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Abstract

We will recall classical results on quantization of conic Lagrangian submani-
folds of cotangent bundles in the real case. These Notes contain nothing really
new or original although some results of § 4 do not appear in the literature.
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1 Sheaves

In all these Notes, references are made to [KKS90].

Main notations

We choose a field k although many results extend when replacing k with a unital
commutative ring with finite global dimension (k being Noetherian when considering
constructible sheaves).

In these Notes, M will denote a real manifold of class C*. We denote by D(ky) the
derived category of sheaves of k-modules on M and by DP(k;,) the bounded derived
category. We shall also consider the subcategory D™ (kys) of D(kj) consisting of objects
“locally bounded”.

When M is real analytic, we denote by D& _(kjs) the full triangulated subcategory
of DP(kj/) consisting of R-constructible sheaves. If M = pt, one has DP(k,;) ~ D"(k),
the bounded derived category of k-modules, and Dg.(ky) ~ D}(k), the subcategory of
DP(k) consisting of complexes with finite dimensional cohomology.
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For a locally closed subset A C M, we denote by k, the constant sheaf on A
extended by 0 on M \ A. We define more generally the sheaf V4 for V € DP(k).

We denote by wys the dualizing complex on M. Recall that wy, ~ ory [dim M|,
where or,; is the orientation sheaf on M and dim M the dimension of M. For a sheaf
F (i.e., an object of D(ky;) ) one sets

D), F = R#om (F,ky), DyF =R#om (F,wy).

We denote as usual by m: T*"M — M the cotangent bundle to M and for a smooth
submanifold S C M, we denote by T¢M the conormal bundle to S in M. We identify

T:,; M with the zero-section of T*M and we set T*M :=T*M \ T}, M.

The sphere cotangent bundle S*M is the quotient of T*M by the Rf-action. It is
a contact manifold and one denotes by p the map

p: T*M — S*M :=T*M/R".

When M = N x R, the manifold (T*N) x R is a contact manifold, for the contact form
dt + & /7dx and one considers the map

p: T7(N xR) = (T°N) xR, (z,4:€,7) = ((2;£/7),1).

Microsupport

References for this subsection are made to [KKS90, § 5.1, § 6.1, § 6.5].
We shall recall the definition of the microsupport (or singular support) SS(F') of a
sheaf F’

Definition 1.1 (See [KS90, Def. 5.1.2]). Let F' € D"(ky,) and let p € T*M. One says
that p ¢ SS(F) if there exists an open neighborhood U of p such that for any zo € M
and any real C'-function ¢ on M defined in a neighborhood of zq with (z¢; dp(z)) € U,
one has RU(zi0(0)>p(wo)} (£)2o = 0.

In other words, p ¢ SS(F) if the sheaf F' has no cohomology supported by “half-
spaces” whose conormals are contained in a neighborhood of p.

e By its construction, the microsupport is R*-conic, that is, invariant by the action
of RT on T*M.

o SS(F)NTy M = my(SS(F)) = supp(F'), where supp(-) denotes the support.

e The microsupport satisfies the triangular inequality: if Fy — Fy — F3 RN

is a distinguished triangle in D"(ky/), then SS(F;) C SS(F;) U SS(F}) for all
i, g,k € {1,2,3) with j # k.

Example 1.2. (i) If M is connected, then SS(F) = Tj,M if and only if H/(F) is a
locally constant sheaf on M for all j € Z and F' # 0.

(ii) If N is a closed submanifold of M and F' = ky, then SS(F') = T M, the conormal
bundle to N in M.



(iii) Let ¢ be a Cl-function such that dy(z) # 0 whenever p(z) = 0. Let U = {z €
M;p(z) > 0} and let Z = {xz € M;¢(x) > 0}. Then

SS(ky) = U xpr Ty M U {(z; Mdp(2)); o(x) = 0, A
SS(kz) = Z xp Ty M U{(x; Mdp(x)); p(z) = 0, A

0},
0}

IV IA

For a precise definition of being involutive (or co-isotropic), we refer to [KS90,

Def. 6.5.1]

Theorem 1.3. Let F' € DP(ky). Then its microsupport SS(F) is involutive.
Notation 1.4. One denotes by DLoc(ky,) the full triangulated subcategory of DP(ky,)
consisting of sheaves with microsupport contained in the zero-section 7%, M.

Kernels

References for this subsection are made to [KS90, §3.6].

Let M; (i = 1,2, 3) be manifolds. For short, we write M;; := M; x M; (1 <i,j <3)
and Moz = My x My x M;z. We denote by ¢; the projection M;; — M; or the projection
Myos — M, and by g;; the projection Mjo3 — M;;. Similarly, we denote by p; the
projection T™M;; — T M, or the projection T* M3 — T™M; and by p;; the projection
T* Moz — T M;;. We also need to introduce the map pi2., the composition of p;s and
the antipodal map on 7™ M,.

Let Ay C T*Miy and Ay C T*Ms3. We set

(1.1) Ao, = pis(prze A1 N pyg As).
We consider the operation of convolution of kernels:
3 D" (Kaz,,) X DP(Karyy) = D (k)
(K, Ko) = Ko Ky = qu3!(@f21K1<§L992_31K2)-
Let A; = SS(K;) C T*M, ;41 and assume that

(i) qu3 is proper on g¢;5' supp(K1) N ga3 supp(Ka),
(1.2) (ii) proei N pag- Ao N (T, My X T*My x Ty M)
C TJT/I1><M2><M3(M1 X M2 X Mg)

It follows from the functorial properties of the microsupport (that we have not recalled
here) that under the assumption (1.2) we have:

(1.3) SS(KigK») C Ay S As.

If there is no risk of confusion, we write o instead of .



2 Simple sheaves

Localization

Let A be a subset of T*M and let Z = T*M \ A. The full subcategory D% (k) of
DP(kys) consisting of sheaves F such that SS(F) C Z is triangulated. One sets

(2.1) D" (kas; A) := D" (kas) /DY (kar),

the localization of DP(k,s) by D%(kys). Hence, the objects of DP(kys; A) are those of
DP (k) but a morphism u: Fy — F, in DP(kj,) becomes an isomorphism in DP(ky; A)
if, after embedding this morphism in a distinguished triangle F} — Fy — F3 +—1>, one
has SS(F5) N A =o.

When A = {p} for some p € T*M, one writes D(ky;p) instead of D" (kys; {p}).

Assume that A is locally closed. We say that two subsets Si, 55 of T*M define
the same germ along A if S; NU = S, N U for some neighborhood U of A. Let
F € DP(kys; A). Representing F with an object F' € DP(ky,), the germ of SS(F) along
A depends only on F' and is again called the micro-support of F. If S is a germ of
subset along A, one denotes by

(2.2) D (kas; A)
the full triangulated category of DP(kys; A) consisting of objects micro-supported by S.

The functor phom

References for this subsection are made to [KS90, §4.4, §6.2 §7.2].

The functor of microlocalization along a submanifold has been introduced by Mikio
Sato in the 70’s (see [SKK73]) and has been at the origin of what is now called “mi-
crolocal analysis”. A variant of this functor, the bifunctor

(2.3) phom: DP (k)P x DP (k) — DP(kpe )

has been constructed in [KS90]. It satisfies

(2.4) Room (G, F) ~ Rm.phom(G, F).

Moreover, similarly as for R2Zom , there is a composition morphism
phom(H,G) @ uhom(G, F) — phom(H, F).

In order to describe the microsupport of phom(G, F'), recall that for a manifold X
and two subsets A, B C X, C(A, B) denotes the Whithney normal cone, a closed subset
of TX. When X = T*M, one identifies T'X and T X via the Hamiltonian isomorphism.

Theorem 2.1 (See [KS90, Cor. 6.4.3]). Let F,G € D"(ky;). Then
(2.5) SS(puhom (G, F)) € C(SS(F), SS(G)).
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In particular, supp(phom(F,G)) C SS(F) NSS(G) and the functor phom describes
in some sense the microlocal morphisms. More precisely, for U open in T*M, the
sequence of morphisms

Hom (G, F) ~ H°RI'(M; R#om (G, F)
~ H'RI(T*M; phom(G, F))
— H'RI(U; phom(G, F))

define the morphism
(2.6) Homp, o, 1r(G, F') = RI(U; phom(G, F)).
In particular, phom induces a bifunctor:

phom: DP(ky; U)P x DP(kyy; U) — DP(ky).

The morphism (2.6) is not an isomorphism, but it induces an isomorphism at each
peT*M:

Theorem 2.2 (See [KS90, Th. 6.1.2]). Let p € T*M. Then

Home(kM;p)(Ga F) ~ H°(uhom(G, F),).

Pure and simple sheaves

Let S be a smooth submanifold of M and let A = TéM. Let p € A,p ¢ T3, M and let
F € DP(kys;p). Let us say that F is pure at p if F' ~ Vg |[d] for some k-module V and
some shift d and let us say that F is simple if moreover V' has dimension one. A natural
question is to generalize this definition to the case where A is a smooth Lagrangian
submanifold of 7%M but is no more necessarily a conormal bundle. Another natural
question is to calculate the shift d, which will be discussed in § 3.

Notation 2.3. Let A C T*M be a smooth R*-conic Lagrangian locally closed sub-
manifold. According to (2.2), DR (kys; A) denote the full triangulated subcategory of
DP(kys; A) consisting of objects micro-supported by A. Such an object may be repre-
sented by an object of DR (kys; U) where U is open in T*M and A is closed in U.

Applying Theorem 2.1, we get
Corollary 2.4. The functor phom induces a functor
phom: DR (kas; A)°P x DR (kps; A) — DLoc(ky).
Lemma 2.5. Let L € DR (ky; A). There is a natural morphism ky — phom(L, L)]|4.

Proof. Let U be an open neighborhood of A as in Notation 2.3. The morphism ky; —
Rtom (L, L) ~ Rm.uhom(L, L) defines the morphism kr«y, — phom(L, L), hence
the morphism ky — phom(L, L)|y. Since phom(L, L)|y is supported by A, this last
morphism factorizes through kj. O



Definition 2.6. Let L € DR (ky; A).

(a) Ome says that L is pure on A if phom(L, L)|s is concentrated in degree 0. One
denotes by Pure(A, k) the subcategory of D (kys; A) consisting of pure sheaves.

(b) One says that L simple on A if ky =~ phom(L, L)|5. One denotes by Simple(A, k)
the subcategory of D (kys; A) consisting of simple sheaves.

Of course, the categories Pure(A, k) and Simple(A, k) are not additive in general.

Remark 2.7. Let L € Simple(A, k). Then the functor
(2.7) phom(L, «): Pure(A, k) — DLoc(ky)

is well-defined. One shall be aware of the following facts.
(i) The category Simple(A, k) may be empty (see Prop. 4.9).
(ii) The functor in (2.7) is not fully faithful in general (see § 4 or [KS90, Ex. VIL.6]).

Proposition 2.8 (see [KS90, Cor.7.5.4]). Assume that A is connected. If L € DR (k3 A)
is pure (resp. simple) in a neighborhood of p € A, then L is pure (resp. simple) on A.

Proof. One know by Corollary 2.4 that .Z := phom(L, L) is a local system on A. If &
is concentrated in degree 0 at some point (resp. is of rank one) then the same property
will hold at any point of A. m

Lagrangian/Legendrian
Denote by t a coordinate on R and by (¢;7) the associated coordinates on T*R. We
denote by T7 (R the set {(t;7) € T*R; 7 > 0}.

Consider the case where M = N xR and A is a closed conic Lagrangian submanifold
of T*N x T (R. In this case we consider the map

(2.8) T*N xT/ \R—= (T"N) xR, (z,t;&,7)— (z,t;§/T).

Let Ay denote the image of A. This is a Legendrian closed submanifold of the contact
manifold (T*N) x R.
We get the the notions of pure and simple sheaves along the Legendrian submanifold

Ag of (T*N) x R.

Quantized contact transformations

References for this subsection are made to [KS90, §7.2].
Consider two manifolds M; and Ms, two conic open subsets U; C T*M; and Us C
T* M, and a homogeneous contact transformation y:

(29) T*MQ DU, = U, C T*Ml
X



Denote by U$ the image of V' by the antipodal map ayz, on T*M, and by A the image
of the graph of x by idy, Xaas,. Hence A is a conic Lagrangian submanifold of Uy x US.
Consider K € DP(ky, »as,) and the hypotheses

K is cohomologically constructible (see [KS90, Def. 3.4.1]),
SS(K) N (Uy x Ug) = A,

K is simple along A,

(p UL Upy™tUS) NSS(K) C A.

(2.10)

Theorem 2.9 (See [KS90, Th. 7.2.1]). If K satisfies the hypotheses (2.10), then the
functor K o induces an equivalence

(2.11) Ko: DP(kyy; Us) =5 DP(kyy,; UL).

Moreover, for Gy, Gy € DP(kyy,; Us)

(2.12) X« (hom(Gy, Ga)|y) == phom(K o Gy, K o Ga)|y,.

One calls (x, K) a quantized contact transformation (a QCT, for short).
Given x and ¢q € Us, p = x(q) € Uy, there exists such a QCT after replacing U; and
Us by sufficiently small neighborhoods of p and q.

Corollary 2.10. Consider a homogeneous contact transformation x: T*M; D U; =%
Uy C T*Ms. Then for any p € Uy, there exists a conic open neighborhood W of p in Uy
and a quantized contact transform (x|w, K) where x|w: W == x(W) is the restriction

of x.
Proof. Locally any contact transform x is the composition x; oy where the graph

of each x; (1 = 1,2) is the Lagrangian manifold associated with the conormal to a
hypersurface S. In this case, one can choose K = kg. O

Corollary 2.11. Let A; be a conic smooth Lagrangian submanifold of T*]WZ closed
in U; (i = 1,2) with x(Ay) = Ay. Then K o induces an equivalence Pure(Ay, k) ==

Pure(A1, k) and similarly when Pure is replaced with Simple.

Invariance by Hamiltonian isotopies

References for this subsection are made to [GKS12].
Let M be a real manifold of class C* and [ an open interval of R containing the

origin. We consider a C*-map ®: T*M x I — T*M. Setting ¢, = ®(+, ) (t € I), we
shall always assume

(2.13) {Sﬁt is a homogeneous symplectic isomorphism for each ¢ € I,

900 = 1d'1.1*M .



Let us recall here some classical facts. Set

%;—%—T T*M x I — TT*M,

F=(am,ve): T*M x I >R, f = f(-,1).

Denote by H, the Hamiltonian flow of a function g¢: T*M — R. Then

In other words, the homogeneous isotopy ® is Hamiltonian.
In this situation, there exists a unique conic Lagranglan submanifold A of T*M x
T*M x T*I closed in T*(M x M x I) such that Ao T} is the graph of ¢,.

Theorem 2.12 (See [GKS12, Th. 3.7]). We consider ®: T*M x I — T*M and we as-
sume that it satisfies hypothesis (2.13). Then there exists K € D™ (Kyryarxr) satisfying
the following conditions.

a ( )CAUTJT/[XMXI(MXMXI)7

(c
(d) KyoK; '~ K; "o K, ~ka forallt €.

(a) S

(b) Ko ~Kka,
) both projections supp(K) = M x I are proper,
)

Moreover,
(i) such a K satisfying the conditions (a)—(b) is unique up to a unique isomorphism,

(ii) K is simple along A and K is simple along Ay fort € I.

Note that the conclusion (ii) was not explicitly stated in loc. cit. but follows imme-
diately from the proof.
Applying Theorems 2.12 and 2.9 we get:

Corollary 2.13. Let ® be an homogeneous Hamiltonian isotopy and let K be as in

Theorem 2.12. Let Ay C T*M be a closed smooth Lagrangian submanifold and set Ay =
©i(Ng). Then the functor Kyo(e) induces an equivalence Pure(A;, k) ~ Pure(Ag, k)

and similarly when Pure is replaced with Simple.

Roughly speaking, Corollary 2.13 asserts that the categories Pure(A, k) and Simple(A, k)
are invariant by homogeneous Hamiltonian isotopies.



3 Maslov index and shift

References for this subsection are made to [KS90, §7.5].

The constructions which appear in this section make an intensive use of the Maslov
index 7(A1, A2, A\3) of three Lagrangian planes \; (i = 1,2,3) in a real symplectic vector
space (E,0). We refer to [KS90, Appendix] for a detailed exposition, simply recalling
its definition, namely

(3.1) {TE<>\1, A2, A3) is the signature of the quadratic form on A\; @ Ay @ A3

given by q(x1, 2, x3) = o(x1,x2) + 0(22, 3) + 0 (23, T1).

If a quadratic form has n™ positive and n~ negative eigenvalues, then its signature is
nt—n".

For a function ¢ on M we denote by A, the (non conic) Lagrangian submanifold of
T*M given by

Ay = {(z;dp(z)); € M}.

Let A be a conic smooth Lagrangian locally closed submanifold of T*M and let p € A.
One says that ¢ is transversal to A at p if p(ma(p)) = 0 and the manifolds A and A,
intersect transversally at p. We define the Lagrangian planes in 7,7 M:

Ao(p) = Tp(w&le(p)), () =TpA, Ap(p) = T,A,.
We set
(3.2) 7,(p) = TE(Mo(p), Aa(P), Ap(p)) where E' = T,T* M.

Since p = (2;€) € Ay, we have dp(z) =€ #0 (p € A C T*M). If ¢ is transversal
to A at p ¢ Ty, M then do(mp(p)) # 0. Consider the smooth hypersurface S = {x €
M;¢(z) = 0} and denote by A,—o(p) the tangent plane to T¢M at p. Then we also
have (see [KS90, eq. (7.5.5)]):

(33) 7}0(]9) = T()\O(p)a )\A(p)a )‘90=0(p))'
Example 3.1. Consider a local coordinate system = = (2/,2”) on M where z =
(x1,...,2p), ' = (x1,...,2;) and denote by (x;&) = (2, 2"; &', £") the associated coor-

dinates on T*M. For p € T* M, we still denote by (x; &) = (2, 2"; &', £") the coordinates
on T,T*M. Let S = {2 =0}, p = (0;dz,,) and let ¢: M — R be a C*-functions with
dp(0) # 0. We have

Ay = {(;6);& = 0p/0;},

TA, = {(2:€):& =Y 2, 0(0) - 2},
k=1

T,TsM = {(2:€);2" = ' = 0}

Then ¢ is transversal to .S at p if and only if the intersection 7T,A, NT,T¢M is {0} and
thus, if and only if the matrix 82 ,¢(0) is non degenerate. By the Morse Lemma, we
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may assume after a change of coordinates that p|s = Zé:l
setting £ = T,T*M, E = E' ® E" with (2/;¢') € F,
T@(p) :TE({‘r = O}a {ZL‘” = 5, = 0}7 {g = ai’,x’gp(o) ' l’l)}
=7p({a' = 0}, {¢' = 0}, {¢' = 0} . (0) - 2'})
= —sign(9% p(0)) = #{j;a; < 0} — #{j;a; > 0}.
(See [KS90, Prop. A.3.6] for details.)

a3, a; € R, a; # 0. Then,

Lemma 3.2. Let A be a conic smooth Lagrangian locally closed submanifold of T*M,
let p € A and let ¢ be transversal to A at p. The property that RTy>0(F)ry ) @5
concentrated in a single degree does not depend on the choice of ¢ and is invariant
by QCT. More precisely, for another @' transversal to A, we have RIy>o(F)ry,p) =~

RF‘PZO(F)WAI(p)[%(T<P(p) — 7 (P))]-
Proof. See [KS90, Prop. 7.5.3, 7.5.6]. O

Lemma 3.3. Let F' € D"(kys;p) supported by A, let o: M — R be transversal to A
at p & Ty, M and set V.= RIy>o(F)r,, - Then F is pure at p if and only if V' is
concentrated in a single degree, say —j, and F is simple if moreover H’(V') has rank
one.

Proof. (i) By Corollary 2.11, the property of being pure or simple is invariant by QCT.
Hence, applying Lemma 3.2 we may assume from the beginning that A = T¢M is the
conormal bundle to a hypersurface S.

(ii) By [KS90, Prop. 6.6.1], there exists W € DP(k) such that F' ~ Wg in D"(ky; p).
Then phom(F, F), ~ RHom (W, W) and this complex is concentrated in degree 0 if
and only if W is concentrated in a single degree. Moreover, Hom (W, W) is of rank one
if and only if so is W. To conclude, it remains to calculate V' = RI'y,>0(Was)r,, (p)- This
is left to the reader, using Example 3.1. O]

Definition 3.4. (See [KS90, Def. 7.5.4]) Let d € 1 dim(Ao(p) N Aa(p)) + Z. Let F €
DP(kyy; p) supported by A and let V' € D}(k).

(a) One says that F'is of type V with shift d at p if

n

(3.4 REo0(F) > V1d = 5 = 57 (0]

(b) If H(V) =0 for j # 0 one says that F' is pure with shift d. If moreover V is a free
k-module of rank one, one says that F' is simple with shift d.

It follows from Lemma 3.3 that the notions of being pure or simple sheaves intro-
duced in Definition 3.4 coincide with those of Definition 2.6. It is proved in loc. cit.
that the definition of the shift does not depend on the choice of ¢.

o If F'is pure with of type V with shift d along A and A = T§M for some hypersur-
face S, then there exists a sheaf G simple of shift d along A and an isomorphism
F ~Vs®G in DP(ky; p).

10



o If IV is of type V with shift d at p, then F' is of type V [—j] with shift d + j and
F'[j] is of type V with shift d + j at p.

Notation 3.5. Fix some point p € A and let d € 5 dim(Ao(p)NAa(p))+Z. One denotes
by Pure, 4(A, k) the additive full subcategory of Pure(A, k) consisting of sheaves which
are pure of shift d at p. We define similarly Simple,, ;(A, k).

Example 3.6. (See [KS90, Exa. 7.5.5].) If S is a closed submanifold of M, the sheaf
ks on M is simple with shift %codimM S at each p € TSM.

To check this point, we choose a local coordinate system z = (2/,2”) as in Exam-
ple 3.1. Hence, S = {2 = 0}, p = (0;dx,). Choose p(z) = x, + 22:1 3. Then ¢ is
transversal to Tg¢M at p. We have

(RTy>0(ks))o ~k.

Since 7,(p) = —I, we find by (3.4) that d = $(n — I) = L codim,, S.

Let ¥: M — R be a C? function with di(z) # 0 on the hypersurface S = {x €
M;yp(x) =0}. Set Z = {xz € M;¢p(x) >0}, U ={z € M;¢(z) <0}, p= (xo; d)(0))
for some xy with (zy) = 0. Then at p (that is, in the category DP(kys;p)) one has
k; ~ kg ~ ki [1]. Applying the above result, we get that k; is simple with shift % at
p and kg is simple with shift —% at p.

Example 3.7. Assume X is a complex manifold and F € D2 (ky), that is, F is
C-constructible. Then F' is perverse if and only if it has shift 0 at generic points of

SS(F).

Example 3.8. Denote by z = (21, x5) the coordinates on R?, by (z;€) = (21, z; &1, &)
the associated coordinates on T*R? and consider the “locally closed cusp”:

3 3
Z ={(r1,z2);21 >0, —27 <z < zx}}.

Then the microsupport of k; outside of the zero-section is the smooth Lagrangian
manifold

A={(2;8);& > 0,21 = (26/3%)%, 22 = —(261/3%)°},
= {(t*,#3; —3tu,2u)};t € R,u € Rog}.

It follows from Example 3.6 that k; is simple with shift 1/2 on AN {{ > 0} and
simple with shift —1/2 on AN {& < 0}. Let us calculate kz at p = (0; dz2). One has
(RI'y>0kz)o =~ k[—1]. On the other hand, the function ¢(z) = x9 is transversal to A
at (0;dxzy) and 7,(p) = 0. Therefore, k is simple with shift 0 at p.

Remark 3.9. Let A be a conic smooth Lagrangian locally closed submanifold of T*M.
We assume that the projection A/RT — M is finite and we let Ay C A be the open
subset where A — M is of maximal rank. We assume that Pure(A, k) is non empty and
we let F' € Pure(A, k). The fonction m: A — %Z, p +— “shift of F' at p”, is constant on
the connected components of Ag and changes by 1 when p goes over a cusp, as follows
from Example 3.8. Hence m is a Maslov potential for A in the sense of [PCO05].
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4 Legendrian knots, cusps and zigzags

Legendrian knots

In [STZ14], the authors study the special situation in which M = R x R and A is a
connected smooth Lagrangian (equivalently, Legendrian) closed submanifold of 7*R xR.
More precisely, they consider the category Simple(A, k) (that they call .#;(A,k)) of
constructible sheaves of k-modules on M = R x R, whose microsupport is contained
in the union of the zero-section and the set {(z,¢;¢,7);7 < 0} with ((z;&/7),t) € A.
That is, the “downward pointing” co-vectors of M are in A.

It follows from Corollary 2.13 that .#; (A, k) only depends on the Legendrian isotopy
class of A. Hence we can deform A and assume that its front 7(A) is a curve in M with
ordinary double points and cusps as its only singularities. The objects of .} (A, k)
are in particular constructible with respect to the stratification of M given by the
singularities of w(A), the smooth arcs of m(A) and the components of the complement
of m(A).

These constructible sheaves have a combinatorial description: such a sheaf is given
by a complex associated with each stratum and some gluing condition.

We fix some Maslov potential m along A and let .4 ,,(A, k) be the subcategory of
A1 (A, k) whose objects have their shift given by p (see Remark 3.9). Let |4 (A, k)|
be the number of isomorphism classes of objects in . ,,(A, k). We can associate a
Legendrian knot Ap with a braid B (draw the braid horizontally in the plane, join the
left and right ends by upper arcs, with cusps to avoid vertical tangents — then Ap is the
conormal bundle of the resulting curve). The main result of [STZ14] relates the count
function p — |41 (A, Z/pZ)|, p prime, with the HOMFLY polynomial of B.

Cusps

Here is a partial converse to Example 1.2 (iii). For an open subset U C M with
smooth boundary we denote by Tj;"M the inner conormal bundle of OU (that is,
Ty"M = SS(kg) in Example 1.2 (iii)).

Lemma 4.1. Let M be a manifold and let U be an open subset. Let F € D"(kyy).
We assume that supp(F) C U and that, for any x € OU, there exists a C'-function
©: M — R such that U C ¢(]0, +00[) near z, dp, # 0, and (z;dp,) & SS(F). Then
the morphism Fy — F 1s an isomorphism.

In particular, if U has a smooth boundary, supp(F) C U and SS(F) N Tgl’}"M =&,
then Fy = F.

Proof. Since supp(F) C U it is enough to see that F, ~ 0 for all z € OU. Let
@: M — R be as in the lemma. We have (x;dyp,) € SS(F). The definition of the
microsupport gives (RLu-1(jo oop) (F))z = 0. Since supp(F) C U C ¢ ([0, +00[) we
have RI'y-1 (0,400 (F) =~ F. Hence F, ~ 0, as required.

If U has a smooth boundary, we can choose for ¢ any C!-function such that U =
¢©1(]0, +00[) near z and dp, # 0. Then the second part of the lemma follows from the
first. O
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Here is the dual statement of Lemma 4.1.

Lemma 4.2. Let M be a manifold and let U be an open subset. Let F' € DP(kyy).
We assume that supp(F) C U and that, for any x € OU, there exists a C'-function
©: M — R such that U C ¢ (|0, +o0|) near z, dp, # 0, and (z; —dp,) € SS(F).
Then the morphism F — RIy(F) is an isomorphism.

In particular, if U has a smooth boundary, supp(F) C U and SS(F)N (T M)* = @,
then F = RI'y(F).

Example 4.3. As a special case of Lemma 4.1 we consider an open subset U C M
which is contractible and has smooth boundary. Then the sheaves F' € DP(k,,) such
that supp(F) C U and SS(F) N Ty"M = @ are the sheaves of the form F ~ Ly for
some L € DP(k).

Example 4.4. In R? with coordinates (z,y) we define the following locally closed
subset bounded by the cusp

(4.1) W ={(z,y); >0, —2%2 <y < 237},

It follows from [KS90, Ex. 5.3.4] that, outside the zero section, SS(ky) is the smooth
Lagrangian submanifold

(4.2) Aeusp = {(#2, 1% =3tu,2u); t €R, u > 0}.

We will now describe all objects in DP(kg:) with a microsupport contained in A,
outside of the zero-section. Let F' € DP(kg:) with SS(F ) C Acusp- In particular F' is
locally constant on the open subsets Uy = Int(WW) and U; = R?\ W. Since Uy and U,
are contractible, F'|y, and F|y, are in fact constant.

We first assume that F|y, =~ 0.

Lemma 4.5. Let F' € D(kg2) be such that SS(F) C Avysp and Fly, =~ 0. Then there
ezists L € DP(k) such that F ~ Lyy.

Proof. (i) We define U = {(x,y) € R% x > 0, y < #%?}. Let us prove that Fyy = F
by checking the hypothesis of Lemma 4.1. We clearly have supp(F) C U. For a given
z € OU the existence of ¢ as in the lemma is easy when z is smooth. It remains to
consider z = (0,0). In this case we see that ¢(z,y) = x — y satisfies the hypothesis.

(ii) Now we consider F|y. By Lemma 4.2 applied to M = U and U = Int(W) we have
Flv =5 RI'mw (F). Since Int(W) is contractible and S'S(F\Int(w)) is empty we have
RT1ew (F) > Ry (Lingw)) for some L € DP(k), where j: Int(W) — U is the inclusion.
Since OW NU is smooth we have Rj, (L)) = Ly (this is an isomorphism in D"(ky/))
and the lemma follows. O

Lemma 4.6. Let F' € DP(kg2) be such that SS(F) C Acysp. We recall that Uy = R2\ W
and we choose z € Uy. Then the restriction morphisms RI'(R* F) — RI'(Uy; F) — F,
are isomorphisms.
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Proof. Since F'|y, is constant the second morphism is an isomorphism. Hence it is
enough to check that R['(R?; F) — F, is also an isomorphism and we can even assume
that z = (—1,0). We define ¢: R? — R by p(2’) = d(z,2')%. Then, for 2’ # z, we have
(2';dp.) ¢ SS(F'). By the microlocal Morse lemma (see [KS90, Ex. 5.4.19]) it follows
that RI'(B,; F) — RI'(By2; F') is an isomorphism for all » > 1/2, where B, is the
open ball of radius r centered at z. We have RI'(By9; F') == F, and Hm_ HY(B,; F) ~
H'(R% F) for all i € Z by [KS90, Prop. 2.7.1]. The lemma follows. O

The following result could be deduced from [STZ14, Thm. 3.12].

Proposition 4.7. Let F € D"(kg2) be such that S'S(F) C Acusp- Then there exist
L,L' € D*(k) such that F ~ Ly, & L.

Proof. (i) We set I’ = RI'(R%* F). Let a be the map from R? to a point. The ad-
junction (a~!,Ra,) gives a morphism Lf, — F which induces an isomorphism on the

global sections. We define G by the distinguished triangle Ly, — F' = G *L . Then
RI(R?% G) ~ 0. By Lemma 4.6 it follows that G, ~ 0 for all z € U;. Hence, by
Lemma 4.5, there exists L € D"(k) such that G ~ Ly, .

(ii) By (i) we have a distinguished triangle L, — F — Ly — Lis[1]. By the adjunction
(Ray,a™t) we have Hom (Lyy, Lf,[1]) ~ Hom (Rai(Lw ), L'[1]). We see that Rai(Ly) ~ 0
and it follows that u = 0. We deduce that F' is the direct sum given in the lemma. []

Corollary 4.8. Let F' € D"(kg2) be such that S'S(F) C Ausp- For a given xy > 0 we
define i: R — R?, y — (z0,y) and we let a < b € R be the inverse images of the cusp
{23 =y} by i. Then there exist L, L' € D"(k) such that i 'F ~ L, ,{ & Lj.

Zigzags

Now we consider the following double cusp. We let C be the cusp C' = {z* = y*} and
we set z = (1,—1) € C. Welet CT = C N (R x [—1,4+00]) be the portion of C' “above
27, We let " = C'* — 2z be the translation of Ct which ends at (0,0) and we define
Cy as the union of C” and its image by (z,y) — (—x,—y). Then Cy has two cusps,
at co = (—1,1) and ¢; = (1,—1), and is a smooth curve of class C! outside the cusps.

The closure of ¢ (R?\ {c,c1}) in T "R? is a smooth Lagrangian submanifold with
two connected components. We let Ag, be one of these components. It is well-known
that Ag, cannot be described by a generating function. We see that it cannot be the
microsupport of a sheaf. This is done for example in [STZ14, Prop. 5.8]. Here is a
slightly different proof.

Proposition 4.9. Let F' € D"(kg2) be such that SS(F) € A¢,. Then F is a constant
sheaf and SS(F') = @.

Proof. We define i: R — R?, y + (0,y) and we let a = —2, b = 0, ¢ = 2 be the points
in = 1(Cy). We set Uy = Rx] —1/2,+00[ and U_ = Rx] — o00,1/2[. Then Cy N Uy is
diffeomorphic to the usual cusp (by a diffeomorphism of class C'). By Corollary 4.8
we deduce that there exist L, L', M, M’ € DP(k) such that (17 F) oo /20 2 Lj—oo1 /2]
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E*Z,O[ and (i F)[j_19,400] 2 Mj_1/2400] @ M[/o,2[- Restricting to I = |—1/2,1/2[ we
obtain L; & L]/—1/2,0[ ~ M; ® [’071/2[. This implies L' = M’ = 0 and the lemma
follows. [

Problem 4.10. Consider the situation of (2.8). It is natural to ask the question of the
quantization of the Lagrangian manifold A or, equivalently, of the Legendrian manifold
Ay. More precisely, one asks the question:

(4.3) to give necessary and sufficient geometrical conditions in order that
' there exists a globally defined simple sheaf along A.

(i) The zigzag example (Proposition 4.9) shows that such a quantization does not always

exist.

(i) In [Guil9, Th. 13.5.1] it is proved that if A comes from a compact exact Lagrangian
submanifold of 7% N, then a quantization exists (and we can choose one in a canonical
way).

(iii) It follows from Remark 3.9 that a necessary condition is that the Maslov potential
of A vanishes.
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