Name: \qquad

Number Theory

II. Prime Numbers

African Institute for Mathematical Sciences (AIMS)
Michel Waldschmidt, Sorbonne Université
Quizz 3 Date: 19/11/2021
(a) Check that $x^{2}+4 y^{2}=(x+2 y)^{2}-4 x y$.
(b) Show that for $n \geq 2$ the number $n^{4}+4^{n}$ is not prime.

Hint: Consider the case n is even and the case n is odd (in which case you can use (a))
(c) i) Write the characteristic polynomial and a linear recurrence relation satisfied by the sequences $\left(n^{4}\right)_{n \geq 0}$ and $\left(4^{n}\right)_{n \geq 0}$.
ii) Deduce the characteristic polynomial and a linear recurrence relation satisfied by the sequence $\left(n^{4}+4^{n}\right)_{n \geq 0}$.

Solution:

(a) We have

$$
(x+2 y)^{2}-4 x y=x^{2}+4 x y+4 y^{2}-4 x y=x^{2}+4 y^{2} .
$$

(b) If n is even, then $n^{4}+4^{n}$ is even and >2, hence is not prime.

Assume n is odd, $n=2 c+1$. Using (a) with $x=a^{2}$ and $y=b^{2}$, we deduce

$$
a^{4}+4 b^{4}=\left(a^{2}+2 b^{2}\right)^{2}-4 a^{2} b^{2}=\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right) .
$$

With $a=n$ and $b=2^{c}$ we deduce that $n^{4}+4^{2 c+1}$ is divisible by $n^{2}+2 n b+2 b^{2}$ and by $n^{2}-2 n b+2 b^{2}$, which are both >1 for $c \geq 1$, hence for $n \geq 3$.
(c)
(i) For $0 \leq i<d-1$, the sequence $\left(n^{i}\right)_{n \geq 0}$ satisfies the linear recurrence, the characteristic polynomial of which is $(X-1)^{d}$. Here $i=4$, we can take $d=5$ with the characteristic polynomial

$$
(X-1)^{5}=X^{5}-5 X^{4}+10 X^{3}-10 X^{2}+5 X-1 ;
$$

the sequence $\left(n^{4}\right)_{n \geq 0}$ satisfies the linear recurrence

$$
u_{n+5}=5 u_{n+4}-10 u_{n+3}+10 u_{n+2}-5 u_{n+1}+u_{n} .
$$

Also for γ a nonzero complex number the sequence $\left(\gamma^{n}\right)_{n \geq 0}$ satisfies the linear recurrence $u_{n+1}=\gamma u_{n}$, the characteristic polynomial of which is $X-\gamma$. Here $\gamma=4$ and a linear recurrence satisfied by the sequence $\left(4^{n}\right)_{n \geq 0}$ is

$$
u_{n+1}=4 u_{n} .
$$

(ii) Since

$$
(X-1)^{5}(X-4)=X^{6}-9 X^{5}+30 X^{4}-50 X^{3}+45 X^{2}-21 X+4,
$$

a linear recurrence relation satisfied by $u_{n}=n^{4}+4^{n}$ is

$$
u_{n+6}=9 u_{n+5}-30 u_{n+4}+50 u_{n+3}-45 u_{n+2}+21 u_{n+1}-4 u_{n} .
$$

Remark. The sequence $\left(n^{4}+4^{n}\right)_{n \geq 0}$ starts with

$$
1,5,32,145,512,1649,5392,18785,69632,268705,1058576,4208945,16797952,
$$

The only prime number in this sequence is 5 .
See https://oeis.org/A001589 where

$$
a^{4}+4 b^{4}=\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right)
$$

is called Sophie Germain's identity.

