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Abstract

Most irrationality proofs rest on the following criterion :

A real number x is irrational if and only if, for any
e > 0, there exist two rational integers p and q with
q > 0, such that

0<|gz—p| <e

We survey generalisations of this criterion to linear
independence, transcendence and algebraic independence.
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Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX — a.
V2, root of X2 — 2.
i, root of X% + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.
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Irrationality criteria

A real number is rational if and only if its binary (or decimal,
or in any basis b > 2) expansion is ultimately periodic.

Also a real number is rational if and only if its continued
fraction expansion is finite.

it should not be so difficult to decide whether a
given number is rational or not.

To prove that certain numbers (occurring as constants in
analysis) are irrational is most often an impossible challenge.
However to construct irrational (even transcendental) numbers
IS easy.
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Irrationality criteria

A real number is rational if and only if its binary (or decimal,
or in any basis b > 2) expansion is ultimately periodic.

Also a real number is rational if and only if its continued
fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a
given number is rational or not.

To prove that certain numbers (occurring as constants in
analysis) are irrational is most often an impossible challenge.
However to construct irrational (even transcendental) numbers
is easy.



First decimals of \/§ http://wims.unice.fr/wims/wims.cgi

1.41421356237309504880168872420969807856967187537694807317667973
799073247846210703885038753432764157273501384623091229702492483
605585073721264412149709993583141322266592750559275579995050115
278206057147010955997160597027453459686201472851741864088919860
955232923048430871432145083976260362799525140798968725339654633
180882964062061525835239505474575028775996172983557522033753185
701135437460340849884716038689997069900481503054402779031645424
782306849293691862158057846311159666871301301561856898723723528
850926486124949771542183342042856860601468247207714358548741556
570696776537202264854470158588016207584749226572260020855844665
214583988939443709265918003113882464681570826301005948587040031
864803421948972782906410450726368813137398552561173220402450912
277002269411275736272804957381089675040183698683684507257993647
290607629969413804756548237289971803268024744206292691248590521
810044598421505911202494413417285314781058036033710773091828693
1471017111168391658172688941975871658215212822951848847 . . .



First binary dlglts of \/§ http://wims.unice.fr/wims/wims.cgi

1.011010100000100111100110011001111111001110111100110010010000
10001011001011111011000100110110011011101010100101010111110100
11111000111010110111101100000101110101000100100111011101010000
10011001110110100010111101011001000010110000011001100111001100
10001010101001010111111001000001100000100001110101011100010100
01011000011101010001011000111111110011011111101110010000011110
11011001110010000111101110100101010000101111001000011100111000
11110110100101001111000000001001000011100110110001111011111101
00010011101101000110100100010000000101110100001110100001010101
11100011111010011100101001100000101100111000110000000010001101
11100001100110111101111001010101100011011110010010001000101101
00010000100010110001010010001100000101010111100011100100010111
10111110001001110001100111100011011010101101010001010001110001
01110110111111010011101110011001011001010100110001101000011001
10001111100111100100001001101111101010010111100010010000011111
00000110110111001011000001011101110101010100100101000001000100
110010000010000001100101001001010100000010011100101001010 . . .



Euler—Mascheroni constant

X ¥
Euler's Constant is = Ly
N\A P

. 1 1 1
y=lm (1+=4+=-+4+---+——logn

= 0.577215664 901 532 860 606 512 090 082 . .

Is—it a rational number?



Euler—Mascheroni constant

Euler's Constant is

N\

n—00 2 3
= 0.577215664 901 532 860 606 512 090 082 . .

: 1 1 1
v=lim {1+ -+ -+4+---+ - —logn
n

Is—it a rational number?
= /1 1 ©/1 1
! (ks °g<+k>) /1(m )
// (1 — z)dzdy
(1 —zy) logxy)
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Riemann zeta function

The function

1
)=,
n>1 n
was studied by Euler (1707—- 1783)
for integer values of s

and by Riemann (1859) for complex values of s.

Euler : for any even integer value of s > 2, the number ((s) is
a rational multiple of 7*.

Examples : ((2) = 72/6, ((4) = ©/90, ((6) = 7°/945,
¢(8) = 78/9450 - - -

Coefficients : Bernoulli numbers.
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Riemann zeta function

The number

1
(3) = Z 5= 1,202 056 903 159 594 285399 738 161 511 . ..

n>1

is irrational (Apéry 1978).

Recall that ((s)/m* is rational for any even value of s > 2.



Riemann zeta function

58D

The number

APERY’S CONSTANT

1
(3) = Z 5= 1,202 056 903 159 594 285399 738 161 511 . ..

n>1

is irrational (Apéry 1978).
Recall that ((s)/m* is rational for any even value of s > 2.

Open question : Is the number ((3)/73 irrational ?



Riemann zeta function

Is the number

1
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Riemann zeta function

Is the number

1
¢(b) = Z 5= 1.036 927 755 143 369 926 331 365 486 457 . ..

n>1

irrational ?

T. Rivoal (2000) : infinitely many {(2n + 1) are irrational.
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e Theoretical computer sciences : rounding values

e Main goal : to understand the underlying theory.
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e Squaring the circle

e Dynamical systems

e Solving Diophantine equations

e Theoretical computer sciences : rounding values

e Main goal : to understand the underlying theory.



Known results

Irrationality of the number 7 :

, b. 476 AD :

, b. 1444 AD : Why then has an
approximate value been mentioned here leaving behind the

actual value ? Because it (exact value) cannot be expressed.

The Notion of Proof in Indian Science,
13th World Sanskrit Conference, 2006.
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Known results

Irrationality of the number 7 :

Aryabhata, b. 476 AD : 7 ~ 3.1416.

Nilakantha Somayaji, b. 1444 AD : Why then has an
approximate value been mentioned here leaving behind the
actual value ? Because it (exact value) cannot be expressed.

K. Ramasubramanian, The Notion of Proof in Indian Science,
13th World Sanskrit Conference, 2006.



Irrationality of 7

Johann Heinrich Lambert (1728 - 1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,

Mémoires de |'’Académie des Sciences

de Berlin, 17 (1761), p. 265-322;

read in 1767 ; Math. Werke, t. .




Irrationality of 7

Johann Heinrich Lambert (1728 - 1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,

Mémoires de |'’Académie des Sciences

de Berlin, 17 (1761), p. 265-322;

read in 1767 ; Math. Werke, t. .

tan(v) is irrational for any rational value of v # 0
and tan(7/4) = 1.



Lambert and Frederick Il, King of Prussia

— Que savez vous,
Lambert ?

— Tout, Sire.

— Et de qui le
tenez—vous ?

— De moi-méme!




Leonhard Euler (1707 — 1783)

\‘v,

» ! The number
g‘
o

‘{‘ E is irrational -
AN\

http://www-history.mcs.st-andrews.ac.uk/

1748 : Irrationality of the
number

Continued fractions
expansion.

[m] =l =

e =2.7182818284590...


http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euler.html

Joseph Fourier (1768 — 1830)

Proof of Euler's 1748 result
on the irrationality of the
number e by truncating the
series

Course of analysis at the Ecole Polytechnique Paris, 1815.
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Irrationality of e, following J. Fourier

N 1
e=D ut 2 o

n=0 m>N+1
Multiply by N! :
N
N N
=Y —F X =
n=0 m>N+1
Set
N
N! N!
BN:N!, AN:ZF’ RN: Z m7
n=0 m>N+1
so that

BNe = AN -+ RN-



Irrationality of e, following J. Fourier

Then Ay and By are in Z and

1 1 e
0< Ry = voo & .
NN TNV +2) T S N1
In the formula
the numbers and
hand side is
Hence

are integers, while the right
and tends to () when /V tends to infinity.
is not an integer, therefore

is irrational.
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Irrationality of e, following J. Fourier

Then Ay and By are in Z and

1 1 e
0< Ry = coo & .
NENFI TN +2) T SV

In the formula
BNe - AN = RN,

the numbers Ay and By = N! are integers, while the right
hand side is > 0 and tends to 0 when N tends to infinity.
Hence N! e is not an integer, therefore e is irrational.



C.L Siegel (1949)

N

Nle™! :Z%

n=0

C.L. Siegel (1896 — 1981)

irrationality of ™!

N'+ Z

m>N+1

Take for N a large odd
integer and set

N ”N'
Ay =3
Then Ay € Z and
Ay < Nle™! <AN+;~
N+1

1

Hence e~ is irrational.



e is not a quadratic irrationality (Liouville, 1840)

Write the quadratic equation as ae + b + ce~! = 0.

N!
(N+1+k)

Using Fourier's argument, we deduce that the LHS and RHS
are 0 for any sufficiently large V.



Irrationality proof

Let ¥ € Q, say ¥ = a/b. Then for any p/q € Q with p/q # ¥
we have

1
v —pl> -
lq p\_b
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Irrationality proof

Let ¥ € Q, say ¥ = a/b. Then for any p/q € Q with p/q # ¥

we have 1
v —pl> -
a9 —pl = 5

Proof : |ga — pb| > 1.

Consequence. Let ¥ € R. Assume that for any € > 0, there
exists p/q € Q with
0<|qg¥—p|<e

Then ¥ is irrational.
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Criterion : necessary and sufficient condition

We saw that any ¥ € R for which there exists a sequence
(Pn/Gn)n>0 of rational numbers with

0 <|g¥—pn| <€, with €, —0

is irrational.
Conversely, given ¥ € R\ Q, there exists a sequence

(pn/Qn)nZO with
0<|g¥—pu| <€, and ¢, — 0.
More precisely, given ¥ € R, for each real number () > 1,
there exists p/q € Q with
1
lq¥ — p| < 0 and 0<¢g<Q@Q.
Hence, for ¥ ¢ Q, there exists a sequence (p,/qn)n>0 With

1
0<|g0—pu| <— and ¢, — .
q

n



Gustave Lejeune-Dirichlet (1805 — 1859)

G. Dirichlet

1842 : Box (pigeonhole)
principle
Amap f: E — F with
CardE > CardF is not
injective.
Amap f: E — F with
CardE < CardF is not
surjective.



Pigeonhole Principle

More holes than pigeons




Existence of rational approximations

For any ¥ € R and any real number () > 1, there exists

p/q € Q with

1
9—pl < =
g pI_Q

and 0 < g < Q.



Existence of rational approximations
For any ¥ € R and any real number () > 1, there exists
p/q € Q with

and 0 < g < Q.
Proof. For simplicity assume ) € Z. Take

E = {0, {9}, {20},....{(Q — 1)9}, 1} C [0,1],

where {x} denotes the fractional part of z, F is the partition

°5) los) T ) [
Q) 1lee) L@ @ )L ]

of [0,1], so that
CardE = Q + 1 > ) = CardF,
and f: E— Fmapsx € Etol € Fwith I 3.x.



Hermann Minkowski (1864 — 1909)

H. Minkowski

1896 : Geometry of numbers.

The set

C={(u,v) e R?;|v| < Q,
v —u| < 1/Q}

is convex, symmetric,

compact, with volume 4.

Hence C NZ?* # {(0,0)}.



Adolf Hurwitz (1859 — 1919)

1891

For any ¥ € R\ Q, there
exists a sequence (Pn/qn)n>0
of rational numbers with

1
0 < |g¥ —pn| <
V54
5 and ¢, — oc.
4 _L Methods : Continued
A. Hurwitz fractions, Farey sections.

Best possible for the Golden ratio

1+5

g = 1.6180339887499. ..




Irrationality criterion

Let ¥ be a real number. The following conditions are
equivalent.
(i) 9 is irrational.
(ii) For any € > 0, there exists p/q € Q such that
€
0< ‘19 — 2—9‘ < —-
q q
(iii) For any real number () > 1, there exists an integer q in
the interval 1 < q < () and there exists an integer p such that

1
0<|¥—
‘ S qQ
(iv) There exist infinitely many p/ q € Q satisfying
1
p=dl<



Irrationality criterion (continued)

Let ¥ be a real number. The following conditions are
equivalent.

(i) 9 is irrational.

(ii)” For any € > 0, there exist two linearly independent linear
forms

Lo(Xo, X1) = apXo + bo X1 and Lq(Xo, X1) = a1 Xo + b1 X7,
with rational integer coefficients, such that

max {|Lo(1,9)| , |L:1(1,9)]} <.



Proof of (ii) <> (ii)’
(ii) For any € > 0, there exists p/q € Q such that

€
0<‘19—Z—9‘<—~
q q

(ii)" For any € > 0, there exist two linearly independent linear
forms Ly, L1 in ZXy + Z X, such that

max {|Lo(1,9)| , |L:1(1,9)]} <.



Proof of (ii) <> (ii)’
(ii) For any € > 0, there exists p/q € Q such that

< —-

0<‘1‘}—]—9
q

‘ €
q

(ii)" For any € > 0, there exist two linearly independent linear
forms Lo, L1 in ZXO i ZX1 such that

max {|Lo(1,9)| , |L:1(1,9)]} <.
Proof of (ii)’ = (ii)

Since Ly, Ly are linearly independent, one at least of them
does not vanish at (1,4). Write it pXy — ¢X;.



Proof of (ii) <> (ii)’
(ii) For any € > 0, there exists p/q € Q such that

3
0< ‘19 — 2—9‘ < -
q q

(ii)" For any € > 0, there exist two linearly independent linear
forms Ly, L1 in ZXy + Z X, such that

max {|Lo(1,9)| , |L:1(1,9)]} <.

Proof of (ii)’ = (ii)

Since Ly, Ly are linearly independent, one at least of them
does not vanish at (1,4). Write it pXy — ¢X;.

Proof of (ii) = (ii’)

Using (ii), set Lo(Xo, X1) = pXo — ¢X1, and use (ii) again
with € replaced by ¢ — p|.



Irrationality of at least one number

Let Y, ...,v,, be real numbers. The following conditions are
equivalent
(i) One at least of ¥, ..., 0y, is irrational.

(ii) For any € > 0, there exist py,...,Pm,q in Z with ¢ >0
such that

0 < max |v; — i < -
1<i<m q q
(iii) For any € > 0, there exist m + 1 linearly independent
linear forms Ly, . .., L,, with coefficients in Z in m + 1

variables X, ..., X,,, such that
max |Li(1,04,...,0,)| <e.

0<k<m
(iv) For any real number Q) > 1, there exists (p1,...,Pm,q) in
Z™F! such that 1 < g < Q and
P 1
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of : means
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Linear independence

Irrationality of 1 : means that 1,9 are linearly independent
over Q.

Irrationality of at least one of ¥4,...,4,, : means
(D1, ...,Um) € Q™. Also : means that the dimension of the
Q-—vector space spanned by 1,%4,...,79,, is > 2.

Linear independence of 1,44, ...,9,, over Q : means that for
any hyperplane H : agzg + -+ + @z, = 0 of R™ " rational
over Q (i.e. a; € Q), the point (1,94, ...,9,,) does not
belong to H.

Transcendence of ¥ : means that 1,9, 92%,...,9"... are
linearly independent over Q.



Charles Hermite (1822 — 1901)

1873 : Hermite's method for
proving linear independence.
Let ¥4,..., 4, be real
numbers and ag, a, ..., amy,
rational integers, not all of
which are 0. The goal is to
prove that the number

Charles Hermite
L=ay+arth+ -+ a0,

is not 0.
Hermite's idea is to approximate simultaneously ¥4, ..., 4,, by
rational numbers py/q, ..., pn/q with the same denominator

q > 0.



L=ay+ a9+ -+ a,v,

Let ¢, p1,...,pn be rational integers with ¢ > 0. For
1 <k <m, set
& = qUx — k-

Then qL = M + R with
M = apq + a1p1 + - - + appm € Z

and
R=a1¢e,+ -+ anem € R.

If M 0 and |R| < 1 we deduce L # 0.



Zero estimate

Main difficulty : to check M # 0.

We wish to find a simultaneous rational approximation

to outside the hyperplane
of

This needs to be checked for all hyperplanes.

to construct not only one tuple

in , but such tuples which are linearly
independent.

This yields pairs , in place of a
single pair , and from one deduces
that one at least of is not
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Main difficulty : to check M # 0.
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agzo + @121 + -+ + amzm = 0 of QML

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple u = (¢, p1,--.,Dm)
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independent.



Zero estimate

Main difficulty : to check M # 0.

We wish to find a simultaneous rational approximation
(¢,p1,---yPm) to (V1,...,9,,) outside the hyperplane
agzo + @121 + -+ + amzm = 0 of QML

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple u = (¢, p1,--.,Dm)
in Z™1\ {0}, but m + 1 such tuples which are linearly
independent.

This yields m + 1 pairs (Mg, Ry), k =0,...,m in place of a
single pair (M, R), and from (aq, ..., a,) # 0 one deduces
that one at least of My, ..., M,, is not 0.



Rational approximations
(following Michel Laurent)

Let (¥4,...,9,) € R™.

Then the following conditions are equivalent.
(i) The numbers 1,%., . ..,10,, are linearly independent over Q.
(ii) For any € > 0, there exist m + 1 linearly independent
elements ug,uy, ..., u,, in Z™, say

w; = (¢, Pris - Pmi) (00 <m)

with q; > 0, such that




Hermite — Lindemann Theorem

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of 7.




Hermite — Lindemann Theorem

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of 7.

Hermite — Lindemann Theorem
For any non-zero complex number z, at least one of the two
numbers z, e* is transcendental.



Hermite — Lindemann Theorem

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of 7.

Hermite — Lindemann Theorem
For any non-zero complex number z, at least one of the two
numbers z, e* is transcendental.

Corollaries : transcendence of log o and e” for o and /3
non—zero algebraic numbers with log o # 0.



Lindemann — WeierstraB Theorem (1888)

Let (1, ..., [, be algebraic numbers which are linearly
independent over Q. Then the numbers €. .. e are
algebraically independent over Q.

Let be distinct algebraic numbers. Then the
numbers are linearly independent over



Lindemann — WeierstraB Theorem (1888)

Let (1, ..., [, be algebraic numbers which are linearly
independent over Q. Then the numbers €. .. e are
algebraically independent over Q.

Equivalent to :
Let o, ..., q,, be distinct algebraic numbers. Then the
numbers e, ... e“™ are linearly independent over Q.



Carl Ludwig Siegel (1896 — 1981)

Siegel’s method for proving linear independence.
Let ¥4, ..., 1, be complex numbers.

1929 :

Assume that, for any € > 0,
there exists m + 1 linearly
independent linear forms

Lo, ..., L, with coefficients
in Zi, such that

] . €
C.L. Siegel o222 L1, 00, )| < oy

where
H = maXo<k<m H(Lk)

Then 1,44, ...,v,, are linearly independent over Q.



Linear independence, following Siegel (1929)

Height of a linear form : H(L) = max |coefficients of L|.

(irrationality criterion). A real number v is

irrational if and only, for any , If there exists two linearly
independent linear forms and in
such that
Assume are

linearly dependent over (). Let be a
non—zero linear form vanishing at . Among

, select 1 linear forms, say , which
constitute with /. a complete system of linearly independent
forms in variables. The determinant /\ of
is a non—zero integer, hence its absolute value is . Inverting
the matrix, write /\ as a linear combination with integer
coefficients of the ( ) and estimate

the coefficients.
(=] = = =
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Example : m = 1 (irrationality criterion). A real number 9 is
irrational if and only, for any € > 0, if there exists two linearly
independent linear forms Ly(Xo, X1) and L1(Xo, X1) in

Z Xy + ZX, such that |L;(1,9)| < e.
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linearly dependent over Q.
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Z Xy + ZX, such that |L;(1,9)| < e.
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non—zero linear form vanishing at (1,94, ...,9,,).
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Example : m = 1 (irrationality criterion). A real number 9 is
irrational if and only, for any € > 0, if there exists two linearly
independent linear forms Ly(Xo, X1) and L1(Xo, X1) in
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constitute with L a complete system of linearly independent
forms in m + 1 variables.
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Linear independence, following Siegel (1929)

Height of a linear form : H(L) = max |coefficients of L.

Example : m = 1 (irrationality criterion). A real number 9 is
irrational if and only, for any € > 0, if there exists two linearly
independent linear forms Ly(Xo, X1) and L1(Xo, X1) in

Z Xy + ZX, such that |L;(1,9)| < e.

Sketch of proof of Siegel's criterion. Assume 1,94, ...,19,, are
linearly dependent over Q. Let L € ZXy+ ---+ ZX,, be a
non—zero linear form vanishing at (1,494, ...,%,,). Among

Ly, ..., L,,, select m linear forms, say L, ..., L,,, which

constitute with L a complete system of linearly independent
forms in m + 1 variables. The determinant A of L, Ly, ..., L,,
is a non—zero integer, hence its absolute value is > 1. Inverting
the matrix, write A as a linear combination with integer
coefficients of the L;(1,91,...,%,) (1 <i < m) and estimate
the coefficients.



Criterion of Yu. V. Nesterenko

Let 94, ...,9,, be complex numbers.

Let m be a positive integer
and « a positive real number
satisfying a > m — 1. Assume
there is a sequence (L,,),>o of
linear forms in
ZX0+ZX1++ZXm Of
height < e” such that

Yu.V.Nesterenko (1985)

|Ln(1, /19]_, P ,ﬁm)| = 6_0”14‘0(77,).

Then 1,94, ...,9,, are linearly independent over Q.

Example : m = 1 — irrationality criterion.



Simplified proof of Nesterenko's Theorem

Francesco Amoroso

Refinements : Raffaele Marcovecchio, Pierre Bel (2008).



Irrationality measure for log 2 : history

log2 — £ > 1
) q"

Hermite-Lindemann, Mahler, Baker, Gel'fond, Feldman,. .. :
transcendence measures

G. Rhin 1987 u(log 2) < 4.07
E.A. Rukhadze 1987 p(log2) < 3.89

R. Marcovecchio 2008 p(log2) < 3.57




Recent developments

Stéphane Fischler and Wadim Zudilin, A refinement of
Nesterenko's linear independence criterion with applications to

zeta values.
Math. Annalen, to appear. Preprint MPIM 2009-35.


http://www.mpim-bonn.mpg.de/preprints/send?bid=4020

Criteria for transcendence and algebraic
independence

A complex number ¥ is transcendental if and only if
1,9,9% ...,9"... are linearly independent (over Q).

Complex numbers are if
and only if the numbers
linearly independent.

; are

Hence, criteria for linear independence yield criteria for
transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case
{ ) of criteria for algebraic independence.
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Criteria for transcendence and algebraic
independence

A complex number ¥ is transcendental if and only if
1,9,9% ...,9". .. are linearly independent (over Q).

Complex numbers 91, ..., 9, are algebraically independent if
and only if the numbers 9" - - - 9im, ((iy, ..., im) € ZZ, are
linearly independent.

Hence, criteria for linear independence yield criteria for
transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case
(m = 1) of criteria for algebraic independence.



Amarisa Chantanasiri

Criteria for linear
independence, transcendence
and algebraic independence

Université P. et M. Curie
(Paris VI), Ph.D. 20117



New criterion for algebraic independence

Let ¥4,...,7,, be real numbers
and (74)a>1, (14)a>1 two sequences
of positive real numbers satisfying

. Td
dm™ (1 + naq)

— 4-00.

Assume that for all sufficiently large d, there is a sequence
(Py)n>no(a) of polynomials in Z[ X, ..., X,,], where P, has
degree < d and height < €”, such that

e~ Tt < |\ P (9, ..., 0p)| < e

Then 94, ...,9,, are algebraically independent.



Mahidol University, Bangkok October 29-31, 2009
Franco-Thai Seminar in Pure and Applied Mathematics,
http://www.sc.mahidol.ac.th/cem/franco_thai/

Criteria for linear independence and transcendence,
following Yuri Nesterenko, Stéphane Fischler, Wadim
Zudilin and Amarisa Chantanasiri

Michel Waldschmidt

Institut de Mathématiques de Jussieu & Paris VI
http://www.math. jussieu.fr/~miw/

Lecture given on October 31, 2009.
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