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Zudilin and Amarisa Chantanasiri

Michel Waldschmidt
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Abstract

Most irrationality proofs rest on the following criterion :

A real number x is irrational if and only if, for any
ε > 0, there exist two rational integers p and q with
q > 0, such that

0 < |qx− p| < ε.

We survey generalisations of this criterion to linear
independence, transcendence and algebraic independence.
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Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX − a.√

2, root of X2 − 2.
i, root of X2 + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.



Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX − a.√

2, root of X2 − 2.
i, root of X2 + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.



Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX − a.√

2, root of X2 − 2.
i, root of X2 + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.



Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX − a.√

2, root of X2 − 2.
i, root of X2 + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.



Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a
non-zero polynomial with rational coefficients.

Examples :
rational numbers : a/b, root of bX − a.√

2, root of X2 − 2.
i, root of X2 + 1.

The sum and the product of algebraic numbers are algebraic
numbers. The set of complex algebraic numbers is a field, the
algebraic closure of Q in C.

A transcendental number is a complex number which is not
algebraic.



Irrationality of
√

2

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ∼800-500 BC.



Irrationality of
√

2

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ∼800-500 BC.



Irrationality of
√

2

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ∼800-500 BC.



Irrationality criteria

A real number is rational if and only if its binary (or decimal,
or in any basis b ≥ 2) expansion is ultimately periodic.

Also a real number is rational if and only if its continued
fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a
given number is rational or not.

To prove that certain numbers (occurring as constants in
analysis) are irrational is most often an impossible challenge.
However to construct irrational (even transcendental) numbers
is easy.
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First decimals of
√
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1.41421356237309504880168872420969807856967187537694807317667973
799073247846210703885038753432764157273501384623091229702492483
605585073721264412149709993583141322266592750559275579995050115
278206057147010955997160597027453459686201472851741864088919860
955232923048430871432145083976260362799525140798968725339654633
180882964062061525835239505474575028775996172983557522033753185
701135437460340849884716038689997069900481503054402779031645424
782306849293691862158057846311159666871301301561856898723723528
850926486124949771542183342042856860601468247207714358548741556
570696776537202264854470158588016207584749226572260020855844665
214583988939443709265918003113882464681570826301005948587040031
864803421948972782906410450726368813137398552561173220402450912
277002269411275736272804957381089675040183698683684507257993647
290607629969413804756548237289971803268024744206292691248590521
810044598421505911202494413417285314781058036033710773091828693
1471017111168391658172688941975871658215212822951848847 . . .



First binary digits of
√

2 http://wims.unice.fr/wims/wims.cgi

1.011010100000100111100110011001111111001110111100110010010000
10001011001011111011000100110110011011101010100101010111110100
11111000111010110111101100000101110101000100100111011101010000
10011001110110100010111101011001000010110000011001100111001100
10001010101001010111111001000001100000100001110101011100010100
01011000011101010001011000111111110011011111101110010000011110
11011001110010000111101110100101010000101111001000011100111000
11110110100101001111000000001001000011100110110001111011111101
00010011101101000110100100010000000101110100001110100001010101
11100011111010011100101001100000101100111000110000000010001101
11100001100110111101111001010101100011011110010010001000101101
00010000100010110001010010001100000101010111100011100100010111
10111110001001110001100111100011011010101101010001010001110001
01110110111111010011101110011001011001010100110001101000011001
10001111100111100100001001101111101010010111100010010000011111
00000110110111001011000001011101110101010100100101000001000100
110010000010000001100101001001010100000010011100101001010 . . .



Euler–Mascheroni constant

Euler’s Constant is

γ= lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0.577 215 664 901 532 860 606 512 090 082 . . .

Is–it a rational number ?

γ=
∞∑
k=1

(
1

k
− log

(
1 +

1

k

))
=

∫ ∞
1

(
1

[x]
− 1

x

)
dx

= −
∫ 1

0

∫ 1

0

(1− x)dxdy

(1− xy) log(xy)
·
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Riemann zeta function

The function

ζ(s) =
∑
n≥1

1

ns

was studied by Euler (1707– 1783)
for integer values of s
and by Riemann (1859) for complex values of s.

Euler : for any even integer value of s ≥ 2, the number ζ(s) is
a rational multiple of πs.

Examples : ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945,
ζ(8) = π8/9450 · · ·

Coefficients : Bernoulli numbers.
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Riemann zeta function

The number

ζ(3) =
∑
n≥1

1

n3
= 1, 202 056 903 159 594 285 399 738 161 511 . . .

is irrational (Apéry 1978).

Recall that ζ(s)/πs is rational for any even value of s ≥ 2.

Open question : Is the number ζ(3)/π3 irrational ?
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Riemann zeta function

Is the number

ζ(5) =
∑
n≥1

1

n5
= 1.036 927 755 143 369 926 331 365 486 457 . . .

irrational ?

T. Rivoal (2000) : infinitely many ζ(2n+ 1) are irrational.
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• Squaring the circle

• Dynamical systems

• Solving Diophantine equations

• Theoretical computer sciences : rounding values

• Main goal : to understand the underlying theory.
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Known results

Irrationality of the number π :

Āryabhat.a, b. 476 AD : π ∼ 3.1416.

N̄ılakan. t.ha Somayāj̄ı, b. 1444 AD : Why then has an
approximate value been mentioned here leaving behind the
actual value ? Because it (exact value) cannot be expressed.

K. Ramasubramanian, The Notion of Proof in Indian Science,
13th World Sanskrit Conference, 2006.
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Irrationality of π

Johann Heinrich Lambert (1728 - 1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,
Mémoires de l’Académie des Sciences
de Berlin, 17 (1761), p. 265-322 ;
read in 1767 ; Math. Werke, t. II.

tan(v) is irrational for any rational value of v 6= 0
and tan(π/4) = 1.
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Mémoire sur quelques propriétés
remarquables des quantités transcendantes
circulaires et logarithmiques,
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Lambert and Frederick II, King of Prussia

— Que savez vous,
Lambert ?
— Tout, Sire.
— Et de qui le
tenez–vous ?
— De moi-même !



Leonhard Euler (1707 – 1783)

1748 : Irrationality of the
number
e = 2.718 281 828 459 0 . . .

The number

e =
∑
n≥0

1

n!

is irrational

Continued fractions
expansion.

http://www-history.mcs.st-andrews.ac.uk/

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euler.html


Joseph Fourier (1768 – 1830)

Proof of Euler’s 1748 result
on the irrationality of the
number e by truncating the
series

e =
∑
n≥0

1

n!
·

Course of analysis at the École Polytechnique Paris, 1815.



Irrationality of e, following J. Fourier

e =
N∑
n=0

1

n!
+

∑
m≥N+1

1

m!
·

Multiply by N ! :

N !e =
N∑
n=0

N !

n!
+

∑
m≥N+1

N !

m!
·

Set

BN = N !, AN =
N∑
n=0

N !

n!
, RN =

∑
m≥N+1

N !

m!
,

so that
BNe = AN +RN .
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Irrationality of e, following J. Fourier

Then AN and BN are in Z and

0 < RN =
1

N + 1
+

1

(N + 1)(N + 2)
+ · · · < e

N + 1
·

In the formula
BNe− AN = RN ,

the numbers AN and BN = N ! are integers, while the right
hand side is > 0 and tends to 0 when N tends to infinity.
Hence N ! e is not an integer, therefore e is irrational.
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C.L Siegel (1949) : irrationality of e−1

N !e−1 =
N∑
n=0

(−1)nN !

n!
+

∑
m≥N+1

(−1)mN !

m!
·

C.L. Siegel (1896 – 1981)

Take for N a large odd
integer and set

AN =
N∑
n=0

(−1)nN !

n!
·

Then AN ∈ Z and

AN < N !e−1 < AN +
1

N + 1
·

Hence e−1 is irrational.



e is not a quadratic irrationality (Liouville, 1840)
Write the quadratic equation as ae+ b+ ce−1 = 0.

bN ! +
N∑
n=0

(
a+ (−1)nc

)N !

n!

= −
∑
k≥0

(
a+ (−1)N+1+kc

)
·

· N !

(N + 1 + k)!
·

Using Fourier’s argument, we deduce that the LHS and RHS
are 0 for any sufficiently large N .



Irrationality proof

Let ϑ ∈ Q, say ϑ = a/b. Then for any p/q ∈ Q with p/q 6= ϑ
we have

|qϑ− p| ≥ 1

b
·

Proof : |qa− pb| ≥ 1.

Consequence. Let ϑ ∈ R. Assume that for any ε > 0, there
exists p/q ∈ Q with

0 < |qϑ− p| < ε.

Then ϑ is irrational.



Irrationality proof

Let ϑ ∈ Q, say ϑ = a/b. Then for any p/q ∈ Q with p/q 6= ϑ
we have

|qϑ− p| ≥ 1

b
·

Proof : |qa− pb| ≥ 1.

Consequence. Let ϑ ∈ R. Assume that for any ε > 0, there
exists p/q ∈ Q with

0 < |qϑ− p| < ε.

Then ϑ is irrational.



Irrationality proof

Let ϑ ∈ Q, say ϑ = a/b. Then for any p/q ∈ Q with p/q 6= ϑ
we have

|qϑ− p| ≥ 1

b
·

Proof : |qa− pb| ≥ 1.

Consequence. Let ϑ ∈ R. Assume that for any ε > 0, there
exists p/q ∈ Q with

0 < |qϑ− p| < ε.

Then ϑ is irrational.



Criterion : necessary and sufficient condition
We saw that any ϑ ∈ R for which there exists a sequence
(pn/qn)n≥0 of rational numbers with

0 < |qnϑ− pn| < εn with εn → 0

is irrational.
Conversely, given ϑ ∈ R \Q, there exists a sequence
(pn/qn)n≥0 with

0 < |qnϑ− pn| < εn and εn → 0.

More precisely, given ϑ ∈ R, for each real number Q > 1,
there exists p/q ∈ Q with

|qϑ− p| ≤ 1

Q
and 0 < q < Q.

Hence, for ϑ 6∈ Q, there exists a sequence (pn/qn)n≥0 with

0 < |qnϑ− pn| <
1

qn
and qn →∞.
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Gustave Lejeune–Dirichlet (1805 – 1859)

G. Dirichlet

1842 : Box (pigeonhole)
principle
A map f : E → F with
CardE > CardF is not
injective.
A map f : E → F with
CardE < CardF is not
surjective.



Pigeonhole Principle

More holes than pigeons More pigeons than holes



Existence of rational approximations
For any ϑ ∈ R and any real number Q > 1, there exists
p/q ∈ Q with

|qϑ− p| ≤ 1

Q

and 0 < q < Q.

Proof. For simplicity assume Q ∈ Z. Take

E =
{

0, {ϑ}, {2ϑ}, . . . , {(Q− 1)ϑ}, 1
}
⊂ [0, 1],

where {x} denotes the fractional part of x, F is the partition[
0,

1

Q

)
,

[
1

Q
,
2

Q

)
, . . . ,

[
Q− 2

Q
,
Q− 1

Q

)
,

[
Q− 1

Q
,1

]
,

of [0, 1], so that

CardE = Q+ 1 > Q = CardF,

and f : E → F maps x ∈ E to I ∈ F with I 3 x.
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Hermann Minkowski (1864 – 1909)

H. Minkowski

1896 : Geometry of numbers.
The set
C = {(u, v) ∈ R2 ; |v| ≤ Q,

|vϑ− u| ≤ 1/Q}
is convex, symmetric,
compact, with volume 4.
Hence C ∩ Z2 6= {(0, 0)}.



Adolf Hurwitz (1859 – 1919)

A. Hurwitz

1891
For any ϑ ∈ R \Q, there
exists a sequence (pn/qn)n≥0

of rational numbers with

0 < |qnϑ− pn| <
1√
5qn

and qn →∞.
Methods : Continued
fractions, Farey sections.

Best possible for the Golden ratio

1 +
√

5

2
= 1.618 033 988 749 9 . . .



Irrationality criterion
Let ϑ be a real number. The following conditions are
equivalent.
(i) ϑ is irrational.
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1, there exists an integer q in
the interval 1 ≤ q < Q and there exists an integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

qQ
·

(iv) There exist infinitely many p/q ∈ Q satisfying∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·



Irrationality criterion (continued)

Let ϑ be a real number. The following conditions are
equivalent.
(i) ϑ is irrational.
(ii)’ For any ε > 0, there exist two linearly independent linear
forms

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,

with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.



Proof of (ii) ⇐⇒ (ii)’
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(ii)’ For any ε > 0, there exist two linearly independent linear
forms L0, L1 in ZX0 + ZX1 such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

Proof of (ii)’ =⇒ (ii)
Since L0, L1 are linearly independent, one at least of them
does not vanish at (1, ϑ). Write it pX0 − qX1.
Proof of (ii) =⇒ (ii’)
Using (ii), set L0(X0, X1) = pX0 − qX1, and use (ii) again
with ε replaced by |qϑ− p|.
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Irrationality of at least one number
Let ϑ1, . . . , ϑm be real numbers. The following conditions are
equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0, there exist p1, . . . , pm, q in Z with q > 0
such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) For any ε > 0, there exist m+ 1 linearly independent
linear forms L0, . . . , Lm with coefficients in Z in m+ 1
variables X0, . . . , Xm, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε.

(iv) For any real number Q > 1, there exists (p1, . . . , pm, q) in
Zm+1 such that 1 ≤ q ≤ Q and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1

qQ1/m
·

(v) There is an infinite set of q ∈ Z, q > 0, for which there
there exist p1, . . . , pm in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1

q1+1/m
·



Linear independence

Irrationality of ϑ : means that 1, ϑ are linearly independent
over Q.

Irrationality of at least one of ϑ1, . . . , ϑm : means
(ϑ1, . . . , ϑm) 6∈ Qm. Also : means that the dimension of the
Q–vector space spanned by 1, ϑ1, . . . , ϑm is ≥ 2.

Linear independence of 1, ϑ1, . . . , ϑm over Q : means that for
any hyperplane H : a0z0 + · · ·+ amzm = 0 of Rm+1 rational
over Q (i.e. ai ∈ Q), the point (1, ϑ1, . . . , ϑm) does not
belong to H.

Transcendence of ϑ : means that 1, ϑ, ϑ2, . . . , ϑn . . . are
linearly independent over Q.
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Charles Hermite (1822 – 1901)

Charles Hermite

1873 : Hermite’s method for
proving linear independence.
Let ϑ1, . . . , ϑm be real
numbers and a0, a1, . . . , am
rational integers, not all of
which are 0. The goal is to
prove that the number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.

Hermite’s idea is to approximate simultaneously ϑ1, . . . , ϑm by
rational numbers p1/q, . . . , pm/q with the same denominator
q > 0.



L = a0 + a1ϑ1 + · · · + amϑm

Let q, p1, . . . , pm be rational integers with q > 0. For
1 ≤ k ≤ m, set

εk = qϑk − pk.

Then qL = M +R with

M = a0q + a1p1 + · · ·+ ampm ∈ Z

and
R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.



Zero estimate

Main difficulty : to check M 6= 0.

We wish to find a simultaneous rational approximation
(q, p1, . . . , pm) to (ϑ1, . . . , ϑm) outside the hyperplane
a0z0 + a1z1 + · · ·+ amzm = 0 of Qm+1.

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple u = (q, p1, . . . , pm)
in Zm+1 \ {0}, but m+ 1 such tuples which are linearly
independent.

This yields m+ 1 pairs (Mk, Rk), k = 0, . . . ,m in place of a
single pair (M,R), and from (a0, . . . , am) 6= 0 one deduces
that one at least of M0, . . . ,Mm is not 0.
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Rational approximations

(following Michel Laurent)

Let (ϑ1, . . . , ϑm) ∈ Rm.
Then the following conditions are equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0, there exist m+ 1 linearly independent
elements u0,u1, . . . ,um in Zm+1, say

ui = (qi, p1i, . . . , pmi) (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
(0 ≤ i ≤ m).



Hermite – Lindemann Theorem

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of π.

Hermite – Lindemann Theorem
For any non–zero complex number z, at least one of the two
numbers z, ez is transcendental.

Corollaries : transcendence of logα and eβ for α and β
non–zero algebraic numbers with logα 6= 0.
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Lindemann – Weierstraß Theorem (1888)

Let β1, . . . , βn be algebraic numbers which are linearly
independent over Q. Then the numbers eβ1 , . . . , eβn are
algebraically independent over Q.

Equivalent to :
Let α1, . . . , αm be distinct algebraic numbers. Then the
numbers eα1 , . . . , eαm are linearly independent over Q.
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Carl Ludwig Siegel (1896 – 1981)
Siegel’s method for proving linear independence.
Let ϑ1, . . . , ϑm be complex numbers.

C.L. Siegel

1929 :
Assume that, for any ε > 0,
there exists m+ 1 linearly
independent linear forms
L0, . . . , Lm, with coefficients
in Z, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε

Hm−1

where
H = max0≤k≤mH(Lk).

Then 1, ϑ1, . . . , ϑm are linearly independent over Q.



Linear independence, following Siegel (1929)

Height of a linear form : H(L) = max |coefficients of L|.
Example : m = 1 (irrationality criterion). A real number ϑ is
irrational if and only, for any ε > 0, if there exists two linearly
independent linear forms L0(X0, X1) and L1(X0, X1) in
ZX0 + ZX1 such that |Li(1, ϑ)| < ε.

Sketch of proof of Siegel’s criterion. Assume 1, ϑ1, . . . , ϑm are
linearly dependent over Q. Let L ∈ ZX0 + · · ·+ ZXm be a
non–zero linear form vanishing at (1, ϑ1, . . . , ϑm). Among
L0, . . . , Lm, select m linear forms, say L1, . . . , Lm, which
constitute with L a complete system of linearly independent
forms in m+ 1 variables. The determinant ∆ of L,L1, . . . , Lm
is a non–zero integer, hence its absolute value is ≥ 1. Inverting
the matrix, write ∆ as a linear combination with integer
coefficients of the Li(1, ϑ1, . . . , ϑm) (1 ≤ i ≤ m) and estimate
the coefficients.
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Criterion of Yu. V. Nesterenko

Let ϑ1, . . . , ϑm be complex numbers.

Yu.V.Nesterenko (1985)

Let m be a positive integer
and α a positive real number
satisfying α > m− 1. Assume
there is a sequence (Ln)n≥0 of
linear forms in
ZX0 + ZX1 + . . .+ ZXm of
height ≤ en such that

|Ln(1, ϑ1, . . . , ϑm)| = e−αn+o(n).

Then 1, ϑ1, . . . , ϑm are linearly independent over Q.

Example : m = 1 – irrationality criterion.



Simplified proof of Nesterenko’s Theorem

Francesco Amoroso Pierre Colmez

Refinements : Raffaele Marcovecchio, Pierre Bel (2008).



Irrationality measure for log 2 : history

∣∣∣∣log 2− p

q

∣∣∣∣ > 1

qµ

Hermite–Lindemann, Mahler, Baker, Gel’fond, Feldman,. . . :
transcendence measures
G. Rhin 1987 µ(log 2) < 4.07
E.A. Rukhadze 1987 µ(log 2) < 3.89
R. Marcovecchio 2008 µ(log 2) < 3.57



Recent developments

Stéphane Fischler and Wadim Zudilin, A refinement of
Nesterenko’s linear independence criterion with applications to
zeta values.
Math. Annalen, to appear. Preprint MPIM 2009-35.

http://www.mpim-bonn.mpg.de/preprints/send?bid=4020


Criteria for transcendence and algebraic

independence

A complex number ϑ is transcendental if and only if
1, ϑ, ϑ2, . . . , ϑn . . . are linearly independent (over Q).

Complex numbers ϑ1, . . . , ϑm are algebraically independent if
and only if the numbers ϑi11 · · ·ϑimm , ((i1, . . . , im) ∈ Zm

≥0 are
linearly independent.

Hence, criteria for linear independence yield criteria for
transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case
(m = 1) of criteria for algebraic independence.
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Amarisa Chantanasiri

Criteria for linear
independence, transcendence
and algebraic independence

Université P. et M. Curie
(Paris VI), Ph.D. 2011 ?



New criterion for algebraic independence

Let ϑ1, . . . , ϑm be real numbers
and (τd)d≥1, (ηd)d≥1 two sequences
of positive real numbers satisfying

τd
dm−1(1 + ηd)

−→ +∞.

Assume that for all sufficiently large d, there is a sequence
(Pn)n≥n0(d) of polynomials in Z[X1, . . . , Xm], where Pn has
degree ≤ d and height ≤ en, such that

e−(τd+ηd)n ≤ |Pn(ϑ1, . . . , ϑm)| ≤ e−τdn.

Then ϑ1, . . . , ϑm are algebraically independent.
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