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Abstract

The Landau–Ramanujan constant ↵ is defined as follows : for
N ! 1, the number of positive integers  N which are sums
of two squares is asymptotically

↵
Np
logN

·

In a joint work with Etienne Fouvry and Claude Levesque, we
replace the quadratic form �4(X, Y ) = X

2 + Y
2, which is the

homogeneous version of the cyclotomic polynomial
�4(t) = t

2 + 1, with other binary forms.
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The Landau–Ramanujan constant

Edmund Landau
1877 – 1938

Srinivasa Ramanujan
1887 – 1920

The number of positive integers  N which are sums of two
squares is asymptotically C�4N(logN)�

1
2 , where

C�4 =
1

2
1
2

·
Y

p⌘ 3 mod 4

✓
1� 1

p2

◆� 1
2

.



Online Encyclopedia of Integer Sequences
https://oeis.org/A064533

[OEIS A064533] Decimal expansion of
Landau-Ramanujan constant.

C�4 = 0.764 223 653 589 220 . . .

• Ph. Flajolet and I. Vardi, Zeta function expansions of some
classical constants, Feb 18 1996.
• Xavier Gourdon and Pascal Sebah, Constants and records of
computation.
• David E. G. Hare, 125 079 digits of the Landau-Ramanujan
constant.

https://oeis.org/A064533
https://oeis.org/A064533


The Landau–Ramanujan constant

References : https://oeis.org/A064533

• B. C. Berndt, Ramanujan’s notebook part IV,
Springer-Verlag, 1994
• S. R. Finch, Mathematical Constants, Cambridge, 2003, pp.
98-104.
• G. H. Hardy, ”Ramanujan, Twelve lectures on subjects
suggested by his life and work”, Chelsea, 1940.
• Institute of Physics, Constants - Landau-Ramanujan
Constant
• Simon Plou↵e, Landau Ramanujan constant
• Eric Weisstein’s World of Mathematics, Ramanujan constant
• https://en.wikipedia.org/wiki/Landau-Ramanujan_constant

https://oeis.org/A064533
https://en.wikipedia.org/wiki/Landau-Ramanujan_constant


Sums of two squares

A prime number is a sum of
two squares if and only if it is
either 2 or else congruent to 1
modulo 4.

Pierre de Fermat
1607 ( ?) – 1665

Identity of Brahmagupta :

(a2 + b
2)(c2 + d

2) = e
2 + f

2

with

e = ac� bd, f = ad+ bc. Brahmagupta
598 – 668



Sums of two squares

If a and q are two integers, we denote by Na,q any integer � 1
satisfying the condition

p | Na,q =) p ⌘ a mod q.

An integer m � 1 can be written as

m = �4(x, y) = x
2 + y

2

if and only if there exist integers a � 0, N3,4 and N1,4 such
that

m = 2a N2
3,4 N1,4.



Sums of two squares

If a and q are two integers, we denote by Na,q any integer � 1
satisfying the condition

p | Na,q =) p ⌘ a mod q.

An integer m � 1 can be written as

m = �4(x, y) = x
2 + y

2

if and only if there exist integers a � 0, N3,4 and N1,4 such
that

m = 2a N2
3,4 N1,4.



Positive definite quadratic forms
Let F 2 Z[X, Y ] be a positive definite quadratic form. There
exists a positive constant CF such that, for N ! 1, the
number of positive integers m 2 Z, m  N which are
represented by F is asymptotically CFN(logN)�

1
2 .

Paul Bernays
1888 – 1977

P. Bernays, Über die

Darstellung von positiven,

ganzen Zahlen durch die

primitiven, binären

quadratischen Formen einer

nicht quadratischen

Diskriminante, Ph.D.
dissertation,
Georg-August-Universität,
Göttingen, Germany, 1912.

http://www.ethlife.ethz.ch/archive_articles/120907_bernays_fm/

http://www.ethlife.ethz.ch/archive_articles/120907_bernays_fm/


Paul Bernays (1888 – 1977)
https://www.thefamouspeople.com/profiles/paul-bernays-7244.php

• 1912, Ph.D. in mathematics, University of Göttingen, On the

analytic number theory of binary quadratic forms (Advisor :

Edmund Landau).

• 1913, Habilitation, University of Zürich, On complex analysis and

Picard’s theorem, advisor Ernst Zermelo.

• 1912 – 1917, Zürich ; work with Georg Pólya, Albert Einstein,

Hermann Weyl.

• 1917 – 1933, Göttingen, with David Hilbert. Studied with Emmy

Noether, Bartel Leendert van der Waerden, Gustav Herglotz.

• 1935 – 1936, Institute for Advanced Study, Princeton. Lectures

on mathematical logic and axiomatic set theory.

• 1936 —, ETH Zürich.

• With David Hilbert, “Grundlagen der Mathematik” (1934 – 39)

2 vol. — Hilbert–Bernays paradox.

• Axiomatic Set Theory (1958). —

Von Neumann–Bernays–Gödel set theory.

https://www.thefamouspeople.com/profiles/paul-bernays-7244.php


Specific binary forms

• Sums of cubes, biquadrates,. . .

Notice that X3 + Y
3 = (X + Y )(X2 �XY + Y

2)

We start with the quadratic form �3(X, Y ) = X
2 +XY + Y

2

which is the homogeneous version of the cyclotomic
polynomial �3(t) = t

2 + t+ 1.
Notice that

�6(X, Y ) = �3(X,�Y ) = X
2 �XY + Y

2

Also
�8(X, Y ) = X

4 + Y
4
.
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The quadratic form x
2 + xy + y

2

A prime number is represented by the quadratic form
x
2 + xy + y

2 if and only if it is either 3 or else congruent to 1
modulo 3.
Product of two numbers represented by the quadratic form
x
2 + xy + y

2 :

(a2 + ab+ b
2)(c2 + cd+ d

2) = e
2 + ef + f

2

with
e = ac� bd, f = ad+ bd+ bc.

The quadratic cyclotomic field Q(
p
�3) = Q(⇣3),

1 + ⇣3 + ⇣3
2 = 0 :

a
2 + ab+ b

2 = NormQ(⇣3)/Q(a� ⇣3b).
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Loeschian numbers : m = x
2 + xy + y

2

An integer m � 1 can be written as

m = �3(x, y) = �6(x,�y) = x
2 + xy + y

2

if and only if there exist integers b � 0, N2,3 and N1,3 such
that

m = 3b N2
2,3 N1,3.

The number of positive integers  N which are represented by
the quadratic form x

2 + xy + y
2 is asymptotically

C�3N(logN)�
1
2 , where

C�3 =
1

2
1
23

1
4

·
Y

p⌘ 2 mod 3

✓
1� 1

p2

◆� 1
2
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Online Encyclopedia of Integer Sequences OEIS
A301429

[OEIS A301429] Decimal expansion of an analog of
the Landau-Ramanujan constant for Loeschian
numbers.

The first decimal digits of C�3 are

C�3 = 0.638 909 405 44 . . .

https://oeis.org/A301429
https://oeis.org/A301429
https://oeis.org/A301429


April 17-21, 2018 : Roma (Italia)

Lecture on
Representation of integers by cyclotomic binary forms

4th Mini Symposium of the
Roman Number Theory
Association

http://www.rnta.eu/ms.html

http://www.rnta.eu/ms.html


Zeta function expansions of some classical constants, Feb 18 1996.

Philippe Flajolet Ilan Vardi

Bill Allombert

C�3 = 0.63890940544534388
22549426749282450937
54975508029123345421
69236570807631002764
96582468971791125286
64388141687519107424 . . .

April 2018



Loeschian numbers which are sums of two squares
An integer m � 1 is simultaneously of the forms

m = �4(x, y) = x
2 + y

2 and m = �3(u, v) = u
2 + uv + v

2

if and only if there exist integers a, b � 0, N5,12, N7,12, N11,12

and N1,12 such that

m =
⇣
2a 3b N5,12 N7,12 N11,12

⌘2

N1,12.

The number of Loeschian integers  N which are sums of two
squares is asymptotically �N(logN)�3/4, where

� =
3

1
4

2
5
4

·⇡ 1
2 ·(log(2+

p
3))

1
4 · 1

�(1/4)
·

Y

p⌘ 5, 7, 11 mod 12

⇣
1� 1

p2

⌘� 1
2
.
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OEIS A301430 � = 0.302 316 142 35 . . .
[ OEIS A301430] Decimal expansion of an analog of
the Landau-Ramanujan constant for Loeschian
numbers which are sums of two squares.

� =
3

1
4

2
5
4

·⇡ 1
2 ·(log(2+

p
3))

1
4 · 1

�(1/4)
·

Y

p⌘ 5, 7, 11 mod 12

⇣
1� 1

p2

⌘� 1
2

Bill Allombert

� = 0.30231614235706563794
7769900480199715602412
7951893696454588678412
8886544875241051089948
7467813979272708567765
9132725910666837135863 . . .

April 2018

https://oeis.org/A301430
https://oeis.org/A301430


Cyclotomic polynomials
Definition by induction :

�1(t) = t� 1, t
n � 1 =

Y

d|n

�d(t).

For p prime,

t
p � 1 = (t� 1)(tp�1 + t

p�2 + · · ·+ t+ 1) = �1(t)�p(t),

so
�p(t) = t

p�1 + t
p�2 + · · ·+ t+ 1.

For instance

�2(t) = t+1, �3(t) = t
2+t+1, �5(t) = t

4+t
3+t

2+t+1.
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Cyclotomic polynomials

�n(t) =
t
n � 1Y

d 6=n
d|n

�d(t)
·

For instance

�4(t) =
t
4 � 1

t2 � 1
= t

2 + 1 = �2(t
2),

�6(t) =
t
6 � 1

(t3 � 1)(t+ 1)
=

t
3 + 1

t+ 1
= t

2 � t+ 1 = �3(�t).

The degree of �n(t) is '(n), where ' is the Euler totient
function.
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Cyclotomic polynomials and roots of unity

For n � 1, if ⇣ is a primitive n–th root of unity,

�n(t) =
Y

gcd(j,n)=1

(t� ⇣
j).

For n � 1, �n(t) is the irreducible polynomial over Q of the
primitive n–th roots of unity,

Let K be a field and let n be a positive integer. Assume that
K has characteristic either 0 or else a prime number p prime
to n. Then the polynomial �n(t) is separable over K and its
roots in K are exactly the primitive n–th roots of unity which
belong to K.
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Properties of �n(t)
• For n � 2 we have

�n(t) = t
'(n)

�n(1/t)

• Let n = 2e0pe11 · · · perr where p1, . . . , pr are di↵erent odd
primes, e0 � 0, ei � 1 for i = 1, . . . , r and r � 1. Denote by
R the radical of n, namely

R =

(
2p1 · · · pr if e0 � 1,

p1 · · · pr if e0 = 0.

Then,
�n(t) = �R(t

n/R).

• Let n = 2m with m odd � 3. Then

�n(t) = �m(�t).
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�n(1)

For n � 2, we have �n(1) = e
⇤(n), where the von Mangoldt

function is defined for n � 1 as

⇤(n) =

(
log p if n = p

r with p prime and r � 1 ;

0 otherwise.

In other terms we have

�n(1) =

(
p if n = p

r with p prime and r � 1 ;

1 otherwise.
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�n(�1)

For n � 3,

�n(�1) =

(
1 if n is odd ;

�n/2(1) if n is even.

In other terms, for n � 3,

�n(�1) =

(
p if n = 2pr with p a prime and r � 1 ;

1 otherwise.

Hence �n(�1) = 1 when n is odd or when n = 2m where m

has at least two distinct prime divisors.
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Lower bound for �n(t)
For n � 3, the polynomial �n(t) has real coe�cients and no
real root, hence it takes only positive values (and its degree
'(n) is even).

For n � 3 and t 2 R, we have

�n(t) � 2�'(n)
.

Consequence : from

�n(t) = t
'(n)

�n(1/t)

we deduce, for n � 3 and t 2 R,

�n(t) � 2�'(n) max{1, |t|}'(n).
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�n(t) � 2�'(n) for n � 3 and t 2 R
Proof.
Let ⇣n be a primitive n-th root of unity in C ;

�n(t) = NQ(⇣n)/Q(t� ⇣n) =
Y

�

(t� �(⇣n)),

where � runs over the embeddings Q(⇣n) ! C. We have

|t� �(⇣n)| � |=m(�(⇣n))| > 0,

(2i)=m(�(⇣n)) = �(⇣n)� �(⇣n) = �(⇣n � ⇣n).

Now (2i)=m(⇣n) = ⇣n � ⇣n 2 Q(⇣n) is an algebraic integer :

2'(n)�n(t) � |NQ(⇣n)/Q((2i)=m(⇣n))| � 1.
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Generalization to CM fields

K. Győry L. Lovász

K. Győry & L. Lovász, Representation of integers by

norm forms II, Publ. Math. Debrecen 17, 173–181, (1970).
K. Győry, Représentation des nombres entiers par des

formes binaires, Publ. Math. Debrecen 24, 363–375, (1977).



Refinement (FLW)

Let cn = inft2R �n(t).
Refinement of the lower bound cn � 2�'(n) :

For n � 3

cn �
 p

3

2

!'(n)

.

Equality for n = 3 and n = 6.

For n a power of 2, cn = 1.
Otherwise, if n has r distinct primes p1, . . . , pr with p1 the
smallest, then

cn = cp1···pr � p1
�2r�2

.
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The cyclotomic binary forms
For n � 2, define

�n(X, Y ) = Y
'(n)

�n(X/Y ).

This is a binary form in Z[X, Y ] of degree '(n).
Consequence of the lower bound cn � 2�'(n) :
for n � 3 and (x, y) 2 Z2,

�n(x, y) � 2�'(n) max{|x|, |y|}'(n).

Therefore, if �n(x, y) = m, then

max{|x|, |y|}  2m1/'(n)
.

If max{|x|, |y|} � 3, then n is bounded :

'(n)  logm

log(3/2)
·
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Binary cyclotomic forms (EF–CL–MW 2018)
Let m be a positive integer and let n, x, y be rational integers
satisfying n � 3, max{|x|, |y|} � 2 and �n(x, y) = m.Then

max{|x|, |y|}  2p
3
m

1/'(n)
, hence '(n)  2

log 3
logm.

These estimates are optimal, since for ` � 1,

�3(`,�2`) = 3`2.

If we assume '(n) > 2, namely '(n) � 4, then

'(n)  4

log 11
logm

which is best possible since �5(1,�2) = 11.
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The sequence (am)m�1

For each integer m � 1, the set

�
(n, x, y) 2 N⇥Z2 | n � 3, max{|x|, |y|} � 2, �n(x, y) = m

 

is finite. Let am the number of its elements.

The sequence of integers m � 1 such that am � 1 starts with
the following values of am

m 3 4 5 7 8 9 10 11 12 13 16 17
am 8 16 8 24 4 16 8 8 12 40 40 16
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OEIS A299214

https://oeis.org/A299214
Number of representations of integers by cyclotomic binary
forms.

The sequence (am)m�1 starts with
0, 0, 8, 16, 8, 0, 24, 4, 16, 8, 8, 12, 40, 0, 0, 40, 16, 4, 24, 8, 24,
0, 0, 0, 24, 8, 12, 24, 8, 0, 32, 8, 0, 8, 0, 16, 32, 0, 24, 8, 8, 0, 32,
0, 8, 0, 0, 12, 40, 12, 0, 32, 8, 0, 8, 0, 32, 8, 0, 0, 48, 0, 24, 40,
16, 0, 24, 8, 0, 0, 0, 4, 48, 8, 12, 24, . . .

https://oeis.org/A299214
https://oeis.org/A299214


OEIS A296095

https://oeis.org/A296095
Integers represented by cyclotomic binary forms.

am 6= 0 for m =
3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27,
28, 29, 31, 32, 34, 36, 37, 39, 40, 41, 43, 45, 48, 49, 50, 52, 53,
55, 57, 58, 61, 63, 64, 65, 67, 68, 72, 73, 74, 75, 76, 79, 80, 81,
82, 84, 85, 89, 90, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108,
109, 111, 112, 113, 116, 117, 121, 122, . . .

https://oeis.org/A296095
https://oeis.org/A296095


OEIS A293654

https://oeis.org/A293654
Integers not represented by cyclotomic binary forms.

am = 0 for m =
1, 2, 6, 14, 15, 22, 23, 24, 30, 33, 35, 38, 42, 44, 46, 47, 51, 54,
56, 59, 60, 62, 66, 69, 70, 71, 77, 78, 83, 86, 87, 88, 92, 94, 95,
96, 99, 102, 105, 107, 110, 114, 115, 118, 119, 120, 123, 126,
131, 132, 134, 135, 138, 140, 141, 142, 143, 150, . . .

https://oeis.org/A293654
https://oeis.org/A293654


Numbers represented by a cyclotomic binary form
of degree � 2

For N � 1, the number of m  N for which there exists
n � 3 and (x, y) 2 Z2 with max(|x|, |y|) � 2 and
m = �n(x, y), is asymptotically

(C�4 + C�3)
N

(logN)
1
2

� �
N

(logN)
3
4

+O

 
N

(logN)
3
2

!

as N ! 1.

C�4 + C�3 = 1.403 133 059 034 . . . � = 0.302 316 142 35 . . .

Etienne Fouvry, Claude Levesque & M.W. ; Representation of

integers by cyclotomic binary forms. Acta Arithmetica, 184.1

(2018), 67 - 86.

Dedicated to Rob Tijdeman. arXiv: 712.09019 [math.NT]

http://arxiv.org/abs/1701.01230
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Higher degree

The situation for quadratic forms of degree � 3 is di↵erent for
several reasons.
• If a positive integer m is represented by a positive definite
quadratic form, it usually has many such representations ; while
if a positive integer m is represented by an irreducible binary
form of degree d � 3, it usually has few such representations.

• If F is a positive definite quadratic form, the number of
(x, y) with F (x, y)  N is asymptotically a constant times N ,
but the number of F (x, y) is much smaller.

• If F is an irreducible binary form of degree d � 3, the
number of (x, y) with F (x, y)  N is asymptotically a
constant times N

2
d , the number of F (x, y) is also

asymptotically a constant times N
2
d .
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Higher degree

A quadratic form has infinitely many automorphisms, an
irreducible binary form of higher degree has a finite group of
automorphisms.

Stanley Yao Xiao

S. Yao Xiao, On the representation of integers by binary

quadratic forms.
arXiv:1704.00221

http://arxiv.org/abs/1704.00221
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Sums of k–th powers

If a positive integer m is a sum of two squares, there are many
such representations.
Indeed, the number of (x, y) in Z⇥ Z with x

2 + y
2  N is

asymptotic to ⇡N , while the number of values  N taken by
the quadratic form �4 is asymptotic to C�4N/

p
logN where

C�4 is the Landau–Ramanujan constant. Hence �4 takes each
of these values with a high multiplicity, on the average
(⇡/C�4)

p
logN .

On the opposite, given an integer k � 3, that a positive
integer is a sum of two k–th powers in more than one way
(not counting symmetries) is
• rare for k = 3,
• extremely rare for k = 4,
• maybe impossible for k � 5.



1729 : the taxicab number

The smallest positive integer which is sum of two cubes in two
essentially di↵erent ways :

1729 = 103 + 93 = 123 + 13.

Godfrey Harold Hardy
1877–1947

Srinivasa Ramanujan
1887 – 1920

1657 : Frénicle de Bessy (1605 ? – 1675)



The sequence of Taxicab numbers

[OEIS A001235] Taxi-cab numbers: sums of 2 cubes in
more than 1 way.

1729 = 103+93 = 123+13, 4104 = 23+163 = 93+153, . . .

1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232,
65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841,
216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597,
439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, . . .

If n is in this sequence, then nk
3 also, hence this sequence is

infinite.

https://oeis.org/A001235
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Another sequence of Taxicab numbers (Fermat)

[OEIS A011541] Hardy-Ramanujan numbers: the
smallest number that is the sum of 2 positive
integral cubes in n ways.
http://mathworld.wolfram.com/TaxicabNumber.html
T a(1) = 2,

T a(2) = 1729 = 103 + 93 = 123 + 13,

T a(3) = 87 539 319 = 1673 + 4363 = 2283 + 4233 =
2553 + 4143,

T a(4) = 6 963 472 309 248 = 24213 + 19 0833 =
54363 + 18 9483 = 10 2003 + 18 0723 = 13 3223 + 16 6303,

T a(5) = 48 988 659 276 962 496,
T a(6) = 24 153 319 581 254 312 065 344.

https://oeis.org/A011541
http://mathworld.wolfram.com/TaxicabNumber.html
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Hardy and Wright,
An Introduction of Theory of Numbers

Fermat proved that numbers
expressible as a sum of two
positive integral cubes in n

di↵erent ways exist for any n.

Pierre de Fermat
1607 ( ?) – 1665

2003 : C. S. Calude, E. Calude and M. J. Dinneen,
With high probability,

T a(6) = 24153319581254312065344.



Cubefree taxicab numbers

15 170 835 645 = 5173+24683 = 7093+24563 = 17333+21523.

The smallest cubefree taxicab
number with three
representations was discovered
by Paul Vojta (unpublished)
in 1981 while he was a
graduate student.

Paul Vojta



Cubefree taxicab numbers

Stuart Gascoigne and Duncan Moore (2003) :
1 801 049 058 342 701 083 = 922273 + 12165003 = 1366353 +
12161023 = 3419953 + 12076023 = 6002593 + 11658843

[OEIS A080642] Cubefree taxicab numbers: the
smallest cubefree number that is the sum of 2
cubes in n ways.

https://en.wikipedia.org/wiki/Taxicab_number

https://oeis.org/A080642
https://en.wikipedia.org/wiki/Taxicab_number
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Taxicabs and Sums of Two Cubes

If the sequence (an) of cubefree taxicab numbers with n

representations is infinite, then the Mordell-Weil rank of the
elliptic curve x

3 + y
3 = an tends to infinity with n.

Joseph Silverman

J. H. Silverman, Taxicabs and
Sums of Two Cubes, Amer.
Math. Monthly, 100 (1993),
331-340.



635 318 657 = 1584 + 594 = 1344 + 1334.

Leonhard Euler
1707 – 1783

The smallest integer
represented by x

4 + y
4 in two

essentially di↵erent ways was
found by Euler, it is
635 318 657 =
41⇥ 113⇥ 241⇥ 569.

[OEIS A216284] Number of solutions to the equation
x
4 + y

4 = n with x � y > 0.
An infinite family with one parameter is known for non trivial
solutions to x

4
1 + x

4
2 = x

4
3 + x

4
4.

http://mathworld.wolfram.com/DiophantineEquation4thPowers.html

https://oeis.org/A216284
http://mathworld.wolfram.com/DiophantineEquation4thPowers.html


Sums of k–th powers

One conjectures that given k � 5, if an integer can be written
as xk + y

k, there is essentially a unique such representation.
But there is no value of k for which this has been proved.



Binary cyclotomic forms of higher degree
The situation for binary cyclotomic forms is di↵erent when the
degree is 2 or when it is > 2 also for the following reason.
A necessary and su�cient condition for a number m to be
represented by one of the quadratic forms �3, �4, is given by
a congruence.
By contrast, consider the quartic binary form
�8(X, Y ) = X

4 + Y
4. On the one hand, an odd integer

represented by �8 is of the form

N1,8(N3,8N5,8N7,8)
4
.

On the other hand, there are many integers of this form which
are not represented by �8.

[OEIS A004831] Numbers that are the sum of at most
2 nonzero 4th powers.

0, 1, 2, 16, 17, 32, 81, 82, 97, 162, 256, 257, 272, 337, 512, 625, . . .

626, 641, 706, 881, 1250, 1296, 1297, 1312, 1377, 1552, 1921, 2401, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4096, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6561, 6562, 6577, 6642

https://oeis.org/A004831
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Quartan primes

[OEIS A002645] Quartan primes: primes of the form
x
4 + y

4, x > 0, y > 0.

The list of prime numbers represented by �8 start with
2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177,
4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561,
28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161,
66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, . . .

It is not known whether this list is finite or not.

The largest known quartan prime is currently the
largest known generalized Fermat prime: The
1 353 265-digit (145 31065 536)4 + 14.

https://oeis.org/A002645
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Primes of the form x
2k + y

2k

[OEIS A002313] primes of the form x
2 + y

2,
[OEIS A002645] primes of the form x

4 + y
4,

[OEIS A006686] primes of the form x
8 + y

8,
[OEIS A100266] primes of the form x

16 + y
16,

[OEIS A100267] primes of the form x
32 + y

32.

https://oeis.org/A002313
https://oeis.org/A002645
https://oeis.org/A006686
https://oeis.org/A100266
https://oeis.org/A100267


Primes of the form X
2 + Y

4

John Friedlander Henryk Iwaniec
However, it is known that there are infinitely many prime
numbers of the form X

2 + Y
4.

Friedlander, J. & Iwaniec, H. The polynomial X
2 + Y

4

captures its primes, Ann. of Math. (2) 148 (1998), no. 3,
945–1040.
https://arxiv.org/pdf/math/9811185.pdf [A028916]

https://oeis.org/A028916


K. Mahler (1933)

Let F be a binary form of degree d � 3 with nonzero
discriminant.
Denote by AF the area (Lebesgue measure) of the domain

{(x, y) 2 R2 | F (x, y)  1}.

For Z > 0 denote by NF (Z) the number of (x, y) 2 Z2 such
that 0 < |F (x, y)|  Z.
Then

NF (Z) = AFZ
2
d +O(Z

1
d�1 )

as Z ! 1.



Kurt Mahler

Kurt Mahler
1903 – 1988

Über die mittlere Anzahl der Darstellungen grosser Zahlen
durch binäre Formen,
Acta Math. 62 (1933), 91-166.
https://carma.newcastle.edu.au/mahler/biography.html

https://carma.newcastle.edu.au/mahler/biography.html


C.L. Stewart - S.Y. Xiao

Let F be a binary form of degree d � 3 with nonzero
discriminant.
There exists a positive constant CF > 0 such that the number
of integers of absolute value at most N which are represented
by F (X, Y ) is asymptotic to CFN

2
d +O(N�d) with �d <

2
d ·



Cam Stewart and Stanley Yao Xiao

Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xiao, On the representation of

integers by binary forms,
arXiv:1605.03427v2

http://arxiv.org/abs/1605.03427
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Cam Stewart Stanley Yao Xiao

C.L. Stewart and S. Yao Xiao, On the representation of

integers by binary forms,
arXiv:1605.03427v2

http://arxiv.org/abs/1605.03427


Cyclotomic binary forms of degree 4

(Joint work with Étienne Fouvry - in progress).

�5(X, Y ) = X
4 +X

3
Y +X

2
Y

2 +XY
3 + Y

4.

�8(X, Y ) = X
4 + Y

4.

�12(X, Y ) = X
4 �X

2
Y

2 + Y
4.

Also
�10(X, Y ) = �5(X,�Y ) = X

4 �X
3
Y +X

2
Y

2 �XY
3 + Y

4.

For n 2 {5, 8, 12}, the number of positive integers m  N

which can be written as m = �n(x, y) is asymptotic to
C�nN

1
2 .
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Numbers represented by two cyclotomic binary
forms of degree 4

The number of integers  N which are represented by two of
the three quartic cyclotomic binary forms �5, �8 and �12 is
bounded by O✏(N

3
8+✏).

Consequence : the number of integers  N which are
represented by a cyclotomic binary form of degree 4 is
asymptotic to

C4N
1
2 +O✏(N

3
8+✏),

where
C4 = C�5 + C�8 + C�12 .
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Numbers represented by a cyclotomic binary form
of degree � d

Any prime number p is represented by a cyclotomic binary
form : �p(1, 1) = p.

Given an integer d � 2, we consider the set of positive integers
m which can be written as m = �n(x, y) with n � d and
(x, y) 2 Z2 satisfying max(|x|, |y|) � 2.



Numbers represented by a cyclotomic binary form
of degree � d

Any prime number p is represented by a cyclotomic binary
form : �p(1, 1) = p.

Given an integer d � 2, we consider the set of positive integers
m which can be written as m = �n(x, y) with n � d and
(x, y) 2 Z2 satisfying max(|x|, |y|) � 2.



Numbers represented by a cyclotomic binary form
of degree � d

Any prime number p is represented by a cyclotomic binary
form : �p(1, 1) = p.

Given an integer d � 2, we consider the set of positive integers
m which can be written as m = �n(x, y) with n � d and
(x, y) 2 Z2 satisfying max(|x|, |y|) � 2.



Numbers represented by a cyclotomic binary form
of degree � d

Let d � 6. The number of integers m  N which can be
written m = �n(x, y) with n � d and (x, y) 2 Z2 satisfying
max(|x|, |y|) � 2 is asymptotic to

CdN
2
d +Od(N

2
d+2 ),

with
Cd =

X

n

C�n ,

where the sum is over the set of integers n such that '(n) = d

and n is not congruent to 2 modulo 4.



Isomorphic cyclotomic binary forms

Recall that the cyclotomic polynomials �n(t) 2 Z[t] satisfy
�2n(t) = �n(�t) for odd n � 3.

For n1 and n2 positive integers with n1 < n2, the following
conditions are equivalent :
(1) '(n1) = '(n2) and the two binary forms �n1 et �n2 are
isomorphic.
(2) The two binary forms �n1 and �n2 represent the same
integers.
(3) n1 is odd and n2 = 2n1.
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Even integers not represented by Euler totient
function

The list of even integers which are not values of Euler '
function (i.e., for which Cd = 0) starts with

14, 26, 34, 38, 50, 62, 68,74,76, 86, 90, 94, 98, 114, 118,
122,124, 134, 142, 146,152,154, 158, 170, 174, 182,
186,188, 194, 202, 206, 214, 218, 230,234,236,
242,244,246,248, 254, 258, 266, 274, 278,284,286,
290, 298,302,304, 308, 314, 318, . . .

[OEIS A005277] Nontotients: even n such that
'(m) = n has no solution.

https://oeis.org/A005277


Numbers represented by two cyclotomic binary
forms of the same degree

Given two binary cyclotomic forms of the same degree and not
isomorphic, and given ✏ > 0, for N ! 1 the number of
positive integers  N which are represented by these two
forms is bounded by

8
><

>:

O✏(N
3

d
p
d
+✏) for d = 4, 6, 8,

Od,✏(N
1
d+✏) for d � 10.



A weak but uniform bound

For d � 2 and N ! 1, the number of m  N for which
there exists n � d and (x, y) 2 Z2 with max(|x|, |y|) � 2 and
m = �n(x, y) is bounded by

29N
2
d (logN)1.161.



Further developments (work in progress)

Representation of integers by other binary forms

• Representation of integers by the binary forms Xn + Y
n,

X
n � Y

n and F n(X, Y ), where

F n(X, Y ) = X
n +X

n�1
Y + · · ·+XY

n�1 + Y
n
.
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Suggestion of Florian Luca (RNTA 2018)

Study the representation of integers by the polynomials
Dickson polynomials of the first and second kind

• The sequence of Dickson polynomials of the first kind

(Dn)n�0 (resp. second kind (En)n�0) is defined by

Dn(X + Y ,XY ) = X
n + Y

n

(resp.
En(X + Y ,XY ) = F n(X, Y )).

Dickson polynomials : representation of integers by X
n + Y

n

and X
n � Y

n when x+ y and xy are integers (x and y are
quadratic integers).
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Cyclotomic Dickson polynomials

• For n � 2, define

 n(X + Y ,XY ) = �n(X, Y ).

Study the representation of integers by the polynomials  n.

Representation of integers by �n(X, Y ) where x+ y and xy

are integers.

Dickson polynomials are not homogeneous.

Work in progress. . .
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