Mahidol University, Bangkok October 29-31, 2009 Franco-Thai Seminar in Pure and Applied Mathematics, http://www.sc.mahidol.ac.th/cem/franco_thai/

Criteria for linear independence and transcendence, following Yuri Nesterenko, Stéphane Fischler, Wadim Zudilin and Amarisa Chantanasiri

Michel Waldschmidt

Institut de Mathématiques de Jussieu & Paris VI http://www.math.jussieu.fr/~miw/

Lecture given on October 31, 2009.

Abstract

Most irrationality proofs rest on the following criterion :

A real number x is irrational if and only if, for any $\epsilon > 0$, there exist two rational integers p and q with q > 0, such that

$$0 < |qx - p| < \epsilon.$$

We survey generalisations of this criterion to linear independence, transcendence and algebraic independence.

Table of contents

1 Irrationality results : Euler, Fourier, Liouville, Siegel,...

2 Irrationality criteria : Dirichlet, Minkowski, Hurwitz

3 Linear independence : Hermite, Siegel, Nesterenko

4 Algebraic independence : Lang, Philippon, Chudnovsky, Nesterenko, Schanuel, Roy, Chantanasiri,...

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

```
Examples :
rational numbers : a/b, root of bX - a.
\sqrt{2}, root of X^2 - 2.
i, root of X^2 + 1.
```

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C.

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

```
Examples :
rational numbers : a/b, root of bX - a.
\sqrt{2}, root of X^2 - 2.
i, root of X^2 + 1.
```

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C.

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

```
Examples :
rational numbers : a/b, root of bX - a.
\sqrt{2}, root of X^2 - 2.
i, root of X^2 + 1.
```

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of Q in C.

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

```
Examples :
rational numbers : a/b, root of bX - a.
\sqrt{2}, root of X^2 - 2.
i, root of X^2 + 1.
```

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of \mathbf{Q} in \mathbf{C} .

Algebraic number : a complex number which is root of a non-zero polynomial with rational coefficients.

```
Examples :
rational numbers : a/b, root of bX - a.
\sqrt{2}, root of X^2 - 2.
i, root of X^2 + 1.
```

The sum and the product of algebraic numbers are algebraic numbers. The set of complex algebraic numbers is a field, the algebraic closure of \mathbf{Q} in \mathbf{C} .

Irrationality of $\sqrt{2}$

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, \sim 800-500 BC.

Irrationality of $\sqrt{2}$

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, \sim 800-500 BC.

Irrationality of $\sqrt{2}$

Pythagoreas school

Hippasus of Metapontum (around 500 BC).

Sulba Sutras, Vedic civilization in India, \sim 800-500 BC.

A real number is rational if and only if its binary (or decimal, or in any basis $b \ge 2$) expansion is *ultimately periodic*.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

A real number is rational if and only if its binary (or decimal, or in any basis $b \ge 2$) expansion is *ultimately periodic*.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

A real number is rational if and only if its binary (or decimal, or in any basis $b \ge 2$) expansion is *ultimately periodic*.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

A real number is rational if and only if its binary (or decimal, or in any basis $b \ge 2$) expansion is *ultimately periodic*.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

A real number is rational if and only if its binary (or decimal, or in any basis $b \ge 2$) expansion is *ultimately periodic*.

Also a real number is rational if and only if its continued fraction expansion is finite.

Consequence : it should not be so difficult to decide whether a given number is rational or not.

First decimals of $\sqrt{2}$

http://wims.unice.fr/wims/wims.cgi

1 41421356237309504880168872420969807856967187537694807317667973 1471017111168391658172688941975871658215212822951848847 ...

First binary digits of $\sqrt{2}$ http://wims.unice.fr/wims/wims.cgi

Euler-Mascheroni constant

Euler's Constant is

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log n \right)$$

= 0.577 215 664 901 532 860 606 512 090 082 ...

Is-it a rational number?

$$\gamma = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \log\left(1 + \frac{1}{k}\right) \right) = \int_{1}^{\infty} \left(\frac{1}{[x]} - \frac{1}{x} \right) dx$$
$$= -\int_{0}^{1} \int_{0}^{1} \frac{(1-x)dxdy}{(1-xy)\log(xy)}.$$

Euler-Mascheroni constant

Euler's Constant is

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \log n \right)$$

= 0.577 215 664 901 532 860 606 512 090 082 ...

Is-it a rational number?

$$\gamma = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \log\left(1 + \frac{1}{k}\right) \right) = \int_{1}^{\infty} \left(\frac{1}{[x]} - \frac{1}{x}\right) dx$$
$$= -\int_{0}^{1} \int_{0}^{1} \frac{(1-x)dxdy}{(1-xy)\log(xy)}.$$

The function $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$ was studied by Euler (1707–1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \ge 2$, the number $\zeta(s)$ is a rational multiple of π^s .

Examples : $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, $\zeta(6) = \pi^6/945$, $\zeta(8) = \pi^8/9450 \cdots$

The function $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$ was studied by Euler (1707–1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \ge 2$, the number $\zeta(s)$ is a rational multiple of π^s .

Examples : $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, $\zeta(6) = \pi^6/945$, $\zeta(8) = \pi^8/9450 \cdots$

The function $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$ was studied by Euler (1707–1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \ge 2$, the number $\zeta(s)$ is a rational multiple of π^s .

Examples : $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, $\zeta(6) = \pi^6/945$, $\zeta(8) = \pi^8/9450\cdots$

The function $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$ was studied by Euler (1707–1783) for integer values of s and by Riemann (1859) for complex values of s.

Euler : for any even integer value of $s \ge 2$, the number $\zeta(s)$ is a rational multiple of π^s .

Examples : $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, $\zeta(6) = \pi^6/945$, $\zeta(8) = \pi^8/9450\cdots$

The number

 $\zeta(3) = \sum_{n \ge 1} \frac{1}{n^3} = 1,202\,056\,903\,159\,594\,285\,399\,738\,161\,511\,\ldots$

is irrational (Apéry 1978).

Recall that $\zeta(s)/\pi^s$ is rational for any even value of $s \ge 2$.

Open question : Is the number $\zeta(3)/\pi^3$ irrational?

The number

$$\zeta(3) = \sum_{n \ge 1} \frac{1}{n^3} = 1,202\,056\,903\,159\,594\,285\,399\,738\,161\,511\,\ldots$$

is irrational (Apéry 1978).

Recall that $\zeta(s)/\pi^s$ is rational for any even value of $s \ge 2$.

Open question : Is the number $\zeta(3)/\pi^3$ irrational ?

The number

$$\zeta(3) = \sum_{n \ge 1} \frac{1}{n^3} = 1,202\,056\,903\,159\,594\,285\,399\,738\,161\,511\,\ldots$$

is irrational (Apéry 1978).

Recall that $\zeta(s)/\pi^s$ is rational for any even value of $s \ge 2$.

Open question : Is the number $\zeta(3)/\pi^3$ irrational ?

Is the number

$$\zeta(5) = \sum_{n \ge 1} \frac{1}{n^5} = 1.036\,927\,755\,143\,369\,926\,331\,365\,486\,457\dots$$

irrational?

T. Rivoal (2000) : infinitely many $\zeta(2n+1)$ are irrational.

Is the number

$$\zeta(5) = \sum_{n \ge 1} \frac{1}{n^5} = 1.036\,927\,755\,143\,369\,926\,331\,365\,486\,457\dots$$

irrational?

T. Rivoal (2000) : infinitely many $\zeta(2n+1)$ are irrational.

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations
- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations

- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations

- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations

• Theoretical computer sciences : rounding values

• Main goal : to understand the underlying theory.

- Squaring the circle
- Dynamical systems
- Solving Diophantine equations

- Theoretical computer sciences : rounding values
- Main goal : to understand the underlying theory.

Known results

Irrationality of the number π :

Āryabhata, b. 476 AD : $\pi \sim 3.1416$.

Nīlakaņţha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

K. Ramasubramanian, *The Notion of Proof in Indian Science*, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhața, b. 476 AD : $\pi \sim 3.1416$.

Nīlakaņţha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

K. Ramasubramanian, *The Notion of Proof in Indian Science*, 13th World Sanskrit Conference, 2006.
Known results

Irrationality of the number π :

Āryabhata, b. 476 AD : $\pi \sim 3.1416$.

Nīlakaņţha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

K. Ramasubramanian, *The Notion of Proof in Indian Science*, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhata, b. 476 AD : $\pi \sim 3.1416$.

Nīlakaņţha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

K. Ramasubramanian, *The Notion of Proof in Indian Science*, 13th World Sanskrit Conference, 2006.

Known results

Irrationality of the number π :

Āryabhata, b. 476 AD : $\pi \sim 3.1416$.

Nīlakaņţha Somayājī, b. 1444 AD : Why then has an approximate value been mentioned here leaving behind the actual value? Because it (exact value) cannot be expressed.

K. Ramasubramanian, *The Notion of Proof in Indian Science*, 13th World Sanskrit Conference, 2006.

Irrationality of π

Johann Heinrich Lambert (1728 - 1777) Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Mémoires de l'Académie des Sciences de Berlin, **17** (1761), p. 265-322; read in 1767; Math. Werke, t. II.

tan(v) is irrational for any rational value of $v \neq 0$ and $tan(\pi/4) = 1$.

Irrationality of π

Johann Heinrich Lambert (1728 - 1777) Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Mémoires de l'Académie des Sciences de Berlin, **17** (1761), p. 265-322; read in 1767; Math. Werke, t. II.

 $\tan(v)$ is irrational for any rational value of $v \neq 0$ and $\tan(\pi/4) = 1$.

Lambert and Frederick II, King of Prussia

Que savez vous,
Lambert ?
Tout, Sire.
Et de qui le
tenez-vous ?
De moi-même !

Leonhard Euler (1707 – 1783)

1748 : Irrationality of the number $e = 2.718\,281\,828\,459\,0\ldots$

The number

$$e = \sum_{n \ge 0} \frac{1}{n!}$$

is irrational Continued fractions expansion.

http://www-history.mcs.st-andrews.ac.uk/

Joseph Fourier (1768 – 1830)

Proof of Euler's 1748 result on the irrationality of the number e by truncating the series

$$e = \sum_{n \ge 0} \frac{1}{n!} \cdot$$

Course of analysis at the École Polytechnique Paris, 1815.

$$e = \sum_{n=0}^{N} \frac{1}{n!} + \sum_{m \ge N+1} \frac{1}{m!}$$

Multiply by N!:

Set

$$B_N = N!,$$
 $A_N = \sum_{n=0}^{N} \frac{N!}{n!},$ $R_N = \sum_{m \ge N+1} \frac{N!}{m!},$

so that

$$B_N e = A_N + R_N.$$

$$e = \sum_{n=0}^{N} \frac{1}{n!} + \sum_{m \ge N+1} \frac{1}{m!}$$

Multiply by N!:

$$N!e = \sum_{n=0}^{N} \frac{N!}{n!} + \sum_{m \ge N+1} \frac{N!}{m!}$$

Set

$$B_N = N!,$$
 $A_N = \sum_{n=0}^{N} \frac{N!}{n!},$ $R_N = \sum_{m \ge N+1} \frac{N!}{m!},$

so that

$$B_N e = A_N + R_N.$$

$$e = \sum_{n=0}^{N} \frac{1}{n!} + \sum_{m \ge N+1} \frac{1}{m!}$$

Multiply by N!:

$$N!e = \sum_{n=0}^{N} \frac{N!}{n!} + \sum_{m \ge N+1} \frac{N!}{m!}$$

Set

$$B_N = N!, \qquad A_N = \sum_{n=0}^N \frac{N!}{n!}, \quad R_N = \sum_{m \ge N+1} \frac{N!}{m!},$$

so that

$$B_N e = A_N + R_N.$$

Then A_N and B_N are in \mathbf{Z} and

$$0 < R_N = \frac{1}{N+1} + \frac{1}{(N+1)(N+2)} + \dots < \frac{e}{N+1}$$

In the formula

 $B_N e - A_N = R_N,$

the numbers A_N and $B_N = N!$ are integers, while the right hand side is > 0 and tends to 0 when N tends to infinity. Hence N! e is not an integer, therefore e is irrational.

Then A_N and B_N are in ${f Z}$ and

$$0 < R_N = \frac{1}{N+1} + \frac{1}{(N+1)(N+2)} + \dots < \frac{e}{N+1}$$

In the formula

$$B_N e - A_N = R_N,$$

the numbers A_N and $B_N = N!$ are integers, while the right hand side is > 0 and tends to 0 when N tends to infinity. Hence $N! \ e$ is not an integer, therefore e is irrational.

Then A_N and B_N are in ${f Z}$ and

$$0 < R_N = \frac{1}{N+1} + \frac{1}{(N+1)(N+2)} + \dots < \frac{e}{N+1}$$

In the formula

$$B_N e - A_N = R_N,$$

the numbers A_N and $B_N = N!$ are integers, while the right hand side is > 0 and tends to 0 when N tends to infinity. Hence N! e is not an integer, therefore e is irrational. C.L Siegel (1949) : irrationality of e^{-1}

$$N!e^{-1} = \sum_{n=0}^{N} \frac{(-1)^n N!}{n!} + \sum_{m \ge N+1} \frac{(-1)^m N!}{m!} \cdot$$

C.L. Siegel (1896 - 1981)

Take for N a large odd integer and set

$$A_N = \sum_{n=0}^{N} \frac{(-1)^n N!}{n!} \cdot$$

Then $A_N \in \mathbf{Z}$ and

$$A_N < N! e^{-1} < A_N + \frac{1}{N+1}$$

Hence e^{-1} is irrational.

-ロト 4 昼 ト 4 音 ト 4 目 - つえで

e is not a quadratic irrationality (Liouville, 1840) Write the quadratic equation as $ae + b + ce^{-1} = 0$.

$$bN! + \sum_{n=0}^{N} \left(a + (-1)^n c \right) \frac{N!}{n!}$$

= $-\sum_{k \ge 0} \left(a + (-1)^{N+1+k} c \right) \cdot \frac{N!}{(N+1+k)!}$

Using Fourier's argument, we deduce that the LHS and RHS are 0 for any sufficiently large N.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta = a/b$. Then for any $p/q \in \mathbf{Q}$ with $p/q \neq \vartheta$ we have

$$|q\vartheta - p| \ge \frac{1}{b}$$

Proof : $|qa - pb| \ge 1$.

Consequence. Let $\vartheta \in \mathbf{R}$. Assume that for any $\epsilon > 0$, there exists $p/q \in \mathbf{Q}$ with

$$0 < |q\vartheta - p| < \epsilon.$$

Then ϑ is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta = a/b$. Then for any $p/q \in \mathbf{Q}$ with $p/q \neq \vartheta$ we have

$$|q\vartheta - p| \ge \frac{1}{b}$$

Proof : $|qa - pb| \ge 1$.

Consequence. Let $artheta \in {f R}.$ Assume that for any $\epsilon>0$, there exists $p/q\in {f Q}$ with

$$0 < |q\vartheta - p| < \epsilon.$$

Then ϑ is irrational.

Irrationality proof

Let $\vartheta \in \mathbf{Q}$, say $\vartheta = a/b$. Then for any $p/q \in \mathbf{Q}$ with $p/q \neq \vartheta$ we have

$$|q\vartheta - p| \ge \frac{1}{b}$$

Proof : $|qa - pb| \ge 1$.

Consequence. Let $\vartheta \in \mathbf{R}$. Assume that for any $\epsilon > 0$, there exists $p/q \in \mathbf{Q}$ with

$$0 < |q\vartheta - p| < \epsilon.$$

Then ϑ is irrational.

 $0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{with} \quad \epsilon_n \to 0$

is irrational.

Conversely, given $\vartheta \in \mathbf{R} \setminus \mathbf{Q}$, there exists a sequence $(p_n/q_n)_{n \geq 0}$ with

$$0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{and} \quad \epsilon_n \to 0.$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number Q > 1, there exists $p/q \in \mathbf{Q}$ with

$$|q\vartheta - p| \le rac{1}{Q}$$
 and $0 < q < Q$.

Hence, for $\vartheta \notin \mathbb{Q}$, there exists a sequence $(p_n/q_n)_{n\geq 0}$ with

$$0 < |q_n artheta - p_n| < rac{1}{q_n} \quad ext{and} \quad q_n o \infty.$$

うくぐ

 $0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{with} \quad \epsilon_n \to 0$

is irrational.

Conversely, given $\vartheta \in \mathbf{R} \setminus \mathbf{Q}$, there exists a sequence $(p_n/q_n)_{n \geq 0}$ with

$$0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{and} \quad \epsilon_n \to 0.$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number Q > 1, there exists $p/q \in \mathbf{Q}$ with

$$|q\vartheta - p| \le rac{1}{Q}$$
 and $0 < q < Q$.

Hence, for $\vartheta \notin \mathbb{Q}$, there exists a sequence $(p_n/q_n)_{n\geq 0}$ with

$$0 < |q_n artheta - p_n| < rac{1}{q_n} \quad ext{and} \quad q_n o \infty.$$

うくぐ

$$0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{with} \quad \epsilon_n \to 0$$

is irrational.

Conversely, given $\vartheta \in \mathbf{R} \setminus \mathbf{Q}$, there exists a sequence $(p_n/q_n)_{n \geq 0}$ with

$$0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{and} \quad \epsilon_n \to 0.$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number Q > 1, there exists $p/q \in \mathbf{Q}$ with

$$|q \vartheta - p| \leq \frac{1}{Q} \quad \text{and} \quad 0 < q < Q.$$

Hence, for $\vartheta \notin \mathbb{Q}$, there exists a sequence $(p_n/q_n)_{n\geq 0}$ with

$$0 < |q_n artheta - p_n| < rac{1}{q_n} \quad ext{and} \quad q_n o \infty.$$

 $0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{with} \quad \epsilon_n \to 0$

is irrational.

Conversely, given $\vartheta \in \mathbf{R} \setminus \mathbf{Q}$, there exists a sequence $(p_n/q_n)_{n \geq 0}$ with

$$0 < |q_n \vartheta - p_n| < \epsilon_n \quad \text{and} \quad \epsilon_n \to 0.$$

More precisely, given $\vartheta \in \mathbf{R}$, for each real number Q > 1, there exists $p/q \in \mathbf{Q}$ with

$$|q\vartheta - p| \leq \frac{1}{Q} \quad \text{and} \quad 0 < q < Q.$$

Hence, for $\vartheta \notin \mathbf{Q}$, there exists a sequence $(p_n/q_n)_{n \geq 0}$ with

$$0 < |q_n \vartheta - p_n| < \frac{1}{q_n} \quad \text{and} \quad q_n \to \infty.$$

Gustave Lejeune–Dirichlet (1805 – 1859)

G. Dirichlet

1842 : Box (pigeonhole) principle $A map f : E \rightarrow F$ with CardE > CardF is not injective. $A map f : E \rightarrow F$ with CardE < CardF is not surjective.

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆</p>

Pigeonhole Principle

More holes than pigeons

More pigeons than holes

Existence of rational approximations For any $\vartheta \in \mathbf{R}$ and any real number Q > 1, there exists $p/q \in \mathbf{Q}$ with

$$|q\vartheta - p| \le \frac{1}{Q}$$

and 0 < q < Q.

Proof. For simplicity assume $Q \in \mathbb{Z}$. Take $E = \{0, \{\vartheta\}, \{2\vartheta\}, \dots, \{(Q-1)\vartheta\}, 1\} \subset [0,1],$ where $\{x\}$ denotes the fractional part of x, F is the partition $\left[0, \frac{1}{Q}\right), \left[\frac{1}{Q}, \frac{2}{Q}\right), \dots, \left[\frac{Q-2}{Q}, \frac{Q-1}{Q}\right), \left[\frac{Q-1}{Q}, 1\right],$ of [0, 1], so that

 $\operatorname{Card} E = Q + 1 > Q = \operatorname{Card} F,$

and $f: E \to F$ maps $x \in E$ to $I \in F$ with $J \ni \mathfrak{g}$.

Existence of rational approximations For any $\vartheta \in \mathbf{R}$ and any real number Q > 1, there exists $p/q \in \mathbf{Q}$ with

$$|q\vartheta - p| \le \frac{1}{Q}$$

and $0 < q < \overline{Q}$.

Proof. For simplicity assume $Q \in \mathbf{Z}$. Take

$$E = \{0, \{\vartheta\}, \{2\vartheta\}, \dots, \{(Q-1)\vartheta\}, 1\} \subset [0, 1]$$

where $\{x\}$ denotes the fractional part of x, F is the partition

$$\left[0,\frac{1}{Q}\right), \left[\frac{1}{Q},\frac{2}{Q}\right), \ldots, \left[\frac{Q-2}{Q},\frac{Q-1}{Q}\right), \left[\frac{Q-1}{Q},1\right],$$

of [0,1], so that

 $\operatorname{Card} E = Q + 1 > Q = \operatorname{Card} F$,

and $f: E \to F$ maps $x \in E$ to $I \in F$ with $I \ni x$.

Hermann Minkowski (1864 – 1909)

H. Minkowski

1896 : Geometry of numbers. The set $C = \{(u, v) \in \mathbf{R}^2 ; |v| \le Q, |v\vartheta - u| \le 1/Q\}$ is convex, symmetric, compact, with volume 4. Hence $C \cap \mathbf{Z}^2 \ne \{(0, 0)\}.$

Adolf Hurwitz (1859 – 1919)

A. Hurwitz

1891 For any $\vartheta \in \mathbf{R} \setminus \mathbf{Q}$, there exists a sequence $(p_n/q_n)_{n\geq 0}$ of rational numbers with

$$0 < |q_n\vartheta - p_n| < \frac{1}{\sqrt{5}q_n}$$

and $q_n \rightarrow \infty$. Methods : Continued fractions, Farey sections.

Best possible for the Golden ratio

$$\frac{1+\sqrt{5}}{2} = 1.618\,033\,988\,749\,9\dots$$

Irrationality criterion

Let ϑ be a real number. The following conditions are equivalent.

(i) ϑ is irrational.

(ii) For any $\epsilon > 0$, there exists $p/q \in \mathbf{Q}$ such that

$$0 < \left|\vartheta - \frac{p}{q}\right| < \frac{\epsilon}{q}$$

(iii) For any real number Q > 1, there exists an integer q in the interval $1 \le q < Q$ and there exists an integer p such that

$$0 < \left|\vartheta - \frac{p}{q}\right| < \frac{1}{qQ}$$

(iv) There exist infinitely many $p/q \in \mathbf{Q}$ satisfying

$$\left|\vartheta - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}$$

Irrationality criterion (continued)

Let ϑ be a real number. The following conditions are equivalent.

(i) ϑ is irrational.

(ii)' For any $\epsilon > 0$, there exist two linearly independent linear forms

 $L_0(X_0, X_1) = a_0 X_0 + b_0 X_1$ and $L_1(X_0, X_1) = a_1 X_0 + b_1 X_1$,

with rational integer coefficients, such that

 $\max\left\{\left|L_0(1,\vartheta)\right|, \left|L_1(1,\vartheta)\right|\right\} < \epsilon.$

Proof of (ii) \iff (ii)' (ii) For any $\epsilon > 0$, there exists $p/q \in \mathbf{Q}$ such that

$$0 < \left|\vartheta - \frac{p}{q}\right| < \frac{\epsilon}{q}$$

(ii)' For any $\epsilon > 0$, there exist two linearly independent linear forms L_0 , L_1 in $\mathbb{Z}X_0 + \mathbb{Z}X_1$ such that

 $\max\left\{\left|L_0(1,\vartheta)\right|, \left|L_1(1,\vartheta)\right|\right\} < \epsilon.$

Proof of (ii)' \implies (ii)

Since L_0 , L_1 are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $pX_0 - qX_1$. Proof of (ii) \Longrightarrow (ii') Using (ii), set $L_0(X_0, X_1) = pX_0 - qX_1$, and use (ii) again with ϵ replaced by $|q\vartheta - p|$.

Proof of (ii) \iff (ii)' (ii) For any $\epsilon > 0$, there exists $p/q \in \mathbf{Q}$ such that

$$0 < \left|\vartheta - \frac{p}{q}\right| < \frac{\epsilon}{q}$$

(ii)' For any $\epsilon > 0$, there exist two linearly independent linear forms L_0 , L_1 in $\mathbb{Z}X_0 + \mathbb{Z}X_1$ such that

$$\max\left\{\left|L_0(1,\vartheta)\right|, \left|L_1(1,\vartheta)\right|\right\} < \epsilon.$$

Proof of (ii)' \implies (ii) Since L_0 , L_1 are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $pX_0 - qX_1$. Proof of (ii) \implies (ii') Using (ii), set $L_0(X_0, X_1) = pX_0 - qX_1$, and use (ii) again with ϵ replaced by $|q\vartheta - p|$.

Proof of (ii) \iff (ii)' (ii) For any $\epsilon > 0$, there exists $p/q \in \mathbf{Q}$ such that

$$0 < \left|\vartheta - \frac{p}{q}\right| < \frac{\epsilon}{q}$$

(ii)' For any $\epsilon > 0$, there exist two linearly independent linear forms L_0 , L_1 in $\mathbb{Z}X_0 + \mathbb{Z}X_1$ such that

$$\max\left\{\left|L_0(1,\vartheta)\right|, \left|L_1(1,\vartheta)\right|\right\} < \epsilon.$$

Proof of (ii)' \implies (ii) Since L_0 , L_1 are linearly independent, one at least of them does not vanish at $(1, \vartheta)$. Write it $pX_0 - qX_1$. Proof of (ii) \implies (ii') Using (ii), set $L_0(X_0, X_1) = pX_0 - qX_1$, and use (ii) again with ϵ replaced by $|q\vartheta - p|$.

Irrationality of at least one number

Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers. The following conditions are equivalent

(i) One at least of $\vartheta_1, \ldots, \vartheta_m$ is irrational.

(ii) For any $\epsilon > 0$, there exist p_1, \ldots, p_m, q in **Z** with q > 0 such that

$$0 < \max_{1 \leq i \leq m} \left| \vartheta_i - \frac{p_i}{q} \right| < \frac{\epsilon}{q} \cdot$$

(iii) For any $\epsilon > 0$, there exist m + 1 linearly independent linear forms L_0, \ldots, L_m with coefficients in \mathbb{Z} in m + 1variables X_0, \ldots, X_m , such that

$$\max_{1 \le k \le m} |L_k(1, \vartheta_1, \dots, \vartheta_m)| < \epsilon.$$

(iv) For any real number Q > 1, there exists (p_1, \ldots, p_m, q) in \mathbb{Z}^{m+1} such that $1 \le q \le Q$ and

$$0 < \max_{1 \le i \le m} \left| \vartheta_i - \frac{p_i}{q} \right| \le \frac{1}{q Q^{1/m}} \cdot \sum_{i \le j \le n} \frac{1}{q Q^{1/m}} \cdot \sum_{i \le n$$

Linear independence

Irrationality of ϑ : means that $1,\vartheta$ are linearly independent over ${\bf Q}.$

Irrationality of at least one of $\vartheta_1, \ldots, \vartheta_m$: means $(\vartheta_1, \ldots, \vartheta_m) \notin \mathbb{Q}^m$. Also : means that the dimension of the \mathbb{Q} -vector space spanned by $1, \vartheta_1, \ldots, \vartheta_m$ is ≥ 2 .

Linear independence of $1, \vartheta_1, \ldots, \vartheta_m$ over \mathbf{Q} : means that for any hyperplane $H: a_0z_0 + \cdots + a_mz_m = 0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_i \in \mathbf{Q}$), the point $(1, \vartheta_1, \ldots, \vartheta_m)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent over \mathbb{Q} .
Linear independence

Irrationality of ϑ : means that $1,\vartheta$ are linearly independent over ${\bf Q}.$

Irrationality of at least one of $\vartheta_1, \ldots, \vartheta_m$: means $(\vartheta_1, \ldots, \vartheta_m) \notin \mathbf{Q}^m$. Also : means that the dimension of the **Q**-vector space spanned by $1, \vartheta_1, \ldots, \vartheta_m$ is ≥ 2 .

Linear independence of $1, \vartheta_1, \ldots, \vartheta_m$ over \mathbf{Q} : means that for any hyperplane $H: a_0z_0 + \cdots + a_mz_m = 0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_i \in \mathbf{Q}$), the point $(1, \vartheta_1, \ldots, \vartheta_m)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent over \mathbb{Q} .

Linear independence

Irrationality of ϑ : means that $1,\vartheta$ are linearly independent over ${\bf Q}.$

Irrationality of at least one of $\vartheta_1, \ldots, \vartheta_m$: means $(\vartheta_1, \ldots, \vartheta_m) \notin \mathbf{Q}^m$. Also : means that the dimension of the **Q**-vector space spanned by $1, \vartheta_1, \ldots, \vartheta_m$ is ≥ 2 .

Linear independence of $1, \vartheta_1, \ldots, \vartheta_m$ over \mathbf{Q} : means that for any hyperplane $H: a_0z_0 + \cdots + a_mz_m = 0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_i \in \mathbf{Q}$), the point $(1, \vartheta_1, \ldots, \vartheta_m)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent over \mathbb{Q} .

Linear independence

Irrationality of ϑ : means that $1, \vartheta$ are linearly independent over \mathbf{Q} .

Irrationality of at least one of $\vartheta_1, \ldots, \vartheta_m$: means $(\vartheta_1, \ldots, \vartheta_m) \notin \mathbf{Q}^m$. Also : means that the dimension of the **Q**-vector space spanned by $1, \vartheta_1, \ldots, \vartheta_m$ is ≥ 2 .

Linear independence of $1, \vartheta_1, \ldots, \vartheta_m$ over \mathbf{Q} : means that for any hyperplane $H: a_0z_0 + \cdots + a_mz_m = 0$ of \mathbf{R}^{m+1} rational over \mathbf{Q} (i.e. $a_i \in \mathbf{Q}$), the point $(1, \vartheta_1, \ldots, \vartheta_m)$ does not belong to H.

Transcendence of ϑ : means that $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent over **Q**.

Charles Hermite (1822 – 1901)

Charles Hermite

1873 : Hermite's method for proving linear independence. Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers and a_0, a_1, \ldots, a_m rational integers, not all of which are 0. The goal is to prove that the number

 $L = a_0 + a_1\vartheta_1 + \dots + a_m\vartheta_m$

is not 0.

Hermite's idea is to approximate simultaneously $\vartheta_1, \ldots, \vartheta_m$ by rational numbers $p_1/q, \ldots, p_m/q$ with the same denominator q > 0.

$$L = a_0 + a_1 \vartheta_1 + \dots + a_m \vartheta_m$$

Let q, p_1, \ldots, p_m be rational integers with q > 0. For $1 \le k \le m$, set

$$\epsilon_k = q\vartheta_k - p_k.$$

Then qL = M + R with

$$M = a_0 q + a_1 p_1 + \dots + a_m p_m \in \mathbf{Z}$$

and

$$R = a_1 \epsilon_1 + \dots + a_m \epsilon_m \in \mathbf{R}.$$

If $M \neq 0$ and |R| < 1 we deduce $L \neq 0$.

Main difficulty : to check $M \neq 0$.

We wish to find a simultaneous rational approximation (q, p_1, \ldots, p_m) to $(\vartheta_1, \ldots, \vartheta_m)$ outside the hyperplane $a_0z_0 + a_1z_1 + \cdots + a_mz_m = 0$ of \mathbb{Q}^{m+1} .

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple $\mathbf{u} = (q, p_1, \dots, p_m)$ in $\mathbb{Z}^{m+1} \setminus \{0\}$, but m + 1 such tuples which are linearly independent.

Main difficulty : to check $M \neq 0$.

We wish to find a simultaneous rational approximation (q, p_1, \ldots, p_m) to $(\vartheta_1, \ldots, \vartheta_m)$ outside the hyperplane $a_0z_0 + a_1z_1 + \cdots + a_mz_m = 0$ of \mathbf{Q}^{m+1} .

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple $\mathbf{u} = (q, p_1, \dots, p_m)$ in $\mathbb{Z}^{m+1} \setminus \{0\}$, but m + 1 such tuples which are linearly independent.

Main difficulty : to check $M \neq 0$.

We wish to find a simultaneous rational approximation (q, p_1, \ldots, p_m) to $(\vartheta_1, \ldots, \vartheta_m)$ outside the hyperplane $a_0z_0 + a_1z_1 + \cdots + a_mz_m = 0$ of \mathbf{Q}^{m+1} .

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple $\mathbf{u} = (q, p_1, \dots, p_m)$ in $\mathbb{Z}^{m+1} \setminus \{0\}$, but m + 1 such tuples which are linearly independent.

Main difficulty : to check $M \neq 0$.

We wish to find a simultaneous rational approximation (q, p_1, \ldots, p_m) to $(\vartheta_1, \ldots, \vartheta_m)$ outside the hyperplane $a_0z_0 + a_1z_1 + \cdots + a_mz_m = 0$ of \mathbf{Q}^{m+1} .

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple $\mathbf{u} = (q, p_1, \dots, p_m)$ in $\mathbf{Z}^{m+1} \setminus \{0\}$, but m + 1 such tuples which are linearly independent.

Main difficulty : to check $M \neq 0$.

We wish to find a simultaneous rational approximation (q, p_1, \ldots, p_m) to $(\vartheta_1, \ldots, \vartheta_m)$ outside the hyperplane $a_0z_0 + a_1z_1 + \cdots + a_mz_m = 0$ of \mathbf{Q}^{m+1} .

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple $\mathbf{u} = (q, p_1, \dots, p_m)$ in $\mathbf{Z}^{m+1} \setminus \{0\}$, but m + 1 such tuples which are linearly independent.

Rational approximations (following Michel Laurent)

Let $(\vartheta_1, \ldots, \vartheta_m) \in \mathbf{R}^m$. Then the following conditions are equivalent. (i) The numbers $1, \vartheta_1, \ldots, \vartheta_m$ are linearly independent over \mathbf{Q} . (ii) For any $\epsilon > 0$, there exist m + 1 linearly independent elements $\mathbf{u}_0, \mathbf{u}_1, \ldots, \mathbf{u}_m$ in \mathbf{Z}^{m+1} , say

$$\mathbf{u}_i = (q_i, p_{1i}, \dots, p_{mi}) \quad (0 \le i \le m)$$

with $q_i > 0$, such that

$$\max_{1 \le k \le m} \left| \vartheta_k - \frac{p_{ki}}{q_i} \right| \le \frac{\epsilon}{q_i} \quad (0 \le i \le m).$$

Hermite – Lindemann Theorem

Hermite (1873) : transcendence of *e*.

Lindemann (1882) : transcendence of π .

Hermite – Lindemann Theorem

For any non-zero complex number z, at least one of the two numbers z, e^z is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Hermite – Lindemann Theorem

Hermite (1873) : transcendence of *e*.

Lindemann (1882) : transcendence of π .

Hermite – Lindemann Theorem For any non–zero complex number z, at least one of the two numbers z, e^z is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Hermite – Lindemann Theorem

Hermite (1873) : transcendence of *e*.

Lindemann (1882) : transcendence of π .

Hermite – Lindemann Theorem For any non–zero complex number z, at least one of the two numbers z, e^z is transcendental.

Corollaries : transcendence of $\log \alpha$ and e^{β} for α and β non-zero algebraic numbers with $\log \alpha \neq 0$.

Lindemann – Weierstraß Theorem (1888)

Let β_1, \ldots, β_n be algebraic numbers which are linearly independent over **Q**. Then the numbers $e^{\beta_1}, \ldots, e^{\beta_n}$ are algebraically independent over **Q**.

Equivalent to :

Let $\alpha_1, \ldots, \alpha_m$ be distinct algebraic numbers. Then the numbers $e^{\alpha_1}, \ldots, e^{\alpha_m}$ are linearly independent over \mathbf{Q} .

Lindemann – Weierstraß Theorem (1888)

Let β_1, \ldots, β_n be algebraic numbers which are linearly independent over **Q**. Then the numbers $e^{\beta_1}, \ldots, e^{\beta_n}$ are algebraically independent over **Q**.

Equivalent to : Let $\alpha_1, \ldots, \alpha_m$ be distinct algebraic numbers. Then the numbers $e^{\alpha_1}, \ldots, e^{\alpha_m}$ are linearly independent over \mathbf{Q} .

Carl Ludwig Siegel (1896 – 1981)

Siegel's method for proving linear independence. Let $\vartheta_1, \ldots, \vartheta_m$ be complex numbers.

C.L. Siegel

1929 : Assume that, for any $\epsilon > 0$, there exists m + 1 linearly independent linear forms L_0, \ldots, L_m , with coefficients in \mathbf{Z} , such that

 $\max_{0 \le k \le m} |L_k(1, \vartheta_1, \dots, \vartheta_m)| < \frac{\epsilon}{H^{m-1}}$

where $H = \max_{0 \le k \le m} H(L_k).$

Then $1, \vartheta_1, \ldots, \vartheta_m$ are linearly independent over **Q**.

Linear independence, following Siegel (1929) Height of a linear form : $H(L) = \max | \text{coefficients of } L |$.

Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbb{Z}X_0 + \mathbb{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$.

non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m the matrix, write \triangle as a linear combination with integer

Linear independence, following Siegel (1929) Height of a linear form : $H(L) = \max |\text{coefficients of } L|$. Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbf{Z}X_0 + \mathbf{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$.

non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m the matrix, write Δ as a linear combination with integer

Linear independence, following Siegel (1929) Height of a linear form : $H(L) = \max |coefficients of L|$. Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbf{Z}X_0 + \mathbf{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$. Sketch of proof of Siegel's criterion. Assume $1, \vartheta_1, \ldots, \vartheta_m$ are linearly dependent over \mathbf{Q} . Let $L \in \mathbf{Z}X_0 + \cdots + \mathbf{Z}X_m$ be a non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m the matrix, write Δ as a linear combination with integer

Linear independence, following Siegel (1929) Height of a linear form : $H(L) = \max |coefficients of L|$. Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbf{Z}X_0 + \mathbf{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$. Sketch of proof of Siegel's criterion. Assume $1, \vartheta_1, \ldots, \vartheta_m$ are linearly dependent over \mathbf{Q} . Let $L \in \mathbf{Z}X_0 + \cdots + \mathbf{Z}X_m$ be a non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m the matrix, write Δ as a linear combination with integer

coefficients of the $L_i(1, \vartheta_1, \ldots, \vartheta_m)$ ($1 \le i \le m$) and estimate the coefficients.

Linear independence, following Siegel (1929)

Height of a linear form : $H(L) = \max | \text{coefficients of } L |$.

Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbf{Z}X_0 + \mathbf{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$.

Sketch of proof of Siegel's criterion. Assume $1, \vartheta_1, \ldots, \vartheta_m$ are linearly dependent over \mathbf{Q} . Let $L \in \mathbf{Z}X_0 + \cdots + \mathbf{Z}X_m$ be a non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among L_0, \ldots, L_m , select m linear forms, say L_1, \ldots, L_m , which constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m the matrix, write Δ as a linear combination with integer

Linear independence, following Siegel (1929)

Height of a linear form : $H(L) = \max | \text{coefficients of } L |$.

Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbf{Z}X_0 + \mathbf{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$.

Sketch of proof of Siegel's criterion. Assume $1, \vartheta_1, \ldots, \vartheta_m$ are linearly dependent over \mathbf{Q} . Let $L \in \mathbf{Z}X_0 + \cdots + \mathbf{Z}X_m$ be a non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among L_0, \ldots, L_m , select m linear forms, say L_1, \ldots, L_m , which constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m is a non-zero integer, hence its absolute value is > 1. Inverting the matrix, write Δ as a linear combination with integer

Linear independence, following Siegel (1929)

Height of a linear form : $H(L) = \max | \text{coefficients of } L |$.

Example : m = 1 (irrationality criterion). A real number ϑ is irrational if and only, for any $\epsilon > 0$, if there exists two linearly independent linear forms $L_0(X_0, X_1)$ and $L_1(X_0, X_1)$ in $\mathbf{Z}X_0 + \mathbf{Z}X_1$ such that $|L_i(1, \vartheta)| < \epsilon$.

Sketch of proof of Siegel's criterion. Assume $1, \vartheta_1, \ldots, \vartheta_m$ are linearly dependent over \mathbf{Q} . Let $L \in \mathbf{Z}X_0 + \cdots + \mathbf{Z}X_m$ be a non-zero linear form vanishing at $(1, \vartheta_1, \ldots, \vartheta_m)$. Among L_0, \ldots, L_m , select m linear forms, say L_1, \ldots, L_m , which constitute with L a complete system of linearly independent forms in m+1 variables. The determinant Δ of L, L_1, \ldots, L_m is a non-zero integer, hence its absolute value is > 1. Inverting the matrix, write Δ as a linear combination with integer coefficients of the $L_i(1, \vartheta_1, \ldots, \vartheta_m)$ $(1 \le i \le m)$ and estimate the coefficients.

Criterion of Yu. V. Nesterenko Let $\vartheta_1, \ldots, \vartheta_m$ be complex numbers.

Yu.V.Nesterenko (1985)

Let m be a positive integer and α a positive real number satisfying $\alpha > m - 1$. Assume there is a sequence $(L_n)_{n\geq 0}$ of linear forms in $\mathbf{Z}X_0 + \mathbf{Z}X_1 + \ldots + \mathbf{Z}X_m$ of height $\leq e^n$ such that

 $\overline{|L_n(1,\vartheta_1,\ldots,\vartheta_m)|} = e^{-\alpha n + o(n)}.$

Then $1, \vartheta_1, \ldots, \vartheta_m$ are linearly independent over \mathbf{Q} . Example : m = 1 – irrationality criterion.

Simplified proof of Nesterenko's Theorem

Francesco Amoroso

Pierre Colmez

Refinements : Raffaele Marcovecchio, Pierre Bel (2008).

Irrationality measure for $\log 2$: history

$$\log 2 - \frac{p}{q} \bigg| > \frac{1}{q^{\mu}}$$

Hermite–Lindemann, Mahler, Baker, Gel'fond, Feldman,...:transcendence measuresG. Rhin 1987E.A. Rukhadze 1987R. Marcovecchio 2008 $\mu(\log 2) < 3.89$ $\mu(\log 2) < 3.57$

Recent developments

Stéphane Fischler and Wadim Zudilin, A refinement of Nesterenko's linear independence criterion with applications to zeta values.Math. Annalen, to appear.Preprint MPIM 2009-35.

A complex number ϑ is *transcendental* if and only if $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent (over **Q**).

Complex numbers $\vartheta_1, \ldots, \vartheta_m$ are algebraically independent if and only if the numbers $\vartheta_1^{i_1} \cdots \vartheta_m^{i_m}$, $((i_1, \ldots, i_m) \in \mathbb{Z}_{\geq 0}^m$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

A complex number ϑ is *transcendental* if and only if $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent (over **Q**).

Complex numbers $\vartheta_1, \ldots, \vartheta_m$ are algebraically independent if and only if the numbers $\vartheta_1^{i_1} \cdots \vartheta_m^{i_m}$, $((i_1, \ldots, i_m) \in \mathbb{Z}_{\geq 0}^m$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

A complex number ϑ is *transcendental* if and only if $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent (over **Q**).

Complex numbers $\vartheta_1, \ldots, \vartheta_m$ are algebraically independent if and only if the numbers $\vartheta_1^{i_1} \cdots \vartheta_m^{i_m}$, $((i_1, \ldots, i_m) \in \mathbb{Z}_{\geq 0}^m$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

A complex number ϑ is *transcendental* if and only if $1, \vartheta, \vartheta^2, \ldots, \vartheta^n \ldots$ are linearly independent (over **Q**).

Complex numbers $\vartheta_1, \ldots, \vartheta_m$ are algebraically independent if and only if the numbers $\vartheta_1^{i_1} \cdots \vartheta_m^{i_m}$, $((i_1, \ldots, i_m) \in \mathbb{Z}_{\geq 0}^m$ are linearly independent.

Hence, criteria for linear independence yield criteria for transcendence and for algebraic independence.

Amarisa Chantanasiri

Criteria for linear independence, transcendence and algebraic independence

Université P. et M. Curie (Paris VI), Ph.D. 2011?

New criterion for algebraic independence

Let $\vartheta_1, \ldots, \vartheta_m$ be real numbers and $(\tau_d)_{d \ge 1}$, $(\eta_d)_{d \ge 1}$ two sequences of positive real numbers satisfying

$$\frac{\tau_d}{d^{m-1}(1+\eta_d)} \longrightarrow +\infty$$

Assume that for all sufficiently large d, there is a sequence $(P_n)_{n \ge n_0(d)}$ of polynomials in $\mathbb{Z}[X_1, \ldots, X_m]$, where P_n has degree $\le d$ and height $\le e^n$, such that

$$e^{-(\tau_d+\eta_d)n} \le |P_n(\vartheta_1,\ldots,\vartheta_m)| \le e^{-\tau_d n}$$

Then $\vartheta_1, \ldots, \vartheta_m$ are algebraically independent.

Mahidol University, Bangkok October 29-31, 2009 Franco-Thai Seminar in Pure and Applied Mathematics, http://www.sc.mahidol.ac.th/cem/franco_thai/

Criteria for linear independence and transcendence, following Yuri Nesterenko, Stéphane Fischler, Wadim Zudilin and Amarisa Chantanasiri

Michel Waldschmidt

Institut de Mathématiques de Jussieu & Paris VI http://www.math.jussieu.fr/~miw/

Lecture given on October 31, 2009.