OLOZ '!eגnpesiueu_ y pue ue!uemeaqnsejeg 'y 'pə
S.Sivasankaranarayana Pillai (1901-1950)
http ://www.geocities.com/thangadurai_kr/PILLAI.html

stitut de Mathématiques de Jussieu \& Paris VI http ://www.math.jussieu.fr/~miw/
 Perfect Powers : Pillai's works and their developments

S.S. Pillai endowment lecture
Ramanujan Institute, Chennai
Ot6I u! !ell!d 'S'S

- After $2,3,4,5$, continue with $6,7,8 \ldots$ up to 16 - done by relatively prime to the four others.

$\triangleright+u^{\prime} \varepsilon+u{ }^{\prime} \tau+u^{\prime} \tau+u{ }^{\prime} u$

- Given four consecutive integers $n, n+1, n+2, n+3$, the
odd number among $n+1, n+2$ is relatively prime to the
three remaining integers. Hence one at least of the four
numbers is relatively prime to the three others. relatively prime to each other.

In the general case $n, n+1, n+2$, the middle term is
for $2,3,4$: only 3 is prime to 2 and to 4 .
for 3, 4, 5 : any two of them are relatively prime

- Consider three consecutive integers

Any two consecutive integers are relatively prime
On m consecutive integers (number theory)
On 17 consecutive integers (S.S. Pillai, 1940)

- In every set of not more than 16 consecutive integers there
is a number which is prime to all the others.
- This is not true for 17 consecutive numbers : take $n=2184$
and consider the 17 consecutive integers $2184, \ldots, 2200$. Then
any two of them have a gcd >1.
- One produces infinitely many such sets of 17 consecutive
numbers by taking

$$
n+N, n+N+1, \ldots, n+N+16
$$

or $N-n-16, n-N-15, \ldots, N-n$
where N is a multiple of $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13=30030$.
Application to a Diophantine equation

$$
n(n+1) \cdots(n+m-1)=y^{r}
$$

No solution n, y when
$2 \leq m \leq 16$ and
$r \geq(m+3) / 2$.
For any $r \geq 3$ there is at most
finitely many solutions.
For $m \geq 2$ and $r \geq c(m)$,
there is no solution.
No integer congruent to -1 modulo 8 can be a sum of three
squares of integers.
$g(2)=G(2)=4$

Sums of squares modulo 8
$n=x_{1}^{4}+\cdots+x_{G}^{4}: G(4)=16$

Kempner (1912) $G(4) \geq 16$
$16^{m} \cdot 31$ need at least 16

biquadrates

Hardy Littlewood (1920)
circle method, singular series

Davenport, Heilbronn,
Esterman $(1936) G(4) \leq 17 \quad$ Davenport $(1939) G(4)=16$

Results on Waring's Problem

$g(2)=4$	J-L. Lagrange	(1770)
$g(3)=9$	A. Wieferich	(1909)
$g(4)=19$	R. Balasubramanian, J-M. Deshouillers, F. Dress	
	(1986)	
$g(5)=37$	Chen Jing Run	(1964)
$g(6)=73$	S.S. Pillai	(1940)
$g(7)=143$	L.E. Dickson	(1936)

[^0]Mahler's contribution

- The estimate

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\| \geq\left(\frac{3}{4}\right)^{k}
$$

is valid for all sufficiently large
k.
Hence the ideal Waring Theorem

$$
g(k)=2^{k}+\left[(3 / 2)^{k}\right]-2
$$

Kurt Mahler
$(1903-1988)$
L.E. Dickson and S.S. Pillai proved independently in 1936 that
$g(k)=I(k)$, provided that $r=3^{k}-2^{k} q$ satisfies

$$
r \leq 2^{k}-q-2 \text {. }
$$

The condition $r \leq 2^{k}-q-2$ is satisfied for
$3 \leq k \leq 471600000$.
The conjecture, dating back to 1853 , is
$g(k)=I(k)=2^{k}+\left[(3 / 2)^{k}\right]-2$ for any $k \geq 2$. This is true as
soon as

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\| \geq\left(\frac{3}{4}\right)^{k},
$$

where $\|\cdot\|$ denote the distance to the nearest integer.

The ideal Waring's Theorem

Waring's function $G(k)$

Value of $g_{2}(n)$ for $n \geq 32$

 $G(20) \leq 142$ $20 \leq G(19) \leq 134$
$25 \leq G(20) \leq 142$ $27 \leq G(18) \leq 125$
$20 \leq G(19) \leq 134$守

On Waring＇s Problem with exponents $\geq n$

 This condition on h is $2^{h} \leq(3 / 2)^{n}$ ，which means $2^{h} \leq I_{n}$ with
$I_{n}=\left[(3 / 2)^{n}\right]$ ． One easily deduces $g_{2}(n) \geq 2^{n}+h-1$ as soon as h satisfies
$2^{n+h}<3^{n}$ ．

$$
\text { powers of } 1 \text {. }
$$

$\cdot\left(\mathrm{I}-{ }_{u}\right.$ 乙）$+{ }_{u}$ 乙 $+\cdots+{ }_{\text {}-4+u}$ Z $+{ }_{\text {I－ч＋u }}$ 乙 $=N$

hence it can be written

$$
\begin{aligned}
& \text { - The lower bound } g_{2}(n) \geq 2^{n}-1 \text { is trivial : take } N=2^{n}-1 \text {. } \\
& \text { - Any decomposition } N=x_{1}^{m_{1}}+\cdots+x_{s}^{m_{s}} \text { with } m_{i} \geq n \text { of a } \\
& \text { positive integer } N<3^{n} \text { has } x_{i} \in\{1,2\} \text {. } \\
& \text { - Let } h \geq 1 \text { satisfy } 2^{n+h} \leq 3^{n} \text {. Consider the integer } \\
& N=2^{n+h}-1 \text {. Its binary expansion is }
\end{aligned}
$$

$$
\text { Lower bound for } g_{2}(n)
$$

－Proof of the lower bound $g(n) \geq 2^{n}+h-1$ if $2^{n+h} \leq 3^{n}$ ．
S．S．Pillai（1940）：explicit formula for $g_{2}(n), n \geq 32$ ．
 －For any integer $n \geq 2$ ，denote by $g_{2}(n)$ the least positive
S．S．Pillai， 1940.

$$
I-u 乙 \text { pue } u \overline{<} \omega \text { цł!м } u 乙 \text { sגəqunu ч fo wns e s! чગ!чм }
$$

Neil J．A．Sloane＇s encyclopaedia
http ：／／www．research．att．com／

カ8L＇6ZL＇9L9＇GZ9＇9LG＇6ZG＇ZIG＇カ8t＇Iカt＇00t＇I9ع

Perfect powers
Square，cubes．．．
•A perfect power is an integer of the form a^{b} where $a \geq 1$
and $b>1$ are positive integers．
－Squares：
1，4，9，16，25，36，49，64，81，100，121，144，169，196 $\ldots \ldots$
－Cubes ：
1，8，27， $64,125,216,343,512,729,1000,1331 \ldots$
－Fifth powers ：
$1,32,243,1024,3125,7776,16807,32768 \ldots$
$\frac{\varepsilon \text { ภ이乙 ภo｜乙 }}{(u \varepsilon) \text { ภ이 }(u 乙) \text { ภ이 }}$
The number of numbers of the form $2^{u} \cdot 3^{v}$ less than n is
claim by Ramanujan ： originates in the following studied later and which ！el！！d чગ！чм шәqодd ィәчъоие asymptotic value is related to

It is remarkable that this
y10M s،ue！nuemey fo әسos पł！M uo！xəuuoว （N．S．），II（1936），119－122．
Pillai，S．S．－On $A^{x}-B^{y}=C$ ，J．Indian Math．Soc．

 －K！！u！fu！of spuəq $ว$ se
equal to
Diophantine inequality $0<a^{x}-b^{y} \leq c$ is asymptotically b ，both at least 2，the number of solutions (x, y) of the In 1936 Pillai proved that for any fixed positive integers a and

Pillai＇s early work
$I<u \quad$ ॥e dof $\quad z^{u}>{ }^{u} e$
$1,4,8,9,16,25,27,32,36,49,64,81,100,121,125$,
$128,144,169,196,216,225,243,256,289,324,343$,
$361,400,441,484,512,529,576,625,676,729,784$
as
$a_{1}=1, a_{2}=4, a_{3}=8, a_{4}=9, a_{5}=16, a_{6}=25, a_{7}=27$
Taking only the squares into account, we deduce

[^1]Perfect powers

$\frac{(\log n)^{2}}{2 \log a \log b}$
asymptotically
The number of numbers of the form $a^{u} \cdot b^{v}$ less than n is
Number of integers $a^{u} b^{v} \leq n$

Lower bound for a_{n}

The sequence of perfect powers
The upper bound
$\lim \sup \left(a_{n+1}-a_{n}\right)=+\infty$.

- Pillai's Conjecture : In the sequence of perfect powers, the
- Catalan's Conjecture: In the sequence of perfect powers,
8,9 is the only example of consecutive integers.

!ell!d euekereuexeyuesen!s eर人eqqns \square

- Difference 5 : $(4,9),(27,32)$

(6‘8) : I әวиәдәృ!! •
> has only finitely many solutions (x, y, p, q). where the unknowns x, y, p and q take integer values, all ≥ 2, $\cdot y={ }_{b} X-{ }_{d} x$

 - Pillai's Conjecture : In the sequence of perfect powers, the
$\infty=\left({ }^{I-u} e-{ }^{u} e\right)$ fu! $w!\mid$

Pillai's conjecture
Pillai, S. S. - On the equation $2^{x}-3^{y}=2^{x}+3^{y}$, Bull.
Calcutta Math. Soc. 37 , (1945). $15-20$.
Pillai, S. S. - On the equation $2^{x}-3^{y}=2^{x}+3^{Y}$, Bull. gave during the conference of the Indian Mathematical Society
held at Aligarh.
 i's conjecture

The abc Conjecture of ©sterlé and Masser
The abc Conjecture resulted from a discussion between
D. W. Masser and J. Esterlé in the mid 1980's.

$$
r_{3+\mathrm{I}}(2 q e) y(z) u>0
$$

- Conjecture (abc Conjecture). For each $\varepsilon>0$ there exists
the radical or square free part of n.

$$
d \coprod^{u \mid d}=(u) y
$$

- For a positive integer n, we denote by The abc Conjecture

Waring's Problem and the abc Conjecture

N. A. Carella. Note on the ABC Conjecture -/ 6 と uo!
Continued fraction of $109^{1 / 5}:[2 ; 1,1,4,77733, \ldots]$,
$109 \cdot 3^{10}+2=23^{5}$
Example related to the $a b c$ conjecture : $(4,2,1) ?$
Lothar Collatz (1937) : does the process converge to the cycle

Iterate
Collatz equation (Syracuse Problem)

the probability that a random program will halt.
Ω is definable but not computable.
- Another example : Chaitin's constant Ω, which represents

Normal numbers

- Almost all real numbers (for Lebesgue's measure) are
- Hence a real number is normal if and only if it is simply
normal in any base $g \geq 2$.

- A real number is called normal if it is normal in any base $g \geq 2$.

$1 / g^{m}$ in its g-ary expansion.

- Hence a real number x is normal in base g if and only if, for
algebraic irrational numbers x such that any block of n digits
occurs infinitely often in the g-ary expansion of x.
- K. Mahler : For any $g \geq 2$ and any $n \geq 1$, there exist
- There is no explicitly known example of a triple (g, a, x),
where $g \geq 3$ is an integer, a a digit in $\{0, \ldots, g-1\}$ and x an
algebraic irrational number, for which one can claim that the
digit a occurs infinitely often in the g-ary expansion of x.
- Conjecture. Let x be an irrational algebraic real number
Then x is normal. Borel's Conjecture
0.2357111317192329313741434753596167
- A.H. Copeland and P. Erdős (1946) : a normal number in
base 10 is obtained by concatenation of the sequence of prime
numbers

8 əseq u! ןешлои s! $\bullet($ Korobov, Stoneham \ldots) : if a and g are coprime integers
>1, then
$\sum_{n \geq 0} a^{-n} g^{-a^{n}}$

Further examples of normal numbers

Perfect Powers : Pillai's works and their developments
Michel Waldschmidt
Institut de Mathématiques de Jussieu \& Paris VI
Perfect Powers: Pillai's works and their developments
Michel Waldschmidt
Institut de Mathématiques de Jussieu \& Paris VI
Perfect Powers: Pillai's works and their developments
Michel Waldschmidt
Institut de Mathématiques de Jussieu \& Paris VI

Ramanujan Institute, Chennai

> OLOZ 'ZI Kıenuer

[^0]: $g(6) \leq 73$ (Pillai, 1940)
 $g(6) \leq 183$ (James, 1934)
 $g(6) \leq 478$ (Baer, 1913)
 $g(6) \leq 970$ (Kempner, 1912)
 Previous estimates for $g(6)$

[^1]: Write the sequence of perfect powers The sequence of perfect powers starts with :

