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S.Sivasankaranarayana
P
illai

(1901–1950)

http
://w

w
w

.geocities.com
/thangadurai−

kr/P
ILLA

I.htm
l

C
ollected

w
orks

of
S
.
S
.
P
illai,

ed.
R
.
B
alasubram

anian
and

R
.
T

hangadurai,
2010.
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O
n

m
consecutive

integers
(num

ber
theory)

•
A
ny

tw
o

consecutive
integers

are
relatively

prim
e.

•
C
onsider

three
consecutive

integers

for
3,

4,
5

:
any

tw
o

of
them

are
relatively

prim
e

for
2,

3,
4

:
only

3
is

prim
e

to
2

and
to

4.

In
the

general
case

n,
n

+
1,

n
+

2,
the

m
iddle

term
is

relatively
prim

e
to

each
other.

•
G

iven
four

consecutive
integers

n,
n

+
1,

n
+

2,
n

+
3,

the
odd

num
ber

am
ong

n
+

1,
n

+
2

is
relatively

prim
e

to
the

three
rem

aining
integers.

H
ence

one
at

least
of

the
four

num
bers

is
relatively

prim
e

to
the

three
others.
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O
n

m
consecutive

integers

•
G

iven
five

consecutive
integers

n,
n

+
1,

n
+

2,
n

+
3,

n
+

4

the
only

possible
com

m
on

prim
e

factors
betw

een
tw

o
of

them
are

2
and

3
,
and

one
at

least
of

the
odd

elem
ents

is
not

divisible
by

3.
H

ence
again

one
at

least
of

the
five

num
bers

is
relatively

prim
e

to
the

four
others.

•
A
fter

2,
3,

4,
5,

continue
w

ith
6,7,8

...
up

to
16

–
done

by
S
.S

.
P
illai

in
1940.

4
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O
n

17
consecutive

integers
(S.S.

P
illai,

1940)

•
In

every
set

of
not

m
ore

than
16

consecutive
integers

there
is

a
num

ber
w

hich
is

prim
e

to
all

the
others.

•
T

his
is

not
true

for
17

consecutive
num

bers
:
take

n
=

2184
and

consider
the

17
consecutive

integers
2184,...,2200.

T
hen

any
tw

o
of

them
have

a
gcd

>
1.

•
O

ne
produces

infinitely
m

any
such

sets
of

17
consecutive

num
bers

by
taking

n
+

N
,n

+
N

+
1,...,n

+
N

+
16

or
N
−

n
−

16,n
−

N
−

15,...,N
−

n

w
here

N
is

a
m

ultiple
of

2
·3

·5
·7

·11
·13

=
30

030.
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A
pplication

to
a

D
iophantine

equation

n(n
+

1)···(n
+

m
−

1)
=

y
r

N
o

solution
n,y

w
hen

2
≤

m
≤

16
and

r
≥

(m
+

3)/2.

For
any

r
≥

3
there

is
at

m
ost

finitely
m

any
solutions.

For
m
≥

2
and

r
≥

c(m
),

there
is

no
solution.

M
ore

recent
w
ork,

esp.
by

T
.N

.
S
horey

6
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W
aring’s

P
roblem

E
dw

ard
W

aring
(1736

-
1798)

In
1770,

a
few

m
onths

before
J.L.

Lagrange
solved

a
conjecture

of
B
achet

(1621)
and

Ferm
at

(1640)
by

proving
that

every
positive

integer
is

the
sum

of
at

m
ost

four
squares

of
integers,

E
.
W

aring
w

rote
:

“E
very

integer
is

a
cube

or
the

sum
of

tw
o,

three,
...nine

cubes
;
every

integer
is

also
the

square
of

a
square,

or
the

sum
of

up
to

nineteen
such

;
and

so
forth.

S
im

ilar
law

s
m

ay
be

affi
rm

ed
for

the
correspondingly

defined
num

bers
of

quantities
of

any
like

degree.”
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W
aring’s

functions
g
(k

)
and

G
(k

)

•
W

aring’s
function

g
is

defined
as

follow
s

:
For

any
integer

k
≥

2,
g
(k

)
is

the
least

positive
integer

s
such

that
any

positive
integer

N
can

be
w

ritten
x

k1
+

···+
x

ks .

•
W

aring’s
function

G
is

defined
as

follow
s

:
For

any
integer

k
≥

2,
G

(k
)

is
the

least
positive

integer
s

such
that

any
suffi

ciently
large

positive
integer

N
can

be
w

ritten
x

k1
+

···+
x

ks .
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D
avid

H
ilbert

(1909)

D
avid

H
ilbert

(1862
-

1943)

g
(k

)
and

G
(k

)
are

finite

G
(k

)≤
g
(k

).

9
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g
(2)

=
G

(2)
=

4

Joseph-Louis
Lagrange

(1736–1813)
S
olution

of
a

conjecture
of

B
achet

and
Ferm

at
in

1770
:

E
very

positive
integer

is
the

sum
of

at
m

ost
four

squares
of

integers.

N
o

integer
congruent

to
−

1
m

odulo
8

can
be

a
sum

of
three

squares
of

integers.
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Sum
s

of
squares

m
odulo

8

x
≡

0
1

2
3

4
5

6
7

x
2≡

0
1

4
1

0
1

4
1

A
square

is
congruent

to
0,

1
or

4
m

odulo
8.

S
um

s
:
0

+
0,

0
+

1,
1

+
1,

0
+

4,
1

+
4,

4
+

4.

A
sum

of
tw

o
squares

is
congruent

to
0,

1
,
2,

4
or

5
m

odulo
8.

A
sum

of
three

squares
is

not
congruent

to
7

m
odulo

8.
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n
=

x
41
+

···+
x

4g
:
g
(4)

=
19

A
ny

positive
integer

is
the

sum
of

at
m

ost
19

biquadrates
R
.
B
alasubram

anian,
J-M

.
D

eshouillers,
F
.
D

ress
(1986).
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P
revious

estim
ates

for
g
(4)

g
(4)≤

53
(J.

Liouville,
1859)

g
(4)≤

47
(S

.
R
éalis,

1878)

g
(4)≤

45
(É

.
Lucas,

1878)

g
(4)≤

41
(É

.
Lucas,

1878)

g
(4)≤

39
(A

.
F
leck,

1906)

g
(4)≤

38
(E

.
Landau,

1907)

g
(4)≤

37
(A

.
W

ieferich,
1909)

g
(4)≤

35
(L.E

.
D

ickson,
1933)

g
(4)≤

22
(H

.E
.
T

hom
as,

1973)

g
(4)≤

21
(R

.
B
alasubram

anian,
1979)

g
(4)≤

20
(R

.
B
alasubram

anian,
1985)
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n
=

x
41
+

···+
x

4G
:
G

(4)
=

16

K
em

pner
(1912)

G
(4)≥

16
16

m
·31

need
at

least
16

biquadrates

H
ardy

Littlew
ood

(1920)
G

(4)≤
21

circle
m

ethod,
singular

series

D
avenport,

H
eilbronn,

E
sterm

an
(1936)

G
(4)≤

17

H
arold

D
avenport

(1907
-

1969)

D
avenport

(1939)
G

(4)
=

16
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C
ircle

m
ethod

S
rinivasa

R
am

anujan
(1887

–
1920)

G
.H

.
H

ardy
(1877

–
1947)

J.E
.

Littlew
ood

(1885
–

1977)

H
ardy,

IC
M

S
tockholm

,
1916

H
ardy

and
R
am

anujan
(1918)

:
partitions

H
ardy

and
Littlew

ood
(1920

–
1928)

:
S
om

e
problem

s
in

P
artitio

N
um

erorum
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O
n

W
aring’s

P
roblem

:
g
(6)

=
73

S
.S

.
P
illai,

1940.

•
A
n
y

p
o
sitive

in
teg

er
N

is
su

m
o
f
at

m
o
st

73
sixth

p
ow

ers
:

N
=

x
61
+

···+
x

6s
w

ith
s
≤

73.

•
S
ince

2
6

=
64,

the
integer

N
=

63
=

1
6
+

···+
1

6
requires

at
least

63
term

s
x
i .

•
A
ny

decom
position

of
an

integer
N
≤

728
=

3
6−

1
as

a
sum

of
sixth

pow
ers

involves
only

1
and

2
6.

•
T

he
decom

position
as

a
sum

of
sixth

pow
ers

of
any

integer
N
≤

728
of

the
form

63
+

k
64

requires
at

least
63

+
k

term
s.

•
T

he
num

ber
703

=
63

+
64
×

10
requires

63
+

10
=

73
term

s.

16
/
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P
revious

estim
ates

for
g
(6)

g
(6)≤

970
(K

em
pner,

1912)

g
(6)≤

478
(B

aer,
1913)

g
(6)≤

183
(Jam

es,
1934)

g
(6)≤

73
(P

illai,
1940)
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/
59

R
esults

on
W

aring’s
P
roblem

g
(2)

=
4

J-L.Lagrange
(1770)

g
(3)

=
9

A
.W

ieferich
(1909)

g
(4)

=
19

R
.
B
alasubram

anian,
J-M

.
D

eshouillers,
F
.
D

ress
(1986)

g
(5)

=
37

C
hen

Jing
R
un

(1964)

g
(6)

=
73

S
.S

.
P
illai

(1940)

g
(7)

=
143

L.E
.D

ickson
(1936)

18
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Sequence
of

values
of

g
(k

)

1,
4,

9,
19,

37,
73,

143,
279,

548,
1079,

2132,
4223,

8384,
16673,

33203,
66190,

132055,
263619,

526502,
1051899,

2102137,
4201783,

8399828,
16794048,

33579681,
67146738,

134274541,
268520676,

536998744,
1073933573,

2147771272
...

N
eil

J.
A
.
S
loane’s

encyclopaedia
http

://w
w

w
.research.att.com

/∼
njas/sequences/A

002804
19

/
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T
he

ideal
W

aring’s
T

heorem

For
each

integer
k
≥

2,
define

I(k
)

=
2

k
+

[(3/2)
k]−

2.
It

is
easy

to
show

that
g
(k

)≥
I(k

).
Indeed,

w
rite

3
k

=
2

kq
+

r
w

ith
0

<
r

<
2

k,
q

=
[(3/2)

k],

and
consider

the
integer

N
=

2
kq
−

1
=

(q
−

1)2
k

+
(2

k−
1)1

k.

S
ince

N
<

3
k,

w
riting

N
as

a
sum

of
k
-th

pow
ers

can
involve

no
term

3
k,

and
since

N
<

2
kq

,
it

involves
at

m
ost

(q
−

1)
term

s
2

k,
all

others
being

1
k
;
hence

it
requires

a
total

num
ber

of
at

least
(q
−

1)
+

(2
k−

1)
=

I(k
)

term
s.
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/
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T
he

ideal
W

aring’s
T

heorem

L.E
.
D

ickson
and

S
.S

.
P
illai

proved
independently

in
1936

that
g
(k

)
=

I(k
),

provided
that

r
=

3
k−

2
kq

satisfies

r
≤

2
k−

q
−

2.

T
he

condition
r
≤

2
k−

q
−

2
is

satisfied
for

3
≤

k
≤

471
600

000.
T

he
conjecture,

dating
back

to
1853,

is
g
(k

)
=

I(k
)

=
2

k
+

[(3/2)
k]−

2
for

any
k
≥

2.
T

his
is

true
as

soon
as

∥∥∥∥∥ (
32 )

k ∥∥∥∥∥
≥

(
34 )

k

,

w
here

‖
·‖

denote
the

distance
to

the
nearest

integer.

21
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M
ahler’s

contribution

•
T

he
estim

ate
∥∥∥∥∥ (

32 )
k ∥∥∥∥∥
≥

(
34 )

k

is
valid

for
all

suffi
ciently

large
k
.

K
urt

M
ahler

(1903
-

1988)

H
ence

the
ideal

W
aring

T
heorem

g
(k

)
=

2
k

+
[(3/2)

k]−
2

holds
for

all
suffi

ciently
large

k
.

22
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W
aring’s

function
G

(k
)

•
R
ecall

that
W

aring’s
function

G
is

defined
as

follow
s

:
For

any
integer

k
≥

2,
G

(k
)

is
the

least
positive

integer
s

such
that

any
suffi

ciently
large

positive
integer

N
can

be
w

ritten
x

k1
+

···+
x

ks .

•
G

(k
)

is
know

n
only

in
tw

o
cases

:
G

(2)
=

4
and

G
(4)

=
16.

23
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G
(k

)

T
he

only
values

of
G

(k
)

w
hich

are
know

n
are

G
(2)

=
4

and
G

(4)
=

16.

Y
u.

V
.
Linnik

(1943)
g
(3)

=
9,

G
(3)≤

7.

O
ther

estim
ates

for
G

(k
),

k
≥

5
:

D
avenport,

K
.
S
am

basiva
R
ao,

V
.
N

arasim
ham

urti,
K

.
T

hanigasalam
,
R
.C

.
V
aughan...
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T
he

state
of

the
art

for
G

(k
)

G
(2)

=
4,

G
(4)

=
16

4
≤

G
(3)≤

7
6
≤

G
(5)≤

17
9
≤

G
(6)≤

21
8
≤

G
(7)≤

33
32
≤

G
(8)≤

42
13
≤

G
(9)≤

50
12
≤

G
(10)≤

59
12
≤

G
(11)≤

67
16
≤

G
(12)≤

76

14
≤

G
(13)≤

84

15
≤

G
(14)≤

92

16
≤

G
(15)≤

100

64
≤

G
(16)≤

109

18
≤

G
(17)≤

117

27
≤

G
(18)≤

125

20
≤

G
(19)≤

134

25
≤

G
(20)≤

142
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O
n

W
aring’s

P
roblem

w
ith

exponents≥
n

S
.S

.
P
illai,

1940.

•
For

any
integer

n
≥

2,
denote

by
g

2 (n)
the

least
positive

integer
s

such
that

any
positive

integer
N

can
be

w
ritten

x
m

1
1

+
···+

x
m

s
s

w
ith

m
i ≥

n.
S
.S

.
P
illai

(1940)
:
explicit

form
ula

for
g

2 (n),
n
≥

32.

•
P
roof

of
the

low
er

bound
g
(n)≥

2
n
+

h
−

1
if

2
n
+

h
≤

3
n.

26
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Low
er

bound
for

g
2 (n)

•
T

he
low

er
bound

g
2 (n)≥

2
n−

1
is

trivial
:
take

N
=

2
n−

1.
•

A
ny

decom
position

N
=

x
m

1
1

+
···+

x
m

s
s

w
ith

m
i ≥

n
of

a
positive

integer
N

<
3

n
has

x
i ∈

{1,2}.
•

Let
h
≥

1
satisfy

2
n
+

h
≤

3
n.

C
onsider

the
integer

N
=

2
n
+

h−
1.

Its
binary

expansion
is

N
=

2
n
+

h−
1
+

2
n
+

h−
2
+

···+
2

+
1,

hence
it

can
be

w
ritten

N
=

2
n
+

h−
1
+

2
n
+

h−
2
+

···+
2

n
+

(2
n−

1),

w
hich

is
a

sum
of

h
num

bers
2

m
w

ith
m
≥

n
and

2
n−

1
pow

ers
of

1.

27
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V
alue

of
g

2 (n)
for

n
≥

32

O
ne

easily
deduces

g
2 (n)≥

2
n
+

h
−

1
as

soon
as

h
satisfies

2
n
+

h
≤

3
n.

T
his

condition
on

h
is

2
h
≤

(3/2)
n,

w
hich

m
eans

2
h
≤

In
w

ith
In

=
[(3/2)

n].

D
efine

h
n

=
[log

In /
log

2]
w

here
In

=
[(3/2)

n].

P
illai’s

T
h
eorem

:
For

n
≥

32,
g

2 (n)
=

2
n
+

h
n −

1.

28
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Square,
cubes...

•
A

perfect
pow

er
is

an
integer

of
the

form
a

b
w

here
a
≥

1
and

b
>

1
are

positive
integers.

•
S
quares

:

1,
4,

9,
16,

25,
36,

49,
64,

81,
100,

121,
144,

169,
196

......

•
C
ubes

:

1,
8,

27,
64,

125,
216,

343,
512,

729,
1

000,
1

331
...

•
F
ifth

pow
ers

:

1,
32,

243,
1

024,
3

125,
7

776,
16

807,
32

768
...
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P
erfect

pow
ers

1,
4,

8,
9,

16,
25,

27,
32,

36,
49,

64,
81,

100,
121,

125,
128,

144,
169,

196,
216,

225,
243,

256,
289,

324,
343,

361,
400,

441,
484,

512,
529,

576,
625,

676,
729,

784
...

N
eil

J.
A
.
S
loane’s

encyclopaedia
http

://w
w

w
.research.att.com

/∼
njas/sequences/A

001597
30
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P
illai’s

early
w
ork

In
1936

P
illai

proved
that

for
any

fixed
positive

integers
a

and
b,

both
at

least
2,

the
num

ber
of

solutions
(x

,y
)

of
the

D
iophantine

inequality
0

<
a

x−
b

y
≤

c
is

asym
ptotically

equal
to

(log
c)

2

2
log

a
log

b

as
c

tends
to

infinity.
R
eferences

:
P
illa

i,
S
.
S
.
–

O
n

som
e

D
iophantine

equations,
J.

Indian
M

ath.
S
oc.,

X
V
III

(1930),
291-295.

P
illa

i,
S
.
S
.
–

O
n

A
x−

B
y

=
C

,
J.

Indian
M

ath.
S
oc.

(N
.S

.),
II

(1936),
119–122.
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C
onnexion

w
ith

som
e

of
R
am

anujan’s
w
ork

It
is

rem
arkable

that
this

asym
ptotic

value
is

related
to

another
problem

w
hich

P
illai

studied
later

and
w

hich
originates

in
the

follow
ing

claim
by

R
am

anujan
:

T
he

num
ber

of
num

bers
of

the
form

2
u·3

v
less

than
n

is

log(2n)
log(3n)

2
log

2
log

3
·
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N
um

ber
of

integers
a

ub
v
≤

n

T
he

num
ber

of
num

bers
of

the
form

a
u·b

v
less

than
n

is
asym

ptotically
(log

n)
2

2
log

a
log

b ·
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P
erfect

pow
ers

T
he

sequence
of

perfect
pow

ers
starts

w
ith

:
W

rite
the

sequence
of

perfect
pow

ers

1,
4,

8,
9,

16,
25,

27,
32,

36,
49,

64,
81,

100,
121,

125,
128,

144,
169,

196,
216,

225,
243,

256,
289,

324,
343,

361,
400,

441,
484,

512,
529,

576,
625,

676,
729,

784
...

asa
1

=
1,

a
2

=
4,

a
3

=
8,

a
4

=
9,

a
5

=
16,

a
6

=
25,

a
7

=
27,

...

T
aking

only
the

squares
into

account,
w
e

deduce

a
n
≤

n
2

for
all

n
≥

1.
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Low
er

bound
for

a
n

W
e

w
ant

also
a

low
er

bound
for

a
n .

For
this

w
e

need
an

upper
bound

for
the

num
ber

of
perfect

pow
ers

a
x

bounded
by

a
n

w
hich

are
not

squares.
W

e
do

it
in

a
crude

w
ay

:
if

a
x
≤

N
w

ith
a
≥

2
and

x
≥

3
then

x
≤

(log
N

)/(log
2)

and
a
≤

N
1
/3,

hence
the

num
ber

of
such

a
x

is
less

than

1

log
2
·N

1
/3

log
N

.

H
ence

the
num

ber
of

elem
ents

in
the

sequence
of

perfect
pow

ers
w

hich
are

less
than

N
is

at
m

ost

√
N

+
1

log
2
·N

1
/3

log
N

.
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T
he

sequence
of

perfect
pow

ers

T
he

upper
boundn

≤
√

a
n
+

1

log
2
·a

1
/3

n
log

a
n

together
w

ith
a
n
≥

n
2

yields

a
n
≥

n
2−

2

log
2
·n

2
/3

log
n,

and
one

checks
that

this
estim

ate
is

true
as

soon
as

n
≥

8.
A
s

a
consequence

lim
sup(a

n
+

1 −
a
n )

=
+
∞

.
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C
onsecutive

elem
ents

in
the

sequence
of

perfect
pow

ers

•
D

iff
erence

1
:
(8,9)

•
D

iff
erence

2
:
(25,27)

•
D

iff
erence

3
:
(1,4),

(125,128)

•
D

iff
erence

4
:
(4,8),

(32,36),
(121,125)

•
D

iff
erence

5
:
(4,9),

(27,32)
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T
w
o

conjectures

E
ugène

C
harles

C
atalan

(1814
–

1894)

S
ubbayya

S
ivasankaranarayana

P
illai

(1901-1950)

•
C
atalan’s

C
onjecture

:
In

the
sequence

of
perfect

pow
ers,

8,9
is

the
only

exam
ple

of
consecutive

integers.

•
P
illai’s

C
onjecture

:
In

the
sequence

of
perfect

pow
ers,

the
diff

erence
betw

een
tw

o
consecutive

term
s

tends
to

infinity.

38
/
59

P
illai’s

C
onjecture

:

•
P
illai’s

C
onjecture

:
In

the
sequence

of
perfect

pow
ers,

the
diff

erence
betw

een
tw

o
consecutive

term
s

tends
to

infinity.

•
A
lternatively

:
Let

k
be

a
positive

integer.
T

he
equation

x
p−

y
q

=
k
,

w
here

the
unknow

ns
x
,
y
,
p

and
q

take
integer

values,
all≥

2,
has

only
finitely

m
any

solutions
(x

,y
,p

,q
).
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P
illai’s

conjecture

P
illa

i,
S
.
S
.
–

O
n

the
equation

2
x−

3
y

=
2

X
+

3
Y
,
B
ull.

C
alcutta

M
ath.

S
oc.

37,
(1945).

15–20.
I
take

this
opportunity

to
put

in
print

a
conjecture

w
hich

I
gave

during
the

conference
of

the
Indian

M
athem

atical
S
ociety

held
at

A
ligarh.

A
rrange

all
the

pow
ers

of
integers

like
squares,

cubes
etc.

in
increasing

order
as

follow
s

:

1,
4,

8,
9,

16,
25,

27,
32,

36,
49,

64,
81,

100,
121,

125,
128,...

Let
a
n

be
the

n-th
m

em
ber

of
this

series
so

that
a
1

=
1,

a
2

=
4,

a
3

=
8,

a
4

=
9,

etc.
T

hen
C
o
n
jectu

re
:

lim
inf(a

n −
a
n−

1 )
=
∞

.
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Indian
Science

C
ongress

1949

“T
he

audience
m

ay
be

a
little

disappointed
at

the
scanty

reference
to

Indian
w
ork.···

H
ow

ever,
w
e

need
not

feel
dejected.

R
eal

research
in

India
started

only
after

1910
and

India
has

produced
R
am

anujan
and

R
am

an”

T
his

w
as

the
statem

ent
of

D
r.

S
.
S
ivasankaranarayana

P
illai

in
the

36th
A
nnual

session
of

the
Indian

S
cience

C
ongress

on
3rd

January,
1949

at
A
llahabad

university.

http
://w

w
w

.geocities.com
/thangadurai−

kr/P
ILLA

I.htm
l
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http
://w

w
w

.geocities.com
/thangadurai−

kr/P
IL

L
A

I.htm
l

T
h
e

trag
ic

en
d

For
his

achievem
ents,

he
w
as

invited
to

visit
the

Institute
of

A
dvance

S
tudies,

P
rinceton,

U
S
A

for
a

year.
A
lso,

he
w
as

invited
to

participate
in

the
International

C
ongress

of
M

athem
aticians

at
H

arvard
U

niversity
as

a
delegate

of
M

adras
U

niversity.
S
o,

he
proceeded

to
U

S
A

by
air

in
the

august
1950.

B
ut

due
to

the
air

crash
near

C
airo

on
A
ugust

31,
1950,

Indian
M

athem
atical

C
om

m
unity

lost
one

of
the

best
know

n
m

athem
aticians.
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R
esults

P
.
M

ihăilescu,
2002.

C
atalan

w
as

right
:
the

equation
x

p−
y

q
=

1
w

here
the

unknow
ns

x
,
y
,
p

and
q

take
integer

values,
all≥

2,
has

only
one

solution
(x

,y
,p

,q
)

=
(3,2,2,3).

P
revious

partial
results

:
J.W

.S
.
C
assels,

R
.
T

ijdem
an,

M
.
M

ignotte...
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H
igher

values
of

k

T
here

is
no

value
of

k
≥

2
for

w
hich

one
know

s
that

P
illai’s

equation
x

p−
y

q
=

k
has

only
finitely

m
any

solutions.

W
e

expect
m

uch
m

ore
than

P
illai’s

C
onjecture

:

|x
p−

y
q|≥

c(ε)
m

ax{x
p,y

q}
κ−

ε

w
ith

κ
=

1
−

1p
−

1q ·

T
his

estim
ate

is
a

consequence
of

the
abc

conjecture.
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T
he

abc
C
onjecture

•
For

a
positive

integer
n,

w
e

denote
by

R
(n)

=
∏p|n

p

the
radical

or
square

free
part

of
n.

•
C
onjecture

(abc
C

on
jectu

re).
For

each
ε

>
0

there
exists

κ
(ε)

such
that,

if
a,

b
and

c
in

Z
>

0
are

relatively
prim

e
and

satisfy
a

+
b

=
c,

thenc
<

κ
(ε)R

(abc)
1+

ε.
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T
he

abc
C
onjecture

of
Œ

sterlé
and

M
asser

T
he

abc
C
onjecture

resulted
from

a
discussion

betw
een

D
.
W

.
M

asser
and

J.
Œ

sterlé
in

the
m

id
1980’s.
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B
eal

E
quation

x
p

+
y

q
=

z
r

A
ssum

e
1p

+
1q

+
1r

<
1

and
x
,
y
,
z

are
relatively

prim
e.

O
nly

10
solutions

(up
to

obvious
sym

m
etries)

are
know

n

1
+

2
3

=
3

2,
2

5
+

7
2

=
3

4,
7

3
+

13
2

=
2

9,
2

7
+

17
3

=
71

2,

3
5
+

11
4

=
122

2,
17

7
+

76271
3

=
21063928

2,

1414
3
+

2213459
2

=
65

7,
9262

3
+

15312283
2

=
113

7,

43
8
+

96222
3

=
30042907

2,
33

8
+

1549034
2

=
15613

3.
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B
eal

C
onjecture

and
prize

problem

“Ferm
at-C

atalan”
C
onjecture

H
.
(D

arm
on

and
A
.
G

ranville)
:

the
set

of
solutions

to
x

p
+

y
q

=
z

r
w

ith
(1/p

)
+

(1/q
)
+

(1/r)
<

1
is

finite.

C
onsequence

of
the

abc
C
onjecture.

H
i
n
t
:

1p
+

1q
+

1r
<

1
im

plies
1p

+
1q

+
1r
≤

4142 ·

R
.
T

ijdem
an,

D
.
Z
agier

and
A
.
B
eal

C
onjecture

:
there

is
no

solution
to

x
p

+
y

q
=

z
r

w
here

each
of

p
,
q

and
r

is
≥

3.

R
.
D

.
M

a
u
ld

in
,
A

generalization
of

F
erm

at’s
last

theorem
:

the
B
eal

conjecture
and

prize
problem

,
N

otices
A
m

er.
M

ath.
S
oc.,

44
(1997),

pp.
1436–1437.
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C
ollatz

equation
(Syracuse

P
roblem

)

Iterate

n
+−→

{
n/2

if
n

is
even,

3n
+

1
if

n
is

odd.

Lothar
C
ollatz

(1937)
:
does

the
process

converge
to

the
cycle

(4,2,1)
?

E
xam

ple
related

to
the

abc
conjecture

:

109
·3

10
+

2
=

23
5

C
ontinued

fraction
of

109
1
/5

:
[2;1,1,4,77733,...],

approxim
ation

23/9.

N
.
A
.
C
arella.

N
ote

on
the

A
B
C

C
onjecture

h
t
t
p
:
/
/
a
r
X
i
v
.
o
r
g
/
a
b
s
/
m
a
t
h
/
0
6
0
6
2
2
1
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W
aring’s

P
roblem

and
the

abc
C
onjecture

S
.
D

avid
:
the

estim
ate∥∥∥∥∥ (

32 )
k ∥∥∥∥∥
≥

(
34 )

k

for
suffi

ciently
large

k
follow

s
from

the
abc

C
onjecture.

H
ence

the
ideal

W
aring

T
heorem

g
(k

)
=

2
k

+
[(3/2)

k]−
2

w
ould

follow
from

an
explicit

solution
of

the
abc

C
onjecture.
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P
illai’s

w
ork

on
norm

al
num

bers

In
1939

and
1940,

S
.S

.
P
illai

considered
the

num
ber

obtained
by

the
concatenation

of
the

sequence
of

integers

0.1
10

11
100

101
110

111
1000

1001
1010

1011
1100

...

In
other

w
ords

=
∑k≥

1

k
2
−

c
k

w
ith

c
k

=
k

+
k

∑j=
1 [log

2
j].

H
e

proved
that

each
of

the
tw

o
digit

0
and

1
occurs

w
ith

frequency
1/2,

each
of

the
four

sequences
of

digits
00,

01,
10

and
11

occurs
w

ith
frequency

1/4,
and

m
ore

generally
each

sequence
of

n
digits

occurs
w

ith
the

sam
e

frequency
1/2

n.
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C
ham

pernow
ne

num
bers

in
binary

or
decim

albasis

In
decim

al
basis,

the
num

ber

0.1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
...

had
been

studied
by

C
ham

pernow
ne

in
1933

and
M

ahler
proved

in
1937

that
it

is
transcendental..

D
.
G

.
C
ham

pernow
ne,

T
he

construction
of

decim
als

norm
al

in
the

scale
of

ten,
Journal

of
the

London
M

athem
atical

S
ociety,

vol.
8

(1933),
p.

254-260

K
.
M

ahler,
A
rithm

etische
E
igenschaften

einer
K

lasse
von

D
ezim

albrüchen,
P
roc.

K
onin.

N
eder.

A
kad.

W
et.

S
er.

A
.
40

(1937),
p.

421-428.
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É
m

ile
B

orel
(1871–1956)

•
Les

probabilités
dénom

brables
et

leurs
applications

arithm
étiques,

P
alerm

o
R
end.

2
7
,
247-271

(1909).
Jahrbuch

D
atabase

JF
M

40.0283.01
http

://www.emis.de/MATH/JFM/JFM.html

•
S
ur

les
chiff

res
décim

aux
de
√

2
et

divers
problèm

es
de

probabilités
en

châınes,
C
.
R
.
A
cad.

S
ci.,

P
aris

2
3
0
,
591-593

(1950).
Z
bl

0035.08302
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É
m

ile
B

orel
:
1950

•
A

real
num

ber
x

is
called

sim
ply

norm
al

in
base

g
if

each
digit

occurs
w

ith
frequency

1/g
in

its
g
–ary

expansion.

•
A

real
num

ber
x

is
called

norm
al

in
base

g
or

g
–norm

al
if

it
is

sim
ply

norm
al

in
base

g
m

for
all

m
≥

1.
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N
orm

al
N

um
bers

•
H

ence
a

real
num

ber
x

is
norm

al
in

base
g

if
and

only
if,

for
any

m
≥

1,
each

sequence
of

m
digits

occurs
w

ith
frequency

1/g
m

in
its

g
–ary

expansion.

•
A

real
num

ber
is

called
norm

al
if

it
is

norm
al

in
any

base
g
≥

2.

•
H

ence
a

real
num

ber
is

norm
al

if
and

only
if

it
is

sim
ply

norm
al

in
any

base
g
≥

2.
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N
orm

al
num

bers

•
A
lm

ost
all

real
num

bers
(for

Lebesgue’s
m

easure)
are

norm
al.

•
E
xam

ples
of

com
putable

norm
al

num
bers

have
been

constructed
(W

.
S
ierpinski,

H
.
Lebesgue,

V
.
B
echer

and
S
.

F
igueira)

but
the

know
n

algorithm
s

to
com

pute
such

exam
ples

are
fairly

com
plicated

(“ridiculously
exponential”,

according
to

S
.
F
igueira).

•
A
nother

exam
ple

:
C
haitin’s

constant
Ω

,
w

hich
represents

the
probability

that
a

random
program

w
ill

halt.
Ω

is
definable

but
not

com
putable.
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Further
exam

ples
of

norm
al

num
bers

•
(K

orobov,
S
toneham

...)
:
if

a
and

g
are

coprim
e

integers
>

1,
then

∑n≥
0

a
−

ng
−

a
n

is
norm

al
in

base
g
.

•
A
.H

.
C
opeland

and
P
.
E
rdős

(1946)
:
a

norm
al

num
ber

in
base

10
is

obtained
by

concatenation
of

the
sequence

of
prim

e
num

bers

0.2
3

5
7

11
13

17
19

23
29

31
37

41
43

47
53

59
61

67
...
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B
orel’s

C
onjecture

•
C
o
n
jectu

re.
Let

x
be

an
irrational

algebraic
real

num
ber.

T
hen

x
is

norm
al.

•
T

here
is

no
explicitly

know
n

exam
ple

of
a

triple
(g

,a,x
),

w
here

g
≥

3
is

an
integer,

a
a

digit
in

{0,...,g
−

1}
and

x
an

algebraic
irrational

num
ber,

for
w

hich
one

can
claim

that
the

digit
a

occurs
infinitely

often
in

the
g
–ary

expansion
of

x
.

•
K

.
M

ahler
:
For

any
g
≥

2
and

any
n
≥

1,
there

exist
algebraic

irrational
num

bers
x

such
that

any
block

of
n

digits
occurs

infinitely
often

in
the

g
–ary

expansion
of

x
.
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R
am

anujan
Institute,

C
hennai

S.S.
P
illai

endow
m

ent
lecture

January
12,

2010

P
erfect

P
ow

ers
:
P
illai’s

w
orks

an
d

th
eir

d
evelo

p
m

en
ts

M
ichel

W
aldschm

idt

Institut
de

M
athém

atiques
de

Jussieu
&

P
aris

V
I

http
://www.math.jussieu.fr/∼

miw/
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