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1 Introduction

The notion of Lie algebroids or Lie-Rinehart algebras constantly occurs in
my research. It already occured in my Ph. D thesis (written under the
direction of M. Duflo [1], [2], [3]) in the particular case of coinduced repre-
sentations. During my stays at Harvard and at the university of Utrecht,
I carried on my research in the direction of my Ph. D thesis ([4]). Dur-
ing these postdoctoral years, discussions with J. Kalkman, Y. Karshon, H.
Duistermaat and S. Sternberg allowed me to learn the basis of symplectic
geometry . During my stay in Utrecht, I had the idea of looking at induction
of Lie algebras as a particular case of direct image. I was convinced that the
duality property involving the direct image of D-modules could be extended
to the Lie algebroid setting without being able to achieve it. It was only
when hired in Paris 6, with the help of P. Schapira, that I overcame the
technical difficulties ([5], [7]). Then, benefiting from a visit of M. Kashiwara
at Paris 6, I treated the case of the inverse image ([8]). Later, M. Duflo
and T. Levasseur drew my attention on an article of A. Yekutieli having
some link with my work. I got interested in the theory of rigid dualizing
complexes developed by A. Yekutieli and M. van den Berg and I wrote [9].

Lie algebroids generalize at the same time finite dimensional Lie algebras
and tangent bundles. Poisson manifolds and group actions provide exam-
ples of Lie algebroids. A Lie algebroid LX gives rise to the sheaf of algebras
of generalized differential operators generated by OX and LX , D(LX). If
LX is the sheaf of vector fields over X, then D(LX) is the sheaf of differ-
ential operators over X. If X is a point, LX is a Lie algebra and D(LX)
is its enveloping algebra. Thus, D(LX) can be seen at the same time as a
generalization of the enveloping algebra and a generalization of the sheaf
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of differential operators over X. I was interested in the second point of
view and I extended a part of D-modules theory (namely the operations) to
D(LX)-modules. This allowed me to prove duality properties for Lie alge-
broids and more particularly for Lie algebras.

I am grateful to M. Duflo for introducing me to Lie theory and for
valuable advices.

I would like to thank Y. Benoist, B. Keller and T. Levasseur for showing
interest in my work and for their availibility.

I am grateful to P. Schapira for introducing me to D-modules theory.
I took benefit from fruitful conversations with a lot of mathematicians,

especially : J. Bernstein, H. Duistermaat, J. Kalkman, Y. Karshon, M.
Kashiwara, W. van der Kallen , A. Yekutieli ...

Four research teams hosted me and provided me a favourable and pleas-
ant mathematical environment. In the chronological order : the research
team of group theory, the department of mathematics of Harvard Univer-
sity, the department of mathematics of Utrecht University and the research
team of algebraic analysis.

2 Lie algebroids

For sheaf theory we will follow the notaion of [K-S1].

2.1 Definitions

Let X be a C∞, complex analytic or smooth complex algebraic manifold and
let OX be the sheaf of C∞, holomorphic or regular functions over X. Let
ΘX be the OX -module of vector fields over X. Let k = IR or C according
to the setting.

Definition 2.1.1 A Lie algebroid over X is a pair (LX , ω) where

• LX is a locally free OX -module of finite constant rank

• LX is a sheaf of k- Lie algebras

• ω : LX → ΘX is an OX -linear morphism of sheaves of k- Lie algebras
such that the following compatibility relation holds :

∀(ξ, ζ) ∈ L2
X , ∀f ∈ OX , [ξ, fζ] = ω(ξ)(f)ζ + f [ξ, ζ].
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the morphism ω is called the anchor map. When there is no ambiguity, we
will drop the anchor map in the notation of the Lie algebroid.

Instead of working in a sheaf setting, if we work in an algebraic setting,
we get the notion of Lie-Rinehart algebra ([R]). Thus, if (X,LX , ωX) is a
Lie algebroid over X, then, for any open subset U of X, (LX(U), ωX(U)) is
a k −OX(U)- Lie-Rinehart algebra.

A Lie algebroid (LX , ω) gives rise to the sheaf of generalized differential
operators generated by OX and LX which is denoted by D(LX) :

Definition 2.1.2 D(LX) is the sheaf associated to the presheaf :

U 7→ T+
C (OX(U)⊕LX(U)) /JU

where JU is the two-sided ideal generated by the relations

∀(f, g) ∈ OX(U), ∀(ξ, ζ) ∈ LX(U)2

1)f ⊗ g − fg
2)f ⊗ ξ − fξ
3)ξ ⊗ ζ − ζ ⊗ ξ − [ξ, ζ]
4)ξ ⊗ f − f ⊗ ξ − ω(ξ)(f)

The definition of D(LX) is similar to the one of the sheaf of differential
operators over X, DX . This will allow us to extend D-modules theory to
the sheaf of generalized differential operators.

Denote by D(LX)op the sheaf of opposite algebras so that a right D(LX)-
module is a (left) D(LX)op-module.

2.2 Lie algebroids morphisms

Definition 2.2.1 Let (LX , ωX) and (LY , ωY ) be Lie algebroids over com-
plex manifolds X and Y respectively. A morphism Φ from (LX , ωX) to
(LY , ωY ) is a pair (f, F ) such that

• f : X → Y is a morphism of C∞, analytic or algebraic manifolds.

• F : LX → f∗LY = OX ⊗
f−1OY

f−1LY is a morphism of OX -modules

such that the two following conditions are satisfied :
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1) The diagram

ΘX f∗ΘY
-

Tf

LX f∗LY
-F

?

ωX

?

f∗ωY

commutes (Tf being the differential of f).

2) OX ⊗
f−1OY

f−1D(LY ) endowed with the two operations below is a left

D(LX)-module.

∀(a, b) ∈ O2
X , ∀ξ ∈ LX , ∀v ∈ f−1DY

a · (b⊗ v) = ab⊗ v
ξ · (b⊗ v) = ωX(ξ)(b)⊗ v +

∑

i bai ⊗ ξiv

(where F (ξ) =
∑

i

ai ⊗ ξi with ai ∈ OX and ξi ∈ f−1LY ).

Our definition ([5], [7]) coincides with Almeida et de Kumpera’s one ([A-
K]).

Notation :

TheD(LX)⊗kf
−1D(LY )op-moduleOX ⊗

f−1OY

f−1D(LY ) (the right f−1D(LY )-

module structure is given by right multiplication) will be denoted DLX→LY

(as for D-modules [Bo], [7]).

The composition of two Lie algebroid morphisms is a Lie algebroid mor-
phism.

2.3 Examples

1) The sheaf of generalized differential operators generalizes at the same
time the sheaf of differential operators and the enveloping algebra of a Lie
algebra. Lie algebroid morphisms generalize Lie algebra morphisms and
morphisms of manifolds. The notions of relative manifolds and relative
differential operators ([S1], [S-S]) fits the Lie algebroid setting.
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2) Let g be a finite dimensional Lie algebra. Suppose that there exists a
Lie algebra morphism σ : g→ ΘX . Then OX ⊗ g is endowed with a natural
Lie algebroid structure with anchor map ω defined by:

∀f ∈ OX , ∀ξ ∈ g, ω(f ⊗ ξ) = fσ(ξ).

The Lie bracket on OX ⊗ g is given by

[f ⊗ ξ, g ⊗ η] = fσ(ξ)(g) ⊗ η − gσ(η)(f) ⊗ ξ + fg ⊗ [ξ, η].

3) Let X be a Poisson manifold. Write { , } for the Poisson bracket over
OX . The OX -module of differential forms of degree 1 , Ω1

X , is endowed with
a natural Lie algebroid structure ( [Hu1]) with anchor map

Ω1
X → ΘX

fdg 7→ f{g, •}.

Let recall that the Lie bracket over Ω1
X is given by

[f ⊗ da, g ⊗ db] = fg ⊗ d{a, b}+ f{a, g} ⊗ db− g{b, f} ⊗ da.

The Lie algebroid
(

X,Ω1
X

)

allows to express ([Hu1]) the canonical homol-
ogy ([Br], [Ko], [Li]) and the canonical cohomology of Poisson manifolds as
derived functors. Let Y be another Poisson manifold and let f : X → Y
be a Poisson map. There is no reason why f should define a Lie algebroid
morphism from (X,Ω1

X) to (Y,Ω1
Y ). Nevertheless f defines a correspondence

between (X,Ω1
X ) and (Y,Ω1

Y ) ([8]) .

Other examples of Lie algebroids can be found in [M], [7], [8].

2.4 Properties of D(LX)

D(LX) is endowed with the filtration (FnD(LX))n∈IN defined as follows :

F0D(LX) = OX

FnD(LX) = Fn−1D(LX) · LX + Fn−1D(LX)

As we assume that LX is a locally free OX -module, the sheaf of gener-
alized differential operators satisfies the Poincaré - Birkhoff - Witt theorem
([R]) :

Theorem 2.4.1 The OX -algebras SOX
(LX) and GrFD(LX) are isomor-

phic.
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Consequently, D(LX) has the same homological properties as DX . The
Poincaré-Birkhoff-Witt also allows to define the notion of characteristic va-
riety and to reduce some proofs to the commutative case.

3 Operations for D(LX)-modules

In this section, we generalize basic notions of D-modules theory (due to
Bernstein and Kashiwara) to D(LX)-modules. We refer the reader to [Bj],
[Bo], [Ho], [S2] and [Ka2] for an exposition. The result of this section can
be found in [4], [5], [7], [8].

3.1 Left and right modules

The following proposition, well known for D-modules, can easily be gener-
alized to Lie algebroids ([5], [7]).

Proposition 3.1.1 a) Let N and N ′ be two D(LX)-left modules. Then
N ⊗
OX

N ′ is a left D(LX)-module with the two following operations :

∀a ∈ OX , ∀n ∈ N ,∀n′ ∈ N ′,∀D ∈ LX

a · (n⊗ n′) = a · n⊗ n′ = n⊗ a · n′

D · (n⊗ n′) = D · n⊗ n′ + n⊗D · n′.

b) Let M (respectively N ) be a right (respectively left ) D(LX)-module.
Then M⊗

OX

N is a right D(LX)-module with the following operations

∀a ∈ OX , ∀m ∈M,∀n ∈ N ,∀D ∈ LX

(m⊗ n) · a = m⊗ a · n = m · a⊗ n
(m⊗ n) ·D = m ·D ⊗ n−m⊗D · n.

c) Let M and M′ be two right D(LX)-modules. Then HomOX
(M,M′)

is a left D(LX)-module with the following operations

∀φ ∈ HomOX
(M,M′) , ∀m ∈M,∀a ∈ OX ,∀D ∈ LX

(a · φ) (m) = φ(m) · a
(D · φ) (m) = −φ(m) ·D + φ(m ·D).

d) If N and N ′ are two left D(LX)-modules. Then HomOX
(N ,N ′) is

a left D(LX)-module with the following operations

∀φ ∈ HomOX
(N ,N ′) , ∀m ∈M,∀a ∈ OX ,∀D ∈ LX

(a · φ) (m) = a · φ(m)
(D · φ) (m) = D · φ(m)− φ(D ·m).
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The following theorem is a consequence of the previous proposition.

Theorem 3.1.2 Let E be a right D(LX)-module which is a rank one locally
free OX -module. The functor N 7→ E ⊗

OX

N establishes an equivalence of

categories between left D(LX)-modules and right D(LX)-modules. Its inverse
functor is given by M 7→ HomOX

(E ,M).

It is well known that ΩdimX
X (The sheaf of maximal degree differential forms)

is endowed with a right DX -module structure (see [S2] p.9, [Bo] p. 226 ).
Using the morphism D(LX)→ DX , one endows ΩdimX

X with a right D(LX)-
module structure. Theorem 3.1.2 applies in particular if E = ΩdimX

X . This
construction can be extended to Lie algebroids. Set

L∗X = HomOX
(LX ,OX)

and denote by dLX
the rank of LX . Using the Lie derivative in the Lie

algebroid setting, one endows ΛdLX (L∗X) with a right D(LX)-module ([4]).

Consider

HLX
= HomOX

(

ΛdLX (L∗X),D(LX)
)

= D(LX) ⊗
OX

ΛdLX (LX)

KLX
= ΩX ⊗

OX

D(LX).

HLX
is endowed with a natural left D(LX)⊗kD(LX)-module structure (the

first D(LX)-module structure is given by left multiplication, the second one
is obtained from right multiplication by proposition 3.1.1 c) . Similarly,
KLX

is endowed with a natural D(LX)op ⊗k D(LX)op left module structure
(the first right D(LX)-module structure is given by right multiplication, the
second one is obtained from left multiplication by proposition 3.1.1b).

3.2 Duality functor

Let Mod (D(LX)) be the abelian category of (left) D(LX)-modules and
Db (D(LX)) be its bounded derived category. Denote by Db

coh (D(LX)) the
full subcategory of Db (D(LX)) consisting of objects with coherent coho-
mology. If N • and M• are objects of Db

coh (D(LX)) and Db
coh (D(LX)op)

respectively, one puts

DLX
(N •) = RHomD(LX) (N •,HLX

) [dLX
]

∆LX
(M•) = RHomD(LX) (M•,KLX

) [dimX].

7



As the natural arrow N • 7→ DLX

(

DLX
(N •)

)

is an isomorphism (see [7]),
one says that DLX

is a duality functor. Similarly, ∆LX
is a duality functor

in Db (D(LX)op).

Proposition 3.2.1 If N is a left D(LX)-module which is free as an OX -
module, then DLX

(N ) and HomOX
(N ,OX) are isomorphic in Db (D(LX)).

One can give a meaning to this proposition in the case where N is only
OX -coherent ([8]). This proposition is well known for D-modules (voir [Ho]
p. 93).

3.3 Direct images

In this paragraph, we recall the results of [5] and [7].
Let Φ = (f, F ) be a Lie algebroid morphism from (LX , ωX) to (LY , ωY ).

Let M• be an object of Db (D(LX)op). In [7], the direct image functor is
defined by

Φ!(M
•) = Rf!

(

M•
L
⊗

D(LX)
DLX→LY

)

.

Then Φ!(M
•) is in Db (D(LY )op). If Φ = (f, Tf), we recover the D-modules

construction (see [S2] for example). In this case, DΘX→ΘY
is denoted by

DX→Y and Φ! is denoted by f
!
.

To define the direct image of an object of Db (D(LY )), as in the D-
modules case, one uses the

(

f−1D(LY )⊗D(LX)op
)

-bimodule DLY←LX
de-

fined by

DLY←LX
= ΛdLX (L∗X) ⊗

OX

DLX→LY
⊗

f−1OY

f−1ΛdLY (LY ).

Proposition 3.3.1 Let Φ and Ψ be two Lie algebroid morphisms from (LX , ωX)
to (LY , ωY ) and from (LY , ωY ) to (LZ , ωZ) respectively, then

Ψ! ◦ Φ! = (Ψ ◦ Φ)! .

The proof of proposition 3.3.1 is similar to the D-modules case (see [Bo] p.
251).

Remark : The Kashiwara theorem

In the D-modules case ([Bo]), the Kashiwara theorem states that, for a
closed immersion X ↪→ Y , one has an equivalence of categories between the
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category of DY -modules with support in X and the category of DX -modules.
Let Φ = (f, F ) be a Lie algebroid morphism from (X,LX) to (Y,LY ). One
says that Φ is a closed immersion if f is a closed immersion. The Kashiwara
theorem is not true for any closed immersion of Lie algebroids (since it is
wrong in the OX -modules setting). In [5], we give a sufficient condition
so that a closed immersion between Lie algebroids satisfies the Kashiwara
theorem. This condition was given by Levasseur ([Le]) in the particular case
where X is a point.

In general, the direct image of a coherent module is not coherent. Intro-
ducing the notion of “good” D(LX)-modules (due to Kashiwara [S-S]), we
will provide a sufficient condition so that the direct image functor preserves
coherence.

If X is algebraic, a coherent D(LX)-module admits a global good filtra-
tion. In the analytic case, it is wrong. It is even wrong in the neighborhood
of any compact subset. For a D(LX)-module, the property of being “good”
is a refinement of the property of having a good filtration in the neighbor-
hood of any compact subset. As we already noticed it, if X is an algebraic
manifold, all the coherent D(LX)-modules are “good”. Let us denote by
Db

good (D(LY )op) the full subcategory of Db (D(LX)op) consisting of objects
with “good” cohomology.

Theorem 3.3.2 Assume thatM• is in Db
good (D(LX)op) and that f is proper

on Supp(M), then Φ!(M) is in Db
good (D(LY )op).

The proof of Schneiders ([S2] p. 38) in the D-modules case extends without
any change to our situation. The particular case where f is projective and
M has a global good filtration was treated in [Ka1].

3.4 Inverse image ([8])

Let Φ = (f, F ) be a Lie algebroid morphism from (LX , ωX) to (LY , ωY ).
Let R• be an object of Db (D(LY )). Set

Φ−1(R•) = DLX→LY

L
⊗

f−1D(LY )
f−1R•.

Then Φ−1(R•) is in Db (D(LX)). We will call it the inverse image of R• by
Φ. If Φ = (f, Tf), we recover the D-modules construction (see [S2] for ex-
ample). The inverse image functor behaves well with respect to composition
of morphisms.
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The following question arises naturally : LetR• be an object of Db
coh (D(LY )).

Give a sufficient condition so that Φ−1(R•) is in Db
coh(D(LX)). For that

purpose, we introduce, as in the D-modules case, the notion of non carac-
teristicity.

Let LX (respectively LY ) be the fiber bundle associated to LX (respec-
tively LY ). We have the following diagram :

L∗X
tF
←− X ×Y L∗Y

Fπ−→ L∗Y

where, for x ∈ X and λ ∈ L∗f(x), one has

tF (x, f(x), λ) =
(

x,t F (λ)
)

Fπ (x, f(x), λ) = (f(x), λ) .

Denote by NS(X ×Y L∗Y ) the zero section of X ×Y L∗Y . Let R• be an object
of Db

coh (D(LY )). Denote by Char(R) its characteristic variety. One has
Char(R) ⊂ L∗Y . We will say that R• is non caracteristic with respect to Φ
if the following inclusion holds

F−1
π (char(R•))

⋂

{(x, f(x), λ) ∈ X ×Y L∗Y | λ ◦ Fx = 0} ⊂ NS(X ×Y L∗Y ).

Kashiwara has shown, in the D-modules case, that the non characteristicity
notion ensures that Φ−1(R•) is in Db

coh(D(LX)) ([S2]). We have generalized
this result to Lie algebroids. Our proof consists in working with filtered
D(LX)-modules and reduce to the commutative case.

4 The duality theorems

4.1 Duality theorem for direct image ([7])

Theorem 4.1.1 Let X and Y be two complex manifolds. Let (LX , ωX)
and (LY , ωY ) be Lie algebroids over X and Y respectively. Let Φ = (f, F )
be a Lie algebroid morphism from (LX , ωX) to (LY , ωY ). Let M• be an
object of Db

good (D(LX)op) such that f is proper on the support ofM•. Then
there exists a functorial isomorphism from Φ!∆LX

(M•) to ∆LY
Φ! (M

•) in
Db

good (D(LY )op) .

Theorem 4.1.1 generalizes a result of Schneiders’ thesis [S1] (see also [S-
S]) where the case of relative differential operators is treated. The smooth
algebraic case had been previously treated by Bernstein (in the D-modules
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case [Be], [Bo], [Ho]) for a proper map. Moreover Mebkhout had treated the
absolute case (i.e Y consists in one point [Me1], [Me2]). If LX = LY = {0},
we recover the Ramis-Ruget-Verdier duality in the case of analytic manifolds.

Corollary 4.1.2 Let X be an analytic complex compact manifold of com-
plex dimension x and let (LX , ωX) be a Lie algebroid of rank dLX

over X.
Let N be a left D(LX)-module which is a finite rank locally free OX -module.
Then, for any i in ZZ, Exti

D(LX) (OX ,N ) is of finite dimension and

Ext
dLX

+x−i

D(LX)

(

OX ,N ∗ ⊗
OX

HomOX

(

ΛdXL∗X ,ΩX

)

)

' Exti
D(LX) (OX ,N )∗ .

Remarks :

1) If X is a point, we recover the Poincaré duality for finite dimensional Lie
algebras.
2) If LX = 0, we recover Serre duality.
3) The C∞ case has been studied in [E-L-W].
4) Corollary 4.1.2 was conjectured independently by Huebschmann in [Hu2].

4.2 The duality theorem for inverse image ([8])

Theorem 4.2.1 Let Φ be a Lie algebroid morphism from (X,LX) to (Y,LY ).
Let R• be an object of Db

coh (D(LY )) which is supposed to be non char-
acteristic with respect to Φ. There exists a functorial isomorphism from
DLX

Φ−1(R•) to Φ−1DLY
(R•).

This theorem generalizes a duality theorem due to Kashiwara, Kawai
and Sato in the D-modules case ([SKK], [Ka2]). Nevertheless, the proof of
Kashiwara-Kawai-Sato does not extend to Lie algebroids and, even in the
D-modules case, my proof is different from Kashiwara-Kawai-Sato’s one.
My proof consists in working with filtered modules in order to reduce to the
commutative case.

Combining theorems 4.1.1 and 4.2.1, we obtain adjunction formulas ([8])
which generalize those existing in the D-modules case ( [K-S 2] , chapitre
6).
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5 A duality property in coinduced representations
of Lie superalgebras

In this section, we will denote by k a commutative field of characteristic
zero.

A superspace does not admit a maximal wedge but the notion of Berezinian
superspace is a generalization to the supercase of the maximal wedge ([Ma]
page 172). If M is a finite dimensional k-superspace, we will write Ber(M)
for its Berezinian superspace.

Let g be a k-Lie superalgebra, h a Lie sub-superalgebra of g and (π, V ) a
representation of h in a superspace V . One defines the superspace coinduced
from π, Coindg

h(π), by

Coindg
h(π) = HomU(h) (U(g), V ) .

g acts on Coindg
h(π) by the transpose of right multiplication.

Denote by ˇ the antiautomorphism of U(g) defined as follows. If X is
in g, one has X̌ = −X and if u and v are two homogeneous elements of
U(g), one has (uv)ˇ = (−1)|v||u|v̌ǔ. Let Iπ (Iπ ⊂ U(g)) be the kernel of
the representation coinduced from (π, V ). The contragredient representa-
tion of π will be denoted by π∗. From now on, we will assume that h is of
finite codimension. The Lie superalgebra h acts naturally on the superspace
Ber ((g/h)∗) by the character −stradg/h. In [1], [2] et [3], we give two proofs
of the following theorem.

Theorem 5.0.1:

If h is of finite codimension, one has the relation

Ǐπ = Iπ∗⊗Ber((g/h)∗).

Theorem 5.0.1 was proved by M. Duflo [D1] in the case of a finite di-
mensional Lie algebra. The proof of [D1] does not extend to the case where
only g/h is finite dimensional.

Let us describe briefly our two proofs. Both of them are linked to D-
modules theory and its extension to Lie-Rinehart algebras.

First proof :
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Write Dπ for the superalgebra of differential operators over Coindg
h(π).

Let X be an element of g. Its action on Coindg
h(π) defines a differential op-

erator of Coindg
h(π) of degree inferior or equal to 1, which will be denoted

by Dπ(X). We endow Coindg
h (π∗ ⊗Ber ((g/h)∗)) with a right Dπ-module

structure such that : for any X in g and any λ in Coindg
h (π∗ ⊗Ber ((g/h)∗)),

the following relation holds

λ ·Dπ(X) = −(−1)|λ||X|X · λ.

From this, we deduce the inclusion Ǐπ ⊂ Iπ∗⊗Ber((g/h)∗). Applying the same
relation to the representation π∗ ⊗Ber ((g/h)∗), we get the equality.

Second proof :
The second proof is a consequence of the realization of the induced rep-

resentation of a Lie superalgebra in terms of Grothendieck local cohomology
([2]). This realization is established for π = 0 and g a finite dimensional Lie
algebra in [B-B (théorème 3.5)] . It is also partly reproved in [Le (théorème
6.2)] as a corollary of a criterium of induction.

6 Poincaré duality

6.1 Statement

In this section, k will be a field of characteristic zero.

Let g be a finite dimensional k-Lie superalgebra. We will consider
Ber(g∗) as a right U(g)-module as we have done for ΛdLX (L∗X) (in para-
graph 3.1). If M is a left U(g)-module, we will consider Ber(g∗) ⊗M as a
right U(g)-module in the following way :

∀m ∈M, ∀X ∈ g, ∀ω ∈ Ber(g∗),

(ω ⊗m) ·X = −(−1)|X||m|ω ⊗X ·m + (−1)|X||m|strad(X)ω ⊗m.

Theorem 6.1.1 Denote by d0 the dimension of the even part of g. Let
M be a left U(g)-module and let i be in ZZ. There exists a superspace mor-

phism, Ψi(M), from Tor
U(g)
d0−i (Ber(g∗)⊗M,k) to ExtiU(g)(k,M) which is an

isomorphism if M is of finite projective dimension.

Remarks

1) The last assertion can not be extended to any complex of D−(U(g)).
One can construct easily a counterxample by taking g to be the completely
odd Lie superalgebra Πk and M to be trivial module k.
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2) In [4], we prove this theorem in the more general setting of Lie-
Rinehart superalgebras.

6.2 Duality properties for induced representations of Lie su-
peralgebras

From Poincaré duality, we deduce ([4]) duality theorems for induced repre-
sentations of Lie superalgebras.

Theorem 6.2.1 Let g be a k-Lie superalgebra. Let h and t be two finite di-
mensional Lie sub-superalgebras of g. Put h0 = dimh0̄ and s0 = dimt0̄. Let
V (respectively W ) be a finite dimensional h-module (respectively t-module).
Then, for any n in ZZ, we have

Extn−s0

U(g)



U(g) ⊗
U(h)

V , U(g) ⊗
U(t)

W



 '

Extn−h0

U(g)

(

(ber(t∗)⊗W ∗) ⊗
U(t)

U(g) , (ber(h∗)⊗ V ∗) ⊗
U(h)

U(g)

)

.

Remarks :

1) As corollary of theorem 4.1.1, we obtain a version of theorem 6.2.1 in
the Lie algebroid setting ([7]). Nevertheless, in the case of a Lie algebra g,
this second proof allows us to get rid of the hypothesis on the finiteness of
the dimension of g.

2) Generalizing a result of G. Zuckerman ([B-C]), A. Gyoja ([G]) proved
this theorem in the following particular case : g is split semi-simple, h = t is
a parabolic subalgebra of g, n = h0 = n0. D. H. Collingwood and B. Shelton
proved also a duality of this type in a slightly different context but still in
the semi-simple setting ([C-S]). M. Duflo ([D2]) had obtained this duality
property in the following case : g is a Lie algebra, h = t, V ∗ = W = kλ is
a one dimensional representation with character λ. My proof is inspired by
M. Duflo’s one.

In the case where t = {0} et W = {0}, n = h0, we can improve the
result :

Theorem 6.2.2 Let g be a k-Lie superalgebra and h be a finite dimen-
sional Lie subsuperalgebra of g. Put h0 = dimh0̄. Let V be a finite dimen-
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sional U(h)-module. The right U(g)-modules Exth0



U(g) ⊗
U(h)

V , U(g)





and (ber(h∗)⊗ V ∗) ⊗
U(h)

U(g) are isomorphic.

Remarks :

1) This theorem follows also easily from proposition 3.2.1.
2) This result was proved by Brown and Levasseur [B-L p. 410] and

by Kempf [Ke] in the case where g is a finite dimensional semi-simple Lie
algebra and U(g) ⊗

U(h)

V is a Verma module.

7 Computations of some rigid dualizing complexes

7.1 Dualizing complexes

Grothendieck duality involves dualizing complexes. The extension of the
definition of dualizing complexes to the non commutative setting is due to
Yekutieli ([Y1]). Let k be a commutative field. If A is a k-algebra, we put
Ae = A ⊗k Aop. Let D(Ae) (respectively Db(Ae) ) be the derived category
(respectively the bounded derived category) of the category of (left) Ae-
modules.

Definition 7.1.1 Assume that A is a left and right noetherian k-algebra.
An object R of Db(Ae) is called a dualizing complex if it satisfies the following
conditions.

a) R is of finite injective dimension over A and Aop.
b) The cohomology of R is given by bimodules which are finitely generated

on both sides.
c) The natural morphisms Φ : A → RHomA(R,R) and Ψ : A →

RHomAop(R,R) are isomorphisms in Db(Ae).

Remarks : ([Y1] and [Y3])
1) If R is a dualizing complex, then RHomA (−, R) defines a duality

between the full subcategories of Db(A) and Db(Aop), Db
f (A) and Db

f (Aop),
consisting of complexes with finitely generated cohomology.

2) A dualizing complex is only determined up to derived tensor product
by a tilting complex ([Y3] theorem 4.5). This leads to the following notion
introduced by M. Van den Bergh [VdB].
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Definition 7.1.2 Let A be a left and right noetherian k-algebra. A dualizing
complex R is rigid if

R ' RHomAe (A,A R⊗RA)

in D(Ae). The notations AR and RA means that RHom is taken over the
left A-module structure and the right A-module structure of R respectively.

Remarks :

1) The rigid dualizing complex, if it exists, is unique up to unique iso-
morphism in Db(Ae) ([VdB1], [Y3] theorem 5.2).

2) The rigid dualizing complex generalizes the Grothendieck dualizing
complex.

3) Recently, the notions of dualizing complex and of rigid dualizing com-
plex as well as their basic properties were extended to non commutative
ringed spaces ([Y-Z]).

We have computed the rigid dualizing complexes of an algebra of gener-
alized differential operators and of a quantum enveloping algebra.

7.2 Rigid dualizing complex of an algebra of generalized dif-
ferential operators ([9])

Let X be an affine algebraic manifold and let OX be the sheaf of regular
functions over X. Let ΘX be the OX -module of regular vector fields over
X. We put LX = LX(X) and D(LX) = D(LX)(X).

Using proposition 3.1.1 c), we endow µLX
= HomOX

(

ΛdLXL∗X ,ΩX

)

with a left D(LX)-module structure. Thus D(LX) ⊗
OX

µLX
is endowed with a

D(LX)⊗D(LX)op -module structure determined by : for any P,Q ∈ D(LX),
any D ∈ LX and any a ∈ OX ,

Q · (P ⊗ µ) = QP ⊗ µ
(P ⊗ µ) ·D = PD ⊗ µ− P ⊗D · µ
(P ⊗ µ) · a = Pa⊗ µ.

Applying theorem 4.1.1, we compute the rigid dualizing complex of the
algebra D(LX).

Theorem 7.2.1 Let (X,LX) be a Lie algebroid over an affine algebraic
manifold. Put x = dimX, dLX

= rank(LX), GX = OX(X), LX = LX(X),
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ωX = ΩX(X), D(LX) = D(LX)(X). The rigid dualizing complex of D(LX)
is

RLX
= D(LX) ⊗

GX

HomGX

(

ΛdLX L∗X , ωX

)

[x + dLX
].

This theorem was proved by Yekutieli in the case of the enveloping al-
gebra of a finite dimensional Lie algebra and in the case of the algebra
differential operators over X. Our proof is analogous to the one of [Y4] in
the case of DX .

7.3 Rigid dualizing complex of a quantum enveloping algebra
([9])

For basic definitions and results on quantum enveloping algebras, we refer
the reader to [C-P].

Let g be a finite dimensional complex semi-simple Lie algebra and let A =
(ai,j)(i,j)∈[1,n]2 be its Cartan matrix. The matrix A is not always symmetric
but is always symmetrizable. This implies that there exist coprime positive
integers d1, . . . , dn such that (diai,j) is symmetric positive definite. The di’s
are uniquely determined. Let us introduce the following subset of C :

Cg = {ε ∈ C∗ | ε2di 6= 1, ∀i ∈ [1, n]}.

Let q be an indeterminate. Following Jimbo, we consider the C(q)- quan-
tum algebra Uq(g) ([C-P] p. 280) as well as its non restricted specialization
Uε(g) for ε in Cg ([C-P] p. 289). Using a filtration introduced by De Concini
and Kac ([deC-K]) on Uq(g) and Uε(g) (for ε in Cg), we proved :

Proposition 7.3.1 Let g be a finite dimensional complex semi-simple Lie
algebra. We have the following isomorphisms :

ExtiUq(g) (C(q), Uq(g)) = 0 for i 6= dimg

Extdimg

Uq(g) (C(q), Uq(g)) = C(q).

Endow C(q) with the trivial representation and Extdimg

Uq(g) (C(q), Uq(g)) with

right multiplication. The last isomorphism is a right Uq(g)-modules isomor-
phism. If ε is in Cg, the proposition is still true if we remplace Uq(g) by
Uε(g) and C(q) by C.

As corollaries of proposition 7.3.1, we get duality properties analogous
to 6.1.1, 6.2.1, 6.2.2 in the quantum groups setting. Proposition 7.3.1 also
allowed us to compute the rigid dualizing complexes of Uq(g) ( for generic q
) and Uε(g) ( ε in Cg).
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Theorem 7.3.2 Let g be a finite dimensional complex semi-simple Lie al-
gebra. Assume that ε is in Cg. The rigid dualizing complexes of Uq(g) and
Uε(g) are Uq(g)[dimg] and Uε(g)[dimg] respectively.

Theorem 7.3.2 answers a Yekutieli’s question ([Y4]).

8 Extremal equations in the semi-classical case ([6])

Let g be a finite dimensional complex semi-simple Lie algebra, h a Cartan
subalgebra of g, ∆ the root system associated to h and B = (α1, . . . , αn) a
simple root system of ∆. We will denote by ∆+ the set of positive roots, W
the Weyl group and si the symmetry with respect to the simple root αi.

If w is in W and if w = si1 . . . sij is a reduced expression of w, then the

roots (γ1, . . . , γj) =
(

αi1 , si1(αi2), . . . , si1 . . . sik−1
(αik), . . . , si1 . . . sij−1(αij )

)

are pairwise distinct and

∆w = {α ∈ ∆+ | w
−1(α) < 0} = {γ1, . . . , γj}.

If γ is a positive root, gγ will be the root space associated to the root
γ. Let hγ be the unique element of [gγ , g−γ ] such that γ(hγ) = 2. If eγ is
in gγ , there exists a unique element e−γ in g−γ such that (hγ , eγ , e−γ) is a
sl2-triple. We put

n = ⊕
γ∈∆+

gγ , nw = ⊕
γ∈∆w

gγ .

Let R(h) be the field of rational functions on h∗. Introduce the algebra

U ′(g) = U(g) ⊗
S(h)

R(h) and consider the generic Verma module V =
U ′(g)

U ′(g)n
.

In [Z], Zhelobenko gave an explicit description for V nw . We have established
similar results for the symmetric algebra.

Consider the complex analytic manifold (g/n)∗. We endow it with the

following coordinate system
(

(e−α)α∈∆+ , (hαi)i∈[1,n]

)

. If U is an open subset

of (g/n)∗, we will denote by P(U) (respectively A(U)) the set of regular
(respectively analytic) functions on U and by P(U)nw (respectively A(U)nw )
the subset of functions of P(U) (respectively A(U)) invariant under the
action nw.

Let Uγ be the open subset of (g/n)∗ defined by the equation hγ 6= 0.
Denote by Φγ the map of Uγ into itself defined by :

∀λ ∈ Uγ , Φγ(λ) = exp

(

eγ(λ)

hγ(λ)
eγ

)

· λ.
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where · is the natural action of n on (g/n)∗. The composition with Φγ de-
fines an algebra morphism of A(Uγ) which will be denoted by πγ .

Theorem 8.0.1:

Let w be an element of W . Put ∆w = (γ1, . . . , γj) and Uw = Uγ1

⋂

. . .
⋂

Uγj
.

The algebra morphism πw = πγ1 ◦ . . . ◦ πγj
does not depend on the reduced

expression of w. It establishes an isomorphism between

Cw = {f ∈ A(Uw) |
∂f

∂e−γ1

= . . . =
∂f

∂e−γj

= 0}

and A(Uw)nw . Moreover πw sends Cw
⋂

P(Uw) onto P(Uw)nw .

Let Nw be the connected and simply connected Lie group with Lie alge-
bra nw. My proof relies on the following proposition :

Proposition 8.0.2 :

Let λ be in Uw. The point Φγj
. . . Φγ1(λ) is the unique point of the orbit

Nw · λ whose coordinates e−γ1 , . . . , e−γj
vanish.

9 Research plan

Problem 1 : develop a theory of holonomic modules for D(LX)-modules
(LX being a Lie algebroid over X).

Problem 2 : P. Schapira asked me the following question : In the
definition of a Lie algebroid, we do not assume anymore that LX is a locally
free OX -module but only a coherent OX -module. Is it possible to develop
a theory of operations for D(LX)-modules (as in the sections 3 et 4) in this
more general setting?
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