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Introduction to transcendental numbers
Michel Waldschmidt

1 Criteria for irrationality and for transcendence

1.1 Irrationality criterion

Most constants arising from analysis involve limits, infinite series or products,
integrals. For such numbers, the classical irrationality criteria using expansions
in a basis b ≥ 2 or the continued fraction expansion are of no use. The most
efficient criterion involves rational approximation.

Proposition 1.1. Let ϑ be a real number. The following conditions are equiv-
alent
(i) ϑ is irrational.
(ii) For any ε > 0 there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

q2
·

(iv) For any real number Q > 1 there exists an integer q in the range 1 ≤ q < Q
and a rational integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

qQ
·

The most useful implication is an easy one: (ii)⇒(i). If ϑ is a rational
number, there is a positive constant c = c(ϑ) such that, for any rational number
p/q with p/q 6= ϑ, ∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ c

q
·

Indeed, if ϑ = a/b, then an admissible value for c is 1/b. This implication
(ii)⇒(i) is the most efficient method so far to prove the irrationality of a number.
It is a kind of paradox that the easiest implication is at the same time the most
useful one. To prove that a number is irrational, it suffices to check (ii), namely
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to prove that there exist rational approximation in ε/q, but in fact there exists
much better approximation, in 1/q2, as shown by (iii).

The implications (iv)⇒(iii)⇒ (ii)⇒(i) in the irrationality criterion 1.1 are
easy. It only remains to prove (i)⇒(iv), which we are going to prove using the
box principle or pigeon hole principle, introduced by Dirichlet in this context.

Proof of (i)⇒(iv). Let Q > 1 be given. Define N = dQe: this means that N is
the integer such that N − 1 < Q ≤ N . Since Q > 1, we have N ≥ 2.

For x ∈ R write x = bxc + {x} with bxc ∈ Z (integral part of x) and
0 ≤ {x} < 1 (fractional part of x). Let ϑ ∈ R \Q. Consider the subset E of the
unit interval [0, 1] which consists of the N + 1 elements

0, {ϑ}, {2ϑ}, {3ϑ}, . . . , {(N − 1)ϑ}, 1.

Since ϑ is irrational, these N+1 elements are pairwise distinct. Split the interval
[0, 1] into N intervals

Ij =

[
j

N
,
j + 1

N

]
(0 ≤ j ≤ N − 1).

One at least of these N intervals, say Ij0 , contains at least two elements of
E. Apart from 0 and 1, all elements {qϑ} in E with 1 ≤ q ≤ N − 1 are
irrational, hence belong to the union of the open intervals (j/N, (j + 1)/N)
with 0 ≤ j ≤ N − 1.

If j0 = N − 1, then the interval

Ij0 = IN−1 =

[
1− 1

N
; 1

]
contains 1 as well as another element of E of the form {qϑ} with 1 ≤ q ≤ N −1.
Set p = bqϑc+ 1. Then we have 1 ≤ q ≤ N − 1 < Q and

p− qϑ = bqϑc+ 1− bqϑc − {qϑ} = 1− {qϑ}, hence 0 < p− qϑ < 1

N
≤ 1

Q
·

Otherwise we have 0 ≤ j0 ≤ N − 2 and Ij0 contains two elements {q1ϑ} and
{q2ϑ} with 0 ≤ q1 < q2 ≤ N − 1. Set

q = q2 − q1, p = bq2ϑc − bq1ϑc.

Then we have 0 < q = q2 − q1 ≤ N − 1 < Q and

|qϑ− p| = |{q2ϑ} − {q1ϑ}| < 1/N ≤ 1/Q.

There are other proofs of (i)⇒(iii) – for instance one can use Minkowski’s
Theorem in the geometry of numbers, which is more powerful than Dirichlet’s
box principle.
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Exercise 1. Let b ≥ 2 be an integer, (an)n≥0 be a bounded sequence of rational
integers and (un)n≥0 an increasing sequence of positive integers. Assume

lim sup
n→∞

(un+1 − un) =∞.

Show that the number ∑
n≥0

anb
−un

is irrational if and only if the set {n ≥ 0 ; an 6= 0} is infinite.

Exercise 2. This exercise extends the irrationality criterion by replacing Q by
Q(i). The elements in Q(i) are called the Gaussian numbers, the elements in
Z(i) are called the Gaussian integers. The elements of Q(i) will be written p/q
with p ∈ Z[i] and q ∈ Z, q > 0.

Let ϑ be a complex number. Check that the following conditions are equiv-
alent:
(i) ϑ 6∈ Q(i).
(ii) For any ε > 0 there exists p/q ∈ Q(i) such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) There exist infinitely many Gaussian numbers p/q ∈ Q(i) such that∣∣∣∣ϑ− p

q

∣∣∣∣ < √2

q3/2
·

(iv) For any rational integer N ≥ 1 there exists a rational integer q in the range
1 ≤ q ≤ N2 and a Gaussian integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < √2

qN
·

Exercise 3. Let ϑ1, . . . , ϑm be real numbers. Prove that the following conditions
are equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0 there exist p1, . . . , pm, q in Z with q > 0 such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) There is an infinite set of q ∈ Z, q > 0, for which there there exist p1, . . . , pm
in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1

q1+1/m
·

(iv) For any integer Q > 1 there exists p1, . . . , pm, q in Z such that 1 ≤ q ≤ Qm
and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1

qQ
·
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A refined version of the irrationality criterion is due to Adolf Hurwitz (1891).
One can prove it using either continued fractions or Farey sequences. We do
not give a proof here.

Lemma 1.2. Let ϑ be a real number. The following conditions are equivalent
(i) ϑ is irrational.
(ii) There exist infinitely many p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1√
5q2
·

Of course the implication (ii)⇒(i) in Lemma 1.2 is weaker than the impli-
cation (iii)⇒(i) in the irrationality criterion 1.1. What is new is the converse,
and the estimate in (ii) with

√
5 is optimal (see §2.1).

1.2 A transcendence criterion

There are (at least) two was of generalizing the irrationality criterion 1.1 into
a criterion for transcendence. Instead of considering rational approximations
p/q, one may consider algebraic approximations - for such a statement we refer
to [GL326, Theorem 15.6]. Here we consider another approach: instead of
considering only polynomials of degree 1, namely qX − p, we allow polynomials
of any degree.

We denote by H(f) the naive (or usual) height of a polynomial f ∈ C[X1, X2, . . . , Xn],
that is the maximum of the moduli of the coefficients, and by L(f) the length
of f , that is the sum of the moduli of the coefficients.

Proposition 1.3. Let ϑ be a complex numbers. The following conditions are
equivalent.
(i) ϑ is transcendental.
(ii) For any κ > 0 there exists a polynomial f ∈ Z[X] and a positive integer T
with

deg f + log H(f) ≤ T

and
0 < |f(ϑ)| ≤ e−κT .

(iii) For any positive real number c < 1
2 , there exists a positive number T0 such

that, for any T ≥ T0, there exists a nonzero polynomial f ∈ Z[X] of degree at

most T and naive height at most eT , satisfying 0 < |f(ϑ)| ≤ e−cT
2

.
(iv) For any H ≥ 1 and D ≥ 1 there exists a polynomial f ∈ Z[X] of degree
≤ D and naive height H(f) ≤ H such that

0 < |f(ϑ)| ≤
√

2(1 + |ϑ|)DH−(D−1)/2.

The proofs of (iv)⇒(iii)⇒ (ii) in the transcendence criterion 1.3 are trivial.
The proof of (i)⇒(iv) rests on Dirichlet’s box principle (see for instance [[GL326,
Proposition 15.2]]). The useful part of Proposition 1.3 is (ii)⇒(i), which is
equivalent to the following statement:
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Corollary 1.4. Given an algebraic number γ, there exists a positive constant
c = c(γ) which satisfies the following property.
Let f ∈ Z[X] and T be a positive number such that the the degree of f is at
most T and the naive height of f is at most eT . If f(γ) 6= 0, then

|f(γ)| ≥ e−cT .

While the irrationality criterion 1.1 is directly used for irrationality proofs,
one main tool in transcendence proofs is not really the transcendence criterion
1.3, but rather explicit versions of Corollary 1.4, that we are going to discuss in
§2.

The proof of Corollary 1.4 will involve the next auxiliary result: in order
to prove a lower bound for a nonzero algebraic number, it suffices to prove an
upper bound for its height.

Lemma 1.5. If α ∈ C× is a nonzero algebraic number which is root of a
polynomial with rational integer coefficients, the absolute values of which are
bounded above by some number H, then

|α| ≥ 1

1 +H
·

In the statement of Lemma 1.5 the polynomial f needs not be the minimal
polynomial of α — this remark will be useful.

Proof. We first prove that if α is a complex number which is root of a nonzero
polynomial f(X) = a0X

n + · · · + an ∈ Z[X] of degree n with max
0≤i≤n

|ai| ≤ H,

then |α| ≤ H+1. Indeed, this estimate holds trivially if |α| ≤ 1, while if |α| > 1,
then

|α| ≤ |a0α| = |a1 + a2α
−1 + · · ·+ anα

−n+1|

≤ H
(
1 + |α|−1 + · · ·+ |α|−n+1

)
< H

(
1− |α|−1

)−1
.

Lemma 1.5 follows by applying this estimate to α−1, which is a root of the
polynomial Xnf(1/X).

When α is an algebraic number, we denote by H(α) the naive height of the
minimal polynomial of α. From Lemma 1.5 one deduces that, if α is an algebraic
number, then |α| ≤ H(α) + 1. Further, if α is a nonzero algebraic number, then

|α| ≥ 1

H(α) + 1
·

Proof of Corollary 1.4. From the Theorem on symmetric polynomials, we de-
duce the following. Let γ ∈ C be root of a polynomial in Z[ X] of degree d,
leading coefficient a0, and complex roots γj (1 ≤ j ≤ d). Let f ∈ Z[X] be
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a polynomial with integer coefficients of degree at most T and naive height at
most eT . Then the polynomial

F (X) = adL0

d∏
j=1

(
X − f(γj)

)
has coefficients in Z, its degree is at most c′T and it height at most ec

′T , for
some constant c′ depending only on γ.

Corollary 1.4 follows from Lemma 1.5.

Exercise 4. Let ϑ = (ϑ1, . . . , ϑm) be a m-tuple of complex numbers. Prove that
the following assertions are equivalent.
(i) One at least of the numbers ϑ1, . . . , ϑm is transcendental, that is

trdegQQ(ϑ) ≥ 1.

(ii) For any κ > 0 there exist a positive integer T and a polynomial f ∈
Z[X1, . . . , Xm] such that deg f ≤ T , H(f) ≤ eT and

0 < |f(ϑ)| ≤ e−κT .

(iii) For any κ < 1/2 there exists a positive integer T0 such that, for any T ≥ T0
there is a polynomial f ∈ Z[X1, . . . , Xm] satisfying deg f ≤ T , H(f) ≤ eT and

0 < |f(ϑ)| ≤ e−κT
2

.

(iv) For any H ≥ 1 and D ≥ 1 there exists a polynomial f ∈ Z[X1, . . . , Xm] of
total degree ≤ D and naive height H(f) ≤ H such that

0 < |f(ϑ)| ≤
√

2(1 + |ϑ|)DH−(D−1)/2.

In transcendence proofs one needs explicit versions of Corollary 1.4 and its
generalisation in Exercise 4. A very useful tool is provided by the notion of
height which is a main character in Diophantine geometry. We introduce it in
the next course.

1.3 Criteria for linear independence, for algebraic inde-
pendence

The irrationality criterion 1.1 and the transcendence criterion 1.3 are the first
items of a vast subject which includes also criteria for linear independence and
criteria for algebraic independence. A reference is [GL326].
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2 Liouville type estimates

2.1 Liouville inequality

We start with an asymptotic version.

Lemma 2.1. Let α be a real algebraic number of degree d ≥ 2 and minimal
polynomial P ∈ Z[X]. Define c = |P ′(α)|. Let ε > 0. Then there exists an
integer q0 such that, for any p/q ∈ Q with q ≥ q0,∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

(c+ ε)qd
·

Proof. Let q be a sufficiently large positive integer and let p be the nearest
integer to α. In particular

|qα− p| ≤ 1

2
·

Denote a0 the leading coefficient of P and by α1, . . . , αd its the roots with
α1 = α. Hence

P (X) = a0(X − α1)(X − α2) · · · (X − αd)

and

(2.2) qdP (p/q) = a0q
d

d∏
i=1

(
p

q
− αi

)
.

Also

P ′(α) = a0

d∏
i=2

(α− αi).

The left hand side of (2.2) is a rational integer. It is not zero because P is
irreducible of degree ≥ 2. For i ≥ 2 we use the estimate∣∣∣∣αi − p

q

∣∣∣∣ ≤ |αi − α|+ 1

2q
·

We deduce

1 ≤ qda0
∣∣∣∣α− p

q

∣∣∣∣ d∏
i=2

(
|αi − α|+

1

2q

)
.
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For sufficiently large q the right hand side is bounded from above by

qd
∣∣∣∣α− p

q

∣∣∣∣ (|P ′(α)|+ ε).

If α is a real root of a quadratic polynomial P (X) = aX2 + bX + c, then
P ′(α) = 2aα+ b is a square root of the discriminant of P . So Hurwitz Lemma
1.2 is optimal for all quadratic numbers having a minimal polynomial of dis-
criminant 5. Incidentally, this shows that 5 is the smallest positive discriminant
of an irreducible quadratic polynomial in Z[X] (of course it is easily checked di-
rectly that if a, b, c are three rational integers with a > 0 and b2 − 4ac positive
and not a perfect square in Z, then b2 − 4ac ≥ 5).

It follows that for the numbers of the form (aΦ + b)/(cΦ + d) with integers
a, b, c, d having ad − bc = ±1, one cannot replace in Lemma 1.2 the number√

5 by a larger number.
On the other hand, Hurwitz Lemma 1.2 shows that Lemma 2.1 is sometimes

optimal. This optimality will be one of the main topics of this lecture.

Exercise 5. Prove the nonasymptotic version of Liouville’s Theorem as follows.
Let α be a real algebraic number of degree d ≥ 2 and minimal polynomial
P ∈ Z[X]. Then there exists a positive constant κ = κ(α) such that, for any
p/q ∈ Q with q ≥ 1, ∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

κqd
·

(a) Prove this result with κ given by

κ = max
{

1 ; max
|t−α|≤1

|P ′(t)|
}
.

(b) Check also that the same estimate is true with κ given by

κ = a0

d∏
i=2

(|αj − α|+ 1),

where a0 is the leading coefficient and α1, . . . , αd the roots of P with α1 = α:

P (X) = a0(X − α1)(X − α2) · · · (X − αd).

Hint: For both parts of this exercise, one may distinguish two cases, whether
|α− (p/q)| is ≥ 1 or < 1.

Definition. A real number ϑ is a Liouville number if for any κ > 0 there exists
p/q ∈ Q with q ≥ 2 and

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ ≤ 1

qκ
·
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It follows from Lemma 2.1 that Liouville numbers are transcendental. In
dynamical systems, an irrational real number satisfies a Diophantine condition
if is not Liouville: this means that there exists a constant κ > 0 such that, for
any p/q ∈ Q with sufficiently large q,∣∣∣∣α− p

q

∣∣∣∣ > 1

qκ
·

Let b ≥ 2 be an integer. Let us check that the number

ϑb =
∑
n≥0

b−n!

is a Liouville number. Let κ > 0 be a real number. For sufficiently large N , set

q = bN !, p =

N∑
n=0

bN !−n!.

Then we have

0 < ϑb −
p

q
=
∑
k≥1

1

b(N+k)!−N !
·

For k ≥ 1 we use the crude estimate

(N + k)!−N ! ≥ N !N(N + 1) · · · (N + k − 1) ≥ N !N(k − 1)!,

which yields

0 < ϑb −
p

q
≤ 2

qN
·

Exercise 6. Let (an)n≥0 be a bounded sequence of rational integers and (un)n≥0
be an increasing sequence of integers satisfying

lim sup
n→∞

un+1

un
= +∞.

Assume that the set {n ≥ 0 ; an 6= 0} is infinite.
Define

ϑ =
∑
n≥0

an2−un .

Show that ϑ is a Liouville number.

2.2 Heights

There are several definitions of heights for algebraic numbers. For each of them,
the set of algebraic numbers of bounded degree and height is a finite set. They
play an important role in Diophantine geometry. The most useful one is the
absolute logarithmic height.

We first introduce Mahler’s measure of a polynomial, and of an algebraic
number.
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Lemma 2.3. Let f ∈ C[X] be a nonzero polynomial of degree d:

f(X) = a0X
d + a1X

d−1 + · · ·+ ad−1X + ad = a0

d∏
i=1

(X − αi).

Then

|a0|
d∏
i=1

max{1, |αi|} = exp

(∫ 1

0

log |f(e2iπt)|dt
)
.

This is a special case of Jensen’s formula for analytic functions. Since both
sides of the conclusion of Lemma 2.3 are multiplicative functions of f , it is
sufficient to consider the case where f is either a0 or else X−α. In the first case
the left hand side is |a0| and the desired equality plainly holds. In the latter
case, the left hand side is max{1, |α|}. Therefore Lemma 2.3 is equivalent to
the fact that, for any complex number α,∫ 1

0

log |e2iπt − α|dt = log max{1, |α|}.

Under the notation of Lemma 2.3, we define Mahler’s measure of f by

M(f) = |a0|
d∏
i=1

max{1, |αi|}.

This is a multiplicative function:

M(f1f2) = M(f1)M(f2)

for f1 and f2 in C[X], a fact which follows immediately from the definition of
M.

When α is an algebraic number with minimal polynomial f ∈ Z[X] over Z,
we define its Mahler’s measure by M(α) = M(f).

For an algebraic complex number α of degree d, we define the absolute log-
arithmic height of α as

h(α) =
1

d
log M(α).

Lemma 2.3 gives two equivalent definitions of the absolute logarithmic height
of an algebraic number α. There is a third one, which is often the most useful,
which involves the archimedean and ultrametric places of the field Q(α). We
refere to [GL326, Chap. 3].

The house of an algebraic number is the maximum of the modulus of its
conjugates in C:

α = max{|α1|, . . . , |αd|}
when the minimal polynomial of α is written in C[X] as

f(X) = a0X
d + · · ·+ ad = a0

d∏
i=1

(X − αi).

10



The denominator den(α) of α is the positive generator of the ideal of D ∈ Z for
which Dα is an algebraic integer. It is a divisor of a0.

Among several notions of size of an algebraic number, one of the most fre-
quently used is

s(α) = log max{den(α) ; α }.

Lemma 2.4. For α ∈ Q of degree d, we have

1

d
log H(α)− log 2 ≤ h(α) ≤ 1

d
log H(α) +

1

2d
log(d+ 1)

and
1

d
s(α) ≤ h(α) ≤ log den(α) + log max

{
1, α

}
≤ 2s(α).

Proof. The first part of the conclusion can be written

2−dH(α) ≤ M(α) ≤ H(α)
√
d+ 1.

The left inequality follows from the identity which relates the coefficients of a
polynomial with the roots of this polynomial:

aj = (−1)ja0
∑

1≤s1<···<sj≤d

αs1 · · ·αsj , (1 ≤ j ≤ d).

The number of terms in the sum is
(
d
j

)
≤ 2d, and each of these terms is bounded

from above by M(α)/a0.
The right inequality follows from the arithmetico-geometric inequality:

exp

(∫ 1

0

log
∣∣f(e2iπt)∣∣dt) ≤ ∫ 1

0

∣∣f(e2iπt)∣∣dt.
Using this bound for fp, with p positive real, we deduce

M(f) ≤
(∫ 1

0

∣∣f(e2iπt)∣∣pdt)1/p

.

For p = 2 we obtain the desired estimate.
The proof of the second series of inequalities does not involve any difficulty

and is left as an exercise.

2.3 Explicit Liouville estimates

Here is an explicit lower bound for the value of a polynomial at an algebraic
point, involving the absolute logarithm height h(α) of an algebraic number α.

Let f ∈ Z[X] be a polynomial of degree at most N . Let γ ∈ C be an
algebraic number of degree at most d which is not a root of f . Then

|f(γ)| ≥ L(f)1−de−dNh(γ).

11



The next result is a generalisation to several variables.

Proposition 2.5 (Liouville’s inequality). Let K be a number field of degree D.
Let γ1, . . . , γ` be elements of K. Further, let f ∈ Z[X1, . . . , X`] be a polynomial
in ` variables, with coefficients in Z, which does not vanish at the point γ =(
γi
)
1≤i≤`. Assume f is of degree at most Ni with respect to Xi. Then

log |f(γ)| ≥ −(D − 1) log L(f)−D
∑̀
i=1

Nih(γi).

12
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3 Thue Siegel Roth

Let α be an irrational algebraic real number of degree d ≥ 2. Liouville inequality
states that there exists a constant c = c(α) > 0 (explicit) such that∣∣∣∣α− p

q

∣∣∣∣ > c

qd
·

for all p/q ∈ Q. Dirichlet’s box principle states that there exist infinitely many
p/q ∈ Q with ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
·

For d = 2 (α a quadratic irrational real number) we see that both estimates
are sharp. This is no longer true for d ≥ 3. We discuss here improvements
of Liouville’s inequality; these improvements are deep, we will not give proofs.
They play an important role in Diophantine geometry.

Liouville’s estimate for the rational Diophantine approximation of 3
√

2 is∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

5q3

for sufficiently large q (use Lemma 2.1 with P (X) = X3 − 2, c = 3 3
√

4 < 5).
Thue was the first to achieve an improvement of the exponent 3: for the case of
cubic real numbers he replaced the exponent 3 of Liouville with 5

2 +ε for all ε > 0
(and the constant c depends on α and ε, but the constant c is not effective, an
admissible valuer cannot be computed using Thue’s proof). A explicit estimate
was then obtained by A. Baker in 1964:∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > 1

106q2.955

and refined by Chudnovskii, Easton, Rickert, Voutier and others, until 1997
when M. Bennett proved that for any p/q ∈ Q,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ ≥ 1

4 q2,5
·

From his result, Thue deduced that for any fixed k ∈ Z \ {0}, there are only
finitely many (x, y) ∈ Z × Z satisfying the Diophantine equation x3 − 2y3 = k.
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The result of Baker shows more precisely that if (x, y) ∈ Z× Z is a solution to
x3 − 2y3 = k, then

|x| ≤ 10137|k|23.

M. Bennett gave the sharper estimate: for any (x, y) ∈ Z2 with x > 0,

|x3 − 2y3| ≥
√
x.

The connexion between Diophantine approximation to 3
√

2 and the Diophantine
equation x3 − 2y3 = k is explained in the next lemma.

Lemma 3.1. Let η be a positive real number. The two following properties are
equivalent:
(i) There exists a constant c1 > 0 such that, for any p/q ∈ Q with q > 0,∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qη
·

(ii) There exists a constant c2 > 0 such that, for any (x, y) ∈ Z2 \ {(0, 0)},

|x3 − 2y3| ≥ c2 max{|x|, |y|}3−η.

Properties (i) and (ii) are true but uninteresting with η ≥ 3. They are not
true with η < 2. It is not expected that they are true with η = 2, but it is
expected that they are true for any η > 2.

Proof. We assume η < 3, otherwise the result is trivial. Set α = 3
√

2.
Assume (i) and let (x, y) ∈ Z × Z have (x, y) 6= (0, 0). Set k = x3 − 2y3.

Since 2 is not the cube of a rational number we have k 6= 0. If y = 0 assertion
(ii) plainly holds. So assume y 6= 0.

Write
x3 − 2y3 = (x− αy)(x2 + αxy + α2y2).

The polynomial X2 + αX + α2 has negative discriminant −3α2, hence has a
positive minimum c0 = 3α2/4. Hence the value at (x, y) of the quadratic form
X2 + αXY + α2Y 2 is bounded form below by c0y

2. From (i) we deduce

|k| = |y|3
∣∣∣∣ 3
√

2− x

y

∣∣∣∣ (x2 + αxy + α2y2) ≥ c1c0|y|3

|y|η
= c3|y|3−η.

This gives an upper bound for |y|:

|y| ≤ c4|k|1/(3−η), hence |y3| ≤ c4|k|3/(3−η).

We want an upper bound for |x|: we use x3 = k + 2y3 and we bound |k| by
|k|3/(3−η) since 3/(3− η) > 1. Hence

|x|3 ≤ c5|k|3/(3−η) and |x|3−η ≤ c6|k|.

Conversely, assume (ii). Let p/q be a rational number. If p is not the nearest
integer to qα, then |qα−p| > 1/2 and (i) is trivial. So we assume |qα−p| ≤ 1/2.
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We need only the weaker estimate c7q < p < c8q with some positive constants
c7 and c8. From

p3 − 2q3 = (p− αq)(p2 + αpq + α2q2),

using (ii), we deduce

c2p
3−η ≤ c9q3

∣∣∣∣α− p

q

∣∣∣∣ ,
and (i) easily follows.

Definition. Given a real irrational number ϑ, a function ϕ = N → R>0 is an
irrationality measure for ϑ if there exists an integer q0 > 0 such that, for any
p/q ∈ Q with q ≥ q0, ∣∣∣∣ϑ− p

q

∣∣∣∣ ≥ ϕ(q).

Further, a real number κ is an irrationality exponent for ϑ if there exists a
positive constant c such that the function c/qκ is an irrationality measure for ϑ.

If κ is an irrationality exponent for ϑ, then any number > κ is also an irra-
tionality exponent for ϑ. From Proposition 1.1, it follows that any irrationality
exponent κ satisfies κ ≥ 2. Irrational quadratic numbers have irrationality
exponent 2. It is known that 2 is an irrationality exponent for an irrational
real number ϑ if and only if the sequence of partial quotients (a0, a1, . . .) in
the continued fraction expansion of ϑ is bounded: these are called the badly
approximable numbers.

An important chapter in Diophantine approximation is the metric theory
which studies the properties which are satisfied by almost all (real or complex)
numbers for Lebesgue measure. We only quote the following result: for almost
all real numbers ϑ, any κ > 2 is an irrationality exponent for ϑ.

From Liouville’s inequality in Lemma 2.1 it follows that any irrational alge-
braic real number α has a finite irrationality exponent ≤ d. Liouville numbers
are by definition exactly the irrational real numbers which have no finite irra-
tionality exponent.

For any κ ≥ 2, there are irrational real numbers ϑ for which κ is an irrational-
ity exponent and is the best: no positive number less than κ is an irrationality
exponent for ϑ. Examples due to Y. Bugeaud in connexion with the triadic
Cantor set are

∞∑
n=0

3−dλκ
ne

where λ is any positive real number.
The first significant improvement to Liouville’s inequality is due to the Nor-

wegian mathematician Axel Thue who proved in 1909:

Theorem 3.2 (A. Thue, 1909). Let α be a real algebraic number of degree
d ≥ 3. Then any κ > (d/2) + 1 is an irrationality exponent for α.

15



The fact that any irrational algebraic real number of degree d ≥ 3 has an
irrationality exponent is < d has very important corollaries in the theory of
Diophantine equations.

Theorem 3.3 (Thue). Let f ∈ Z[X] be an irreducible polynomial of degree
d ≥ 3 and m a non-zero rational integer. Define F (X,Y ) = Y df(X/Y ). Then
the Diophantine equation F (x, y) = m has only finitely many solutions (x, y) ∈
Z× Z.

The equation F (x, y) = m in Proposition 3.3 is called Thue equation. The
connexion between Thue equation and Liouville’s inequality has been explained
in Lemma 3.1 in the special case 3

√
2; the general case is similar.

Lemma 3.4. Let α be an algebraic number of degree d ≥ 3 and minimal poly-
nomial f ∈ Z[X], let F (X,Y ) = Y df(X/Y ) ∈ Z[X,Y ] be the associated homo-
geneous polynomial. Let 0 < κ ≤ d. The following conditions are equivalent:
(i) There exists c1 > 0 such that, for any p/q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ ≥ c1
qκ
·

(ii) There exists c2 > 0 such that, for any (x, y) ∈ Z2 with x > 0,

|F (x, y)| ≥ c2 xd−κ.

In 1921 C.L. Siegel sharpened Thue’s result 3.2 by showing that any real
number

κ > min
1≤j≤d

(
d

j + 1
+ j

)
is an irrationality exponent for α. With j = b

√
dc it follows that 2

√
d is an

irrationality exponent for α. Siegel’s generalization of Thue’s result played an
essential role in his proof1 in 1929 that there are only finitely many integer
points on a curve of genus ≥ 1.

Dyson and Gel’fond in 1947 independently refined Siegel’s estimate and re-
placed the hypothesis in Thue’s Theorem 3.2 by κ >

√
2d. The essentially best

possible estimate has been achieved by K.F. Roth in 1955: any κ > 2 is an
irrationality exponent for a real irrational algebraic number α.

Theorem 3.5 (A. Thue, C.L. Siegel, F. Dyson, K.F. Roth 1955). For any real
algebraic number α, for any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is
finite.

An equivalent statement is :

For any real algebraic number α and for any ε > 0, there exists
q0 > 0 such that, for p/q ∈ Q with q ≥ q0, we have |α−p/q| > q−2−ε.

1U. Zannier (ed.), On some applications of Diophantine approximations, a translation of
Carl Ludwig Siegel’s Über einige Anwendungen diophantischer Approximationen by Clemens
Fuchs. Edizioni Della Normale, Quaderni Monographs 2, 2014.
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It is expected that the result is not true with ε = 0 as soon as the degree of
α is ≥ 3, which means that it is expected no real algebraic number of degree at
least 3 is badly approximable, but essentially nothing is known on the continued
fraction of such numbers: we do not know whether there exists an irrational
algebraic number which is not quadratic and has bounded partial quotient in
its continued fraction expansion, but we do not know either whether there exists
a real algebraic number of degree at least 3, the sequence of partial quotients of
which is not bounded!

Here is an example of an application of Diophantine approximation to tran-
scendental number theory. Let (un)n≥0 be an increasing sequence of integers
and let b be a rational integer, b ≥ 2. Let us consider the number

(3.6) ϑ =
∑
n≥0

b−un

This number is rational if and only if its sequence of digits in basis b is ultimately
periodic, which is the case when (un)n≥0 is ultimately an arithmetic progression.

Assume that ϑ is irrational. A conjecture of Borel (1950) states that the
digits in the expansion in a basis b ≥ 2 of a real algebraic irrational number
should all occur with the same frequency. For b ≥ 3, the expansion in basis b of
the number (3.6) has no digit 2, hence Borel predicts that it is transcendental.
For b = 2, if the sequence of 1’s in the binary expansion of a number ϑ is
lacunary, then, again, Borel predicts that ϑ is transcendental. We are very far
from such results.

For sufficiently large n, define

qn = bun , pn =

n∑
k=0

bun−uk and rn = ϑ− pn
qn
·

Since the sequence (un)n≥0 is increasing, we have un+h − un+1 ≥ h− 1 for any
h ≥ 1, hence

0 < rn ≤
1

bun+1

∑
h≥1

1

bh−1
=

b

bun+1(b− 1)
≤ 2

q
un+1/un
n

·

Therefore if the sequence (un)n≥0 satisfies

lim sup
n→∞

un+1

un
= +∞,

then ϑ is a Liouville number, and therefore is transcendental. For instance the
sequence un = n! satisfies this condition: hence the number ϑb =

∑
n≥0 b

−n! is
transcendental (see § 2.1).

Roth’s Theorem 3.5 yields the transcendence of the number ϑ in (3.6) under
the weaker hypothesis

lim sup
n→∞

un+1

un
> 2.
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The sequence un = b2κnc satisfies this condition as soon as κ > 1. For example
with κ = log 3

log 2 the transcendence of the number∑
n≥0

b−3
n

follows from Theorem 3.5.
A stronger result follows from Ridout’s Theorem 4.3 below, using the fact

that the denominators bun are powers of b.
Let S be a finite set of primes. A rational number is called an S–integer if

it can be written a/b where all prime factors of the denominator b belong to S.
For instance when a, b and m are rational integers with b 6= 0, the number a/bm

is an S–integer for S the set of prime divisors of b.
The set of S–integers is the subring of Q generated by the elements 1/p with

p ∈ S. We denote it by S−1Z. The group of units of S−1Z is a multiplicative
subgroup (S−1Z)× of Q×, its elements are the S–units. If S = {p1, . . . , ps},
then

(S−1Z)× =
{
pk11 · · · pkss | (k1, . . . , ks) ∈ Zs

}
⊂ Q×

and
S−1Z =

{a
b
| a ∈ Z, b ∈ (S−1Z)×

}
⊂ Q.

Here is a result due to Ridout (1957) (see Corollary 4.4 below).

Let S be a finite set of prime numbers. Let α be a real algebraic
number. For any ε > 0, the set of S–integers a/b such that∣∣∣α− a

b

∣∣∣ < 1

b1+ε

is finite.

Therefore the condition
lim sup
n→∞

un+1

un
> 1

suffices to imply the transcendence of the sum of the series (3.6). An example
is the transcendence of the number∑

n≥0

b−2
n

.

This result goes back to A. J. Kempner in 1916.

18



Update: 26/04/2021
April 12 - 23, 2021: Hanoi (Vietnam) (online)
CIMPA School on Functional Equations: Theory, Practice and Interaction.

Introduction to transcendental numbers
Michel Waldschmidt

4 Schmidt’s Subspace Theorem

The theorems of Thue–Siegel–Roth and Ridout are very special cases of Schmidt’s
Subspace Theorem (1972) together with its p-adic extension by H.P. Schlickewei
(1976). We do not state it in full generality but we give only two special cases.

The Subspace Theorem is one of the most powerful tools in Diophantine
geometry; it is a kind of paradox that for transcendence proofs, one does not
know how to replace the Liouville type estimates of §2.3 by stronger versions
arising from the Thue–Siegel–Roth–Schmidt theory.

For x = (x1, . . . , xn) ∈ Zn, define |x| = max{|x1|, . . . , |xn|}.

Theorem 4.1 (Schmidt Subspace Theorem). For n ≥ 2 let L1, . . . , Ln be inde-
pendent linear forms in n variables with algebraic coefficients. Let ε > 0. Then
the set

{x = (x1, . . . , xn) ∈ Zn ; |L1(x) · · ·Ln(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of Qn.

We deduce the Thue–Siegel–Roth’s Theorem 3.5 from Theorem 4.1 as fol-
lows. Let α be a real irrational algebraic number and let ε > 0. Consider the
set

Eε =

{
(q, p) ∈ Z2 | q|αq − p| < 1

qε

}
.

Use Theorem 4.1 with

n = 2, L1(x1, x2) = x1, L2(x1, x2) = αx1 − x2.

Theorem 4.1 says that the set Eε is contained in the union of finitely many
proper subspaces of Q2. A Q-vector subspace of Q2 which is not {0} not Q2

(that is a proper subspace) is generated by an element (p0, q0) ∈ Q2. There is
one such subspace with q0 = 0, namely Q × {0} generated by (1, 0), the other
ones have q0 6= 0. Mapping such a rational subspace to the rational number
p0/q0 yields a 1 to 1 correspondence. Hence the set{

p

q
| (q, p) ∈ Eε

}
=

{
p

q
| q|αq − p| < 1

qε

}
is finite.
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For x a nonzero rational number, write the decomposition of x into prime
factors

x = ±
∏
p

pvp(x),

where p runs over the set of prime numbers and vp(x) ∈ Z (with only finitely
many vp(x) distinct from 0), and set

|x|p = p−vp(x).

The product formula is

|x|
∏
p

|x|p = 1

for all x ∈ Q×.
For a nonzero rational number x, we have

x ∈ Z⇐⇒ vp(x) ≥ 0 for all primes p ⇐⇒ |x|p ≤ 1 for all primes p.

Given a finite set S of prime numbers, a nonzero rational number x is an S–
integer if and only if vp(x) ≥ 0 for all primes p 6∈ S, and x is an S–unit if and
only if vp(x) = 0 for all primes p 6∈ S. For an S–unit x, the product formula is

|x|
∏
p∈S
|x|p = 1.

We now state a special case of Schmidt’s Subspace Theorem (1972) which
includes its p-adic extension by H.P. Schlickewei (1976).

Theorem 4.2 (Schmidt–Schlickewei Subspace Theorem). Let n ≥ 2 be a pos-
itive integer, S a finite set of prime numbers. Let L1, . . . , Ln be n independent
linear forms in n variables with algebraic coefficients. Further, for each p ∈ S
let L1,p, . . . , Ln,p be n independent linear forms in n variables with rational
coefficients. Let ε > 0. Then the set of x = (x1, . . . , xn) ∈ Zn such that

|L1(x) · · ·Ln(x)|
∏
p∈S
|L1,p(x) · · ·Ln,p(x)|p ≤ |x|

−ε

is contained in the union of finitely many proper subspaces of Qn.

Here is Ridout’s Theorem.

Theorem 4.3 (D. Ridout, 1958). Let α and β be two algebraic numbers with
(α, β) 6= (0, 0). For p ∈ S, let αp and βp be two rational numbers with (αp, βp) 6=
(0, 0). Let ε > 0. Then the set of rational numbers a/b such that

b|bα− aβ|
∏
p∈S
|bαp − aβp|p <

1

max{|a|, b}ε

is finite.
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Corollary 4.4. Let S be a finite set of prime numbers. Let α be a real algebraic
number. For any ε > 0, the set of S–integers a/b such that∣∣∣α− a

b

∣∣∣ < 1

b1+ε

is finite.

Corollary 4.4 follows from Theorem 4.3 by taking β = 1, αp = 1 and βp = 0
for p ∈ S.

Ridout’s Theorem 4.3 is the special case n = 2 of the Subspace Theorem: in
Theorem 4.2, take

L1(x1, x2) = L1,p(x1, x2) = x1,

L2(x1, x2) = αx1 − βx2, L2,p(x1, x2) = αpx1 − βpx2.

For (x1, x2) = (b, a) with b an S–unit and p ∈ S, we have

|L1(x1, x2)| = b, |L2(x1, x2)| = |bα− aβ|,
|L1p(x1, x2)|p = |b|p, |L2,p(x1, x2)|p = |bαp − aβp|p

and ∏
p∈S
|b|p = b−1

since b is an S–unit. As we have seen when we deduced the Thue–Siegel–Roth’s
Theorem 3.5 from Schmidt Subspace Theorem 4.1, a subset E of Z2 is contained
in a finite union of hyperplanes of Q2 if and only if the set of y/x ∈ Q, where
(x, y) ranges over the set of elements in E with x 6= 0, is finite.

We derive a further consequence, dealing with exponential Diophantine equa-
tions, of the special case of the Subspace Theorem 4.2 where the linear forms
L1, . . . , Ln also have rational coefficients. We start with an exercise.

Exercise 7. Show that the only solutions of the equation 2a + 3b = 5c in non-
negative integers a, b and c are given by

2 + 3 = 5, 22 + 1 = 5, 24 + 32 = 52.

The finiteness of the set of solutions of such an equation is a general fact:
we deduce from Ridout’s Theorem 4.3 the following statement:

Corollary 4.5. Let S be a finite set of prime numbers and let n ≥ 2. Then the
set of solutions of the equation x1 + x2 = 1 in S–units x1, x2 is finite.

The S–unit equation was introduced by C.L. Siegel in his seminal 1929 paper,
in the more general context of number fields.

Proof. Let (x1, x2) be a solution of the equation x1 + x2 = 1 in S–units. Let y0
be the least common denominator of x1 and x2. Set y1 = y0x1 and y2 = y0x2.
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Then y0, y1, y2 are relatively prime integers, they are S–units, and y1 + y2 = y0.
Introduce the three linear forms in two variables Y1, Y2

Λ1(Y1, Y2) = Y1, Λ2(Y1, Y2) = Y2, Λ0(Y1, Y2) = Y1 + Y2.

Notice that Λj(y1, y2) = yj for j = 0, 1, 2, and that any two linear forms among
Λ0,Λ1,Λ2 are linearly independent. Recall the notation |y| = max{|y0|, |y1|, |y2|}.
Let k ∈ {0, 1, 2} be an index such that |y| = |yk|, and let `,m be the two other
indices, so that {0, 1, 2} = {k, `,m}.

Since y0, y1, y2 are relatively prime rational integers, for p ∈ S, we have
max{|y0|p, |y1|p, |y2|p} = 1; let kp ∈ {0, 1, 2} be an index such that |ykp |p = 1,
and let `p,mp be the two other indices, so that {0, 1, 2} = {kp, `p,mp}.

Consider the linear forms

L1 = Λ`, L2 = Λm, L1p = Λ`p , L2p = Λmp (p ∈ S).

Notice that

L1(y1, y2)L2(y1, y2) = y`ym =
y0y1y2
yk

= ±y0y1y2
|y|

,

while
L1p(y1, y2)L2p(y1, y2) = y`pymp

=
y0y1y2
ykp

and
|L1p(y1, y2)L2p(y1, y2)|p = |y0y1y2|p.

From the product formula, using the fact that y0y1y2 is an S unit, one deduces

|y0y1y2|
∏
p∈S
|y0y1y2|p = 1.

Therefore

|L1(y1, y2)L2(y1, y2)|
∏
p∈S
|L1p(y1, y2)L2p(y1, y2)|p =

1

|y|
·

From Ridout’s Theorem 4.3 with ε = 1, one deduces that the set of y1/y2 is
finite. From y1 + y2 = y0 we deduce that the sets of y1/y0 and y2/y0 are finite.
Corollary 4.5 follows.

It turns out that the result of Corollary 4.5 is effective: one can bound
from above the (numerators and denominators of the) solutions x1 and x2. The
proof rests on transcendence methods and lower bounds for linear combinations
of logarithms of algebraic numbers – see Corollary 5.5 in § 5.

We now consider the more general equation

(4.6) X1 + · · ·+Xn = 1,
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where n is a fixed positive integer and the values x1, . . . , xn taken by the un-
known X1, . . . , Xn are S–units in Q for a fixed given finite set S of prime num-
bers. This equation has infinitely many solutions as soon as n ≥ 3 and S is
nonempty: for p ∈ S and a ∈ Z,

x1 = pa, x2 = −pa, x3 = 1, pa − pa + 1 = 1.

In view of this example, we will say that a solution (x1, . . . , xn) ∈ ((S−1Z)×)n

of equation (4.6) is non degenerate if no nontrivial subsum vanishes:

x1 + · · ·+ xn = 1

and ∑
i∈I

xi 6= 0 for any nonempty subset I of {1, . . . , n}.

Without giving all details, we explain how to deduce, from the Subspace Theo-
rem 4.2, the following statement.

Corollary 4.7. Let S be a finite set of primes and n a positive integer. Then
the set of nondegenerate solutions (x1, . . . , xn) ∈ ((S−1Z)×)n of equation (4.6)
is finite.

Sketch of proof of Corollary 4.7 as a consequence of the Subspace Theorem 4.2.
The proof is by induction on n. A first remark is that the statement of Corollary
4.7 is equivalent to the next one (which only looks more general):

For any finite set S of primes, any positive integer n and any rational
numbers c1, . . . , cn, the set of (x1, . . . , xn) ∈ ((S−1Z)×)n satisfying

c1x1 + · · ·+ cnxn = 1

and ∑
i∈I

cixi 6= 0 for any nonempty subset I of {1, . . . , n}

is finite.

This last statement is in fact a consequence of Corollary 4.7: we deduce it
by enlarging the set S of primes to a finite set S′ ⊃ S, so that c1, . . . , cn are
S′–units.

In the same vein, by reducing to the same denominator, one can phrase
Corollary 4.7 in an equivalent form by stating that the set of (y1, . . . , yn+1) ∈
(Z ∩ (S−1Z)×)n+1, satisfying

y1 + · · ·+ yn = yn+1 and gcd(y1, . . . , yn+1) = 1,

and ∑
i∈I

yi 6= 0 when I is a nonempty subset of {1, . . . , n},
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is finite.
Starting with a solution y of

y1 + · · ·+ yn = yn+1

using the assumption gcd(y1, . . . , yn+1) = 1, we consider for each prime p ∈ S
an index ip ∈ {1, . . . , n + 1} such that |yip |p = 1. We also consider an index
i0 such that |yi0 | = max1≤i≤n+1 |yi|. In other terms |yi0 | = |y|. The tuple(
i0, (ip)p∈S

)
can take only finitely many possible values – we fix one of them.

We introduce the following n+1 linear forms Λj (1 ≤ j ≤ n+1) in Y1, . . . , Yn:

Λj = Yj for 1 ≤ j ≤ n and Λn+1 = Y1 + · · ·+ Yn.

Clearly, any n distinct linear forms among Λ1, . . . ,Λn+1 are linearly indepen-
dent. We shall use the Subspace Theorem 4.2 with the following linear forms in
the variables Y1, . . . , Yn:

{L1, . . . , Ln} = {Λj | 1 ≤ j ≤ n+ 1, j 6= i0}

and, for any prime p in S,

{L1p, . . . , Lnp} = {Λj | 1 ≤ j ≤ n+ 1, j 6= ip}.

We write
n∏
i=1

|Li(y)| = 1

|y|

n+1∏
j=1

|Λj(y)|

and, for each prime p ∈ S,

n∏
i=1

|Lip(y)|p =

n+1∏
j=1

|Λj(y)|p.

For any prime p not in S and for j = 1, . . . , n+ 1, we have |Λj(y)|p = 1. From
the product formula

|Λj(y)|
∏
p

|Λj(y)|p = 1

for 1 ≤ j ≤ n+ 1, we deduce the estimate

|L1(y) · · ·Ln(y)|
∏
p∈S
|L1p(y) · · ·Lnp(y)|p =

1

|y|
,

which shows that we can apply Subspace Theorem 4.2 with ε = 1.
It follows that the solutions (y1, . . . , yn) we are considering belong to a finite

union of proper subspaces of Zn. We are reduced to consider a finite set of
Diophantine equations of the form

c1Y1 + · · ·+ cnYn = 0,
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where c1, . . . , cn are fixed elements of Z, not all 0. We fix such an equation, we
fix an index j1 ∈ {1, . . . , n} with cj1 6= 0 and we write∑

1≤i≤n
i6=j1

−ci
cj1

yi
yj1

= 1.

We use the preliminary remark of this proof (we enlarge S if necessary so that
ci/cj1 becomes an S–unit for i = 1, . . . , n). We also select one such subsum
which is non degenerate. We deduce from the induction hypothesis that there
is an index j2, (1 ≤ j2 ≤ n, j2 6= j1) such that the set of yj2/yj1 is finite. We
now write the initial equation in the form∑

1≤i≤n
i6=j1,i 6=j2

yi
yj1
− yn+1

yj1
= −1− yj2

yj1
·

The right hand side is a nonzero constant, since yj2 + yj1 6= 0 (here we use the
assumption on nonvanishing subsums for subsums of two terms only). Again,
we enlarge S if necessary, so that −1 − yj2/yj1 becomes an S–unit. The left
hand side is a sum of n− 1 terms which are S–units. This sum is non degener-
ate (no nontrivial subsum vanishes): indeed it follows from the assumption on
nonvanishing subsums (here we need the full assumption, not only for subsums
of two terms) that no sum of the form∑

i∈I
yi nor

∑
i∈I

yi − yn+1 for ∅ 6= I ⊂ {1, . . . , n} \ {i1, i2}

can vanish. We obtain the final conclusion by using the induction hypothesis
once more.

The proof of Corollary 4.7 is noneffective: in general, there is no method
(yet) to derive an upper bound for the size of the solutions. But upper bounds
for the number of solutions are available. To give an upper bound for the number
of subspaces in the conclusion of the Subspace Theorem 4.2 has been an open
problem from 1970 to 1980, when it has been solved by W.M. Schmidt.

The general case of the Subspace Theorem [LN1467, Chap. V, Th. 1D] in-
volves a finite set of places of a number field K, containing the places at infinity.
One replaces x ∈ Zn with x ∈ Kn with all components algebraic integers in K.
One replaces |x|−ε with H(x)−ε, where

H(x) =
∏

v∈MK

max
1≤i≤n

|xi|v,

where MK is the set of places of K. And the linear forms L1,p have coefficients
in K instead of Q.
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5 Effective methods

5.1 Linear combinations of logarithms

Let a1, . . . , an, b1, . . . , bn be rational integers with the ai’s all greater than one.
We assume

ab11 · · · abnn 6= 1,

and we ask for a lower bound for the distance between these two numbers.
There is a trivial estimate: a nonzero rational number is at least as large as

the inverse of a denominator:∣∣∣ab11 · · · abnn − 1
∣∣∣ ≥ ∏

bi<0

abii

≥ exp

{
−

n∑
i=1

|bi| log ai

}
≥ exp

{
−nB logA

}
,

where B = max{|b1|, . . . , |bn|} and A = max{a1, . . . , an}. This kind of estimate
extends to algebraic α’s. It belongs to the family of Liouville’s inequalities § 2.

The dependence in n and A in Liouville’s inequality is sharp, but the main
interest for applications is with the dependence in B. In order to see what
can be expected, it is convenient to give a connection with measures of linear
independence of logarithms of algebraic numbers. If

0 <
∣∣∣ab11 · · · abnn − 1

∣∣∣ ≤ 1

2
,

then

1

2

∣∣b1 log a1 + · · ·+ bn log an
∣∣ ≤ ∣∣∣ab11 · · · abnn − 1

∣∣∣ ≤ 2
∣∣b1 log a1 + · · ·+ bn log an

∣∣
Therefore the problem of obtaining a lower bound for the distance between 1
and the product ab11 · · · abnn is equivalent to obtaining a lower bound for the
nonzero number b1 log a1 + · · ·+ bn log an.

An easy application of Dirichlet’s box principle now yields:
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Lemma 5.1. Let n, a1, . . . , an be rational integers, all of which are at least 2.
Define A = max{a1, . . . , an}. Then for every integer B ≥ 4 logA, there exist
rational integers b1, . . . , bn with

0 < max
1≤i≤n

|bi| < B

such that ∣∣∣ab11 · · · abnn − 1
∣∣∣ ≤ 2n logA

Bn−1
·

If a1, . . . , an are multiplicatively independent, then the left hand side is not
zero. The upper bound is polynomial in 1/B, while Liouville’s inequality is
exponential in−B. We shall see that, as far as the dependence in B is concerned,
Lemma 5.1 is closer to the truth than Liouville’s lower bound.

It is often (but not always) the case that Dirichlet’s box principle is a good
guide to know what to expect. Another guide it metrical number theory: for al-
most all tuples of real numbers a1, . . . , an, Dirichlet’s box principle is essentially
best possible.

In 1935, one year after he had solved the seventh problem of D. Hilbert,
A. O. Gel’fond used his transcendence method in order to derive a lower bound
for a linear combination of two logarithms of algebraic numbers with algebraic
coefficients. Let us give a simple example of such an estimate: for a1, a2 mul-
tiplicatively independent positive rational integers, and for ε > 0, there exists
a constant C1 = C1(a1, a2, ε), which can be explicitly computed, such that, for
all (b1, b2) ∈ Z2 with (b1, b2) 6= (0, 0), if we set B = max{|b1|, |b2|, 2}, then∣∣∣ab11 ab22 − 1

∣∣∣ ≥ C1 exp
{
− (logB)5+ε

}
.

In 1939, A. O. Gel’fond refined the estimate and replaced the exponent 5 + ε
by 3 + ε, and in 1949 he 2 reached 2 + ε. At the same time he gave an estimate
which is valid for any n ≥ 2 :

Theorem 5.2 (Gel’fond’s Ineffective Estimate). Let (a1, . . . , an) be a n-tuple
of positive multiplicatively independent rational integers. For every δ > 0, there
exists a positive constant C2 = C2(a1, . . . , an, δ) such that, if b1, . . . , bn are ratio-
nal integers, not all of which are zero, and if we set B = max{|b1|, . . . , |bn|, 2},
then ∣∣∣ab11 · · · abnn − 1

∣∣∣ ≥ C2e−δB .

For the proof of Theorem 5.2, A. O. Gel’fond used a result of his own, which
was a refinement of earlier results due to A. Thue, C. L. Siegel and F. Dyson
(see § 3). See [GL326, Theorem 1.9].

This proof produces a lower bound for
∣∣ab11 · · · abnn − 1

∣∣ using a lower bound
for |α − (p/q)|. By means of similar arguments, one can go backwards and
deduce nontrivial measures of rational approximation for algebraic numbers

2Explicit estimates were provided in 1968 by A. Schinzel
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using measures of linear independence for logarithms of algebraic numbers (see
[GL326, § 10.4.1]).

The proof of Theorem 5.2 does not enable one to compute the constant C2,
because one uses the Thue-Siegel-Roth Theorem which is not effective.

5.2 Baker’s transcendence results

In his book, A. O. Gel’fond emphasized the importance of getting a generaliza-
tion of this statement to more than two logarithms. Let logα1, . . . , logαn be
n logarithms of algebraic numbers which are linearly independent over Q. The
question is to prove that they are also linearly independent over the field Q of
algebraic numbers. For n = 2, this is the Theorem of Gel’fond-Schneider. This
problem was solved in 1966 by A. Baker.

Theorem 5.3 (Baker). If logα1, . . . , logαn are Q-linearly independent loga-
rithms of algebraic numbers, then the n + 1 numbers 1, logα1, . . . , logαn are
linearly independent over Q.

From Baker’s Theorem 5.3, one easily deduces that if a number of the form

eβ0αβ1

1 · · ·αβn
n = exp{β0 + β1 logα1 + · · ·+ βn logαn}

(with βi ∈ Q, and αi ∈ Q×) is algebraic, then β0 = 0, and moreover, either
logα1, . . . , logαn are all zero, or else the numbers 1, β1, . . . , βn are linearly de-
pendent over Q.

Also Theorem 5.3 shows that any nonzero element in the Q-vector space

{β1 logα1 + · · ·+ βn logαn ; n ≥ 0, βi ∈ Q, αi ∈ Q×}

spanned by the logarithms of algebraic numbers is transcendental.
At the same time when he proved these transcendence results, Baker pro-

duced effective nontrivial lower bounds for linear combinations of logarithms.
The main parameter is the maximum absolute value of the coefficients, B. The
best possible estimate was achieved by Feldman in 1968.

Ultrametric analogs were developed (work of Mahler, Coates, van der Poorten,
Yu Kunrui). In terms of B, the following best possible estimates have been
achieved.

Theorem 5.4. Let a1, . . . , an be positive multiplicatively independent rational
integers and b1, . . . , bm rational integers, not all of which are zero; let B =
max{2, |b1|, . . . , |bn|}. Assume

ab11 · · · abnn 6= 1

(a). There exists a positive effectively computable number C3 = C3(a1, . . . , an)
such that ∣∣∣ab11 · · · abnn − 1

∣∣∣ ≥ B−C3 .
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(b). Let p be a prime number. There exists a positive effectively computable
number C4 = C4(a1, . . . , an, p) such that∣∣∣ab11 · · · abnn − 1

∣∣∣
p
≥ B−C4 .

Such estimates are valid more generally when the integers a1, . . . , an are replaced
by algebraic numbers α1, . . . , αn.

5.3 The S–unit equation

Here is a corollary to Theorem 5.4, which is an effective version of Corollary
4.5. Let S be a finite set of prime numbers. We consider the so–called S–unit
equation

x+ y = z

where the unknown x, y, z are S–units. If (x, y, z) is a solution, then for each
p ∈ S, (px, py, pz) is a solution, as well as (p−1x, p−1y, p−1z). Therefore it is
natural to assume that x, y, z are in Z and are relatively prime.

Corollary 5.5. Let S = {p1, . . . , ps} be a finite set of prime numbers. Then
there exists an effectively computable constant C6 = C6(p1, . . . , ps) such that
any solution (x, y, z) in (Z ∩ (S−1Z)×)3 with gcd(x, y, z) = 1 satisfies

max{|x|, |y|, |z|} ≤ C6.

Proof. Let M = max{|x|, |y|, |z|}. By symmetry, there is no loss of generality
to assume M = |z|. Each of x, y, z is of the form pk11 · · · pkss , with ki ∈ Z≥0. Let
B be the maximum of these exponents. Clearly,

2B ≤M ≤ (p1 · · · ps)B .

Let p ∈ S be such that |z|p < 1. Since gcd(x, y, z) = 1, we have |x|p = |y|p = 1.

We use part (b) of Theorem 5.4 with ab11 · · · abnn = −xy which is 6= 1:

|z|p = | − x− y|p =

∣∣∣∣−xy − 1

∣∣∣∣
p

≥ B−C4 .

The inequality |z|p ≥ B−C4 is also valid if |z|p = 1. Since z is an S–unit, the
product formula yields

|z| =
∏
p∈S
|z|−1p ≤ BsC4 .

Hence
2B ≤ BsC4 ,

which produces an upper bound for B,

B

logB
≤ sC4

log 2
,
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hence an upper bound for M .

Similar results hold for the S–unit equation where the unknown are S–units
in an algebraic number field. They play a crucial role in Diophantine Geometry.

5.4 An explicit lower bound

We give only one example of an explicit estimate which can be proved by means
of transcendental number theory. Here is the main result from [LN1819].

Theorem 5.6 (Yu. V. Nesterenko). Let a1, . . . , an be positive rational numbers
such that the real values of logarithms log a1, . . . , log an are linearly independent
over Q. Then for any set of integers b1, . . . , bn with B = max |bj | > 0, the
following inequality holds:

|b1 log a1+ · · ·+bn log an| ≥ exp{−2.9(2e)2n+6(n+2)9/2h(a1) · · · h(an) log(eB)}.

5.5 Conjectures

The second part of Lang’s book [ECDA] deals with measures of linear indepen-
dence for logarithms of algebraic numbers (not only for the usual exponential
function, but also for elliptic functions). The introduction to Chap. X and XI
of [ECDA, pp.212–217] proposes far reaching conjectures. For instance:

Conjecture 5.7. For any ε > 0, there exists a constant C5(ε) > 0 such that,
for any nonzero rational integers a1, . . . , an, b1, . . . , bn with ab11 · · · abnn 6= 1∣∣∣ab11 · · · abnn − 1

∣∣∣ ≥ C5(ε)n

Bn−1+εAn+ε
,

where A = max1≤i≤n |ai| and B = max1≤i≤n |bi|.

See also [GL326, § 1.2] for further comments including the abc–Conjecture.
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