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Abstract

We will recall classical results on quantization of conic Lagrangian submani-
folds of cotangent bundles in the real case. These Notes contain nothing really
new or original although some results of § 4 do not appear in the literature.
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1 Sheaves

In all these Notes, references are made to [KS90].

Main notations

We choose a field k although many results extend when replacing k with a unital
commutative ring with finite global dimension (k being Noetherian when considering
constructible sheaves).

In these Notes, M will denote a real manifold of class C∞. We denote by D(kM) the
derived category of sheaves of k-modules on M and by Db(kM) the bounded derived
category. We shall also consider the subcategory Dlb(kM) of D(kM) consisting of objects
“locally bounded”.

When M is real analytic, we denote by Db
Rc(kM) the full triangulated subcategory

of Db(kM) consisting of R-constructible sheaves. If M = pt, one has Db(kpt) ' Db(k),
the bounded derived category of k-modules, and Db

Rc(kpt) ' Db
f (k), the subcategory of

Db(k) consisting of complexes with finite dimensional cohomology.
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For a locally closed subset A ⊂ M , we denote by kA the constant sheaf on A
extended by 0 on M \ A. We define more generally the sheaf VA for V ∈ Db(k).

We denote by ωM the dualizing complex on M . Recall that ωM ' orM [dimM ],
where orM is the orientation sheaf on M and dimM the dimension of M . For a sheaf
F (i.e., an object of Db(kM) ) one sets

D′MF = RHom (F,kM), DMF = RHom (F, ωM).

We denote as usual by π : T ∗M −→ M the cotangent bundle to M and for a smooth
submanifold S ⊂ M , we denote by T ∗SM the conormal bundle to S in M . We identify

T ∗MM with the zero-section of T ∗M and we set
•

T ∗M := T ∗M \ T ∗MM .

The sphere cotangent bundle S∗M is the quotient of
•

T ∗M by the R+-action. It is
a contact manifold and one denotes by ρ the map

ρ :
•

T ∗M −→ S∗M :=
•

T ∗M/R+.

When M = N ×R, the manifold (T ∗N)×R is a contact manifold, for the contact form
dt+ ξ/τdx and one considers the map

ρ : T ∗τ 6=0(N × R) −→ (T ∗N)× R, (x, t; ξ, τ) 7→ ((x; ξ/τ), t).

Microsupport

References for this subsection are made to [KS90, § 5.1, § 6.1, § 6.5].
We shall recall the definition of the microsupport (or singular support) SS(F ) of a

sheaf F

Definition 1.1 (See [KS90, Def. 5.1.2]). Let F ∈ Db(kM) and let p ∈ T ∗M . One says
that p /∈ SS(F ) if there exists an open neighborhood U of p such that for any x0 ∈ M
and any real C1-function ϕ on M defined in a neighborhood of x0 with (x0; dϕ(x0)) ∈ U ,
one has RΓ{x;ϕ(x)≥ϕ(x0)}(F )x0 ' 0.

In other words, p /∈ SS(F ) if the sheaf F has no cohomology supported by “half-
spaces” whose conormals are contained in a neighborhood of p.

• By its construction, the microsupport is R+-conic, that is, invariant by the action
of R+ on T ∗M .

• SS(F ) ∩ T ∗MM = πM(SS(F )) = supp(F ), where supp(·) denotes the support.

• The microsupport satisfies the triangular inequality: if F1 −→ F2 −→ F3
+1−−→

is a distinguished triangle in Db(kM), then SS(Fi) ⊂ SS(Fj) ∪ SS(Fk) for all
i, j, k ∈ {1, 2, 3} with j 6= k.

Example 1.2. (i) If M is connected, then SS(F ) = T ∗MM if and only if Hj(F ) is a
locally constant sheaf on M for all j ∈ Z and F 6= 0.
(ii) If N is a closed submanifold of M and F = kN , then SS(F ) = T ∗NM , the conormal
bundle to N in M .
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(iii) Let ϕ be a C1-function such that dϕ(x) 6= 0 whenever ϕ(x) = 0. Let U = {x ∈
M ;ϕ(x) > 0} and let Z = {x ∈M ;ϕ(x) ≥ 0}. Then

SS(kU) = U ×M T ∗MM ∪ {(x;λdϕ(x));ϕ(x) = 0, λ ≤ 0},
SS(kZ) = Z ×M T ∗MM ∪ {(x;λdϕ(x));ϕ(x) = 0, λ ≥ 0}.

For a precise definition of being involutive (or co-isotropic), we refer to [KS90,
Def. 6.5.1]

Theorem 1.3. Let F ∈ Db(kM). Then its microsupport SS(F ) is involutive.

Notation 1.4. One denotes by DLoc(kM) the full triangulated subcategory of Db(kM)
consisting of sheaves with microsupport contained in the zero-section T ∗MM .

Kernels

References for this subsection are made to [KS90, §3.6].
Let Mi (i = 1, 2, 3) be manifolds. For short, we write Mij :=Mi×Mj (1 ≤ i, j ≤ 3)

and M123 = M1×M2×M3. We denote by qi the projection Mij −→Mi or the projection
M123 −→ Mi and by qij the projection M123 −→ Mij. Similarly, we denote by pi the
projection T ∗Mij −→ T ∗Mi or the projection T ∗M123 −→ T ∗Mi and by pij the projection
T ∗M123 −→ T ∗Mij. We also need to introduce the map p12a , the composition of p12 and
the antipodal map on T ∗M2.

Let Λ1 ⊂ T ∗M12 and Λ2 ⊂ T ∗M23. We set

Λ1
a◦Λ2 := p13(p12a

−1Λ1 ∩ p−1
23 Λ2).(1.1)

We consider the operation of convolution of kernels:

◦
2
: Db(kM12)×Db(kM23)−→Db(kM13)

(K1, K2) 7→K1 ◦
2
K2 := Rq13!(q

−1
12 K1

L
⊗q−1

23 K2).

Let Λi = SS(Ki) ⊂ T ∗Mi,i+1 and assume that
(i) q13 is proper on q−1

12 supp(K1) ∩ q−1
23 supp(K2),

(ii) p−1
12aΛ1 ∩ p−1

23 Λ2 ∩ (T ∗M1
M1 × T ∗M2 × T ∗M3

M3)

⊂ T ∗M1×M2×M3
(M1 ×M2 ×M3).

(1.2)

It follows from the functorial properties of the microsupport (that we have not recalled
here) that under the assumption (1.2) we have:

SS(K1 ◦
2
K2) ⊂ Λ1

a◦Λ2.(1.3)

If there is no risk of confusion, we write ◦ instead of ◦
2
.
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2 Simple sheaves

Localization

Let A be a subset of T ∗M and let Z = T ∗M \ A. The full subcategory Db
Z(kM) of

Db(kM) consisting of sheaves F such that SS(F ) ⊂ Z is triangulated. One sets

Db(kM ;A) := Db(kM)/Db
Z(kM),(2.1)

the localization of Db(kM) by Db
Z(kM). Hence, the objects of Db(kM ;A) are those of

Db(kM) but a morphism u : F1 −→ F2 in Db(kM) becomes an isomorphism in Db(kM ;A)

if, after embedding this morphism in a distinguished triangle F1 −→ F2 −→ F3
+1−→, one

has SS(F3) ∩ A = ∅.
When A = {p} for some p ∈ T ∗M , one writes Db(kM ; p) instead of Db(kM ; {p}).
Assume that A is locally closed. We say that two subsets S1, S2 of T ∗M define

the same germ along A if S1 ∩ U = S2 ∩ U for some neighborhood U of A. Let
F ∈ Db(kM ;A). Representing F with an object F̃ ∈ Db(kM), the germ of SS(F̃ ) along
A depends only on F and is again called the micro-support of F . If S is a germ of
subset along A, one denotes by

Db
S(kM ;A)(2.2)

the full triangulated category of Db(kM ;A) consisting of objects micro-supported by S.

The functor µhom

References for this subsection are made to [KS90, §4.4, §6.2 §7.2].
The functor of microlocalization along a submanifold has been introduced by Mikio

Sato in the 70’s (see [SKK73]) and has been at the origin of what is now called “mi-
crolocal analysis”. A variant of this functor, the bifunctor

µhom : Db(kM)op ×Db(kM) −→ Db(kT ∗M)(2.3)

has been constructed in [KS90]. It satisfies

RHom (G,F ) ' Rπ∗µhom(G,F ).(2.4)

Moreover, similarly as for RHom , there is a composition morphism

µhom(H,G)⊗µhom(G,F ) −→ µhom(H,F ).

In order to describe the microsupport of µhom(G,F ), recall that for a manifold X
and two subsets A,B ⊂ X, C(A,B) denotes the Whithney normal cone, a closed subset
of TX. When X = T ∗M , one identifies TX and T ∗X via the Hamiltonian isomorphism.

Theorem 2.1 (See [KS90, Cor. 6.4.3]). Let F,G ∈ Db(kM). Then

SS(µhom(G,F )) ⊂ C(SS(F), SS(G)).(2.5)
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In particular, supp(µhom(F,G)) ⊂ SS(F ) ∩ SS(G) and the functor µhom describes
in some sense the microlocal morphisms. More precisely, for U open in T ∗M , the
sequence of morphisms

Hom (G,F ) ' H0RΓ(M ; RHom (G,F )

' H0RΓ(T ∗M ;µhom(G,F ))

−→H0RΓ(U ;µhom(G,F ))

define the morphism

HomDb(kM ;U)(G,F ) −→ RΓ(U ;µhom(G,F )).(2.6)

In particular, µhom induces a bifunctor:

µhom : Db(kM ;U)op ×Db(kM ;U) −→ Db(kU).

The morphism (2.6) is not an isomorphism, but it induces an isomorphism at each
p ∈ T ∗M :

Theorem 2.2 (See [KS90, Th. 6.1.2]). Let p ∈ T ∗M . Then

HomDb(kM ;p)(G,F ) ' H0(µhom(G,F )p).

Pure and simple sheaves

Let S be a smooth submanifold of M and let Λ = T ∗SM . Let p ∈ Λ, p /∈ T ∗MM and let
F ∈ Db(kM ; p). Let us say that F is pure at p if F ' VS [d] for some k-module V and
some shift d and let us say that F is simple if moreover V has dimension one. A natural
question is to generalize this definition to the case where Λ is a smooth Lagrangian
submanifold of Ṫ ∗M but is no more necessarily a conormal bundle. Another natural
question is to calculate the shift d, which will be discussed in § 3.

Notation 2.3. Let Λ ⊂
•

T ∗M be a smooth R+-conic Lagrangian locally closed sub-
manifold. According to (2.2), Db

Λ(kM ; Λ) denote the full triangulated subcategory of
Db(kM ; Λ) consisting of objects micro-supported by Λ. Such an object may be repre-
sented by an object of Db

Λ(kM ;U) where U is open in T ∗M and Λ is closed in U .

Applying Theorem 2.1, we get

Corollary 2.4. The functor µhom induces a functor

µhom : Db
Λ(kM ; Λ)op ×Db

Λ(kM ; Λ) −→ DLoc(kΛ).

Lemma 2.5. Let L ∈ Db
Λ(kM ; Λ). There is a natural morphism kΛ −→ µhom(L,L)|Λ.

Proof. Let U be an open neighborhood of Λ as in Notation 2.3. The morphism kM −→
RHom (L,L) ' Rπ∗µhom(L,L) defines the morphism kT ∗M −→ µhom(L,L), hence
the morphism kU −→ µhom(L,L)|U . Since µhom(L,L)|U is supported by Λ, this last
morphism factorizes through kΛ.
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Definition 2.6. Let L ∈ Db
Λ(kM ; Λ).

(a) One says that L is pure on Λ if µhom(L,L)|Λ is concentrated in degree 0. One
denotes by Pure(Λ,k) the subcategory of Db

Λ(kM ; Λ) consisting of pure sheaves.

(b) One says that L simple on Λ if kΛ
∼−→ µhom(L,L)|Λ. One denotes by Simple(Λ,k)

the subcategory of Db
Λ(kM ; Λ) consisting of simple sheaves.

Of course, the categories Pure(Λ,k) and Simple(Λ,k) are not additive in general.

Remark 2.7. Let L ∈ Simple(Λ,k). Then the functor

µhom(L, • ) : Pure(Λ,k) −→ DLoc(kΛ)(2.7)

is well-defined. One shall be aware of the following facts.
(i) The category Simple(Λ,k) may be empty (see Prop. 4.9).
(ii) The functor in (2.7) is not fully faithful in general (see § 4 or [KS90, Ex. VI.6]).

Proposition 2.8 (see [KS90, Cor.7.5.4]). Assume that Λ is connected. If L ∈ Db
Λ(kM ; Λ)

is pure (resp. simple) in a neighborhood of p ∈ Λ, then L is pure (resp. simple) on Λ.

Proof. One know by Corollary 2.4 that L := µhom(L,L) is a local system on Λ. If L
is concentrated in degree 0 at some point (resp. is of rank one) then the same property
will hold at any point of Λ.

Lagrangian/Legendrian

Denote by t a coordinate on R and by (t; τ) the associated coordinates on T ∗R. We
denote by T ∗τ>0R the set {(t; τ) ∈ T ∗R; τ > 0}.

Consider the case where M = N×R and Λ is a closed conic Lagrangian submanifold
of T ∗N × T ∗τ>0R. In this case we consider the map

T ∗N × T ∗τ>0R −→ (T ∗N)× R, (x, t; ξ, τ) 7→ (x, t; ξ/τ).(2.8)

Let Λ0 denote the image of Λ. This is a Legendrian closed submanifold of the contact
manifold (T ∗N)× R.

We get the the notions of pure and simple sheaves along the Legendrian submanifold
Λ0 of (T ∗N)× R.

Quantized contact transformations

References for this subsection are made to [KS90, §7.2].
Consider two manifolds M1 and M2, two conic open subsets U1 ⊂ T ∗M1 and U2 ⊂

T ∗M2 and a homogeneous contact transformation χ:

•

T ∗M2 ⊃ U2
∼−→
χ

U1 ⊂
•

T ∗M1.(2.9)
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Denote by Ua
2 the image of V by the antipodal map aM2 on T ∗M2 and by Λ the image

of the graph of χ by idU1 ×aM2 . Hence Λ is a conic Lagrangian submanifold of U1×Ua
2 .

Consider K ∈ Db(kM1×M2) and the hypotheses
K is cohomologically constructible (see [KS90, Def. 3.4.1]),
SS(K) ∩ (U1 × Ua

2 ) = Λ,
K is simple along Λ,
(p−1

1 U1 ∪ p2
−1Ua

2 ) ∩ SS(K) ⊂ Λ.

(2.10)

Theorem 2.9 (See [KS90, Th. 7.2.1]). If K satisfies the hypotheses (2.10), then the
functor K ◦ induces an equivalence

K ◦ : Db(kM2 ;U2) ∼−→ Db(kM1 ;U1).(2.11)

Moreover, for G1, G2 ∈ Db(kM2 ;U2)

χ∗(µhom(G1, G2)|V ) ∼−→ µhom(K ◦G1, K ◦G2)|U1 .(2.12)

One calls (χ,K) a quantized contact transformation (a QCT, for short).
Given χ and q ∈ U2, p = χ(q) ∈ U1, there exists such a QCT after replacing U1 and

U2 by sufficiently small neighborhoods of p and q.

Corollary 2.10. Consider a homogeneous contact transformation χ : T ∗M1 ⊃ U1
∼−→

U2 ⊂ T ∗M2. Then for any p ∈ U1, there exists a conic open neighborhood W of p in U1

and a quantized contact transform (χ|W , K) where χ|W : W ∼−→ χ(W ) is the restriction
of χ.

Proof. Locally any contact transform χ is the composition χ1 ◦χ2 where the graph

of each χi (i = 1, 2) is the Lagrangian manifold associated with the conormal to a
hypersurface S. In this case, one can choose K = kS.

Corollary 2.11. Let Λi be a conic smooth Lagrangian submanifold of
•

T ∗Mi closed
in Ui (i = 1, 2) with χ(Λ2) = Λ1. Then K ◦ induces an equivalence Pure(Λ2,k) ∼−→
Pure(Λ1,k) and similarly when Pure is replaced with Simple.

Invariance by Hamiltonian isotopies

References for this subsection are made to [GKS12].
Let M be a real manifold of class C∞ and I an open interval of R containing the

origin. We consider a C∞-map Φ:
•

T ∗M × I −→
•

T ∗M . Setting ϕt = Φ( • , t) (t ∈ I), we
shall always assume{

ϕt is a homogeneous symplectic isomorphism for each t ∈ I,

ϕ0 = id •
T ∗M

.
(2.13)
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Let us recall here some classical facts. Set

vΦ :=
∂Φ

∂t
:

•

T ∗M × I −→ T
•

T ∗M,

f = 〈αM , vΦ〉 :
•

T ∗M × I −→ R, ft = f(·, t).

Denote by Hg the Hamiltonian flow of a function g :
•

T ∗M −→ R. Then

∂Φ

∂t
= Hft .

In other words, the homogeneous isotopy Φ is Hamiltonian.

In this situation, there exists a unique conic Lagrangian submanifold Λ̃ of
•

T ∗M ×
•

T ∗M × T ∗I closed in
•

T ∗(M ×M × I) such that Λ̃ ◦T ∗t I is the graph of ϕt.

Theorem 2.12 (See [GKS12, Th. 3.7]). We consider Φ:
•

T ∗M × I −→
•

T ∗M and we as-
sume that it satisfies hypothesis (2.13). Then there exists K ∈ Dlb(kM×M×I) satisfying
the following conditions.

(a) SS(K) ⊂ Λ ∪ T ∗M×M×I(M ×M × I),

(b) K0 ' k∆,

(c) both projections supp(K) ⇒M × I are proper,

(d) Kt ◦K−1
t ' K−1

t ◦Kt ' k∆ for all t ∈ I.

Moreover,

(i) such a K satisfying the conditions (a)–(b) is unique up to a unique isomorphism,

(ii) K is simple along Λ and Kt is simple along Λt for t ∈ I.

Note that the conclusion (ii) was not explicitly stated in loc. cit. but follows imme-
diately from the proof.

Applying Theorems 2.12 and 2.9 we get:

Corollary 2.13. Let Φ be an homogeneous Hamiltonian isotopy and let K be as in

Theorem 2.12. Let Λ0 ⊂
•

T ∗M be a closed smooth Lagrangian submanifold and set Λt =
ϕt(Λ0). Then the functor Kt ◦( • ) induces an equivalence Pure(Λt,k) ' Pure(Λ0,k)

and similarly when Pure is replaced with Simple.

Roughly speaking, Corollary 2.13 asserts that the categories Pure(Λ,k) and Simple(Λ,k)
are invariant by homogeneous Hamiltonian isotopies.
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3 Maslov index and shift

References for this subsection are made to [KS90, §7.5].
The constructions which appear in this section make an intensive use of the Maslov

index τ(λ1, λ2, λ3) of three Lagrangian planes λi (i = 1, 2, 3) in a real symplectic vector
space (E, σ). We refer to [KS90, Appendix] for a detailed exposition, simply recalling
its definition, namely{

τE(λ1, λ2, λ3) is the signature of the quadratic form on λ1⊕λ2⊕λ3

given by q(x1, x2, x3) = σ(x1, x2) + σ(x2, x3) + σ(x3, x1).
(3.1)

If a quadratic form has n+ positive and n− negative eigenvalues, then its signature is
n+ − n−.

For a function ϕ on M we denote by Λϕ the (non conic) Lagrangian submanifold of
T ∗M given by

Λϕ := {(x; dϕ(x));x ∈M}.

Let Λ be a conic smooth Lagrangian locally closed submanifold of T ∗M and let p ∈ Λ.
One says that ϕ is transversal to Λ at p if ϕ(πM(p)) = 0 and the manifolds Λ and Λϕ

intersect transversally at p. We define the Lagrangian planes in TpT
∗M :

λ0(p) = Tp(π
−1
M πM(p)), λΛ(p) = TpΛ, λϕ(p) = TpΛϕ.

We set

τϕ(p) = τE(λ0(p), λΛ(p), λϕ(p)) where E = TpT
∗M.(3.2)

Since p = (x; ξ) ∈ Λϕ, we have dϕ(x) = ξ 6= 0 (p ∈ Λ ⊂
•

T ∗M). If ϕ is transversal
to Λ at p /∈ T ∗MM then dϕ(πM(p)) 6= 0. Consider the smooth hypersurface S = {x ∈
M ;ϕ(x) = 0} and denote by λϕ=0(p) the tangent plane to T ∗SM at p. Then we also
have (see [KS90, eq. (7.5.5)]):

τϕ(p) = τ(λ0(p), λΛ(p), λϕ=0(p)).(3.3)

Example 3.1. Consider a local coordinate system x = (x′, x′′) on M where x =
(x1, . . . , xn), x′ = (x1, . . . , xl) and denote by (x; ξ) = (x′, x′′; ξ′, ξ′′) the associated coor-
dinates on T ∗M . For p ∈ T ∗M , we still denote by (x; ξ) = (x′, x′′; ξ′, ξ′′) the coordinates
on TpT

∗M . Let S = {x′′ = 0}, p = (0; dxn) and let ϕ : M −→ R be a C2-functions with
dϕ(0) 6= 0. We have

Λϕ = {(x; ξ); ξj = ∂ϕ/∂xj},

TpΛϕ = {(x; ξ); ξj =
n∑
k=1

∂2
xjxk

ϕ(0) · xk},

TpT
∗
SM = {(x; ξ);x′′ = ξ′ = 0}.

Then ϕ is transversal to S at p if and only if the intersection TpΛϕ ∩TpT ∗SM is {0} and
thus, if and only if the matrix ∂2

x′x′ϕ(0) is non degenerate. By the Morse Lemma, we
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may assume after a change of coordinates that ϕ|S =
∑l

j=1 ajx
2
j , aj ∈ R, aj 6= 0. Then,

setting E = TpT
∗M , E = E ′ ⊕ E ′′ with (x′; ξ′) ∈ E ′,

τϕ(p) = τE({x = 0}, {x′′ = ξ′ = 0}, {ξ = ∂2
x′,x′ϕ(0) · x′)}

= τE′({x′ = 0}, {ξ′ = 0}, {ξ′ = ∂2
x′,x′ϕ(0) · x′})

=−sign(∂2
x′,x′ϕ(0)) = #{j; aj < 0} −#{j; aj > 0}.

(See [KS90, Prop. A.3.6] for details.)

Lemma 3.2. Let Λ be a conic smooth Lagrangian locally closed submanifold of
•

T ∗M ,
let p ∈ Λ and let ϕ be transversal to Λ at p. The property that RΓϕ≥0(F )πM (p) is
concentrated in a single degree does not depend on the choice of ϕ and is invariant
by QCT. More precisely, for another ϕ′ transversal to Λ, we have RΓϕ′≥0(F )πM (p) '
RΓϕ≥0(F )πM (p)[

1
2
(τϕ(p)− τϕ′(p))].

Proof. See [KS90, Prop. 7.5.3, 7.5.6].

Lemma 3.3. Let F ∈ Db(kM ; p) supported by Λ, let ϕ : M −→ R be transversal to Λ
at p /∈ T ∗MM and set V = RΓϕ≥0(F )πM (p). Then F is pure at p if and only if V is
concentrated in a single degree, say −j, and F is simple if moreover Hj(V ) has rank
one.

Proof. (i) By Corollary 2.11, the property of being pure or simple is invariant by QCT.
Hence, applying Lemma 3.2 we may assume from the beginning that Λ = T ∗SM is the
conormal bundle to a hypersurface S.

(ii) By [KS90, Prop. 6.6.1], there exists W ∈ Db(k) such that F ' WS in Db(kM ; p).
Then µhom(F, F )p ' RHom (W,W ) and this complex is concentrated in degree 0 if
and only if W is concentrated in a single degree. Moreover, Hom (W,W ) is of rank one
if and only if so is W . To conclude, it remains to calculate V = RΓϕ≥0(WM)πM (p). This
is left to the reader, using Example 3.1.

Definition 3.4. (See [KS90, Def. 7.5.4]) Let d ∈ 1
2

dim(λ0(p) ∩ λΛ(p)) + Z. Let F ∈
Db(kM ; p) supported by Λ and let V ∈ Db

f (k).

(a) One says that F is of type V with shift d at p if

RΓϕ≥0(F )πM (p) ' V [d− n

2
− 1

2
τϕ(p)].(3.4)

(b) If Hj(V ) = 0 for j 6= 0 one says that F is pure with shift d. If moreover V is a free
k-module of rank one, one says that F is simple with shift d.

It follows from Lemma 3.3 that the notions of being pure or simple sheaves intro-
duced in Definition 3.4 coincide with those of Definition 2.6. It is proved in loc. cit.
that the definition of the shift does not depend on the choice of ϕ.

• If F is pure with of type V with shift d along Λ and Λ = T ∗SM for some hypersur-
face S, then there exists a sheaf G simple of shift d along Λ and an isomorphism
F ' VS ⊗G in Db(kM ; p).
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• If F is of type V with shift d at p, then F is of type V [−j] with shift d + j and
F [j] is of type V with shift d+ j at p.

Notation 3.5. Fix some point p ∈ Λ and let d ∈ 1
2

dim(λ0(p)∩λΛ(p))+Z. One denotes
by Purep,d(Λ,k) the additive full subcategory of Pure(Λ,k) consisting of sheaves which
are pure of shift d at p. We define similarly Simplep,d(Λ,k).

Example 3.6. (See [KS90, Exa. 7.5.5].) If S is a closed submanifold of M , the sheaf
kS on M is simple with shift 1

2
codimM S at each p ∈ T ∗SM .

To check this point, we choose a local coordinate system x = (x′, x′′) as in Exam-
ple 3.1. Hence, S = {x′′ = 0}, p = (0; dxn). Choose ϕ(x) = xn +

∑l
j=1 x

2
j . Then ϕ is

transversal to T ∗SM at p. We have

(RΓϕ≥0(kS))0'k.

Since τϕ(p) = −l, we find by (3.4) that d = 1
2
(n− l) = 1

2
codimM S.

Let ψ : M −→ R be a C2 function with dψ(x) 6= 0 on the hypersurface S = {x ∈
M ;ψ(x) = 0}. Set Z = {x ∈ M ;ψ(x) ≥ 0}, U = {x ∈ M ;ψ(x) < 0}, p = (x0; dψ(x0))
for some x0 with ψ(x0) = 0. Then at p (that is, in the category Db(kM ; p)) one has
kZ ' kS ' kU [1]. Applying the above result, we get that kZ is simple with shift 1

2
at

p and kU is simple with shift −1
2

at p.

Example 3.7. Assume X is a complex manifold and F ∈ Db
Cc(kX), that is, F is

C-constructible. Then F is perverse if and only if it has shift 0 at generic points of
SS(F ).

Example 3.8. Denote by x = (x1, x2) the coordinates on R2, by (x; ξ) = (x1, x2; ξ1, ξ2)
the associated coordinates on T ∗R2 and consider the “locally closed cusp”:

Z = {(x1, x2);x1 > 0,−x
3
2
1 ≤ x2 < x

3
2
1 }.

Then the microsupport of kZ outside of the zero-section is the smooth Lagrangian
manifold

Λ = {(x; ξ); ξ2 > 0, x1 = (2ξ1/3ξ2)2, x2 = −(2ξ1/3ξ2)3},
= {(t2, t3;−3tu, 2u)}; t ∈ R, u ∈ R>0}.

It follows from Example 3.6 that kZ is simple with shift 1/2 on Λ ∩ {ξ1 > 0} and
simple with shift −1/2 on Λ ∩ {ξ1 < 0}. Let us calculate kZ at p = (0; dx2). One has
(RΓϕ≥0kZ)0 ' k [−1]. On the other hand, the function ϕ(x) = x2 is transversal to Λ
at (0; dx2) and τϕ(p) = 0. Therefore, kZ is simple with shift 0 at p.

Remark 3.9. Let Λ be a conic smooth Lagrangian locally closed submanifold of
•

T ∗M .
We assume that the projection Λ/R+ −→ M is finite and we let Λ0 ⊂ Λ be the open
subset where Λ −→M is of maximal rank. We assume that Pure(Λ,k) is non empty and
we let F ∈ Pure(Λ,k). The fonction m : Λ −→ 1

2
Z, p 7→ “shift of F at p”, is constant on

the connected components of Λ0 and changes by 1 when p goes over a cusp, as follows
from Example 3.8. Hence m is a Maslov potential for Λ in the sense of [PC05].

11



4 Legendrian knots, cusps and zigzags

Legendrian knots

In [STZ14], the authors study the special situation in which M = R × R and Λ is a
connected smooth Lagrangian (equivalently, Legendrian) closed submanifold of T ∗R×R.
More precisely, they consider the category Simple(Λ,k) (that they call M1(Λ,k)) of
constructible sheaves of k-modules on M = R × R, whose microsupport is contained
in the union of the zero-section and the set {(x, t; ξ, τ); τ < 0} with ((x; ξ/τ), t) ∈ Λ.
That is, the “downward pointing” co-vectors of M are in Λ.

It follows from Corollary 2.13 that M1(Λ,k) only depends on the Legendrian isotopy
class of Λ. Hence we can deform Λ and assume that its front π(Λ) is a curve in M with
ordinary double points and cusps as its only singularities. The objects of M1(Λ,k)
are in particular constructible with respect to the stratification of M given by the
singularities of π(Λ), the smooth arcs of π(Λ) and the components of the complement
of π(Λ).

These constructible sheaves have a combinatorial description: such a sheaf is given
by a complex associated with each stratum and some gluing condition.

We fix some Maslov potential m along Λ and let M1,m(Λ,k) be the subcategory of
M1(Λ,k) whose objects have their shift given by p (see Remark 3.9). Let |M1,m(Λ,k)|
be the number of isomorphism classes of objects in M1,m(Λ,k). We can associate a
Legendrian knot ΛB with a braid B (draw the braid horizontally in the plane, join the
left and right ends by upper arcs, with cusps to avoid vertical tangents – then ΛB is the
conormal bundle of the resulting curve). The main result of [STZ14] relates the count
function p 7→ |M1,m(ΛB,Z/pZ)|, p prime, with the HOMFLY polynomial of B.

Cusps

Here is a partial converse to Example 1.2 (iii). For an open subset U ⊂ M with
smooth boundary we denote by T ∗,in∂U M the inner conormal bundle of ∂U (that is,
T ∗,in∂U M = ṠS(kU) in Example 1.2 (iii)).

Lemma 4.1. Let M be a manifold and let U be an open subset. Let F ∈ Db(kM).
We assume that supp(F ) ⊂ U and that, for any x ∈ ∂U , there exists a C1-function
ϕ : M −→ R such that U ⊂ ϕ−1(]0,+∞[) near x, dϕx 6= 0, and (x; dϕx) 6∈ SS(F ). Then
the morphism FU −→ F is an isomorphism.

In particular, if U has a smooth boundary, supp(F ) ⊂ U and ṠS(F ) ∩ T ∗,in∂U M = ∅,
then FU ∼−→ F .

Proof. Since supp(F ) ⊂ U it is enough to see that Fx ' 0 for all x ∈ ∂U . Let
ϕ : M −→ R be as in the lemma. We have (x; dϕx) 6∈ SS(F ). The definition of the
microsupport gives (RΓϕ−1([0,+∞[)(F ))x ' 0. Since supp(F ) ⊂ U ⊂ ϕ−1([0,+∞[) we
have RΓϕ−1([0,+∞[)(F ) ' F . Hence Fx ' 0, as required.

If U has a smooth boundary, we can choose for ϕ any C1-function such that U =
ϕ−1(]0,+∞[) near x and dϕx 6= 0. Then the second part of the lemma follows from the
first.
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Here is the dual statement of Lemma 4.1.

Lemma 4.2. Let M be a manifold and let U be an open subset. Let F ∈ Db(kM).
We assume that supp(F ) ⊂ U and that, for any x ∈ ∂U , there exists a C1-function
ϕ : M −→ R such that U ⊂ ϕ−1(]0,+∞[) near x, dϕx 6= 0, and (x;−dϕx) 6∈ SS(F ).
Then the morphism F −→ RΓU(F ) is an isomorphism.

In particular, if U has a smooth boundary, supp(F ) ⊂ U and ṠS(F )∩(T ∗,in∂U M)a = ∅,
then F ∼−→ RΓU(F ).

Example 4.3. As a special case of Lemma 4.1 we consider an open subset U ⊂ M
which is contractible and has smooth boundary. Then the sheaves F ∈ Db(kM) such
that supp(F ) ⊂ U and ṠS(F ) ∩ T ∗,in∂U M = ∅ are the sheaves of the form F ' LU for
some L ∈ Db(k).

Example 4.4. In R2 with coordinates (x, y) we define the following locally closed
subset bounded by the cusp

(4.1) W = {(x, y); x > 0, −x3/2 ≤ y < x3/2}.

It follows from [KS90, Ex. 5.3.4] that, outside the zero section, SS(kW ) is the smooth
Lagrangian submanifold

(4.2) Λcusp = {(t2, t3;−3tu, 2u); t ∈ R, u > 0}.

We will now describe all objects in Db(kR2) with a microsupport contained in Λcusp

outside of the zero-section. Let F ∈ Db(kR2) with ṠS(F ) ⊂ Λcusp. In particular F is
locally constant on the open subsets U0 = Int(W ) and U1 = R2 \W . Since U0 and U1

are contractible, F |U0 and F |U1 are in fact constant.
We first assume that F |U1 ' 0.

Lemma 4.5. Let F ∈ Db(kR2) be such that ṠS(F ) ⊂ Λcusp and F |U1 ' 0. Then there
exists L ∈ Db(k) such that F ' LW .

Proof. (i) We define U = {(x, y) ∈ R2; x > 0, y < x3/2}. Let us prove that FU ∼−→ F
by checking the hypothesis of Lemma 4.1. We clearly have supp(F ) ⊂ U . For a given
z ∈ ∂U the existence of ϕ as in the lemma is easy when z is smooth. It remains to
consider z = (0, 0). In this case we see that ϕ(x, y) = x− y satisfies the hypothesis.

(ii) Now we consider F |U . By Lemma 4.2 applied to M = U and U = Int(W ) we have
F |U ∼−→ RΓIntW (F ). Since Int(W ) is contractible and ṠS(F |Int(W )) is empty we have
RΓIntW (F ) ' Rj∗(LInt(W )) for some L ∈ Db(k), where j : Int(W ) −→ U is the inclusion.
Since ∂W ∩U is smooth we have Rj∗(LInt(W )) ' LW (this is an isomorphism in Db(kU))
and the lemma follows.

Lemma 4.6. Let F ∈ Db(kR2) be such that ṠS(F ) ⊂ Λcusp. We recall that U1 = R2 \W
and we choose z ∈ U1. Then the restriction morphisms RΓ(R2;F ) −→ RΓ(U1;F ) −→ Fz
are isomorphisms.
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Proof. Since F |U1 is constant the second morphism is an isomorphism. Hence it is
enough to check that RΓ(R2;F ) −→ Fz is also an isomorphism and we can even assume
that z = (−1, 0). We define ϕ : R2 −→ R by ϕ(z′) = d(z, z′)2. Then, for z′ 6= z, we have
(z′; dϕz′) 6∈ SS(F ). By the microlocal Morse lemma (see [KS90, Ex. 5.4.19]) it follows
that RΓ(Br;F ) −→ RΓ(B1/2;F ) is an isomorphism for all r ≥ 1/2, where Br is the
open ball of radius r centered at z. We have RΓ(B1/2;F ) ∼−→ Fz and lim←−rH

i(Br;F ) '
H i(R2;F ) for all i ∈ Z by [KS90, Prop. 2.7.1]. The lemma follows.

The following result could be deduced from [STZ14, Thm. 3.12].

Proposition 4.7. Let F ∈ Db(kR2) be such that ṠS(F ) ⊂ Λcusp. Then there exist
L,L′ ∈ Db(k) such that F ' LW ⊕ L′R2.

Proof. (i) We set L′ = RΓ(R2;F ). Let a be the map from R2 to a point. The ad-
junction (a−1,Ra∗) gives a morphism L′R2 −→ F which induces an isomorphism on the

global sections. We define G by the distinguished triangle L′R2 −→ F −→ G
+1−→. Then

RΓ(R2;G) ' 0. By Lemma 4.6 it follows that Gz ' 0 for all z ∈ U1. Hence, by
Lemma 4.5, there exists L ∈ Db(k) such that G ' LW .

(ii) By (i) we have a distinguished triangle L′R2 −→ F −→ LW
u−→ L′R2 [1]. By the adjunction

(Ra!, a
−1) we have Hom (LW , L

′
R2 [1]) ' Hom (Ra!(LW ), L′[1]). We see that Ra!(LW ) ' 0

and it follows that u = 0. We deduce that F is the direct sum given in the lemma.

Corollary 4.8. Let F ∈ Db(kR2) be such that ṠS(F ) ⊂ Λcusp. For a given x0 > 0 we
define i : R −→ R2, y 7→ (x0, y) and we let a < b ∈ R be the inverse images of the cusp
{x3 = y2} by i. Then there exist L,L′ ∈ Db(k) such that i−1F ' L[a,b[ ⊕ L′R.

Zigzags

Now we consider the following double cusp. We let C be the cusp C = {x3 = y2} and
we set z = (1,−1) ∈ C. We let C+ = C ∩ (R× [−1,+∞[) be the portion of C “above
z”. We let C ′ = C+ − z be the translation of C+ which ends at (0, 0) and we define
C2 as the union of C ′ and its image by (x, y) 7→ (−x,−y). Then C2 has two cusps,
at c0 = (−1, 1) and c1 = (1,−1), and is a smooth curve of class C1 outside the cusps.

The closure of
•

T
∗
C2

(R2 \ {c0, c1}) in
•

T
∗
R2 is a smooth Lagrangian submanifold with

two connected components. We let ΛC2 be one of these components. It is well-known
that ΛC2 cannot be described by a generating function. We see that it cannot be the
microsupport of a sheaf. This is done for example in [STZ14, Prop. 5.8]. Here is a
slightly different proof.

Proposition 4.9. Let F ∈ Db(kR2) be such that ṠS(F ) ⊂ ΛC2. Then F is a constant
sheaf and ṠS(F ) = ∅.

Proof. We define i : R −→ R2, y 7→ (0, y) and we let a = −2, b = 0, c = 2 be the points
in i−1(C2). We set U+ = R×] − 1/2,+∞[ and U− = R×] −∞, 1/2[. Then C2 ∩ U± is
diffeomorphic to the usual cusp (by a diffeomorphism of class C1). By Corollary 4.8
we deduce that there exist L,L′,M,M ′ ∈ Db(k) such that (i−1F )|]−∞,1/2[ ' L]−∞,1/2[⊕
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L′[−2,0[ and (i−1F )|]−1/2,+∞[ ' M]−1/2,+∞[ ⊕M ′
[0,2[. Restricting to I = ]−1/2, 1/2[ we

obtain LI ⊕ L′]−1/2,0[ ' MI ⊕ M ′
[0,1/2[. This implies L′ = M ′ = 0 and the lemma

follows.

Problem 4.10. Consider the situation of (2.8). It is natural to ask the question of the
quantization of the Lagrangian manifold Λ or, equivalently, of the Legendrian manifold
Λ0. More precisely, one asks the question:

to give necessary and sufficient geometrical conditions in order that
there exists a globally defined simple sheaf along Λ.

(4.3)

(i) The zigzag example (Proposition 4.9) shows that such a quantization does not always
exist.

(ii) In [Gui19, Th. 13.5.1] it is proved that if Λ comes from a compact exact Lagrangian
submanifold of T ∗N , then a quantization exists (and we can choose one in a canonical
way).

(iii) It follows from Remark 3.9 that a necessary condition is that the Maslov potential
of Λ vanishes.
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