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Normal Numbers

On m consecutive integers (number theory)

• Any two consecutive integers are relatively prime.

• Consider three consecutive integers

for 3, 4, 5 : any two of them are relatively prime

for 2, 3, 4 : only 3 is prime to 2 and to 4.

In the general case n, n+ 1, n+ 2, the middle term is
relatively prime to each other.

• Given four consecutive integers n, n+ 1, n+ 2, n+ 3, the
odd number among n+ 1, n+ 2 is relatively prime to the
three remaining integers. Hence one at least of the four
numbers is relatively prime to the three others.
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On m consecutive integers

• Given five consecutive integers

n, n+ 1, n+ 2, n+ 3, n+ 4

the only possible common prime factors between two of
them are 2 and 3 , and one at least of the odd elements is
not divisible by 3. Hence again one at least of the five
numbers is relatively prime to the four others.

• After 2, 3, 4, 5, continue with 6, 7, 8 . . . up to 16 – done
by S.S. Pillai in 1940.
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On 17 consecutive integers (S.S. Pillai, 1940)

• In every set of not more than 16 consecutive integers
there is a number which is prime to all the others.

• This is not true for 17 consecutive numbers : take
n = 2184 and consider the 17 consecutive integers
2184, . . . , 2200. Then any two of them have a gcd > 1.

• One produces infinitely many such sets of 17 consecutive
numbers by taking

n+N, n+N + 1, . . . , n+N + 16

or
N − n− 16, n−N − 15, . . . , N − n

where N is a multiple of 2 · 3 · 5 · 7 · 11 · 13 = 30 030.
http://www.math.jussieu.fr/∼miw/
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Application to a Diophantine equation

n(n+ 1) · · · (n+m− 1) = yr

No solution n, y when
2 ≤ m ≤ 16 and
r ≥ (m+ 3)/2.

For any r ≥ 3 there is at
most finitely many solutions.

For m ≥ 2 and r ≥ c(m),
there is no solution.

More recent work, esp. by
T.N. Shorey
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Waring’s Problem

Edward Waring
(1736 - 1798)

In 1770, a few months before J.L. Lagrange
solved a conjecture of Bachet (1621)
and Fermat (1640) by proving
that every positive integer is the
sum of at most four squares of integers,
E. Waring wrote :

“Every integer is a cube or the sum of two, three, . . .nine
cubes ; every integer is also the square of a square, or the
sum of up to nineteen such ; and so forth. Similar laws may
be affirmed for the correspondingly defined numbers of
quantities of any like degree.”
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Waring’s functions g(k) and G(k)

• Waring’s function g is defined as follows : For any integer
k ≥ 2, g(k) is the least positive integer s such that any
positive integer N can be written xk1 + · · ·+ xks .

• Waring’s function G is defined as follows : For any integer
k ≥ 2, G(k) is the least positive integer s such that any
sufficiently large positive integer N can be written
xk1 + · · ·+ xks .
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David Hilbert (1909)

David Hilbert
(1862 - 1943)

g(k) and G(k) are finite

G(k) ≤ g(k).
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g(2) = G(2) = 4

Joseph-Louis Lagrange
(1736–1813)

Solution of a conjecture of
Bachet and Fermat in 1770 :

Every positive integer is the
sum of at most four squares
of integers.

No integer congruent to −1 modulo 8 can be a sum of three
squares of integers.
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Sums of squares modulo 8

x ≡ 0 1 2 3 4 5 6 7
x2 ≡ 0 1 4 1 0 1 4 1

A square is congruent to 0, 1 or 4 modulo 8.

Sums : 0 + 0, 0 + 1, 1 + 1, 0 + 4, 1 + 4, 4 + 4.

A sum of two squares is congruent to 0, 1 , 2, 4 or 5 modulo
8.

A sum of three squares is not congruent to 7 modulo 8.
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n = x4
1 + · · · + x4

g : g(4) = 19

Any positive integer is the sum of at most 19 biquadrates
R. Balasubramanian, J-M. Deshouillers, F. Dress (1986).
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Previous estimates for g(4)

g(4) ≤ 53 (J. Liouville, 1859)

g(4) ≤ 47 (S. Réalis, 1878)

g(4) ≤ 45 (É. Lucas, 1878)

g(4) ≤ 41 (É. Lucas, 1878)

g(4) ≤ 39 (A. Fleck, 1906)

g(4) ≤ 38 (E. Landau, 1907)

g(4) ≤ 37 (A. Wieferich, 1909)

g(4) ≤ 35 (L.E. Dickson, 1933)

g(4) ≤ 22 (H.E. Thomas, 1973)

g(4) ≤ 21 (R. Balasubramanian, 1979)

g(4) ≤ 20 (R. Balasubramanian, 1985)
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n = x4
1 + · · · + x4

G : G(4) = 16

Kempner (1912) G(4) ≥ 16
16m · 31 need at least 16
biquadrates

Hardy Littlewood (1920)
G(4) ≤ 21
circle method, singular series

Davenport, Heilbronn,
Esterman (1936) G(4) ≤ 17

Harold Davenport
(1907 - 1969)

Davenport (1939) G(4) = 16

http://www.math.jussieu.fr/∼miw/



Consecutive integers
Waring’s Problem

Diophantine equations
Normal Numbers

Circle method

Srinivasa Ramanujan
(1887 – 1920)

G.H. Hardy
(1877 – 1947)

J.E. Littlewood
(1885 – 1977)

Hardy, ICM Stockholm, 1916
Hardy and Ramanujan (1918) : partitions
Hardy and Littlewood (1920 – 1928) :

Some problems in Partitio Numerorum
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On Waring’s Problem : g(6) = 73

S.S. Pillai, 1940.

• Any positive integer N is sum of at most 73 sixth
powers : N = x6

1 + · · ·+ x6
s with s ≤ 73.

• Since 26 = 64, the integer N = 63 = 16 + · · ·+ 16 requires
at least 63 terms xi.

• Any decomposition of an integer N ≤ 728 = 36 − 1 as a
sum of sixth powers involves only 1 and 26.

• The decomposition as a sum of sixth powers of any
integer N ≤ 728 of the form 63 + k64 requires at least
63 + k terms.

• The number 703 = 63 + 64× 10 requires 63 + 10 = 73
terms.
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Previous estimates for g(6)

g(6) ≤ 970 (Kempner, 1912)

g(6) ≤ 478 (Baer, 1913)

g(6) ≤ 183 (James, 1934)

g(6) ≤ 73 (Pillai, 1940)
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Results on Waring’s Problem

g(2) = 4 J-L. Lagrange (1770)

g(3) = 9 A. Wieferich (1909)

g(4) = 19 R. Balasubramanian, J-M. Deshouillers,
F. Dress (1986)

g(5) = 37 Chen Jing Run (1964)

g(6) = 73 S.S. Pillai (1940)

g(7) = 143 L.E. Dickson (1936)
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Sequence of values of g(k)

1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384,
16673, 33203, 66190, 132055, 263619, 526502, 1051899,
2102137, 4201783, 8399828, 16794048, 33579681, 67146738,
134274541, 268520676, 536998744, 1073933573, 2147771272 . . .

Neil J. A. Sloane’s encyclopaedia
http ://www.research.att.com/∼njas/sequences/A002804

http://www.math.jussieu.fr/∼miw/
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The ideal Waring’s Theorem

For each integer k ≥ 2, define I(k) = 2k + [(3/2)k]− 2. It is
easy to show that g(k) ≥ I(k). Indeed, write

3k = 2kq + r with 0 < r < 2k, q = [(3/2)k],

and consider the integer

N = 2kq − 1 = (q − 1)2k + (2k − 1)1k.

Since N < 3k, writing N as a sum of k-th powers can
involve no term 3k, and since N < 2kq, it involves at most
(q − 1) terms 2k, all others being 1k ; hence it requires a
total number of at least (q − 1) + (2k − 1) = I(k) terms.
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involve no term 3k, and since N < 2kq, it involves at most
(q − 1) terms 2k, all others being 1k ; hence it requires a
total number of at least (q − 1) + (2k − 1) = I(k) terms.
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The ideal Waring’s Theorem

L.E. Dickson and S.S. Pillai proved independently in 1936
that g(k) = I(k), provided that r = 3k − 2kq satisfies

r ≤ 2k − q − 2.

The condition r ≤ 2k − q − 2 is satisfied for
3 ≤ k ≤ 471 600 000.
The conjecture, dating back to 1853, is
g(k) = I(k) = 2k + [(3/2)k]− 2 for any k ≥ 2. This is true
as soon as ∥∥∥∥∥

(
3

2

)k∥∥∥∥∥ ≥
(

3

4

)k
,

where ‖ · ‖ denote the distance to the nearest integer.
http://www.math.jussieu.fr/∼miw/



Consecutive integers
Waring’s Problem

Diophantine equations
Normal Numbers

The ideal Waring’s Theorem

L.E. Dickson and S.S. Pillai proved independently in 1936
that g(k) = I(k), provided that r = 3k − 2kq satisfies

r ≤ 2k − q − 2.

The condition r ≤ 2k − q − 2 is satisfied for
3 ≤ k ≤ 471 600 000.
The conjecture, dating back to 1853, is
g(k) = I(k) = 2k + [(3/2)k]− 2 for any k ≥ 2. This is true
as soon as ∥∥∥∥∥

(
3

2

)k∥∥∥∥∥ ≥
(

3

4

)k
,

where ‖ · ‖ denote the distance to the nearest integer.
http://www.math.jussieu.fr/∼miw/



Consecutive integers
Waring’s Problem

Diophantine equations
Normal Numbers

The ideal Waring’s Theorem

L.E. Dickson and S.S. Pillai proved independently in 1936
that g(k) = I(k), provided that r = 3k − 2kq satisfies

r ≤ 2k − q − 2.

The condition r ≤ 2k − q − 2 is satisfied for
3 ≤ k ≤ 471 600 000.
The conjecture, dating back to 1853, is
g(k) = I(k) = 2k + [(3/2)k]− 2 for any k ≥ 2. This is true
as soon as ∥∥∥∥∥

(
3

2

)k∥∥∥∥∥ ≥
(

3

4

)k
,

where ‖ · ‖ denote the distance to the nearest integer.
http://www.math.jussieu.fr/∼miw/



Consecutive integers
Waring’s Problem

Diophantine equations
Normal Numbers

The ideal Waring’s Theorem

L.E. Dickson and S.S. Pillai proved independently in 1936
that g(k) = I(k), provided that r = 3k − 2kq satisfies

r ≤ 2k − q − 2.

The condition r ≤ 2k − q − 2 is satisfied for
3 ≤ k ≤ 471 600 000.
The conjecture, dating back to 1853, is
g(k) = I(k) = 2k + [(3/2)k]− 2 for any k ≥ 2. This is true
as soon as ∥∥∥∥∥

(
3

2

)k∥∥∥∥∥ ≥
(

3

4

)k
,

where ‖ · ‖ denote the distance to the nearest integer.
http://www.math.jussieu.fr/∼miw/



Consecutive integers
Waring’s Problem

Diophantine equations
Normal Numbers

Mahler’s contribution

• The estimate∥∥∥∥∥
(

3

2

)k∥∥∥∥∥ ≥
(

3

4

)k
is valid for all sufficiently
large k.

Kurt Mahler
(1903 - 1988)

Hence the ideal Waring Theorem

g(k) = 2k + [(3/2)k]− 2

holds for all sufficiently large k.
http://www.math.jussieu.fr/∼miw/
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Waring’s function G(k)

• Recall that Waring’s function G is defined as follows : For
any integer k ≥ 2, G(k) is the least positive integer s such
that any sufficiently large positive integer N can be written
xk1 + · · ·+ xks .

• G(k) is known only in two cases : G(2) = 4 and
G(4) = 16.
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G(k)

The only values of G(k) which are known are G(2) = 4 and
G(4) = 16.

Yu. V. Linnik (1943) g(3) = 9, G(3) ≤ 7.

Other estimates for G(k), k ≥ 5 : Davenport, K.
Sambasiva Rao, V. Narasimhamurti, K. Thanigasalam ,
R.C. Vaughan. . .
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The state of the art for G(k)

G(2) = 4, G(4) = 16

4 ≤ G(3) ≤ 7
6 ≤ G(5) ≤ 17
9 ≤ G(6) ≤ 21
8 ≤ G(7) ≤ 33
32 ≤ G(8) ≤ 42
13 ≤ G(9) ≤ 50
12 ≤ G(10) ≤ 59
12 ≤ G(11) ≤ 67
16 ≤ G(12) ≤ 76

14 ≤ G(13) ≤ 84

15 ≤ G(14) ≤ 92

16 ≤ G(15) ≤ 100

64 ≤ G(16) ≤ 109

18 ≤ G(17) ≤ 117

27 ≤ G(18) ≤ 125

20 ≤ G(19) ≤ 134

25 ≤ G(20) ≤ 142

http://www.math.jussieu.fr/∼miw/
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On Waring’s Problem with exponents ≥ n

S.S. Pillai, 1940.

• For any integer n ≥ 2, denote by g2(n) the least positive
integer s such that any positive integer N can be written
xm1

1 + · · ·+ xms
s with mi ≥ n.

S.S. Pillai (1940) : explicit formula for g2(n), n ≥ 32.

• Proof of the lower bound g(n) ≥ 2n + h− 1 if 2n+h ≤ 3n.
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Lower bound for g2(n)

• The lower bound g2(n) ≥ 2n − 1 is trivial : take
N = 2n − 1.
• Any decomposition N = xm1

1 + · · ·+ xms
s with mi ≥ n of

a positive integer N < 3n has xi ∈ {1, 2}.
• Let h ≥ 1 satisfy 2n+h ≤ 3n. Consider the integer
N = 2n+h − 1. Its binary expansion is

N = 2n+h−1 + 2n+h−2 + · · ·+ 2 + 1,

hence it can be written

N = 2n+h−1 + 2n+h−2 + · · ·+ 2n + (2n − 1),

which is a sum of h numbers 2m with m ≥ n and 2n − 1
powers of 1.
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Value of g2(n) for n ≥ 32

One easily deduces g2(n) ≥ 2n + h− 1 as soon as h satisfies
2n+h ≤ 3n.
This condition on h is 2h ≤ (3/2)n, which means 2h ≤ In
with In = [(3/2)n].

Define

hn = [log In/ log 2] where In = [(3/2)n].

Pillai’s Theorem : For n ≥ 32, g2(n) = 2n + hn − 1.
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Square, cubes. . .

• A perfect power is an integer of the form ab where a ≥ 1
and b > 1 are positive integers.

• Squares :

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196 . . . . . .

• Cubes :

1, 8, 27, 64, 125, 216, 343, 512, 729, 1 000, 1 331 . . .

• Fifth powers :

1, 32, 243, 1 024, 3 125, 7 776, 16 807, 32 768 . . .
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Perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,
128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343,
361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784 . . .

Neil J. A. Sloane’s encyclopaedia
http ://www.research.att.com/∼njas/sequences/A001597http://www.math.jussieu.fr/∼miw/
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Pillai’s early work

In 1936 Pillai proved that for any fixed positive integers a
and b, both at least 2, the number of solutions (x, y) of the
Diophantine inequality 0 < ax − by ≤ c is asymptotically
equal to

(log c)2

2 log a log b

as c tends to infinity.
References :
Pillai, S. S. – On some Diophantine equations, J. Indian
Math. Soc., XVIII (1930), 291-295.
Pillai, S. S. – On Ax −By = C, J. Indian Math. Soc.
(N.S.), II (1936), 119–122.
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Connexion with some of Ramanujan’s work

It is remarkable that this
asymptotic value is related
to another problem which
Pillai studied later and
which originates in the
following claim by
Ramanujan :

The number of numbers of the form 2u · 3v less than n is

log(2n) log(3n)

2 log 2 log 3
·
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Number of integers aubv ≤ n

The number of numbers of the form au · bv less than n is
asymptotically

(log n)2

2 log a log b
·
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Perfect powers

The sequence of perfect powers starts with :
Write the sequence of perfect powers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125,
128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343,
361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784 . . .

as

a1 = 1, a2 = 4, a3 = 8, a4 = 9, a5 = 16, a6 = 25, a7 = 27, . . .

Taking only the squares into account, we deduce

an ≤ n2 for all n ≥ 1.
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Lower bound for an

We want also a lower bound for an. For this we need an
upper bound for the number of perfect powers ax bounded
by an which are not squares. We do it in a crude way : if
ax ≤ N with a ≥ 2 and x ≥ 3 then x ≤ (logN)/(log 2) and
a ≤ N1/3, hence the number of such ax is less than

1

log 2
·N1/3 logN.

Hence the number of elements in the sequence of perfect
powers which are less than N is at most

√
N +

1

log 2
·N1/3 logN.
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The sequence of perfect powers

The upper bound

n ≤
√
an +

1

log 2
· a1/3

n log an

together with an ≥ n2 yields

an ≥ n2 − 2

log 2
· n2/3 log n,

and one checks that this estimate is true as soon as n ≥ 8.
As a consequence

lim sup(an+1 − an) = +∞.
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Consecutive elements in the sequence of perfect

powers

• Difference 1 : (8, 9)

• Difference 2 : (25, 27)

• Difference 3 : (1, 4), (125, 128)

• Difference 4 : (4, 8), (32, 36), (121, 125)

• Difference 5 : (4, 9), (27, 32)
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Two conjectures

Eugène Charles Catalan (1814 – 1894)

Subbayya Sivasankaranarayana Pillai
(1901-1950)

• Catalan’s Conjecture : In the sequence of perfect powers,
8, 9 is the only example of consecutive integers.

• Pillai’s Conjecture : In the sequence of perfect powers, the
difference between two consecutive terms tends to infinity.
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Pillai’s Conjecture :

• Pillai’s Conjecture : In the sequence of perfect powers, the
difference between two consecutive terms tends to infinity.

• Alternatively : Let k be a positive integer. The equation

xp − yq = k,

where the unknowns x, y, p and q take integer values, all
≥ 2, has only finitely many solutions (x, y, p, q).
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Pillai’s conjecture

Pillai, S. S. – On the equation 2x − 3y = 2X + 3Y , Bull.
Calcutta Math. Soc. 37, (1945). 15–20.
I take this opportunity to put in print a conjecture which I
gave during the conference of the Indian Mathematical
Society held at Aligarh.
Arrange all the powers of integers like squares, cubes etc. in
increasing order as follows :

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, . . .

Let an be the n-th member of this series so that a1 = 1,
a2 = 4, a3 = 8, a4 = 9, etc. Then
Conjecture :

lim inf(an − an−1) =∞.
http://www.math.jussieu.fr/∼miw/
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Indian Science Congress 1949

“The audience may be a little disappointed at the scanty
reference to Indian work. · · · However, we need not feel
dejected. Real research in India started only after 1910 and
India has produced Ramanujan and Raman”

This was the statement of Dr. S. Sivasankaranarayana
Pillai in the 36th Annual session of the Indian Science
Congress on 3rd January, 1949 at Allahabad university.

http ://www.geocities.com/thangadurai−kr/PILLAI.html
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http ://www.geocities.com/thangadurai−kr/PILLAI.html

The tragic end

For his achievements, he was invited to visit the Institute of
Advance Studies, Princeton, USA for a year. Also, he was
invited to participate in the International Congress of
Mathematicians at Harvard University as a delegate of
Madras University. So, he proceeded to USA by air in the
august 1950. But due to the air crash near Cairo on August
31, 1950, Indian Mathematical Community lost one of the
best known mathematicians.
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Results

P. Mihăilescu, 2002.

Catalan was right : the
equation xp − yq = 1 where
the unknowns x, y, p and q
take integer values, all ≥ 2,
has only one solution
(x, y, p, q) = (3, 2, 2, 3).

Previous partial results : J.W.S. Cassels, R. Tijdeman,
M. Mignotte. . .

http://www.math.jussieu.fr/∼miw/
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Higher values of k

There is no value of k ≥ 2 for which one knows that Pillai’s
equation xp − yq = k has only finitely many solutions.

We expect much more than Pillai’s Conjecture :

|xp − yq| ≥ c(ε) max{xp, yq}κ−ε

with

κ = 1− 1

p
− 1

q
·

This estimate is a consequence of the abc conjecture.
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The abc Conjecture

• For a positive integer n, we denote by

R(n) =
∏
p|n

p

the radical or square free part of n.

• Conjecture (abc Conjecture). For each ε > 0 there exists
κ(ε) such that, if a, b and c in Z>0 are relatively prime and
satisfy a+ b = c, then

c < κ(ε)R(abc)1+ε.

http://www.math.jussieu.fr/∼miw/
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The abc Conjecture of Œsterlé and Masser

The abc Conjecture resulted from a discussion between
D. W. Masser and J. Œsterlé in the mid 1980’s.
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Beal Equation xp + yq = zr

Assume
1

p
+

1

q
+

1

r
< 1

and x, y, z are relatively prime.

Only 10 solutions (up to obvious symmetries) are known

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282,

14143 + 22134592 = 657, 92623 + 153122832 = 1137,

438 + 962223 = 300429072, 338 + 15490342 = 156133.
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Beal Conjecture and prize problem

“Fermat-Catalan” Conjecture H. (Darmon and
A. Granville) : the set of solutions to xp + yq = zr with
(1/p) + (1/q) + (1/r) < 1 is finite.

Consequence of the abc Conjecture. Hint :

1

p
+

1

q
+

1

r
< 1 implies

1

p
+

1

q
+

1

r
≤ 41

42
·

R. Tijdeman, D. Zagier and A. Beal Conjecture : there is
no solution to xp + yq = zr where each of p, q and r is ≥ 3.

R. D. Mauldin, A generalization of Fermat’s last
theorem : the Beal conjecture and prize problem, Notices
Amer. Math. Soc., 44 (1997), pp. 1436–1437.
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Collatz equation (Syracuse Problem)

Iterate

n 7−→

{
n/2 if n is even,

3n+ 1 if n is odd.

Lothar Collatz (1937) : does the process converge to the
cycle (4, 2, 1) ?
Example related to the abc conjecture :

109 · 310 + 2 = 235

Continued fraction of 1091/5 : [2; 1, 1, 4, 77733, . . . ],
approximation 23/9.
N. A. Carella. Note on the ABC Conjecture

http ://arXiv.org/abs/math/0606221
http://www.math.jussieu.fr/∼miw/
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Waring’s Problem and the abc Conjecture

S. David : the estimate∥∥∥∥∥
(

3

2

)k∥∥∥∥∥ ≥
(

3

4

)k
for sufficiently large k follows
from the abc Conjecture.

Hence the ideal Waring Theorem g(k) = 2k + [(3/2)k]− 2
would follow from an explicit solution of the abc Conjecture.
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Pillai’s work on normal numbers

In 1939 and 1940, S.S. Pillai considered the number
obtained by the concatenation of the sequence of integers

0. 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 . . .

In other words

=
∑
k≥1

k2−ck with ck = k +
k∑
j=1

[log2 j].

He proved that each of the two digit 0 and 1 occurs with
frequency 1/2, each of the four sequences of digits 00, 01, 10
and 11 occurs with frequency 1/4, and more generally each
sequence of n digits occurs with the same frequency 1/2n.

http://www.math.jussieu.fr/∼miw/
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In 1939 and 1940, S.S. Pillai considered the number
obtained by the concatenation of the sequence of integers

0. 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 . . .

In other words

=
∑
k≥1

k2−ck with ck = k +
k∑
j=1

[log2 j].

He proved that each of the two digit 0 and 1 occurs with
frequency 1/2, each of the four sequences of digits 00, 01, 10
and 11 occurs with frequency 1/4, and more generally each
sequence of n digits occurs with the same frequency 1/2n.
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Champernowne numbers in binary or decimal

basis

In decimal basis, the number

0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 . . .

had been studied by Champernowne in 1933 and Mahler
proved in 1937 that it is transcendental..

D. G. Champernowne, The construction of decimals normal
in the scale of ten, Journal of the London Mathematical
Society, vol. 8 (1933), p. 254-260

K. Mahler, Arithmetische Eigenschaften einer Klasse von
Dezimalbrüchen, Proc. Konin. Neder. Akad. Wet. Ser. A.
40 (1937), p. 421-428.
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Émile Borel (1871–1956)

• Les probabilités dénombrables et leurs applications
arithmétiques,
Palermo Rend. 27, 247-271 (1909).
Jahrbuch Database JFM 40.0283.01
http ://www.emis.de/MATH/JFM/JFM.html

• Sur les chiffres décimaux de
√

2 et divers problèmes de
probabilités en châınes,
C. R. Acad. Sci., Paris 230, 591-593 (1950).

Zbl 0035.08302
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Émile Borel : 1950

• A real number x is called
simply normal in base g if
each digit occurs with
frequency 1/g in its g–ary
expansion.
• A real number x is called
normal in base g or
g–normal if it is simply
normal in base gm for all
m ≥ 1.
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Normal Numbers

• Hence a real number x is normal in base g if and only if,
for any m ≥ 1, each sequence of m digits occurs with
frequency 1/gm in its g–ary expansion.

• A real number is called normal if it is normal in any base
g ≥ 2.

• Hence a real number is normal if and only if it is simply
normal in any base g ≥ 2.
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Normal Numbers

• Hence a real number x is normal in base g if and only if,
for any m ≥ 1, each sequence of m digits occurs with
frequency 1/gm in its g–ary expansion.

• A real number is called normal if it is normal in any base
g ≥ 2.
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Normal numbers

• Almost all real numbers (for Lebesgue’s measure) are
normal.

• Examples of computable normal numbers have been
constructed (W. Sierpinski, H. Lebesgue, V. Becher and S.
Figueira) but the known algorithms to compute such
examples are fairly complicated (“ridiculously exponential”,
according to S. Figueira).

• Another example : Chaitin’s constant Ω, which represents
the probability that a random program will halt.
Ω is definable but not computable.
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Further examples of normal numbers

• (Korobov, Stoneham . . .) : if a and g are coprime integers
> 1, then ∑

n≥0

a−ng−a
n

is normal in base g.

• A.H. Copeland and P. Erdős (1946) : a normal number in
base 10 is obtained by concatenation of the sequence of
prime numbers

0.2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 . . .
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Borel’s Conjecture

• Conjecture. Let x be an irrational algebraic real
number. Then x is normal.

• There is no explicitly known example of a triple (g, a, x),
where g ≥ 3 is an integer, a a digit in {0, . . . , g − 1} and x
an algebraic irrational number, for which one can claim
that the digit a occurs infinitely often in the g–ary
expansion of x.

• K. Mahler : For any g ≥ 2 and any n ≥ 1, there exist
algebraic irrational numbers x such that any block of n
digits occurs infinitely often in the g–ary expansion of x.
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