TD 3S 1 – Corrigé de l'évaluation du 29/11/2013

Exercice 1. 1. $z^3 + iz^2 - z = z(z^2 + iz - 1)$. Le polynôme $P(X) = X^2 + iX - 1$ a un discriminant égal à 3,dont une racine carrée est $\sqrt{3}$. Les racines complexes de $P(X) = \frac{1}{2}i = e^{-i\frac{\pi}{6}}$ et $-\frac{\sqrt{3}}{2} - \frac{1}{2}i = e^{-i\frac{5\pi}{6}}$

L'ensemble des solutions est donc $\left\{0, e^{-i\frac{\pi}{6}}, e^{-i\frac{5\pi}{6}}\right\}$

2. Deux raisonnements possibles.

Algébrique. Posons $z_1 = a + ib$ et $z_2 = c + id$. Alors $z_1 z_2 = ac - bd + i(bc + ad)$, et ce nombre est réel si et seulement si bc + ad = 0.

Géométrique. On traite à part le cas où l'un des facteurs est nul. Supposons z_1 et z_2 tous deux non nuls. Ils ont alors une écriture sous forme trigonométrique $z_k = \rho_k e^{i\theta_k}$, et $z_1 z_2 = \rho_1 \rho_2 e^{i(\theta_1 + \theta_2)}$. Les réels non nuls ont un argument principal égal à 0 ou π .

La condition cherchée est donc "l'un des facteurs est nul, ou $\theta_1 + \theta_2 \equiv 0 \mod \pi$ ".

3. a. On utilise la formule donnant la somme d'une progression géométrique. $\sum_{k=0}^{n-1} \zeta^k = \frac{1-\zeta^n}{1-\zeta} = \frac{1-1}{1-\zeta} = 0$

b. $\left(e^{\frac{2i\pi}{n}}\right)^n=e^{\frac{2in\pi}{n}}=e^{2i\pi}=1$. De plus, ce nombre est différent de 1 puisque son argument principal est égal à $\frac{2i\pi}{n}$, différent de 0. L'ensemble des autres racines nèmes de 1 est $\{e^{\frac{2ik\pi}{n}}, k=0,2,3,\ldots,n-1\}$.

Une remarque au passage: la somme considérée est aussi égale à la somme de toutes les racines n-èmes de 1.

c. On remarque, en posant $\zeta = e^{\frac{2i\pi}{n}}$, que $\zeta^k = e^{\frac{2ik\pi}{n}} = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$. On a donc

$$\sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = \mathfrak{Re}\left(\sum_{k=0}^{n-1} \zeta^k\right) = 0 \text{ et } \sum_{k=0}^{n-1} \sin\left(\frac{2k\pi}{n}\right) = \mathfrak{Im}\left(\sum_{k=0}^{n-1} \zeta^k\right) = 0.$$

Exercice 2. 1. a. La fonction f est de classe C^{∞} sur $I =]-1; +\infty[$. On peut donc appliquer la formule de Taylor-Young.

Un calcul montre que pour $x \in I$, $f'(x) = \frac{1}{2\sqrt{1+x}}$, et $f''(x) = -\frac{1}{4(\sqrt{1+x})^3}$.

On a donc le développement de f en 0:

$$f(h) = 1 + \frac{1}{2}h - \frac{1}{8}h^2 + o(h^2)$$

et en 1:

$$f(k) = \sqrt{2} + \frac{\sqrt{2}}{4}(k-1) - \frac{\sqrt{2}}{32}(k-1)^2 + o((k-1)^2)$$

b. On compose le développement limité de f en 1 avec celui de f en 0. $g(h) = \sqrt{1+\sqrt{1+h}} = \sqrt{2} + \frac{\sqrt{2}}{4}(1+\frac{1}{2}h-\frac{1}{8}h^2-1) - \frac{\sqrt{2}}{32}(1+\frac{1}{2}h-\frac{1}{8}h^2-1)^2 + o(h^2)$ Ce qui donne $g(h) = \sqrt{2} + \frac{\sqrt{2}}{8}h - \frac{5\sqrt{2}}{128}h^2 + o(h^2)$.

c. On utilise les formules de Taylor à l'envers. Comme q est de classe C^{∞} au voisinage de 0, elle admet un développement de Taylor à l'ordre 2. L'unicité du développement limité nous dit alors que $g(0) = \sqrt{2}$, $g'(0) = \frac{\sqrt{2}}{8}$, et $g''(0) = 2! \frac{5\sqrt{2}}{128} = \frac{5\sqrt{2}}{64}$.

2. a.
$$\sin(x) = x - \frac{x^3}{6} + o(x^3)$$
, $\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$, $\cosh(x) = 1 + \frac{x^2}{2} + o(x^3)$, $\sinh(x) = x + \frac{x^3}{6} + o(x^3)$, et $\sin^n(x) = x^n + o(x^n)$ car $\lim_{x \to 0} \frac{\sin^n(x)}{x^n} = \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right)^n = 1$
b. En calculant $(x - \frac{x^3}{6})(1 + \frac{x^2}{2}) - (x + \frac{x^3}{6})(1 - \frac{x^2}{2}) = \frac{2}{3}x^3 + o(x^3)$, on voit que $f_n(x) = \frac{\frac{2}{3}x^3 + o(x^3)}{x^n + o(x^n)} = \frac{\frac{2}{3} + o(1)}{x^{n-3} + o(x^{n-3})}$
Or $x^{n-3} + o(x^{n-3}) = x^{n-3} + x^{n-3}\epsilon(x) = x^{n-3}(1 + \epsilon(x))$ où $\lim_{x \to 0} \epsilon(x) = 0$.

Donc, si n < 3, le dénominateur tend vers l'infini quand x tend vers 0, et $f_n(x)$ tend vers 0.

Si n=3, $f_n(x)$ tend vers $\frac{2}{3}$.

Enfin, si n > 3, le dénominateur tend vers 0.

Si n est pair, n-3 est impair et $\lim_{x\to 0^+} f_n(x) = +\infty$, et $\lim_{x\to 0^-} f_n(x) = -\infty$. Si n est impair, n-3 est pair et $\lim_{x\to 0} f_n(x) = +\infty$

Exercice 3. 1. La résolution de l'équation homogène donne $S_0 = \{y_k(x) = ke^{-\frac{1}{2}x^2}, k \in \mathbb{R}\}.$ Pour trouver une solution particulière, on peut chercher une solution de la forme y(x) = ax + b. En effet, $y' + xy = ax^2 + bx + a$. En identifiant les monômes, on a la solution particulière y(x) = x + 1.

L'ensemble des solutions est donc $S = \{y_k(x) = x + 1 + ke^{-\frac{1}{2}x^2}, k \in \mathbb{R}\}.$

2. a. Pour trouver une primitive de $\arctan(x)$, on remarque que $\int \arctan(x) dx =$ $\int 1 \arctan(x) dx$

La formule d'intégration par parties donne alors, à une constante additive près,

 $\int 1 \arctan(x) \, \mathrm{d}x = x \arctan(x) - \int \tfrac{x \, \mathrm{d}x}{x^2 + 1}.$

Pour trouver $\int \frac{x \, dx}{x^2 + 1}$, on remarque que $\int \frac{x \, dx}{x^2 + 1} = \frac{1}{2} \int \frac{2x \, dx}{x^2 + 1} = \frac{1}{2} \ln(x^2 + 1) = \ln \sqrt{x^2 + 1}$ Finalement, les solutions de l'équation homogène sont de la forme

$$x \mapsto ke^{x\arctan(x)-\ln\sqrt{x^2+1}} = k\frac{e^{x\arctan(x)}}{\sqrt{x^2+1}}$$

b. Ne voyant pas de solution évidente, on se tourne vers la méthode de la variation de la constante.

Elle mène à la recherche d'une fonction k(x) telle que $k'(x) = \frac{1}{\sqrt{x^2+1}}$, donc la fonction Argsinh convient.

Conclusion: l'ensemble des solutions est $S = \left\{ y_k(x) = (\operatorname{Argsinh}(x) + k) \frac{e^{x \arctan(x)}}{\sqrt{x^2 + 1}}, k \in \mathbb{R} \right\}$