

One deduces that there exists an absolute constant c > 0 such
that

|Λn|r ≤ cπ−2ne3πr/2.
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Odd derivatives at 0 and 1

A polynomial f is determined up to the addition of a constant
by the numbers

f (2n+1)(0) and f (2n+1)(1).

The interpolation problem related with odd derivatives at 0
and 1 is solved by using Lidstone interpolation for the
derivative of f .
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Odd derivatives at 0 and even derivatives at 1

Lemma. Let f be a polynomial satisfying

f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0.

Then f = 0.

Proofs.
1. By induction.
2. f(z + 4) = f(z).
3. Triangular system.
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Whittaker expansion of a polynomial
The Lemma means that a polynomial f is uniquely determined
by the numbers

f (2n+1)(0) and f (2n)(1) for n ≥ 0.

Any polynomial f ∈ C[z] has the finite expansion

f(z) =
∞∑
n=0

(
f (2n)(1)Mn(z)− f (2n+1)(0)M ′

n+1(1− z)
)
,

with only finitely many nonzero terms in the series.
A basis of the Q–space of polynomials in Q[z] of degree ≤ 2n
is given by the 2n+ 1 polynomials

M0(z),M1(z), . . . ,Mn(z), M ′
1(1− z), . . . ,M ′

n(1− z).
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Whittaker polynomials
Following J.M. Whittaker (1935), one defines a sequence
(Mn)n≥0 of even polynomials by induction on n with M0 = 1,

M ′′
n = Mn−1, Mn(1) = M ′

n(0) = 0 for all n ≥ 1.

This is equivalent to

M (2k+1)
n (0) = 0, M (2k)

n (1) = δnk for n ≥ 0 and k ≥ 0.

For instance

M1(z) =
1

2
(z2 − 1), M2(z) =

1

24
(z2 − 1)(z2 − 5),

M3(z) =
1

720
(z2 − 1)(z4 − 14z2 + 61).



Whittaker polynomials
Following J.M. Whittaker (1935), one defines a sequence
(Mn)n≥0 of even polynomials by induction on n with M0 = 1,

M ′′
n = Mn−1, Mn(1) = M ′

n(0) = 0 for all n ≥ 1.

This is equivalent to

M (2k+1)
n (0) = 0, M (2k)

n (1) = δnk for n ≥ 0 and k ≥ 0.

For instance

M1(z) =
1

2
(z2 − 1), M2(z) =

1

24
(z2 − 1)(z2 − 5),

M3(z) =
1

720
(z2 − 1)(z4 − 14z2 + 61).



Whittaker polynomials
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Induction formula for Whittaker polynomials
The polynomial f(z) = z2n satisfies

f (2k+1)(0) = 0 for k ≥ 0, f (2k)(1) =

{
(2n)!

(2n−2k)!
for 0 ≤ k ≤ n,

0 for k ≥ n+ 1.

One deduces

z2n =
n−1∑
k=0

(2n)!

(2n− 2k)!
Mk(z) + (2n)!Mn(z),

which yields the following induction formula

Mn(z) =
1

(2n)!
z2n −

n−1∑
k=0

1

(2n− 2k)!
Mk(z).
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Exponential type < π/2

Theorem (J.M. Whittaker, 1935).
The expansion

f(z) =
∞∑
n=0

(
f (2n)(1)Mn(z)− f (2n+1)(0)M ′

n+1(1− z)
)

holds for any entire function f of exponential type < π/2.

Hence, if such a function satisfies f (2n+1)(0) = f (2n)(1) = 0
for all sufficiently large n, then it is a polynomial.

This is best possible : the entire function cos(π
2
z) has

exponential type π/2 and satisfies f (2n+1)(0) = f (2n)(1) = 0
for all n ≥ 0.
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Solution of the Whittaker interpolation problem

Consequence of Whittaker’s expansion formula :
Let (an)n≥0 and (bn)n≥0 be two sequences of complex
numbers satisfying

lim sup
n→∞

|an|1/n < π and lim sup
n→∞

|bn|1/n < π.

Then the function

f(z) =
∞∑
n=0

anMn(z)−
∞∑
n=0

bnM
′
n+1(1− z)

is the unique entire function of exponential type < π satisfying

f (2n)(1) = an and f (2n+1)(0) = bn for all n ≥ 0.



Finite exponential type

Theorem (I.J. Schoenberg, 1936).
Let f be an entire function of finite exponential type τ(f)
satisfying f (2n+1)(0) = f (2n)(1) = 0 for all n ≥ 0. Then there
exist complex numbers c1, . . . , cL with L ≤ 2τ(f)/π such that

f(z) =
L∑
`=0

c` cos

(
(2`+ 1)π

2
z

)
.



Generating series

For t ∈ C, t 6∈ iπ + 2iπZ, the entire function

f(z) =
cosh(tz)

cosh(t)
=

etz + e−tz

et + e−t

satisfies
f ′′ = t2f, f(1) = 1, f ′(0) = 0,

hence f (2n)(1) = t2n and f (2n+1)(0) = 0 for all n ≥ 0.
The sequence (Mn)n≥0 is also defined by the expansion

cosh(tz)

cosh(t)
=
∞∑
n=0

t2nMn(z)

for |t| < π/2 and z ∈ C.



Integral formula for Whittaker polynomials

Using Cauchy’s residue Theorem, we deduce the integral
formula

Mn(z) = (−1)n
22n+2

π2n+1

S−1∑
s=0

(−1)s

(2s+ 1)2n+1
cos

(
(2s+ 1)π

2
z

)
+

1

2πi

∫
|t|=Sπ

t−2n−1 cosh(tz)

cosh(t)
dt

for S = 1, 2, . . . and z ∈ C.

In particular, with S = 1 we obtain

Mn(z) = (−1)n
22n+2

π2n+1
cos(πz/2)+

1

2πi

∫
|t|=π

t−2n−1 cosh(tz)

cosh(t)
dt.



Lidstone interpolation vs Whittaker interpolation
Let us display horizontally the points and vertically the
derivatives.
• interpolation values ◦ no condition

Lidstone interpolation

...
...

...
f (2n+1) ◦ ◦
f (2n) • •

...
...

...
f ′′ • •
f ′ ◦ ◦
f • •

s0 s1

Whittaker interpolation

...
...

...
f (2n+1) • ◦
f (2n) ◦ •

...
...

...
f ′′ ◦ •
f ′ • ◦
f ◦ •

s0 s1



Generalizations with 3 points

Poritsky interpolation

...
...

...
...

f (3n+2) ◦ ◦ ◦
f (3n+1) ◦ ◦ ◦
f (3n) • • •

...
...

...
...

f (iv) ◦ ◦ ◦
f ′′′ • • •
f ′′ ◦ ◦ ◦
f ′ ◦ ◦ ◦
f • • •

s0 s1 s2

Gontcharoff interpolation

...
...

...
...

f (3n+2) ◦ ◦ •
f (3n+1) ◦ • ◦
f (3n) • ◦ ◦

...
...

...
...

f (iv) ◦ • ◦
f ′′′ • ◦ ◦
f ′′ ◦ ◦ •
f ′ ◦ • ◦
f • ◦ ◦

s0 s1 s2



Poritsky interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Theorem (H. Poritsky,1932).
If

f (mn)(s0) = f (mn)(s1) = · · · = f (mn)(sm−1) = 0

for all sufficiently large n, then f is a polynomial.

For m = 2, s0 = 0, s1 = 1, this reduces Poritsky’s above
mentioned result on Lidstone expansion (up to the exact
bound on the exponential type).
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Gontcharoff interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Theorem (W. Gontcharoff 1930, A.
J. Macintyre 1954).
If

f (n)(s0)f (n)(s1) · · · f (n)(sm−1) = 0

for all sufficiently large n, then f is a polynomial.

For m = 2, s0 = 0, s1 = 1, this implies Whittaker’s above
mentioned result for f (2n+1)(0) = f (2n)(1) = 0.
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Arithmetic result for Poritsky interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Théorème 1.
If

f (mn)(sj) ∈ Z

for all sufficiently large n and for 0 ≤ j ≤ m− 1, then f is a
polynomial.

For m = 2 with f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z, the
assumption on the exponential type τ(f) of f is

τ(f) < min{1, π/|s0 − s1|},

and this is best possible.
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Arithmetic result for Lidstone interpolation

If τ(f) < min

{
1,

π

|s0 − s1|

}
f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z

for all sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)

sinh(s0 − s1)

has exponential type 1 and satisfies f (2n)(s0) = 1 and
f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = sin

(
π
z − s0

s1 − s0

)
has exponential type π

|s1−s0| and satisfies

f (2n)(s0) = f (2n)(s1) = 0 for all n ≥ 0.



Arithmetic result for Lidstone interpolation

If τ(f) < min

{
1,

π

|s0 − s1|

}
f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z

for all sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)

sinh(s0 − s1)

has exponential type 1 and satisfies f (2n)(s0) = 1 and
f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = sin

(
π
z − s0

s1 − s0

)
has exponential type π

|s1−s0| and satisfies

f (2n)(s0) = f (2n)(s1) = 0 for all n ≥ 0.



Arithmetic result for Lidstone interpolation

If τ(f) < min

{
1,

π

|s0 − s1|

}
f (2n)(s0) ∈ Z and f (2n)(s1) ∈ Z

for all sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)

sinh(s0 − s1)

has exponential type 1 and satisfies f (2n)(s0) = 1 and
f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = sin

(
π
z − s0

s1 − s0

)
has exponential type π

|s1−s0| and satisfies

f (2n)(s0) = f (2n)(s1) = 0 for all n ≥ 0.



Arithmetic result for Gontcharoff interpolation

Let s0, s1, . . . , sm−1 be distinct complex numbers and f an
entire function of sufficiently small exponential type.

Théorème 2.
Assume that for each sufficiently large n, one at least of the
numbers

f (n)(sj) j = 0, 1, . . . ,m− 1

is in Z. Then f is a polynomial.

In the case m = 2 with f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z, the
assumption is

τ(f) < min

{
1,

π

2|s0 − s1|

}
,

and this is best possible.
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Arithmetic result for Whittaker interpolation

If τ(f) < min

{
1,

π

2|s0 − s1|

}
, f (2n+1)(s0) ∈ Z and f (2n)(s1) ∈ Z

for each sufficiently large n, then f is a polynomial.

The function

f(z) =
sinh(z − s1)

cosh(s0 − s1)

has exponential type 1 and satisfies f (2n+1)(s0) = 1 and
f (2n)(s1) = 0 for all n ≥ 0.

The function

f(z) = cos

(
π

2
· z − s0

s1 − s0

)
has exponential type π

2|s1−s0| and satisfies

f (2n+1)(s0) = f (2n)(s1) = 0 for all n ≥ 0.
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Historical survey and annotated references

George James Lidstone

(1870 – 1952)

Lidstone, G. J. (1930).
Notes on the extension of
Aitken’s theorem (for
polynomial interpolation)
to the Everett types.
Proc. Edinb. Math. Soc.,
II. Ser., 2 :16–19.

Interpolation problem for

f (2n)(0) and f (2n)(1), n ≥ 0.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Lidstone.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Lidstone.html


Historical survey and annotated references

Gontcharoff, W. (1930).
Recherches sur les
dérivées successives des
fonctions analytiques.
Généralisation de la série
d’Abel.
Ann. Sci. Éc. Norm.
Supér. (3), 47 :1–78.

Interpolation problem for

f (n)(σn), n ≥ 0.

Example :

f (nm+j)(sj), n ≥ 0, 0 ≤ j ≤ m− 1.



Historical survey and annotated references

Hillel Poritsky
(1898 — 1990)

Ph.D. Cornell University 1927
Topics in Potential Theory.
Wallie Abraham Hurwitz
(student of David Hilbert)

Poritsky, H. (1932).
On certain polynomial
and other approximations
to analytic functions.
Trans. Amer. Math. Soc.,
34(2) :274–331.

Interpolation problem for

f (nm)(sj), n ≥ 0, 0 ≤ j ≤ m− 1.

https://pt.wikipedia.org/wiki/Hillel_Poritsky

https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41924

https://pt.wikipedia.org/wiki/Hillel_Poritsky
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=41924


Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1933).
On Lidstone’s series and
two-point expansions of
analytic functions.
Proc. Lond. Math. Soc.
(2), 36 :451–469.

Standard sets of polynomials : complete, indeterminate,
redundant.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html


Historical survey and annotated references

John Macnaghten Whittaker

(1905 – 1984)

Whittaker, J. M. (1935).
Interpolatory function
theory, volume 33.
Cambridge University
Press, Cambridge.

Chap. III. Properties of successive derivatives.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Whittaker_John.html


Historical survey and annotated references

Isaac Jacob Schoenberg

(1903 – 1990)

Schoenberg, I. J. (1936).
On certain two-point
expansions of integral
functions of exponential
type.
Bull. Am. Math. Soc.,
42 :284–288.

Interpolation problem for

f (2n+1)(0) and f (2n)(1), n ≥ 0.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Schoenberg.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Schoenberg.html


Historical survey and annotated references

Ernst Gabor Straus

(1922 – 1983)

Straus, E. G. (1950).
On entire functions with
algebraic derivatives at
certain algebraic points.
Ann. of Math. (2),
52 :188–198.

Connection with transcendental number theory.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Straus.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Straus.html


Historical survey and annotated references

Aleksandr Osipovich Gelfond

(1906 – 1968)

Chapitre 3 : construction
d’une fonction entière à partir
d’éléments donnés.

Gel’fond, A. O. (1952).
Calculus of finite
differences. Authorized
English translation of the
3rd Russian edition.
International Monographs
on Advanced
Mathematics and Physics.
Delhi, India : Hindustan
Publishing Corporation.
VI,451 p. (1971).

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Gelfond.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Gelfond.html


Historical survey and annotated references

Archibald James Macintyre

(1908 – 1967)

Macintyre, A. J. (1954).
Interpolation series for
integral functions of
exponential type.
Trans. Amer. Math. Soc.,
76 :1–13.

Interpolation problem for

f (nm+bj)(sj), n ≥ 0, 0 ≤ j ≤ m− 1.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Macintyre_Archibald.html

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Macintyre_Archibald.html


Historical survey and annotated references

Ralph Philip Boas Jr

(1912 – 1992)

Robert Creighton Buck
(1920− 1998)

Boas, Jr., R. P. and Buck,
R. C. (1964).
Polynomial expansions of
analytic functions.
Second printing,
corrected. Ergebnisse der
Mathematik und ihrer
Grenzgebiete, N.F., Bd.
19. Academic Press, Inc.,
Publishers, New York ;
Springer-Verlag, Berlin.

Chap. I § 3 : the method of the kernel expansion.

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Boas.html

https://en.wikipedia.org/wiki/Robert_Creighton_Buck

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Boas.html
https://en.wikipedia.org/wiki/Robert_Creighton_Buck
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