recently D. Roy. G.V. Chudnovsky, P. Philippon, Yu. Nesterenko and more number of mathematicians including W.D. Brownawell, e Kq pədoןəләр pue 's،0t әч7 u! puof, əə 'O' \forall Kq pəғe!!!u! We first consider some of the consequences of this conjecture
next we describe the transcendental approach which was

 If x_{1}, \ldots, x_{n} are Q-linearly independent complex

[^0]Institut de Mathématiques de Jussieu \& Paris VI

[^1]Remark: For almost all tuples (with respect to the Lebesgue
measure) the transcendence degree is $2 n$.

In other terms, the conclusion is algebraically independent.

Then at least n of the $2 n$ numbers $x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}$ are

$0 \forall$
 †Е6I S甘Уว puof, |Oŋ

S. LaNG - Introduction to transcendental numbers,
Addison-Wesley 1966 .
also attended by M. Nagata (1927-2008)
(14th Problem of Hilbert).
Nagata's Conjecture solved by E. Bombieri.

Origin of Schanuel's Conjecture
Statement by Gel'fond (1934)
are algebraically independent over Q

Let $\beta_{1}, \ldots, \beta_{n}$ be Q -linearly independent algebraic numbers
and let $\log \alpha_{1}, \ldots, \log \alpha_{m}$ be Q -linearly independent
logarithms of algebraic numbers. Then the numbers
Let $\beta_{1}, \ldots, \beta_{n}$ be Q -linearly independent algebraic numbers
and let $\log \alpha_{1}, \ldots, \log \alpha_{m}$ be Q -linearly independent
logarithms of algebraic numbers. Then the numbers
Let $\beta_{1}, \ldots, \beta_{n}$ be Q -linearly independent algebraic numbers
and let $\log \alpha_{1}, \ldots, \log \alpha_{m}$ be Q -linearly independent
logarithms of algebraic numbers. Then the numbers
-

> pue
> $u_{\theta}{ }^{\mathrm{I}-u_{g}} \cdot .^{ə z_{\theta} \mathrm{I}^{\mathrm{I}} \mathrm{g}^{\rho}}$
> $\alpha_{i} \neq 0$. Then the numbers

$$
\begin{aligned}
& \text { pue } \\
& \alpha_{1}^{\alpha_{2}} \\
& u_{0} \text {. }
\end{aligned}
$$

$u_{g}{ }^{\mathrm{I}-u_{g}}$
$u_{g}{ }^{\mathrm{I}-u_{g}}$ ${ }^{m}$ ${ }^{m}$

Further statement by Gel'fond
Further statement by Gel'fond
$\log \pi, \log (\log 2), \pi \log 2,(\log 2)(\log 3), 2^{\log 2},(\log 2)^{\log 3}$
$e+\pi, e \pi, \pi^{e}, e^{e}, e^{e^{2}}, \ldots, e^{e^{e}}, \ldots, \pi^{\pi}, \pi^{\pi^{2}}, \ldots \pi^{\pi^{\pi}} \ldots$ algebraically independent According to Schanuel's Conjecture, the following numbers are
sy consequence of Schanuel's Conjecture
numbers $\pi, \log \pi, \log \log \pi, \log \log \log \pi, \ldots$ are algebraically
independent over E.

Lang's exercise
Easy consequence of Schanuel's Conjecture
According to Schanuel's Conjecture, the following numbers are
algebraically independent:
$\quad e+\pi, e \pi, \pi^{e}, e^{e}, e^{e^{2}}, \ldots, e^{e^{e}}, \ldots, \pi^{\pi}, \pi^{\pi^{2}}, \ldots \pi^{\pi^{\pi}} \ldots$
$\log \pi, \log (\log 2), \pi \log 2,(\log 2)(\log 3), 2^{\log 2},(\log 2)^{\log 3} \ldots$
Proof : Use Schanuel's Conjecture several times.
> implies that the number π
does not belong to E. Then Schanuel's Conjecture the union of $E_{n}, n \geq 0$. x ranges over E_{n-1}. Let E be
the union of $E_{n}, n \geq 0$. numbers $\exp (x)=e^{x}$, where algebraic closure of the field
generated over E_{n-1} by the algebraic closure of the field
generated over E_{n-1} by the for $n \geq 1$, define E_{n} as the Define $E_{0}=\mathrm{Q}$. Inductively,
 -

Formal analogs
W.D. Brownawell
(was a student of S (ןənueyग्S ło ұuәpnłs e sem)

səวuəпbəsuos
әшоя рие әппұәа¢иол
(qฯ9t) \perp WS Lg: zs: tt
6002 KeW 8 ¢
nכsə!!e¢! W epəd.

 Ubiquity of Schanuel's Conjecture
!107 uo uo!łem!xo八dde әu!ұueydo!ด

Conjecture for power series
over C
Version of Schanuel's
Conjecture for power seris
 analog of Ax's Theorem. and K. Kubota on the elliptic Work by W.D. Brownawell

nวsә！！eч！＇W epaud
†LZI＇G060／sqe／8ı0•＾！xıe／／：dł7૫ Daniel Bertrand乙ヘG8てฤ•0I80：ィTXJе

 The dimension of the exponential algebraic closure operator in Methods from logic：Model theory

Schanuel's Conjecture for $n=1$
For $n=1$, Schanuel's Conjecture is the Hermite-Lindemann
Theorem :
If x is a non-zero complex numbers, then one at
least of the 2 numbers x, e^{x} is transcendental.
Equivalently, if x is a non-zero algebraic number, then e^{x} is a
transcendental number.
Another equivalent statement is that if α is a non-zero
algebraic number and $\log \alpha$ any non-zero logarithm of α, then
$\log \alpha$ is a transcendental number.
Consequence : transcendence of numbers like
$e, \pi, \quad \log 2, e^{\sqrt{2}}$.

Lindemann-Weierstraß Theorem $=$ case where x_{1}, \ldots, x_{n} are
algebraic.
umouy
$\log \alpha_{3}$ are linearly dependent.

 According to the four exponentials Conjecture, any quadratic

numbers which are algebraically independent. It is not known that there exist two logarithms of algebraic

Algebraic independence method of Gel'fond

Pigeonhole principle (Dirichlet), Thue-Siegel
Lemma polynomial).

 for $t, m_{0}, \ldots, m_{d-1}$ non-negative integers in a certain range.

that the exponential polynomial constructs a non-zero polynomial $P \in L\left[X_{0}, \ldots, X_{d-1}\right]$ such Following the approach of Gel'fond and Schneider, one

Gel'fond-Schneider Method
Analytic zero estimates for exponential polynomials

uewәр!! \perp qoy

Simplification due to R. Tijdeman, W.D. Brownawell, . . in the
70's and more recently M. Laurent and D. Roy.
for all $n \geq 1$, then ϑ is algebraic and $P_{n}(\vartheta)=0$ for all $n \geq 1$
of degree $\leq n$ and height $\leq e^{n}$, such that
sequence $\left(P_{n}\right)_{n>1}$ of non-zero polynomials in $\mathbf{Z}[X]$, with P

Transcendence criterion

Z9I-9tI '(IL6I) \&と чłеW
 чวsиәғәМ 'pey甘 'ןәрәN и!еұәә Һо әэиәриәdәри! On the algebraic
 polynomial. and the size of γ measures the degree and the height of this to $\mathbf{Z}[\theta]$. Then the number γ which is produced is just in $\mathbf{Z}[\theta]$, such that all the numbers β and $\alpha^{\beta j}$ for $0 \leq j \leq d-1$ belong Assume for simplicity that there is a transcendental number θ Extrapolation Cauchy Schwarz

-

Size
absolute value, for which we can also bound the size. We endup with a non-zero number γ in L with a very small A zero estimate shows that these numbers cannot all vanish. have a small modulus.
 From Schwarz's Lemma we get a sharp upper bound for the
maximum modulus of the auxiliary function F on some disc.
Using Cauchy's inequalities, we deduce that many more values From Schwarz's Lemma we get a sharp upper bound for the
maximum modulus of the auxiliary function F on some disc.
Using Cauchy's inequalities, we deduce that many more values From Schwarz's Lemma we get a sharp upper bound for the
maximum modulus of the auxiliary function F on some disc.
Using Cauchy's inequalities, we deduce that many more values

 C

	ъиәриәдәри!	
	' I < $u_{\\|}$	
- $\infty \leftarrow \leftarrow^{u} \chi^{u} p /{ }^{u}{ }_{n}$		
	әшәłеłs ұиәןе^!nbə	

[^2]Gel'fond's transcendence criterion
 Results produced by the method are rather weak and do not

Lang's transcendence type further assumption is necessary. A counterexample due to Khinchine (a reference is in Cassel's
book on Diophantine Approximation) rules this out. Some
transcendence degree of the field $\mathbf{Q}\left(\vartheta_{1}, \ldots, \vartheta_{m}\right)$ is at least t. $\nu_{n} / d_{n} h_{n} \rightarrow \infty$ would yield the conclusion that the the stronger assumption $\nu_{n} / d_{n}^{t} h_{n} \rightarrow \infty$ in place of It might seem natural to expect that the same statement with
$\cdot\left(z{ }^{`} z\right)\left(d_{y} \mathbb{C}\right)=H_{y}\left(\frac{z p}{p}\right)$

\section*{ ${ }^{u} x^{u} u+\cdots+{ }^{\mathrm{I}} x^{\mathrm{I}} u$
 | | słu!od ә૫7 7e |
| :---: | :---: |
| $\mathcal{H}_{y}\left(\frac{z p}{p}\right)={ }_{(\text {y) }} H^{\prime}$ | |

the derivatives of F sıəр!suoว әuо ‘ן! $\left(z^{\partial} z\right)_{d}=(z)_{B}$
uo! \ddagger Junt Schneider..., one may start by introducing an auxiliary
 Let x_{1}, \ldots, x_{n} be Q-linearly independent complex numbers

A.O. Gel'fond, G.V. Chudnovskii, P. Philippon, Yu.V. Nesterenko.

$$
\text { and if } \beta \text { is an irrational algebraic number of degree } d \text {, the }
$$

 Schneider Partial result on the problem of Gel'fond and
Large transcendence degree
at least $\left[\log _{2} d\right]$ are
algebraically independent.
G.V. Chudnovsky - On the path to Schanuel's
I. Genjecture. Algebraic curves close to a point.
II. Fields of finite transcendence type and colored
sequences. Resultants.
Studia Sci. Math. Hungar. 12 (1977), 125-157 (1980).

 Conversely, if Roy's Conjecture holds for one set of parameters
$\max \left\{s_{0}, s_{1}+t_{1}\right\}<u<\frac{1}{2}\left(1+t_{0}+t_{1}\right)$. More precisely, if Schanuel's Conjecture is true, then Roy's
Conjecture holds for any set of parameters $s_{0}, s_{1}, t_{0}, t_{1}, u$
satisfying

$$
\max \left\{1, t_{0}, 2 t_{1}\right\}<\min \left\{s_{0}, 2 s_{1}\right\}
$$

and Roy's Conjecture is equivalent to Schanuel's
Conjecture. Roy's Theorem (1999)

Roy's Theorem (1999)
Roy's Conjecture is equivalent to Schanuel's
Conjecture.
More precisely, if Schanuel's Conjecture is true, then Roy's
Conjecture holds for any set of parameters $s_{0}, s_{1}, t_{0}, t_{1}, u$
satisfying $\quad \max \left\{1, t_{0}, 2 t_{1}\right\}<\min \left\{s_{0}, 2 s_{1}\right\}$
and $\max \left\{s_{0}, s_{1}+t_{1}\right\}<u<\frac{1}{2}\left(1+t_{0}+t_{1}\right)$.五
Equivalence between Schanuel and Roy
Let $(x, \alpha) \in \mathbf{C} \times \mathbf{C}^{\times}$, and let $s_{0}, s_{1}, t_{0}, t_{1}, u$ be positive real
numbers satisfying the inequalities of Roy's Conjecture. Then
the following conditions are equivalent:
(a) The number αe^{-x} is a root of unity.
(b) For any sufficiently large positive integer N, there exists a
non-zero polynomial $Q_{N} \in \mathrm{Z}\left[X_{0}, X_{1}\right]$ with partial degree
$\leq N^{t_{0}}$ in X_{0}, partial degree $\leq N^{t_{1}}$ in X_{1} and height
$\mathrm{H}\left(Q_{N}\right) \leq e^{N}$ such that

$$
\left|\left(\mathcal{D}^{k} Q_{N}\right)\left(m x, \alpha^{m}\right)\right| \leq \exp \left(-N^{u}\right) .
$$

for any $k, m \in \mathrm{~N}$ with $k \leq N^{s_{0}}$ and $m \leq N^{s_{1}}$.
Recently Nguyen Ngoc Ai Van succeeded to extend slightly the
range of the admissible values of the parameters $s_{0}, s_{1}, t_{0}, t_{1}, u$.
Such an extension is interesting for both implications of the
equivalence between Schanuel's Conjecture and Roy's
Conjecture.

puә ə૫।

$\cdot\left({ }_{n} u-\right) \mathrm{dx}$ \% $<$

Small value estimates for the multiplicative group

[^0]: One of the main open problems in transcendental number

[^1]:
 in honor of ProfessorJing Yu's 60th birthday.
 Taida Institute for Mathematical Sciences (TIMS)
 National Taiwan University, Taipei, Taiwan.
 Conference "Modular Forms and Function Field Arithmetic"

[^2]: with some constant $\kappa>0$ independent of n, and
 $d_{n} \leq d_{n+1} \leq \kappa d_{n}, \quad d_{n} \leq h_{n} \leq h_{n+1} \leq \kappa h_{n}$,
 Assumptions on the sequences $\left(d_{n}\right)_{n \geq 1},\left(h_{n}\right)_{n \geq 1}$ and $\left(\nu_{n}\right)_{n \geq 1}$

