Criteria for linear independence and transcendence, following Yuri Nesterenko, Stéphane Fischler, Wadim Zudilin and Amarisa Chantanasiri

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI http://www.math.jussieu.fr/~miw/

Lecture given on October 31, 2009.

Abstract

Most irrationality proofs rest on the following criterion :
A real number x is irrational if and only if, for any
$\epsilon>0$, there exist two rational integers p and q with
$q>0$, such that

$$
0<|q x-p|<\epsilon .
$$

We survey generalisations of this criterion to linear independence, transcendence and algebraic independence.

Table of contents

(1) Irrationality results : Euler, Fourier, Liouville, Siegel,...
(2) Irrationality criteria : Dirichlet, Minkowski, Hurwitz
(3) Linear independence : Hermite, Siegel, Nesterenko

4 Algebraic independence : Lang, Philippon, Chudnovsky, Nesterenko, Schanuel, Roy, Chantanasiri, . . .

Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

Examples
rational numbers : a / b, root of $b X-a$.
$\sqrt{2}$, root of $X^{2}-2$.
i, root of $X^{2}+1$.

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C .

A transcendental number is a complex number which is not algebraic.

Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

Examples: rational numbers : a / b, root of $b X-a$.
$\sqrt{2}$, root of i, root of $X^{2}+1$.

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C .

A transcendental number is a complex number which is not algebraic.

Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

Examples:
rational numbers : a / b, root of $b X-a$.
$\sqrt{2}$, root of $X^{2}-2$.
i, root of $X^{2}+1$.

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C .

A transcendental number is a complex number which is not algebraic.

Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

Examples:
rational numbers : a / b, root of $b X-a$.
$\sqrt{2}$, root of $X^{2}-2$.
i, root of $X^{2}+1$.

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C .

A transcendental number is a complex number which is not algebraic.

Numbers : algebraic, transcendental

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

Examples:
rational numbers : a / b, root of $b X-a$.
$\sqrt{2}$, root of $X^{2}-2$.
i, root of $X^{2}+1$.

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C .

A transcendental number is a complex number which is not algebraic.

Irrationality of $\sqrt{2}$

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ~800-500 BC.

Irrationality of $\sqrt{2}$

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ~800-500 BC.

Irrationality of $\sqrt{2}$

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, ~800-500 BC.

Irrationality criteria

A real number is rational if and only if its binary (or decimal, or in any basis $b \geq 2$) expansion is ultimately periodic.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

To prove that certain numbers (occurring as constants in analysis) are irrational is most often an impossible challenge. However to construct irrational (even transcendental) numbers is easy.

Irrationality criteria

A real number is rational if and only if its binary (or decimal, or in any basis $b \geq 2$) expansion is ultimately periodic.
Also a real number is rational if and only if its continued fraction expansion is finite.
Consequence : it should not be so difficult to decide whether a given number is rational or not.
To prove that certain numbers (occurring as constants in analysis) are irrational is most often an impossible challenge. However to construct irrational (even transcendental) numbers is easy.

Irrationality criteria

A real number is rational if and only if its binary (or decimal, or in any basis $b \geq 2$) expansion is ultimately periodic.
Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

To prove that certain numbers (occurring as constants in analysis) are irrational is most often an impossible challenge. However to construct irrational (even transcendental) numbers is easy.

Irrationality criteria

A real number is rational if and only if its binary (or decimal, or in any basis $b \geq 2$) expansion is ultimately periodic.
Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

To prove that certain numbers (occurring as constants in analysis) are irrational is most often an impossible challenge. However to construct irrational (even transcendental) numbers is easy.

Irrationality criteria

A real number is rational if and only if its binary (or decimal, or in any basis $b \geq 2$) expansion is ultimately periodic.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

To prove that certain numbers (occurring as constants in analysis) are irrational is most often an impossible challenge. However to construct irrational (even transcendental) numbers is easy.

First decimals of $\sqrt{2}$

> 1.41421356237309504880168872420969807856967187537694807317667973 799073247846210703885038753432764157273501384623091229702492483 605585073721264412149709993583141322266592750559275579995050115 278206057147010955997160597027453459686201472851741864088919860 955232923048430871432145083976260362799525140798968725339654633 180882964062061525835239505474575028775996172983557522033753185 701135437460340849884716038689997069900481503054402779031645424 782306849293691862158057846311159666871301301561856898723723528 850926486124949771542183342042856860601468247207714358548741556 570696776537202264854470158588016207584749226572260020855844665 214583988939443709265918003113882464681570826301005948587040031 864803421948972782906410450726368813137398552561173220402450912 277002269411275736272804957381089675040183698683684507257993647 290607629969413804756548237289971803268024744206292691248590521 810044598421505911202494413417285314781058036033710773091828693 1471017111168391658172688941975871658215212822951848847 ...

First binary digits of $\sqrt{2}$

1.011010100000100111100110011001111111001110111100110010010000 1000101100101111101100010011011001101110101010010101011110100 11111000111010110111101100000101110101000100100111011101010000 10011001110110100010111101011001000010110000011001100111001100 10001010101001010111111001000001100000100001110101011100010100 01011000011101010001011000111111110011011111101110010000011110 11011001110010000111101110100101010000101111001000011100111000 11110110100101001111000000001001000011100110110001111011111101 00010011101101000110100100010000000101110100001110100001010101 11100011111010011100101001100000101100111000110000000010001101 1110000110011011110111100101010110001101110010010001000101101 00010000100010110001010010001100000101010111100011100100010111 10111110001001110001100111100011011010101101010001010001110001 01110110111111010011101110011001011001010100110001101000011001 10001111100111100100001001101111101010010111100010010000011111 00000110110111001011000001011101110101010100100101000001000100 110010000010000001100101001001010100000010011100101001010 ...

Euler-Mascheroni constant

Euler's Constant is

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right) \\
& =0.577215664901532860606512090082 \ldots
\end{aligned}
$$

Is-it a rational number?

Euler-Mascheroni constant

Euler's Constant is

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right) \\
& =0.577215664901532860606512090082 \ldots
\end{aligned}
$$

Is-it a rational number?

$$
\begin{aligned}
\gamma & =\sum_{k=1}^{\infty}\left(\frac{1}{k}-\log \left(1+\frac{1}{k}\right)\right)=\int_{1}^{\infty}\left(\frac{1}{[x]}-\frac{1}{x}\right) d x \\
& =-\int_{0}^{1} \int_{0}^{1} \frac{(1-x) d x d y}{(1-x y) \log (x y)}
\end{aligned}
$$

Riemann zeta function

The function
$\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$
was studied by Euler (1707-1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \geq 2$, the number $\zeta(s)$ is a rational multiple of π^{s}.

Examples : $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945$, $\zeta(8)=\pi^{8} / 9450$

Coefficients : Bernoulli numbers.

Riemann zeta function

The function
$\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$
was studied by Euler (1707-1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \geq 2$, the number $\zeta(s)$ is a rational multiple of π^{s}.

Examples : $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945$,

Coefficients: Bernoulli numbers.

Riemann zeta function

The function
$\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$
was studied by Euler (1707-1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \geq 2$, the number $\zeta(s)$ is a rational multiple of π^{s}.

Examples: $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945$, $\zeta(8)=\pi^{8} / 9450 \cdots$

Riemann zeta function

The function
$\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$
was studied by Euler (1707-1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \geq 2$, the number $\zeta(s)$ is a rational multiple of π^{s}.

Examples : $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945$, $\zeta(8)=\pi^{8} / 9450 \cdots$

Coefficients : Bernoulli numbers.

Riemann zeta function

The number
$\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}=1,202056903159594285399738161511 \ldots$
is irrational (Apéry 1978).

Recall that $\zeta(s) / \pi^{s}$ is rational for any even value of $s \geq 2$.

Open question: Is the number $\zeta(3) / \pi^{3}$ irrational ?

Riemann zeta function

The number
$\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}=1,202056903159594285399738161511 \ldots$
is irrational (Apéry 1978).

Recall that $\zeta(s) / \pi^{s}$ is rational for any even value of $s \geq 2$.

Open question Is the number $\zeta(3) / \pi^{3}$ irrational ?

Riemann zeta function

The number
$\zeta(3)=\sum_{n \geq 1} \frac{1}{n^{3}}=1,202056903159594285399738161511 \ldots$
is irrational (Apéry 1978).

Recall that $\zeta(s) / \pi^{s}$ is rational for any even value of $s \geq 2$.

Open question: Is the number $\zeta(3) / \pi^{3}$ irrational?

Riemann zeta function

Is the number
$\zeta(5)=\sum_{n \geq 1} \frac{1}{n^{5}}=1.036927755143369926331365486457 \ldots$
irrational?

T. Rivoal (2000) : infinitely many $\zeta(2 n+1)$ are irrational.

Riemann zeta function

Is the number
$\zeta(5)=\sum_{n \geq 1} \frac{1}{n^{5}}=1.036927755143369926331365486457 \ldots$
irrational?
T. Rivoal (2000) : infinitely many $\zeta(2 n+1)$ are irrational.

Motivations

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations
- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

Motivations

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations
- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

Motivations

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations
- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

Motivations

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations
- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

Motivations

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations
- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

Known results

Irrationality of the number π :

Ar ryabhața, b. $476 \mathrm{AD}: \pi \sim 3.1416$.

Nīlakantha Somayājī, b. 1444 AD: Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.
K. Ramasubramanian, The Notion of Proof in Indian Science, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhața, b. $476 \mathrm{AD}: \pi \sim 3.1416$.

Nīlakantha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.
K. Ramasubramanian, The Notion of Proof in Indian Science, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhața, b. $476 \mathrm{AD}: \pi \sim 3.1416$.

Nīlakanṭtha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

> The Notion of Proof in Indian Science, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhața, b. $476 \mathrm{AD}: \pi \sim 3.1416$.

Nīlakanṭtha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

The Notion of Proof in Indian Science, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhața, b. $476 \mathrm{AD}: \pi \sim 3.1416$.

Nīlakanṭtha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.
K. Ramasubramanian, The Notion of Proof in Indian Science, 13th World Sanskrit Conference, 2006.

Irrationality of π

Johann Heinrich Lambert (1728-1777)
Mémoire sur quelques propriétés
remarquables des quantités transcendantes circulaires et logarithmiques, Mémoires de l'Académie des Sciences de Berlin, 17 (1761), p. 265-322; read in 1767 ; Math. Werke, t. II.

[^0]
Irrationality of π

Johann Heinrich Lambert (1728-1777) Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Mémoires de l'Académie des Sciences de Berlin, 17 (1761), p. 265-322; read in 1767 ; Math. Werke, t. II.

$\tan (v)$ is irrational for any rational value of $v \neq 0$ and $\tan (\pi / 4)=1$.

Lambert and Frederick II, King of Prussia

- Que savez vous, Lambert?
- Tout, Sire.
- Et de qui le tenez-vous?
— De moi-même!

Leonhard Euler (1707-1783)

1748 : Irrationality of the number
$e=2.7182818284590 \ldots$
The number

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

is irrational
Continued fractions expansion.
http://www-history.mcs.st-andrews.ac.uk/

Joseph Fourier (1768-1830)

Proof of Euler's 1748 result on the irrationality of the number e by truncating the series

$$
e=\sum_{n \geq 0} \frac{1}{n!}
$$

Course of analysis at the École Polytechnique Paris, 1815.

Irrationality of e, following J. Fourier

$$
e=\sum_{n=0}^{N} \frac{1}{n!}+\sum_{m \geq N+1} \frac{1}{m!}
$$

Multiply by

Set
so that

Irrationality of e, following J. Fourier

$$
e=\sum_{n=0}^{N} \frac{1}{n!}+\sum_{m \geq N+1} \frac{1}{m!}
$$

Multiply by N ! :

$$
N!e=\sum_{n=0}^{N} \frac{N!}{n!}+\sum_{m \geq N+1} \frac{N!}{m!}
$$

Set

Irrationality of e, following J. Fourier

$$
e=\sum_{n=0}^{N} \frac{1}{n!}+\sum_{m \geq N+1} \frac{1}{m!}
$$

Multiply by N ! :

$$
N!e=\sum_{n=0}^{N} \frac{N!}{n!}+\sum_{m \geq N+1} \frac{N!}{m!}
$$

Set

$$
B_{N}=N!, \quad A_{N}=\sum_{n=0}^{N} \frac{N!}{n!}, \quad R_{N}=\sum_{m \geq N+1} \frac{N!}{m!},
$$

so that

$$
B_{N} e=A_{N}+R_{N} .
$$

Irrationality of e, following J. Fourier

Then A_{N} and B_{N} are in \mathbf{Z} and

$$
0<R_{N}=\frac{1}{N+1}+\frac{1}{(N+1)(N+2)}+\cdots<\frac{e}{N+1}
$$

In the formula
the numbers A_{N} and $B_{N}=N$! are integers, while the right hand side is >0 and tends to 0 when N tends to infinity. Hence N! e is not an integer, therefore e is irrational.

Irrationality of e, following J. Fourier

Then A_{N} and B_{N} are in \mathbf{Z} and

$$
0<R_{N}=\frac{1}{N+1}+\frac{1}{(N+1)(N+2)}+\cdots<\frac{e}{N+1}
$$

In the formula

$$
B_{N} e-A_{N}=R_{N}
$$

the numbers A_{N} and $B_{N}=N$! are integers, while the right hand side is >0 and tends to 0 when N tends to infinity. Hence N ! e is not an integer, therefore e is irrational.

Irrationality of e, following J . Fourier

Then A_{N} and B_{N} are in \mathbf{Z} and

$$
0<R_{N}=\frac{1}{N+1}+\frac{1}{(N+1)(N+2)}+\cdots<\frac{e}{N+1}
$$

In the formula

$$
B_{N} e-A_{N}=R_{N}
$$

the numbers A_{N} and $B_{N}=N$! are integers, while the right hand side is >0 and tends to 0 when N tends to infinity. Hence N ! e is not an integer, therefore e is irrational.

C.L Siegel (1949) : irrationality of e^{-1}

$$
N!e^{-1}=\sum_{n=0}^{N} \frac{(-1)^{n} N!}{n!}+\sum_{m \geq N+1} \frac{(-1)^{m} N!}{m!}
$$

C.L. Siegel (1896-1981)

Take for N a large odd integer and set

$$
A_{N}=\sum_{n=0}^{N} \frac{(-1)^{n} N!}{n!} .
$$

Then $A_{N} \in \mathbf{Z}$ and
$A_{N}<N!e^{-1}<A_{N}+\frac{1}{N+1}$.
Hence e^{-1} is irrational.

e is not a quadratic irrationality (Liouville, 1840)

 Write the quadratic equation as $a e+b+c e^{-1}=0$.

$$
\begin{aligned}
& b N!+\sum_{n=0}^{N}\left(a+(-1)^{n} c\right) \frac{N!}{n!} \\
& =-\sum_{k \geq 0}\left(a+(-1)^{N+1+k} c\right) \\
& \cdot \frac{N!}{(N+1+k)!}
\end{aligned}
$$

Using Fourier's argument, we deduce that the LHS and RHS are 0 for any sufficiently large N.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$. Then for any $p / q \in \mathbf{Q}$ with $p / q \neq \vartheta$ we have

$$
|q \vartheta-p| \geq \frac{1}{b} .
$$

Proof : $|q a-p b| \geq 1$.

Consequence. Let $\vartheta \in \mathrm{R}$. Assume that for any $\epsilon>0$, there exists $p / q \in \mathrm{Q}$ with

Then v is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$. Then for any $p / q \in \mathbf{Q}$ with $p / q \neq \vartheta$ we have

$$
|q \vartheta-p| \geq \frac{1}{b}
$$

Proof : $|q a-p b| \geq 1$.

Consequence. Let $\vartheta \in \mathrm{R}$. Assume that for any $\epsilon>0$, there exists $p / q \in \mathrm{Q}$ with

Then ϑ is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta=a / b$. Then for any $p / q \in \mathbf{Q}$ with $p / q \neq \vartheta$ we have

$$
|q \vartheta-p| \geq \frac{1}{b} .
$$

Proof : $|q a-p b| \geq 1$.

Consequence. Let $\vartheta \in \mathbf{R}$. Assume that for any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ with

$$
0<|q \vartheta-p|<\epsilon .
$$

Then ϑ is irrational.

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.

More precisely, given $\vartheta \in \mathrm{R}$, for each real number $Q>1$, there exists $p / q \in \mathrm{Q}$ with

Hence, for $\vartheta \notin \mathrm{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { and } \quad \epsilon_{n} \rightarrow 0 .
$$

More precisely, given $\vartheta \in \mathrm{R}$, for each real number $Q>1$, there exists $p / q \in \mathrm{Q}$ with

Hence, for $\vartheta \notin \mathrm{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { and } \quad \epsilon_{n} \rightarrow 0 .
$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q} \quad \text { and } \quad 0<q<Q
$$

Hence, for $\vartheta \notin \mathrm{Q}$, there exists a sequence

Criterion : necessary and sufficient condition

We saw that any $\vartheta \in \mathbf{R}$ for which there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { with } \quad \epsilon_{n} \rightarrow 0
$$

is irrational.
Conversely, given $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\epsilon_{n} \quad \text { and } \quad \epsilon_{n} \rightarrow 0 .
$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q} \quad \text { and } \quad 0<q<Q
$$

Hence, for $\vartheta \notin \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\frac{1}{q_{n}} \quad \text { and } \quad q_{n} \rightarrow \infty .
$$

Gustave Lejeune-Dirichlet (1805-1859)

G. Dirichlet

1842 : Box (pigeonhole) principle
A map $f: E \rightarrow F$ with $\operatorname{Card} E>\operatorname{Card} F$ is not injective.
A map $f: E \rightarrow F$ with $\operatorname{Card} E<\operatorname{Card} F$ is not surjective.

Pigeonhole Principle

More holes than pigeons

More pigeons than holes

Existence of rational approximations

For any $\vartheta \in \mathbf{R}$ and any real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q}
$$

and $0<q<Q$.
Proof. For simplicity assume $Q \in \mathbb{Z}$. Take

$$
E=\{0,\{\vartheta\},\{2 \vartheta\}, \ldots,\{(Q-1) \vartheta\}, 1\} \subset[0,1],
$$

where $\{x\}$ denotes the fractional part of x, F is the partition

of $[0,1]$, so that

Existence of rational approximations

For any $\vartheta \in \mathbf{R}$ and any real number $Q>1$, there exists $p / q \in \mathbf{Q}$ with

$$
|q \vartheta-p| \leq \frac{1}{Q}
$$

and $0<q<Q$.
Proof. For simplicity assume $Q \in \mathbf{Z}$. Take

$$
E=\{0,\{\vartheta\},\{2 \vartheta\}, \ldots,\{(Q-1) \vartheta\}, 1\} \subset[0,1],
$$

where $\{x\}$ denotes the fractional part of x, F is the partition

$$
\left[0, \frac{1}{Q}\right),\left[\frac{1}{Q}, \frac{2}{Q}\right), \ldots,\left[\frac{Q-2}{Q}, \frac{Q-1}{Q}\right),\left[\frac{Q-1}{Q}, 1\right],
$$

of $[0,1]$, so that

$$
\operatorname{Card} E=Q+1>Q=\operatorname{Card} F,
$$

and $f: E \rightarrow F$ maps $x \in E$ to $I \in F$ with $I \ni_{-} x$.

Hermann Minkowski (1864-1909)

1896 : Geometry of numbers.
The set
$\mathcal{C}=\left\{(u, v) \in \mathbf{R}^{2} ;|v| \leq Q\right.$, $|v \vartheta-u| \leq 1 / Q\}$
is convex, symmetric, compact, with volume 4 . Hence $\mathcal{C} \cap \mathbf{Z}^{2} \neq\{(0,0)\}$.
H. Minkowski

Adolf Hurwitz (1859 - 1919)

A. Hurwitz

1891
For any $\vartheta \in \mathbf{R} \backslash \mathbf{Q}$, there exists a sequence $\left(p_{n} / q_{n}\right)_{n \geq 0}$ of rational numbers with

$$
0<\left|q_{n} \vartheta-p_{n}\right|<\frac{1}{\sqrt{5} q_{n}}
$$

and $q_{n} \rightarrow \infty$.
Methods : Continued fractions, Farey sections.

Best possible for the Golden ratio

$$
\frac{1+\sqrt{5}}{2}=1.6180339887499 \ldots
$$

Irrationality criterion

Let ϑ be a real number. The following conditions are equivalent.
(i) ϑ is irrational.
(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q} .
$$

(iii) For any real number $Q>1$, there exists an integer q in the interval $1 \leq q<Q$ and there exists an integer p such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{1}{q Q} .
$$

(iv) There exist infinitely many $p / q \in \mathbf{Q}$ satisfying

$$
\left|\vartheta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

Irrationality criterion (continued)

Let ϑ be a real number. The following conditions are equivalent.
(i) ϑ is irrational.
(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms
$L_{0}\left(X_{0}, X_{1}\right)=a_{0} X_{0}+b_{0} X_{1} \quad$ and $\quad L_{1}\left(X_{0}, X_{1}\right)=a_{1} X_{0}+b_{1} X_{1}$,
with rational integer coefficients, such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon .
$$

Proof of $(\mathrm{ii}) \Longleftrightarrow(\mathrm{ii})^{\prime}$

(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q}
$$

(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms L_{0}, L_{1} in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon
$$

Proof of (ii) ${ }^{2}$
Since L_{0}, L_{1} are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $p X_{0}-q X_{1}$.

Using (ii), set $L_{0}\left(X_{0}, X_{1}\right)=p X_{0}-q X_{1}$, and use (ii) again with ϵ replaced by

Proof of $(\mathrm{ii}) \Longleftrightarrow(\mathrm{ii})^{\prime}$

(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q}
$$

(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms L_{0}, L_{1} in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon
$$

Proof of (ii) ${ }^{\prime} \Longrightarrow$ (ii)
Since L_{0}, L_{1} are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $p X_{0}-q X_{1}$.

Using (ii), set

Proof of $(\mathrm{ii}) \Longleftrightarrow(\mathrm{ii})^{\prime}$

(ii) For any $\epsilon>0$, there exists $p / q \in \mathbf{Q}$ such that

$$
0<\left|\vartheta-\frac{p}{q}\right|<\frac{\epsilon}{q}
$$

(ii)' For any $\epsilon>0$, there exist two linearly independent linear forms L_{0}, L_{1} in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that

$$
\max \left\{\left|L_{0}(1, \vartheta)\right|,\left|L_{1}(1, \vartheta)\right|\right\}<\epsilon
$$

Proof of (ii) ${ }^{\prime} \Longrightarrow$ (ii)
Since L_{0}, L_{1} are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $p X_{0}-q X_{1}$.
Proof of (ii) \Longrightarrow (ii')
Using (ii), set $L_{0}\left(X_{0}, X_{1}\right)=p X_{0}-q X_{1}$, and use (ii) again with ϵ replaced by $|q \vartheta-p|$.

Irrationality of at least one number

Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers. The following conditions are equivalent
(i) One at least of $\vartheta_{1}, \ldots, \vartheta_{m}$ is irrational.
(ii) For any $\epsilon>0$, there exist p_{1}, \ldots, p_{m}, q in \mathbf{Z} with $q>0$ such that

$$
0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right|<\frac{\epsilon}{q} .
$$

(iii) For any $\epsilon>0$, there exist $m+1$ linearly independent linear forms L_{0}, \ldots, L_{m} with coefficients in \mathbf{Z} in $m+1$ variables X_{0}, \ldots, X_{m}, such that

$$
\max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\epsilon .
$$

(iv) For any real number $Q>1$, there exists $\left(p_{1}, \ldots, p_{m}, q\right)$ in \mathbf{Z}^{m+1} such that $1 \leq q \leq Q$ and

$$
0<\max _{1 \leq i \leq m}\left|\vartheta_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q Q^{1 / m}}
$$

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q .

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathrm{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over Q : means that for any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational over $\mathrm{Q}\left(\right.$ i.e. $\left.a_{i} \in \mathrm{Q}\right)$, the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent over Q.

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over Q : means that for
any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of R^{m+1} rational
over Q (i.e. $\left.a_{i} \in \mathrm{Q}\right)$, the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent over Q.

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over \mathbf{Q} : means that for any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_{i} \in \mathbf{Q}$), the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of $\vartheta:$ means that are linearly independent over Q.

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over Q.

Irrationality of at least one of $\vartheta_{1}, \ldots, \vartheta_{m}$: means
$\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \notin \mathbf{Q}^{m}$. Also : means that the dimension of the Q-vector space spanned by $1, \vartheta_{1}, \ldots, \vartheta_{m}$ is ≥ 2.

Linear independence of $1, \vartheta_{1}, \ldots, \vartheta_{m}$ over \mathbf{Q} : means that for any hyperplane $H: a_{0} z_{0}+\cdots+a_{m} z_{m}=0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_{i} \in \mathbf{Q}$), the point $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent over \mathbf{Q}.

Charles Hermite (1822-1901)

Charles Hermite

1873 : Hermite's method for proving linear independence. Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers and $a_{0}, a_{1}, \ldots, a_{m}$ rational integers, not all of which are 0 . The goal is to prove that the number

$$
L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}
$$

is not 0 .

Hermite's idea is to approximate simultaneously $\vartheta_{1}, \ldots, \vartheta_{m}$ by rational numbers $p_{1} / q, \ldots, p_{m} / q$ with the same denominator $q>0$.

$$
L=a_{0}+a_{1} \vartheta_{1}+\cdots+a_{m} \vartheta_{m}
$$

Let q, p_{1}, \ldots, p_{m} be rational integers with $q>0$. For $1 \leq k \leq m$, set

$$
\epsilon_{k}=q \vartheta_{k}-p_{k} .
$$

Then $q L=M+R$ with

$$
M=a_{0} q+a_{1} p_{1}+\cdots+a_{m} p_{m} \in \mathbf{Z}
$$

and

$$
R=a_{1} \epsilon_{1}+\cdots+a_{m} \epsilon_{m} \in \mathbf{R} .
$$

If $M \neq 0$ and $|R|<1$ we deduce $L \neq 0$.

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of Q^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathrm{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbb{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathrm{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbb{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathrm{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbb{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathbf{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbf{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

> This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Zero estimate

Main difficulty : to check $M \neq 0$.
We wish to find a simultaneous rational approximation $\left(q, p_{1}, \ldots, p_{m}\right)$ to $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ outside the hyperplane $a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{m} z_{m}=0$ of \mathbf{Q}^{m+1}.

This needs to be checked for all hyperplanes.
Solution : to construct not only one tuple $\mathbf{u}=\left(q, p_{1}, \ldots, p_{m}\right)$ in $\mathbf{Z}^{m+1} \backslash\{0\}$, but $m+1$ such tuples which are linearly independent.

This yields $m+1$ pairs $\left(M_{k}, R_{k}\right), k=0, \ldots, m$ in place of a single pair (M, R), and from $\left(a_{0}, \ldots, a_{m}\right) \neq 0$ one deduces that one at least of M_{0}, \ldots, M_{m} is not 0 .

Rational approximations (following Michel Laurent)

Let $\left(\vartheta_{1}, \ldots, \vartheta_{m}\right) \in \mathbf{R}^{m}$.
Then the following conditions are equivalent.

(i) The numbers $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.
(ii) For any $\epsilon>0$, there exist $m+1$ linearly independent elements $\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ in \mathbf{Z}^{m+1}, say

$$
\mathbf{u}_{i}=\left(q_{i}, p_{1 i}, \ldots, p_{m i}\right) \quad(0 \leq i \leq m)
$$

with $q_{i}>0$, such that

$$
\max _{1 \leq k \leq m}\left|\vartheta_{k}-\frac{p_{k i}}{q_{i}}\right| \leq \frac{\epsilon}{q_{i}} \quad(0 \leq i \leq m) .
$$

Hermite - Lindemann Theorem

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Hermite - Lindemann Theorem
For any non-zero complex number z, at least one of the two numbers z, e^{z} is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Hermite - Lindemann Theorem

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Hermite - Lindemann Theorem
For any non-zero complex number z, at least one of the two numbers z, e^{z} is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Hermite - Lindemann Theorem

Hermite (1873) : transcendence of e.

Lindemann (1882) : transcendence of π.

Hermite - Lindemann Theorem

For any non-zero complex number z, at least one of the two numbers z, e^{z} is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Lindemann - Weierstraß Theorem (1888)

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers which are linearly independent over \mathbf{Q}. Then the numbers $e^{\beta_{1}}, \ldots, e^{\beta_{n}}$ are algebraically independent over Q.

Equivalent to
Let $\alpha_{1}, \ldots, \alpha_{m}$ be distinct algebraic numbers. Then the numbers are linearly independent over Q.

Lindemann - Weierstraß Theorem (1888)

Let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers which are linearly independent over \mathbf{Q}. Then the numbers $e^{\beta_{1}}, \ldots, e^{\beta_{n}}$ are algebraically independent over Q.

Equivalent to :
Let $\alpha_{1}, \ldots, \alpha_{m}$ be distinct algebraic numbers. Then the numbers $e^{\alpha_{1}}, \ldots, e^{\alpha_{m}}$ are linearly independent over \mathbf{Q}.

Carl Ludwig Siegel (1896-1981)

Siegel's method for proving linear independence.
Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be complex numbers.

C.L. Siegel

1929 :
Assume that, for any $\epsilon>0$, there exists $m+1$ linearly independent linear forms L_{0}, \ldots, L_{m}, with coefficients in \mathbf{Z}, such that

$$
\max _{0 \leq k \leq m}\left|L_{k}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|<\frac{\epsilon}{H^{m-1}}
$$

where

$$
H=\max _{0 \leq k \leq m} H\left(L_{k}\right) .
$$

Then $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number v is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in
$Z X_{0}+\mathbb{Z} X_{1}$ such that
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over Q . Let $L \in \mathrm{Z} X_{0}+\cdots+\mathrm{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among $L_{0} \ldots, L_{m}$, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1} is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.

constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1}
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer
coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid c o e f f i c i e n t s$ of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbb{Z X} X_{0}+\cdots+Z X_{m}$ be a non-zero linear form vanishing at Among select m linear forms, say L_{1}, \ldots, L_{m}, which
constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer
coefficients of the $L_{i}\left(1, v_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among select m linear forms, say L_{1}, \ldots, L_{m}, which
constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of
is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1}, \ldots, L_{m} is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the

Linear independence, following Siegel (1929)

Height of a linear form : $H(L)=\max \mid$ coefficients of $L \mid$.
Example : $m=1$ (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon>0$, if there exists two linearly independent linear forms $L_{0}\left(X_{0}, X_{1}\right)$ and $L_{1}\left(X_{0}, X_{1}\right)$ in $\mathbf{Z} X_{0}+\mathbf{Z} X_{1}$ such that $\left|L_{i}(1, \vartheta)\right|<\epsilon$.
Sketch of proof of Siegel's criterion. Assume $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly dependent over \mathbf{Q}. Let $L \in \mathbf{Z} X_{0}+\cdots+\mathbf{Z} X_{m}$ be a non-zero linear form vanishing at $\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)$. Among L_{0}, \ldots, L_{m}, select m linear forms, say L_{1}, \ldots, L_{m}, which constitute with L a complete system of linearly independent forms in $m+1$ variables. The determinant Δ of L, L_{1}, \ldots, L_{m} is a non-zero integer, hence its absolute value is ≥ 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_{i}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)(1 \leq i \leq m)$ and estimate the coefficients.

Criterion of Yu. V. Nesterenko

Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be complex numbers.

Yu.V.Nesterenko (1985)

Let m be a positive integer and α a positive real number satisfying $\alpha>m-1$. Assume there is a sequence $\left(L_{n}\right)_{n \geq 0}$ of linear forms in
$\mathbf{Z} X_{0}+\mathbf{Z} X_{1}+\ldots+\mathbf{Z} X_{m}$ of height $\leq e^{n}$ such that

$$
\left|L_{n}\left(1, \vartheta_{1}, \ldots, \vartheta_{m}\right)\right|=e^{-\alpha n+o(n)} .
$$

Then $1, \vartheta_{1}, \ldots, \vartheta_{m}$ are linearly independent over \mathbf{Q}.
Example : $m=1$ - irrationality criterion.

Simplified proof of Nesterenko's Theorem

Francesco Amoroso

Pierre Colmez

Refinements : Raffaele Marcovecchio, Pierre Bel (2008).

Irrationality measure for $\log 2$: history

$$
\left|\log 2-\frac{p}{q}\right|>\frac{1}{q^{\mu}}
$$

Hermite-Lindemann, Mahler, Baker, Gel'fond, Feldman,... :
transcendence measures
G. Rhin 1987
$\mu(\log 2)<4.07$
$\mu(\log 2)<3.89$
$\mu(\log 2)<3.57$

Recent developments

Stéphane Fischler and Wadim Zudilin, A refinement of Nesterenko's linear independence criterion with applications to zeta values. Math. Annalen, to appear.

Criteria for transcendence and algebraic

 independenceA complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers are algebraically independent
 linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Criteria for transcendence and algebraic

 independenceA complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Criteria for transcendence and algebraic independence

A complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Criteria for transcendence and algebraic independence

A complex number ϑ is transcendental if and only if $1, \vartheta, \vartheta^{2}, \ldots, \vartheta^{n} \ldots$ are linearly independent (over \mathbf{Q}).

Complex numbers $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent if and only if the numbers $\vartheta_{1}^{i_{1}} \cdots \vartheta_{m}^{i_{m}},\left(\left(i_{1}, \ldots, i_{m}\right) \in \mathbf{Z}_{\geq 0}^{m}\right.$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case ($m=1$) of criteria for algebraic independence.

Amarisa Chantanasiri

Criteria for linear independence, transcendence and algebraic independence

Université P. et M. Curie (Paris VI), Ph.D. 2011?

New criterion for algebraic independence

Let $\vartheta_{1}, \ldots, \vartheta_{m}$ be real numbers and $\left(\tau_{d}\right)_{d \geq 1},\left(\eta_{d}\right)_{d \geq 1}$ two sequences of positive real numbers satisfying

$$
\frac{\tau_{d}}{d^{m-1}\left(1+\eta_{d}\right)} \longrightarrow+\infty
$$

Assume that for all sufficiently large d, there is a sequence $\left(P_{n}\right)_{n \geq n_{0}(d)}$ of polynomials in $\mathbf{Z}\left[X_{1}, \ldots, X_{m}\right]$, where P_{n} has degree $\leq d$ and height $\leq e^{n}$, such that

$$
e^{-\left(\tau_{d}+\eta_{d}\right) n} \leq\left|P_{n}\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)\right| \leq e^{-\tau_{d} n}
$$

Then $\vartheta_{1}, \ldots, \vartheta_{m}$ are algebraically independent.

Criteria for linear independence and transcendence, following Yuri Nesterenko, Stéphane Fischler, Wadim Zudilin and Amarisa Chantanasiri

Michel Waldschmidt

Institut de Mathématiques de Jussieu \& Paris VI http://www.math.jussieu.fr/~miw/

Lecture given on October 31, 2009.

[^0]: $\tan (v)$ is irrational for any rational value of $v \neq 0$ and $\tan (\pi / 4)=1$.

