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Abstract

In a series of recent joint papers with Claude Levesque, we
produce new families of Diophantine equations for which
effective methods can be applied to solve them. We present a

survey of this work.
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Diophantus of Alexandria
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Thue's Theorem (1908)

Let F € Z[X, Y] be a homogeneous irreducible form of degree
d>3:

F(X,Y)=aoX?+a XY 4+ +ag 1 XY+ a,Y°.

Let k € Z, k # 0. Then there

A
{, are only finitely many integer
N _a' - solutions (x,y) € Z x Z to
‘ the Diophantine equation
. S
Axel Thue

(1863 — 1922)
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Liouville’s inequality

Liouville’s inequality. Let o Joseph Liouville, 1844
be an algebraic number of
degree d > 2. There exists
c(a) > 0 such that, for any
p/q € Q with g > 0,
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On Thue's equations and approximation
When f € Z[X] is a polynomial of degree d, we let
F(X,Y) = Y?f(X/Y) denote the associated homogeneous
binary form of degree d.
Assume f is irreducible. Then the following two assertions are
equivalent :
(i) For any integer k # 0, the set of (x,y) € Z? verifying

F(x,y) =k

is finite.
(i) For any real number ¢ > 0 and for any root a € C of f,
the set of rational numbers p/q verifying

a_2'<£

q|l ~ q¢

is finite.
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Improvements of Liouville’s inequality

In the lower bound

for a real algebraic number « of degree d > 2, the exponent d
of g in the denominator is best possible for d = 2, not for
d>3.
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Improvements of Liouville’s inequality

In the lower bound

for a real algebraic number « of degree d > 2, the exponent d

of g in the denominator is best possible for d = 2, not for
d>3.

In 1909, A. Thue succeeded to prove that it can be replaced
by x with any k > (d/2) + 1.
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Thue's inequality

Let o be an algebraic number of degree d > 3 and let
k> (d/2) + 1. Then there exists c(c, k) > 0 such that, for
any p/q € Q with g > 0,
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Thue inequation

Thue's result
For any integer k # 0, the set of (x,y) € Z?
verifying
F(x,y) =k

is finite.

can also be phrased by stating that for any positive integer k,

the set of (x,y) € Z? verifying
0<|F(x,y)| <k

is finite.
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Thue equation

For any number field K, for any non—zero element k in K and
for any elements ag, ..., a, in K with Card{ay,...,a,} >3,

the Thue equation
(X —a1Y) - (X—a,Y)=k

has but a finite number of solutions (x,y) € Z x Z.
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Improvements of Liouville’s inequality

In the lower bound

p
a__
q

>_

c(a)

q?
for av real algebraic number of degree d > 3, the exponent d
of g in the denominator of the right hand side was replaced by
e any Kk > (d/2) + 1 by A. Thue (1909),

e 21/d by C.L. Siegel in 1921,
e \/2d by F.J. Dyson and A.O. Gel'fond in 1947,

e any k > 2 by K.F. Roth in 1955.
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Thue—Siegel-Roth Theorem

Axel Thue Carl Ludwig Siegel  Klaus Friedrich
(1863 — 1922) (1896 — 1981) Roth (1925 —
2015)

For any real algebraic number «, for any € > 0, the set of
p/q € Q with |a — p/q| < g€ is finite.
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Schmidt’s Subspace Theorem (1970)

Form>2let Ly, ...,L,_1 be
m independent linear forms in W.M. Schmidt
m variables with algebraic
coefficients. Let ¢ > 0. Then
the set

{x=(x0, .. Xm-1) €Z";

[Lo(x) + - Ln—a(x)] < [x|7°}
is contained in the union of
finitely many proper
subspaces of Q™.
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Subspace Theorem

W.M. Schmidt H.P. Schlickewei
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Consequences of the Subspace Theorem

Work of P. Vojta, S. Lang, J-H. Evertse, K. Gyory,
P. Cor_vaja,_U. Zannier, Y. Bilu, P. Autissier, A. Levin ...

N |
N
BN
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Gel'fond—Baker method

The Thue—Siegel-Roth Theorem is not effective : upper
bounds for the number of solutions can be derived, but not
upper bounds for the solutions.

Baker and Fel'dman developed an effective method introduced
by A.O. Gel'fond, involving lower bounds for linear
combinations of logarithms of algebraic numbers with
algebraic coefficients.
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Lower bound for linear combinations of logarithms

A lower bound for a nonvanishing difference

by b
at o) —1

is essentially the same as a lower bound for a nonvanishing
number of the form

bl IOgOél +"'+bnlogan7

since e — 1 ~ z for z — 0.

The first nontrivial lower bounds were obtained by

A.O. Gel'fond. His estimates were effective only for n = 2 : for
n > 3, he needed to use estimates related to the
Thue—Siegel-Roth Theorem.
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Explicit version of Gel'fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel'fond.
in his Iower bound for

He deduced explicit Diophantine results using the approach
introduced by A.O. Gel'fond.

it
<
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Alan Baker

In 1968, A. Baker succeeded
to extend to any n > 2 the
transcendence method used
by A.O. Gel'fond for n = 2.
As a consequence, effective
upper bounds for the solutions
of Thue's equations have
been derived.
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Thue's equation and Siegel’s unit equation

The main idea behind the Gel'fond—Baker approach for solving
Thue's equation is to exploit Siegel’s unit equation.

Assume aq, aip, 3 are algebraic integers and x, y rational
integers such that

(x —a1y)(x — aay)(x — azy) = L.
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Thue's equation and Siegel’s unit equation

The main idea behind the Gel'fond—Baker approach for solving
Thue's equation is to exploit Siegel’s unit equation.

Assume aq, aip, 3 are algebraic integers and x, y rational
integers such that

(x —auy)(x — agy)(x —azy) = 1.
Then the three numbers
U =X —0qy, U=X—Qoy, U3=X—03Y,

are units.
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Thue's equation and Siegel’s unit equation

The main idea behind the Gel'fond—Baker approach for solving
Thue's equation is to exploit Siegel’s unit equation.

Assume aq, aip, 3 are algebraic integers and x, y rational
integers such that

(x —auy)(x — agy)(x —azy) = 1.
Then the three numbers
U =X —0qy, U=X—Qoy, U3=X—03Y,

are units. Eliminating x and y, one deduces Siegel’s unit
equation

Ul(Oég — Oé3) —+ U2(063 — Oél) + U3(Oél — 012) =0.
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Siegel’s unit equation
Write Siegel's unit equation
(g — az) + ua(asz — a1) + uz(ag —az) =0
in the form

w(az —as) | us(on —az)

Ug(al — 063) U2(Oél — 063)
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Siegel’s unit equation
Write Siegel's unit equation
(g — az) + ua(asz — a1) + uz(ag —az) =0
in the form

w(az —as) | us(on —az)

Ug(al — Oé3) Uz(Oél — 063)

The quotient
U1(062 - 043)

(a1 — a3)
is the quantity
by by
al DR an

in Gel'fond—Baker Diophantine inequality.
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Work on Baker's method :

A. Baker (1968), N.I. Feldman (1971), V.G. SprindZuck and
H.M. Stark (1973), K. Gy6ry and Z.Z. Papp (1983),

E. Bombieri (1993), Y. Bugeaud and K. Gydry (1996),
Y. Bugeaud (1998). ..
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Work on Baker's method :

A. Baker (1968), N.I. Feldman (1971), V.G. SprindZuck and
H.M. Stark (1973), K. Gy6ry and Z.Z. Papp (1983),

E. Bombieri (1993), Y. Bugeaud and K. Gydry (1996),

Y. Bugeaud (1998). ..

Solving Thue equations :

A. Pethé and R. Schulenberg (1987), B. de Weger (1987),
N. Tzanakis and B. de Weger (1989), Y. Bilu and G. Hanrot
(1996), (1999). . .
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Work on Baker's method :

A. Baker (1968), N.I. Feldman (1971), V.G. SprindZuck and
H.M. Stark (1973), K. Gy6ry and Z.Z. Papp (1983),

E. Bombieri (1993), Y. Bugeaud and K. Gydry (1996),

Y. Bugeaud (1998). ..

Solving Thue equations :

A. Pethé and R. Schulenberg (1987), B. de Weger (1987),
N. Tzanakis and B. de Weger (1989), Y. Bilu and G. Hanrot
(1996), (1999). . .

Solving Thue-Mahler equations :
J.H. Coates (1969), S.V. Kotov and V.G. SprindZuk (1973),
A. Bérczes=Yu Kunrui— K. Gyory (2006). . .
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Diophantine equations

A.O. Gel'fond, A. Baker, V. SprindZuk, K. Gydry, M. Mignotte,
R. Tijdeman,
M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shorey, S. Laishram. ..

Stopt Tijdglian echt?
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N. Saradha, T.N. Shorey, R. Tijdeman

Survey by T.N. Shorey
Diophantine approximations, Diophantine equations,
transcendence and applications.
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Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a+ 1)X"—aY"=1.

He proved that the only solution in positive integers x, y is
x =y =1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a > 386.
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Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a+ 1)X"—aY"=1.

He proved that the only solution in positive integers x, y is

x =y =1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a > 386.

M. Bennett (2001) proved that this is true for all a and n with
n >3 and a > 1. He used a lower bound for linear
combinations of logarithms of algebraic numbers due to

T.N. Shorey.

-
.
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E. Thomas's family of Thue equations

E. Thomas in 1990 studied
the families of Thue equations
—(n—=1Dx%y —(n+2)xy? —y> =1

Set
Fo(X,Y) = X3 = (n— 1)X2Y — (n+2)XY? - Y3,

The cubic fields Q(\) generated by a root A of F,(X,1) are
called by D. Shanks the simplest cubic fields. The roots of the
polynomial F,(X, 1) can be described via homographies of
degree 3.
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D. Shanks's simplest cubic fields Q(\).

Let \ be one of the three
roots of

Fo(X,1)=X3—(n—=1)X>=(n+2)X — 1.

Then Q(\) is a real Galois
cubic field.

Write
Fa(X,Y) = (X =X Y)(X = A Y)(X = \Y)

with
A >0> M >—1> M\
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D. Shanks's simplest cubic fields Q(\).

Let \ be one of the three
roots of

Fo(X,1)=X3—(n—=1)X>=(n+2)X — 1.

Then Q(\) is a real Galois

cubic field.
Write
Fa(X,Y) = (X =X Y)(X = A Y)(X = \Y)
with
A >0> M >—1> M\
Then

1 Ao +1
)\ = — d )\ = — .
! Ao +1 an 2 Ao
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Simplest fields.

When the following polynomials are irreducible for s, t € Z,
the fields Q(w) generated by a root w of respectively

sX3 —tX2— (t+3s)X — s,
sX* — tX3 — 6sX? + tX + s,
sX® — 2tX® — (5t + 155)X* — 20sX3 + 5tX? + (2t + 65)X + s,

are cyclic over Q of degree 3, 4 and 6 respectively.
For s = 1, they are called simplest fields by many authors.
For s > 1, |. Wakabayashi call them simplest fields.
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Simplest fields.

When the following polynomials are irreducible for s, t € Z,
the fields Q(w) generated by a root w of respectively

sX3 —tX2— (t+3s)X — s,

sX* — tX3 — 6sX? + tX + s,

sX® —2tX® — (5t + 15s)X* — 20sX3 + 5tX? + (2t + 65)X + s,
are cyclic over Q of degree 3, 4 and 6 respectively.

For s = 1, they are called simplest fields by many authors.
For s > 1, |. Wakabayashi call them simplest fields.

In each of the three cases, the roots of the polynomials can be
described via homographies of PSL,(Z) of degree 3, 4 and 6
respectively.
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E. Thomas's family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n,x,y) € Z* with

n>0, max{[x],[y]} >2 and F,(x,y)=+1

is finite.
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E. Thomas's family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n,x,y) € Z* with

n>0, max{|x|,|y|]} >2 and F,(x,y)==+l1
is finite.
In his paper, he completely solved the equation F,(x,y) =1

for n > 1.365- 107 : the only solutions are (0, —1), (1,0) and
(—1,41).
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E. Thomas's family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n,x,y) € Z* with

n>0, max{|x|,|y|]} >2 and F,(x,y)==+l1
is finite.
In his paper, he completely solved the equation F,(x,y) =1

for n > 1.365- 107 : the only solutions are (0, —1), (1,0) and
(—1,41).

Since Fp(—x, —y) = —Fn(x,y), the solutions to Fy(x,y) = —1 are
given by (—x, —y) where (x, y) are the solutions to F,(x,y) = 1.
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Exotic solutions found by E. Thomas in 1990

Fo(X,Y)= X3+ X2Y —2XY? - Y3
Solutions (x, y) to Fo(x,y) =1
(_975)' (_172)1 (27 _1)' (47 _9)’ (574)

30/60



Exotic solutions found by E. Thomas in 1990
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Solutions (x, y) to Fo(x,y) =1
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Exotic solutions found by E. Thomas in 1990

Fo(X,Y)= X3+ X2Y —2XY? - Y3
Solutions (x, y) to Fo(x,y) =1
(_975)' (_172)' (27 _1)' (47 _9)’ (574)

Fi(X,Y)=X3-3XYy?-Y3
Solutions (x, y) to Fi(x,y) =1:
(_37 2)' (1a _3)' (27 1)

F3(X,Y) = X3—2X2Y —5XY2 - Y3
Solutions (x, y) to F3(x,y) =1:
(_77 _2)' (_27 9)' (97 _7)
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M. Mignotte's work on E. Thomas's family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.
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M. Mignotte's work on E. Thomas's family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.

For n > 4 and for n = 2, the
only solutions to F,(x,y) =1
are (0,—1), (1,0) and
(—1,+1), while for the cases
n=0,1,3, the only nontrivial
solutions are the ones found
by E. Thomas.
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. Thomas’s family of Thue equations

For the same family
FX,Y)=X3—(n—1X?Y — (n+2)XY? - Y3,

given k # 0, M. Mignotte A. Peth6 and F. Lemmermeyer
(1996) studied the family of Diophantine equations
Fa(X,Y) = k.
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M. Mignotte A. Petho and F. Lemmermeyer
(1996)

For n > 2, when x, y are rational integers verifying
0 < ’Fn(X,y)‘ S k7

then
log |y| < c(log n)(log n + log k)

with an effectively computable absolute constant c.
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M. Mignotte A. Petho and F. Lemmermeyer
(1996)

For n > 2, when x, y are rational integers verifying
0 < ’Fn(X,y)‘ S k7

then
log |y| < c(log n)(log n + log k)

with an effectively computable absolute constant c.

One would like an upper bound for max{|x|,|y|} depending
only on k, not on n.
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M. Mignotte A. Petho and F. Lemmermeyer

Besides, M. Mignotte A. Pethé and F. Lemmermeyer found all
solutions of the Thue inequality |F,(X, Y)| <2n+ 1.
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M. Mignotte A. Petho and F. Lemmermeyer

Besides, M. Mignotte A. Peth6 and F. Lemmermeyer found all
solutions of the Thue inequality |F,(X, Y)| <2n+ 1.

As a consequence, when k is a given positive integer, there
exists an integer ng depending upon k such that the inequality
|Fo(x,y)| < k with n >0 and |y| > vk implies n < ny.
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M. Mignotte A. Petho and F. Lemmermeyer

Besides, M. Mignotte A. Peth6 and F. Lemmermeyer found all
solutions of the Thue inequality |F,(X, Y)| <2n+ 1.

As a consequence, when k is a given positive integer, there
exists an integer ng depending upon k such that the inequality
|Fo(x,y)| < k with n >0 and |y| > vk implies n < ny.

Note that for 0 < [t| < /m, (—t, t) and (t, —t) are solutions.
Therefore, the condition |y| > vk cannot be omitted.
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E. Thomas's family of Thue inequations

In 1996, for the family of Thue inequations
0 <[Fa(x,y)[ <k,

Chen Jian Hua has given a bound for n by using Padé's
approximations. This bound was highly improved in 1999 by
G. Lettl, A. Pethd and P. Voutier.
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Homogeneous variant of E. Thomas family

|. Wakabayashi, using again
the approximants of Padé,
extended these results to the
families of forms, depending
upon two parameters,

X3 — tX2Y — (t +3s)XY? — sY?3,

which includes the family of Thomas for s = 1 (with
t=n-—1).

36/ 60



May 2010, RIO de JaneII’O What were we doing on the beach of Rio?




Question of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

Fa(X,Y)=X3—(n—1)X2Y — (n+2)XY? — Y3,

38/60



Question of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

Fa(X,Y)=X3—(n—1)X2Y — (n+2)XY? — Y3,

Write
Fo(X.Y) = (X = AanY)(X = AnY)(X — AanY)
where \;, are units in the totally real cubic field Q(\o,).
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Question of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

F.(X,Y)= X3 — (n— 1)X2Y —(n+ 2)XY2 — Y3,
Write
Fo(X,Y) = (X =XnY)(X = A1nY)(X — A2, Y)

where \;, are units in the totally real cubic field Q(\o,).
According to E. Thomas, there are only finitely many (n, x, y)
satisfying

n>0, max{|x|,|y|]} >2 and F,(x,y)==*1

38 /60



Question of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

F.(X,Y)= X3 — (n— 1)X2Y —(n+ 2)XY2 — Y3,
Write
Fo(X,Y) = (X =XnY)(X = A1nY)(X — A2, Y)

where \;, are units in the totally real cubic field Q(\o,).
According to E. Thomas, there are only finitely many (n, x, y)
satisfying

n>0, max{|x|,|y|]} >2 and F,(x,y)==*1
Define
Fn,2(X7 Y) = (X o )\gnY)(X B )\%nY)(X o Agny)
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Question of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

Fo(X,Y)=X3—(n—1X?Y — (n+2)XY? - Y.
Write
Fo(X,Y) = (X =XnY)(X = A1nY)(X — A2, Y)
where \;, are units in the totally real cubic field Q(\o,).
According to E. Thomas, there are only finitely many (n, x, y)
satisfying
n>0, max{|x|,|y|]} >2 and F,(x,y)==*1
Define
Fra(X,Y) = (X = 25, Y)(X = AL,Y)(X = A3,Y).
Question : Are there only finitely many (n, x, y) satisfying
n>0, max{|x|,ly|]} >2 and Fpa(x,y)==£17
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Expanding the suggestion of Claude Levesque

Given any irreducible binary form F € Z[X, Y] and a unit € in
the field Q(«) where « is a root of F(X, 1), one may consider
a family of Diophantine equations

F.(X,Y)=k, (a€Z)
where F,(X, Y) is deduced from F(X,Y) by twisting with €? :

assuming Q(«) = Q(«e?), we define F,(X,1) as the
irreducible polynomial of ce?.
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Expanding the suggestion of Claude Levesque

Given any irreducible binary form F € Z[X, Y] and a unit € in
the field Q(«) where « is a root of F(X, 1), one may consider
a family of Diophantine equations

Fa(X,Y):k, (BEZ)

where F,(X, Y) is deduced from F(X,Y) by twisting with €? :
assuming Q(«) = Q(«e?), we define F,(X,1) as the
irreducible polynomial of ce?.

FX,Y) = [(X=ai(0)Y),

—.

1

Fa(X7 Y) = (X - O','(OéEa)Y).

—.

i=1
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Non effective results

With Claude Levesque, we started this program by using
Schmidt’s Subspace Theorem. We obtained general but non
effective results for the twists of a given Thue equation. For
instance :

Let o be an algebraic number of degree d > 3 and K be the
field Q(«). When ¢ is a unit of K such that ac has degree d,
let f.(X) be the irreducible polynomial of ac and let F.(X,Y)
be its homogeneous version. Then for all but finitely many of
these units, the Thue equation F.(x,y) = +1 has only the
trivial solutions x,y in Z where xy = 0.
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Non effective results on families of Thue—Mahler
equations

With Claude Levesque, Familles d’équations de Thue-Mahler

n'ayant que des solutions triviales Acta Arithmetica, 155
(2012), 117-138.

Previous results by

J-H. Evertse, K. Gyodry, P. Vojta
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Twists of a given Thue equation (effective results)

With Claude Levesque we obtained effective partial results in
several cases :
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e Our first paper (Springer Proceedings in Mathematics &
Statistics, 2013) was dealing with non totally real cubic fields.
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number field having at most one real embedding.
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With Claude Levesque we obtained effective partial results in
several cases :

e Our first paper (Springer Proceedings in Mathematics &
Statistics, 2013) was dealing with non totally real cubic fields.

e Our second one (Ramanujan Math. Soc. Lecture Notes,
published in 2016) was dealing with Thue equations attached to a
number field having at most one real embedding.

e In the third paper (MJCNT, 2013), for each (irreducible) binary
form attached to an algebraic number field, which is not a totally
real cubic field, we exhibited an infinite family of equations twisted
by units for which Baker's method provides effective bounds for the
solutions.
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e Our second one (Ramanujan Math. Soc. Lecture Notes,
published in 2016) was dealing with Thue equations attached to a
number field having at most one real embedding.

e In the third paper (MJCNT, 2013), for each (irreducible) binary
form attached to an algebraic number field, which is not a totally
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by units for which Baker's method provides effective bounds for the
solutions.

e In a fourth paper (Contemporary Mathematics, 2015), we go one
step further by considering twists by a power of a totally real unit.
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Twists of a given Thue equation (effective results)

With Claude Levesque we obtained effective partial results in
several cases :

e Our first paper (Springer Proceedings in Mathematics &
Statistics, 2013) was dealing with non totally real cubic fields.

e Our second one (Ramanujan Math. Soc. Lecture Notes,
published in 2016) was dealing with Thue equations attached to a
number field having at most one real embedding.

e In the third paper (MJCNT, 2013), for each (irreducible) binary
form attached to an algebraic number field, which is not a totally
real cubic field, we exhibited an infinite family of equations twisted
by units for which Baker's method provides effective bounds for the
solutions.

e In a fourth paper (Contemporary Mathematics, 2015), we go one
step further by considering twists by a power of a totally real unit.
e In a paper in JTNBx (2015), we solve the problem for the family
obtained by twisting Thomas’s equations related with the simplest
cyclic cubic fields.
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Back to Thomas's family

In Thomas's family, introduce a new parameter a € Z :

Fn,a(X7 Y) = (X - )\Sny)(X - )\i"Y)(X - Azny) € Z[X7 Y]
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Back to Thomas's family

In Thomas's family, introduce a new parameter a € Z :

Fn,a(X7 Y) = (X - )\SnY)(X - )\i"Y)(X - )\gny) € Z[X7 Y]

Then we get a family of cubic Thue equations depending on
two parameters (n, a) :

Fna(x,y) = 1.
Question : Are there only finitely many (n, a, x, y) satisfying

Fna(x,y) = £17
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Thomas’s family with two parameters

Joint work with Claude Levesque

Main result (2014) : there is an effectively computable
absolute constant ¢ > 0 such that, if (x,y, n,a) are nonzero
rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = £1,

then
max{]n. |al, x|, ly|} < c.
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Thomas’s family with two parameters

Joint work with Claude Levesque

Main result (2014) : there is an effectively computable
absolute constant ¢ > 0 such that, if (x,y, n,a) are nonzero
rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = £1,

then
max{]n. |al, x|, ly|} < c.

For all n > 0, trivial solutions with a > 2 :
(1,0), (0,1)
(1,1) fora=2
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Exotic solutions to Fp ,(x,y) = 1 with a > 2

(n,a) (x,¥)

(0,2) | (-14,-9) (-3,-1) (-2,-1) (1,5 (3.2) (13,4)
(0,3) | (2.1)

(0,5) | (-3,-1) (19,-1)

1.2)| (=7,-2) (=3,-1) (21 (7,3)

(2,2) | (-7,-1) (-2,-1)

(4,2) | (3.2)

No further solution in the range

0<n<10, 2<a<70, —1000< x,y < 1000.
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Exotic solutions to Fp ,(x,y) = 1 with a > 2

(n,a) (x,¥)

(0,2) | (-14,-9) (-3,-1) (-2,-1) (1,5 (3.2) (13,4)
(0,3) | (2.1)

(0,5) | (-3,-1) (19,-1)

1,2) | (-7,-2) (-3,-1) (2,1) (7,3)

(2,2) | (-7,-1) (-2,-1)

(4,2) | (3.2)

No further solution in the range

0<n<10, 2<a<70, —1000< x,y < 1000.

Open question : are there further solutions ?
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Computer search by specialists

o = = = =z 9ace
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Further Diophantine results on the family F, 2(x, y)

Let k > 1. There exists an absolute effectively computable
constant x such that, if there exists (n, a, k, x, y) € Z° with
a # 0 verifying

0 < |Fna(x,y)| <k,

then
log max{[x], |y|} < ru

with

(log k + |a| log |n|)(log |n|)? log log |n| for |n| > 3,
| logk+|al for n =0, +1, +2.
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Further Diophantine results on the family F, 2(x, y)

Let k > 1. There exists an absolute effectively computable
constant x such that, if there exists (n, a, k, x, y) € Z° with
a # 0 verifying

0 < |Fna(x,y)| <k,

then
log max{[x], |y|} < ru
with

(log k + |a| log |n|)(log |n|)? log log |n| for |n| > 3,
| logk+|al for n =0, +1, +2.

For a = 1, this follows from the above mentioned result of
M. Mignotte, A. Pethé and F. Lemmermeyer.
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Further Diophantine results on the family F, 2(x, y)

Let kK > 1. There exists an absolute effectively computable
constant r such that, if there exists (n, a, k, x, y) € Z° with
a # 0 verifying

0 < |Fna(x,y)| <k,

with n>0,a>1and |y| > 2v/k, then
a<ru
with
(log k + log n)(log n) loglogn for n >3,
1+ logk forn=20,1,2.
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Further Diophantine results on the family F, 2(x, y)

Let kK > 1. There exists an absolute effectively computable
constant x such that, if there exists (n, a, k, x, y) € Z° with
a # 0 verifying

0 < [Fnalx,y)l <k

with xy # 0, n > 0 and a > 1, then

log k
agfimax{l, (1+log|x|)loglog(n+ 3), log|y|, %}‘
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Conjecture on the family F, 5(x, y)

Assume that there exists (n, a, k, x, y) € Z° with xy # 0 and
|a] > 2 verifying
0 < [Faalx,y)| < k.

We conjecture the upper bound

max{log |n|, |a|, log |x|, log [y[} < (1 + log k).
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Conjecture on the family F, 5(x, y)

Assume that there exists (n, a, k, x, y) € Z° with xy # 0 and
|a] > 2 verifying
0 < [Faalx,y)| < k.

We conjecture the upper bound

max{log |n|, |a|, log |x|, log [y[} < (1 + log k).

For k > 1 we cannot give an upper bound for |n|.
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Conjecture on the family F, 5(x, y)

Assume that there exists (n, a, k, x, y) € Z° with xy # 0 and
|a] > 2 verifying
0 < [Faalx,y)| < k.

We conjecture the upper bound

max{log |n|, |a|, log |x|, log [y[} < (1 + log k).

For k > 1 we cannot give an upper bound for |n|.

Since the rank of the units of Q()\o) is 2, one may expect a
more general result as follows :
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Conjecture on a family £, +(x, y)

Conjecture. For s, t and n in Z, define

Fn7$7f(X7 Y) = (X - )‘(S)n)‘iny)(x - /\in/\én Y)(X - )‘Sn)‘(t:)n Y)
There exists an effectively computable positive absolute
constant x with the following property : If n, s, t, x,y, k are
integers satisfying

max{|x|,[y[} =2, (s,t) #(0,0) and 0 <|Fus.(x,y)| <k,

then

max{log |n|, |s|, |t|, log |x],log |y|} < k(1 + log k).
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Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant ¢ > 0 such that, if (x,y,n, a)
are nonzero rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = %1,

then
max{|nl, |al, x|, y|} < c.
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Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant ¢ > 0 such that, if (x,y,n, a)
are nonzero rational integers with max{|x|, |y|} > 2 and

Fn,a(x,y) = :l:]'u

then
max{|nl, |al, x|, y|} < c.

We may assume a > 2 and y > 1.
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Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant ¢ > 0 such that, if (x,y,n, a)
are nonzero rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = %1,

then
max{|nl, |al, x|, y|} < c.

We may assume a > 2 and y > 1.

We first consider the case where n is sufficiently large.
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Sketch of proof (continued)
Write \; for \;,, (i=10,1,2) :

Fn(Xa Y): X3 — (n — ]_)X2Y — (n + 2)Xy2 _y3
= (X =X Y)(X = M Y)(X = \Y).
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Sketch of proof (continued)
Write \; for \;,, (i=10,1,2) :

Fn(Xa Y): X3 — (n — ]_)X2Y — (n + 2)Xy2 _y3
= (X =X Y)(X = M Y)(X = \Y).

We have

( 2
n+—- <A< n+ -,
n n
1 1

n+1 PS4

1 1
—“1-= <)< —-1-

) n =77 n+1
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Sketch of proof (continued)
Define
vi=x—Aly, (i=0,1,2)
so that F, o(x, y) = +1 becomes 7172 = £1.
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Sketch of proof (continued)

Define
vi=x—Aly, (i=0,1,2)

so that F, o(x, y) = +1 becomes 7172 = £1.

One 7, say 7;,, has a small absolute value, namely

1
h/i | < “onva
’ y2A

the two others, say v; ,7i,, have large absolute values :

‘ a

min{|vi |, [vil} > y[A2
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Sketch of proof (continued)

Use Ao, A2 as a basis of the group of units of Q(\g) : there
exist 0 = +1 and rational integers A and B such that

Yoo = OAGAF,

V1. SAINE = oAATENA,

Yo. = OMAE = 5N BNTE.

We can prove

[
Al+ B gﬁ(ﬂﬂ).
log Ao
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Sketch of proof (continued)

The Siegel equation
Vioa(Ay = AL) +Yia(Af, = AD) +70,a(AF — A7) =0
leads to the identity

’7/'1,3()“1'92 - /\Z) 1 _7io,a(/\?1 - )‘Z)

’Yiz,a(/\?l - )‘1%) B 71'2,3()‘?1 - )‘1%)
and the estimate
i,a AL — A7
0<717(Ig IO)—].S 2

<
w
b
o

'71'273(/\?1 - /\Z))
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End of the proof when n is large

We complete the proof when n is large by means of a lower
bound for a linear form in logarithms of algebraic numbers
(Baker's method).

Next we need to consider the case where n is bounded. We
have results which are valid not only for the Thue equations of
the family of Thomas. The next result completes the proof of
our main theorem.
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Twists of a given cubic Thue equation

Consider a monic irreducible cubic polynomial f(X) € Z[X]
with £(0) = +1 and write

FIX,Y)=Y3f(X/Y)=(X—aY)X —aY)(X —eaY).
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Twists of a given cubic Thue equation

Consider a monic irreducible cubic polynomial f(X) € Z[X]
with £(0) = +1 and write

FIX,Y)=Y3f(X/Y)=(X—aY)X —aY)(X —eaY).

For ac Z, a # 0, define
Fo(X,Y)=(X =€) (X —eY)(X —eY).
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Twists of a given cubic Thue equation

Consider a monic irreducible cubic polynomial f(X) € Z[X]
with £(0) = +1 and write

FIX,Y)=Y3f(X/Y)=(X—aY)X —aY)(X —eaY).
For a € Z, a # 0, define
F.(X,Y)=(X=eY)X —-aY)X —aY).

Then there exists an effectively computable constant x > 0,
depending only on f, such that, for any k > 2, any (x,y,a) in
the set

{(x.y,a) €22 x Z | xya#0, max{|x|.|y|} = 2, [Fi(x,y)| < k}

satisfies
max{|x], |y, e} < k.
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A conjecture

One of our goals is to prove the following :

Conjecture. There exists a constant x > 0, depending only
on «, such that, for any k > 2, all solutions (x, y, ) in
Z x Z x Zy of the inequality

|F.(x,y)| < k, with xy #0 and [Q(ac): Q] > 3,

satisfy
max{[x|, ly[, e"“I} < k",
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