FROBENIUS AND QUASI-FROBENIUS LEFT HOPF ALGEBROIDS

SOPHIE CHEMLA

ABSTRACT. We study when left (op)Hopf algebroids in the sense of Takeuchi-
Schauenburg give rise to a Frobenius or quasi-Frobenius extension. The case of Hopf
algebroids in the sense of Bohm was treated by G. Bohm ([?]). Contrary to Hopf alge-
broids, (op)Hopf left algebroids don’t necessarily have an antipode but their Hopf-Galois
map is invertible. We make use of recent results about left Hopf algebroids ([?], [?], [?]).
Our results are applied to the restricted enveloping algebra of a restricted Lie-Rinehart
algebra.

1. INTRODUCTION

Left bialgebroids, called also x 4-bialgebras ([?]), generalize k-bialgebras (k being a
commutative ring included in the center) to the case where the basis is not necessarily
commutative. A left bialgebroid U = (U, s*,t*, A, 1, €) over A is the data of

A k-algebra structure (U, ) on U.

Two morphisms of k-algebras s* : A — U and t* : A°P — U commuting.

— A comultiplication, which is a morphism of A¢-algebras, defined on U and taking
values in the Takeuchi product Uye x 4 U < Upe®a e U.

— acounit €.

A left (respectively right) bialgebroid over A has two duals, a left one and a right one. Both
duals are endowed with a right (respectively left) bialgebroid structures over A ( [?]).
There exist two main generalizations of Hopf algebras to the non commutative setting:

— Hopf algebroids in the sense of Bohm for which an antipode is assumed to exist.
— Left Hopf algebroids in the sense of Takeuchi-Schauenburg (or x 4 Hopf alge-
bras) where one only assumes that the Hopf-Galois map is an isomorphism.

It has been shown recently ([?], [?]) that, under finiteness conditions, the right (left)
dual of a left (op)Hopf algebroid are right (op)Hopf algebroids.

Hopf algebroids are left Hopf and opHopf algebroids but the converse is in general not
true (see [?]). For example, (restricted) enveloping algebras of (restricted) Lie-Rinehart
algebras are left Hopf and opHopf algebroids but are not, in general, Hopf algebroids.

More recently, Hopf algebras were studied from a more categorical point of view: bial-
gebras were viewed as bimonads ([?]) and left Hopf algebroids as Hopf monads ([?], [?]).
Hopf categories were defined in [?]. Under certain conditions, the latter provide weak
Hopf algebras (see [?] section 6) and thus Hopf algebroids.

Sweedler ([?]) introduced the notion of integral for Hopf algebras and the Larson
Sweedler theorem for Hopf modules was proved in [?]. These results were generalized
to Hopf algebroids ([?]), to Hopf bimonads ([?], [?]) and more recently to Hopf categories
?D.

Recently, a Maschke type theorem for Hopf monoids relating the separability of the
underlying monoid to the existence of a normalized integral was proved in [?]. This work
covers the case of a Hopf monoid in braided monoidal categories, weak Hopf algebras,
Hopf algebroids over a central basis and Hopf monads on autonomous monoidal categories

(?D.
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Many authors have studied relations between Hopf algebras and Frobenius algebras:
[?], [?], [?], etc... The following question arises: when is a left Hopf algebroid a (quasi-
)Frobenius extension of its basis? In [?], it is shown that any finite dimensional weak Hopf
algebra is quasi-Frobenius. These questions are treated for Hopf algebroids in [?] with an-
swers involving integrals. In [?], weak Hopf algebras that are Frobenius are characterized
by a criterion on their semi-simple base algebra A.

Let (U, s*,t*, A, i1, €) be a left Hopf algebroid satisfying some projectiveness and finite-
ness assumptions. We study when the extension t* : A — U is Frobenius ([?]) or quasi-
Frobenius (in the sense of Muller [?]). We show:

— The extension t* : A — U is Frobenius if and only if the A°P-module of its left
integrals is a free A°P-module of rank one.

— The extension ¢/ : A — U is quasi-Frobenius if and only if the A°? module of
its left integrals is a projective finitely generated A°P-module.

The main tool is the fundamental theorem for Hopf-modules in the setting of left Hopf
algebroids ([?]) and the dual theory for left Hopf algebroids demonstrated by Schauenburg
([?]) and Kowalzig ([?]).

We apply our results to restricted enveloping algebras of restricted Lie-Rinehart
algebras.
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Notations

Fix an (associative, unital, commutative) ground ring k. Unadorned tensor products
will always be meant over k. All other algebras, modules etc. will have an underlying
structure of a k-module. Secondly, fix an associative and unital k-algebra A, i.e., a ring
with a ring homomorphism 7, : k& — Z(A) to its centre. Denote by A°P the opposite
algebra and by A° := A ® A°P the enveloping algebra of A, and by A-Mod the category
of left A-modules.

The notions of A-ring and A—coring are direct generalizations of the notions of al-
gebra and coalgebra over a commutative ring. An A-ring (H, p,n) is a monoid in the
monoidal category (A°-Mod, ® 4, A) of A°-modules fulfilling the associativity and the
unitarity conditions. It is well known (see [?]) that A-rings H correspond bijectively to
k—algebra homomorphisms ¢ : A — H. An A-ring H is endowed with an A°-module
structure:

Vhe H, a,beH, a-h-b=1ila)h(b).

An A-coring C is a comonoid in the monoidal category of A°-modules satisfying the
coassociativity and the counitarity conditions. As usual, we adopt Sweedler’s X—notation
A(e) = (1) ® ¢z or Ac) = Y ®c? for ceC.

2. PRELIMINARIES

We list here those preliminaries with respect to bialgebroids and their duals that are
needed to make this article self contained; see, e.g., [?] and references below for an
overview on this subject.

2.1. Bialgebroids. For an A°-ring U given by the k-algebra map n : A° — U, consider
the restrictions s := n(— ® 1) and t := n(1l, ® —), called source and target map,
respectively. Thus an A°-ring U carries two A-module structures from the left and two
from the right, namely

avuab:=s(a)tb)u, aru<b:=ut(a)s(h), Vabe Auel.
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If we let U,® 4., U be the corresponding tensor product of U (as an A°-module) with itself,
we define the (left) Takeuchi-Sweedler product as

Uix 0oU 1= {Tui@u; € U@ U | X, (aru;)@u; = Y,u;®(uj<a), Va e A}, (2.1)
By construction, U, x , ,U is an A°-submodule of U, ®, ,.U; it is also an A®-ring via
factorwise multiplication, with unit 1, ® 1, and n,,_, (e ®a) := s(a) ®t(a).

Symmetrically, one can consider the tensor product U, ®, ,U and define the (right)
Takeuchi-Sweedler product as U, x 4 ,U, which is an A®-ring inside U, ® , ,U .

Definition 2.1.1. A left bialgebroid (U, A) is a k-module U with the structure of an A°-
ring (U, s*,t*) and an A-coring (U, Ay, €) subject to the following compatibility relations:
(i) the A°-module structure on the A-coring U is that of .U, ;
(ii) the coproduct Ay is a unital k-algebra morphism taking values in U, x 4, U
(iii) forall a,b e A, u,v € U, one has:
e(ly) =1a, elavuabd)=ae(u)b, e(ur)=-ce(u<ew))=-ce(e@w)ru). (2.2)

A morphism between left bialgebroids (U, A) and (U’, A’) is a pair (F, f) of maps F' :
U—-U', f:A— Athat commute with all structure maps in an obvious way.

Remark 2.1.2. Szlachanyi has shown that left bialgebroids may be interpreted in terms of
bimonads ([?]).

As for any ring, we can define the categories U-Mod and Mod-U of left and right
modules over U. Note that U-Mod forms a monoidal category but Mod-U usually
does not. However, in both cases there is a forgetful functor U-Mod — A°-Mod, resp.
Mod-U — A°-Mod given by the formulas : form e M, ne N, a,be A

av>mab:=st(a)t’(b)ym, ar»m«<b:=ns'(b)t‘(a)
For example, the base algebra A itself is a left U-module via the left action
u(a) :=e(uea) =€e(aru), YuelU, VaeA, (2.3)

but in general there is no right U-action on A.

Dually, one can introduce the categories U-Comod and Comod-U of left resp.
right U-comodules, both of which are monoidal; here again, one has forgetful functors
U-Comod — A°-Mod and Comod-U — A°-Mod. More precisely (see, e.g., [?]), a
(say) left comodule is a left comodule of the coring underlying U, i.e., a left A-module M
and a left A-module map Ay : M — Us ®4 M,  m — m_1) @4 myq, satisfying the
usual coassociativity and counitality axioms. On any M € U-Comod there is an induced
right A-action given by

ma := e(m(_y) < a)m), 2.4)
and Ay is then an A°-module morphism M — U, x , M, where U, x , M is the A°-
submodule of U, ®,, M whose elements »}; u; ®, m; fulfil

DU @y =, uit! (a) @, m; = DU ®ami-a, Yae A (2.5)
The following identity is easy to check
Apr(amb) = sl(a)m(_l)sl(b) ®a m(0)-
Coinvariant elements of a comodule will play an important role in the sequel:

Definition 2.1.3. Let (U, A, s*,t*, A, €) be a left bialgebroid over A.

(i) Let (M,Ays) be a left U-comodule. An element m in M is coinvariant if
Apr(m) = 1 ® m. The set of coinvariant elements will be denoted M. Tt
is endowed with a natural A°P-module structure via t*.

(ii) Let (N,Ap) be a right U-comodule. An element n in N is coinvariant if
An(n) = n® 1. The set of coinvariant elements will be denoted N°°V. Tt is

endowed with a natural A-module structure via s.
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Examples 2.1.4. (@) If U is a left bialgebroid, then Uy, = .U, is a left U-
comodule and the t(A)-module of its coinvariant elements is t(A).
(ii) Uy = U, is a right U-comodule and the s‘(A)-module of its coinvariant

elements is s*(A).

The notion of a right bialgebroid is obtained from that of left bialgebroid exchanging
the role of >, <« and », «. Then one starts with the A°-module structure given by » and «
instead of > and < and the coproduct takes values in U, x4 ,U instead of U, x, ,U. We
refer to [?] for details.

Remark 2.1.5. The opposite of a left bialgebroid (U, A, s, t¢, Ay, €) yields a right bial-
gebroid (U°P, A, t°,s%, Ay, €). The coopposite of a left bialgebroid is the left bialgebroid
given by (U, A°P, %, s*, A7 e).

Left and right comodules over a right bialgebroid W are also well defined.

2.2. Dual bialgebroids. Let (U, A) be a left bialgebroid, M, M’ € U-Mod be left U-
modules. Define

Hom op (M, M') := Hom 4op (M., M), Hom,(M,M’') := Hom,(,M, . M"),

Hom o0 (N, N') := Hom op (N, N.), Hom,(N,N’) := Hom,(,N,,N").
In particular, for M’ := A, we set Mx := Hom (M, A) and M* := Hom 4o» (M, A),
called, respectively, the left and right dual of M.

If M = U, the two duals U* (the right dual) and U, (the left dual) are endowed
with an A°-ring structure, and even a right bialgebroid structure under finiteness and
projectiveness conditions ([?] ).

The case of U*:
For a € A, let us introduce the two elements s (a) and ¢*(a) of U* defined by

VueU, <t¥(a),u>=a<eu>, <s¥a),u>=<ceus’(a)>. (2.6)

Endowed with the following multiplication, U* is an associative k-algebra with unit e:
Forall p,¢' € U* and allu e U

(u, ¢¢' ) = <86(<U(1)7¢>)U(2)7¢/> 2.7

Then s* : A — U* and t¥ : A°? — U™ are algebra morphisms and define an A€-ring
structure on U*:

paa=¢si(a) and aro¢=¢ti(a).

The product on U* can be written :

Cuddy = 17 uay. 6))d) @8)

If U, is a finite projective A°P-module, the following formula defines a coproduct on U* :

(ud, 9y = (ute((d 9))) s 6y ) = (s by sE (s 0@))) )

Lastly we have a counitn € U*

(1, 6) = n(®). (2.9)
Thus (U*, A, s¥,t*, A, n) is a right bialgebroid.
The case of U,: If .U is a finite projective A-module, U, is endowed with the right
bialgebroid structure over A such that (Ucoop)sx = (U™ )coop.

In a similar way, if W is a right bialgebroid, then its left dual . VW and its right dual *W
are endowed with an A°-ring structure. Under finiteness and projectiveness conditions,
they are left bialgebroids . Moreover the left bialgebroids 4 (U*) and * (U ) are canonically
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isomorphic to U. The formulas above also describe the left bialgebroid structure on *W
and ;W (p € W andu €, W, 1 € W and u €* W). See for example [?] for a detailled
exposition.

Remark 2.2.1. Under the appropriate finiteness conditions, the right bialgebroids
*(Uk,,) and (Uy)2b,, are isomorphic.

2.2.2. The module-comodule correspondence
The classical bialgebra module-comodule correspondence extends to bialgebroids.

Proposition 2.2.3. 1) Let (U, A) be a left bialgebroid.
(i) There exists a functor Comod-U — Mod-Us,; namely, if M is a right U-
comodule with coaction m — moy ®a M(1), then
M@aUs—> M, m®xgY— mueyp(ma)), (2.10)

defines a right module structure over the A°-ring U,. If U is finitely gener-
ated A-projective (so that U, is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U: — Comod-U such that there is an equivalence
Comod-U ~ Mod-Us: of categories.

(ii) Likewise, there exists a functor U-Comod — Mod-U*; namely, if N is a left
U -comodule with coaction n — n-1) ®4 1), then

N®aU*"—= N, n®o— d(n_i)no), (2.11)

defines a right module structure over the A®-ring U*. If U, is finitely generated
A-projective (so that U* is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U* — U-Comod such that there is an equivalence
U-Comod ~ Mod-U* of categories.

2) Similar statements holds in the case of right bialgebroids.

The case 1)(i7) of the above Proposition ?? can also be found in [?, §5]. An explicit
proof and a description of all involved functors is given in [?, §3.1].

2.3. Left Hopf and opHopf algebroids. For any left bialgebroid U, define the Hopf-
Galois maps

ap WU @ Uy — Ui®4aU u@uor v = uq) ®a u2),
a U@ U — U, ®..U, U@ v > U U @, U)-
and for a right bialgebroid W the Hopf-Galois maps
Be: W@ W = W.@p. W, wey—yw @uw?®,
Bri TWRW, > W, ®,W, wy— wMyw?.

Bor B
These maps give rise to the following definition ([?]):

Definition 2.3.1. 1) A left bialgebroid U is called a left Hopf algebroid or x 5 Hopf algebra
if ay is a bijection. Likewise, it is called a left opHopf algebroid if o, is a bijection. In
either case, we adopt for all u € U the following (Sweedler-like) notation

Uy @aor u— =) (u®, 1), U4 ®* u—y = o (1 Q@4 u), (2.12)

and call both maps u — 1y @ 4er u— and u +— U] ®4 (I translation maps.

2) Let W be a right B-bialgebroid. Then W is called a right Hopf algebroid (=RHB),
respectively a right opHopf algebroid (=RopHB) if the map f3,., resp. 3y, is a bijection. If
w e W, one sets 3,1 (1 ®@w) = w~ @w™ and the translation map is w — w~ @por w.

Remarks 2.3.2. Let (U, A, s*,t*, A, ¢) be a left bialgebroid.
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(i) Incase A = kis central in U, one can show that ay is invertible if and only if U is a
Hopf algebra, and the translation map reads u; @ u_ := u1) ® S(u(z)), where S is
the antipode of U. On the other hand, U is a Hopf algebra with invertible antipode if
and only if both oy and «,. are invertible, and then u[ ] @u[_} 1= u(y) ®S! (u(l)).

(i) The underlying left bialgebroid in a Hopf algebroid with bijective antipode is both
a left Hopf and opHopf algebroid (but not necessarily vice versa [?]); see [?] [Prop.
4.2] for the details of this construction.

(iii) Definition ?? extends to the bimonad framework ([?], [?]) to give left Hopf bimon-
ads.

Remark 2.3.3. The right bialgebroid (W, A, s",t", A, €) is a right (op)Hopf algebroid if
and only if the left bialgebroid W22 is a (op)Hopf algebroid. This remark will allow us

coop
not to treat the case of right bialgebroids in detail.

The following proposition collects some properties we will need of the translation maps
[?]:
Proposition 2.3.4. Let U be a left bialgebroid.

(i) If U is a left Hopf algebroid, the following relations hold:

Uy Qqop . € U X 400 U, (2.13)

Uy (1) ®a Ug(2) @aor U~ = U1) ®a U2) 4 Qacr U(2)—, 2.14)

Uy @aop U_(1) @aU_(2) = Ut Quop U Qy Up—, (2.15)

(u0) 4 uop (UV)— = ULV; @ pop V_U_, (2.16)

uru_ = s'(e(u)), (2.17)

(s (a)t* (D) 4 ®aor (s°(a)t* (D))~ = 5"(a) ®aor s° (D), (2.18)

where in (??) we mean the Takeuchi-Sweedler product

UxopU 1= {Zﬂi@%‘ EVURaor Uy | Duica®v; = 2 u; @arv;, Yae A}.

(ii) Analogously, if U is a right Hopf algebroid, one has:

U[+] ®A 'LL[_] eU x* U, (219)
where in (??) we mean the Sweedler-Takeuchi product

Ux*U:= {Zzuz@)vl S U: ®A>U ‘ Zia >Uu; QU = Ziui@)vw a, Ya € A}

u4] ®” u_y satisfies properties similar to those satisfied by uy & sor U_.

The following theorem, originally due to [?] was improved in [?]. It asserts that, if U is a
left Hopf and opHopf algebroid such that U, (respectively .U) is a projective A°P-module
(respectively A-module), there is an equivalence of categories between U-Comod and
Comod-U.

Theorem 2.3.5. Let (U, A) be a left bialgebroid.
(i) Let (U, A) be additionally a left Hopf algebroid such that U, is projective. Then
there exists a (strict) monoidal functor F' : Comod-U — U-Comod; namely, if
M is a right U-comodule with coaction m — m(o) ®a m(1), then
)\M M — U< (SN M, m — m(l)_ (SN m(o)e(m(1)+), (220)

defines a left comodule structure on M over U.

(ii) Let (U, A) be a left (op)Hopf algebroid such that .U is projective. Then there exists
a (strict) monoidal functor G : U-Comod — Comod-U; namely, if N is a left
U-comodule with coaction n — n(_1) ®4 1), then

pv i N> N®u.U, n—enys))no) ®a n-1[-1; (2.21)

defines a right comodule structure on N over U.
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@@ii) If U is both a left Hopf and opHopf algebroid and if both U, and .U are projective,
then the functors mentioned in (i) and (ii) are quasi-inverse to each other and we
have an equivalence

U-Comod ~ Comod-U
of monoidal categories.

Remark 2.3.6. The equivalence of categories of Theorem ?? preserves coinvariant ele-
ments.

Applying Theorem ?? to the situation of Theorem ??, the functor F' can be transformed
into a functor between the module categories over the left and the right dual algebra of U
and this functor in turn induces an algebra morphism between these dual algebras. Thus,
the functor F' comes from an algebra morphism Sy : U, — U™ and the functor G comes
from an algebra morphism S* : U* — U,. The morphism S* an S, are studied in [?]:

Theorem 2.3.7. Let (U, A) be a left bialgebroid.
(i) If (U, A) is moreover a left Hopf algebroid, the map S* : U* — Ul is defined by
Vipe Uy, YuelU,  S*¢)(u) = ey (ust’(p(u_)))

is a morphism of A°-rings with augmentation; if, in addition, both .U and U,
are finitely generated A-projective, then (S*,id,) is a morphism of right bialge-
broids.

@) If (U, A) is a left opHopf algebroid instead, the map S+ : Us — U™

Vip e Uy, YueU, S«(V)(u) = e(u[ﬂse(ib(u[,])))

is a morphism of A€-rings with augmentation; if, in addition, both .U and U,
are finitely generated A-projective, then (S.,id,) is a morphism of right bialge-
broids.

@iii) If (U, A) is simultaneously both a left Hopf and opHopf left algebroid, S* : U* —
Us is an isomorphism and Sy = (S*)~L.

The maps S* and S, have even more properties.
Proposition 2.3.8. U, is endowed with the following left U-action :
V(u,v) e U%, VpeU,, <u—v>=<,0u>.
U* is endowed with the following left U-action :
V(u,v) e U, VYoeU*, <ued,v>=uy[<ou_v>]. (2.22)
The map S* sends (U*,e) to (Uy,—).
The proof of the proposition ?? is straightforward.

The following recent result will play a key role in our study. It was proved by categorical
arguments in [?]. Kowalzig ([?]) gave an explicit formula for the translation map of the
dual.

Theorem 2.3.9. ([?], [?]) 1) If U is a left Hopf algebroid, then U* (respectively Uy) is a
right Hopf algebroid.
2)If U is a left opHopf algebroid, then U* (respectively U, ) is a right opHopf algebroid.
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2.4. Left and right integrals. Left and right integrals were defined for Hopf algebras in
[?] and were generalized to bialgebroids in [?]. They were also defined in the more abstract
context of bimonads on a monoidal category ([?]) and that of Hopf categories ([?]). Let us
recall their definition in our framework:

Definition 2.4.1. Let (U, A4, s*,t*, m, A, €) be a left bialgebroid. A left integral of U is an
element uq of U such that

YueU, wuuy=s"(<eu>)up.

The set of left integrals of U will be denoted Sé .
Let (W, A, s",t", m, A, ) be a right bialgebroid. A right integral of T is an element
wo of W such that
Vwe U, wow = wgs" (< e, >).
The set of left integrals of W will be denoted S;V .

Remark 2.4.2. The left integrals of U are the same as the left integrals of Uc,,p. The right
integrals of W are the same as the right integrals of W,,,.

Indeed, let ug € SEU Forall u € U, one has uug = s‘¢(u)ug. In particular, t‘e(u)ug =

s’e(u)ug. The remark follows.

Proposition 2.4.3. Let U be a left opHopf algebroid. An element [ is in Sg if and only if it
satisfies the following property :

Yue U, ul[_,_] X l[_] = l[_;,_] X l[_]u.

Remark 2.4.4. In the case of Hopf algebroids, this proposition follows from the scholium
2.8 of [?]. The proof uses the properties of u[;] ® u[_] and is left to the reader.

3. HOPF-MODULES

Left-left Hopf modules are the objects of study of the fundamental theorem for Hopf
modules ([?]). The latter states that, if H is a k-Hopf algebra, there is an equivalence of
categories between left-left Hopf modules and k-vecteor spaces. Left-left Hopf modules
can be defined in the case of Hopf algebroids (in the sense of Bohm) ([?]), in the framework
of bimonads over a monoidal category ([?]) and in the context of Hopf categories ([?]). In
all these cases, the Larson-Sweedler theorem for Hopf modules was proved. We will use
only a part of this theorem that follows from a flat descent argument.

Definition 3.1. 1) Let (U, A, 5%, t, A, €) be a left bialgebroid over the k-algebra A.

We will say that M is endowed with a left-left Hopf U -module structure if

— (i) M is endowed with a left U-module structure.
— (ii) M is endowed with a left U-comodule structure denoted A .

— (iii) These two structures are linked by the following relation: For all m € M
and all w e U,

u()m(-1) @ u@ymo) = Anr(u-m).
(iv) a-m = s*(a)m. In the left hand side, a - m is the left A-module structure

coming from the left U-comodule structure.

2) Let (W, B, s",t", A, 0) be a right bialgebroid over the k-algebra A. We will say that
M is endowed with a right-right Hopf W -module structure if

— (i) M is endowed with a right W -module structure.

— (i) M is endowed with a right W -comodule structure denoted /A ;.

— (iii) These two structures are linked by the following relation : for all m € M,
weWandbe B

M)W) @MW) = Ay (m - w).
(iv)m - b = ms"(b).
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Example 3.2. If P is a right A-module, then ,U & sor P is a left left Hopf U-module as
follows: For all (u,v) € U% and all x € P,

u-(v®z) =wr and Aygn(v®T) = v1) V@2 ® .

It will follow from the fundamental theorem for Hopf modules that, if U is a left Hopf
algebroid and under flatness conditions, all left-left Hopf U-modules are of this type (up to
isomorphisms).

Example 3.3. If N is a left U-module, then U, ®4 N is a left -left Hopf U-module as
follows: For all (u,v) € U? and alln € N,

u-(v®n) =unvuen and Aygn(V@n)=v1) ®ve) @n.

Examples ?? and ?? are linked as explained in the following proposition which proof is
left to the reader.

Proposition 3.4. 1) Let N be a left U-module. The map

5N:,U®AOPN< i U<®A>N
u@®n =y @uzn

is a morphism of left-left Hopf U-modules from Examples 2? to ??.
2) If U is a left Hopf algebroid it is an isomorphism.

In the study of integrals for Hopf algebras, a technic is to apply the fundamental theorem
to the Hopf module U*. In the case of a Hopf algebras, U* and .U coincide. In [?]
(Proposition 4.4.) .U is endowed with a left -left Hopf U-module in the case where U is a
Hopf algebroid. This structure is then transferred to U, using the antipode. We will endow
U* with a left left Hopf U-module structure and we will transfer this structure to Uy using
the map S*.

Proposition 3.5. Let (U, s*,t*, A, ¢) be a left-Hopf left bialgebroid over A such that U,
is a finitely generated and projective right A-module. We set U* = Hom g0p (U, A). Let
(e1,...,en) € UZ and (ef,...,ek) € U*™ be a dual basis (([?] p. 203) of the projective
A°Pmodule UL,.
— (i) We endow U* with the U-action of equation ??.
— (ii) We endow U* with the left U-comodule structure determined par right mul-
tiplication on U *(see Theorem ??)

A(¢) =) eix ®s e 3.1)
— (iii) With the two structures above, U* is a left-left Hopf U-module.

Proof:
Assertion (i) is proved in [?].
Assertion (ii) is well known (see [?] for details).
Let us now check assertion (iii). As U, is a projective finitely generated A°?-module,
we may identify U.® 4, U™ with Hom g0» (Us, U, ) as follows:
U.®4,U* — Homuoer (Us,,Us)
u®¢ — [vot(<dv>)ul
On one hand,
Ay(ued)(v) = th<(ue per,v>)e;
= t'[< s(< vy, ue g >, ef >]e;
= Se(< vy, ue (;5 >)U(2).

On the other hand, let us compute < w1y ® ¢(_1) ® U(2) ® P(0),V >.
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Before starting our computation, let us remark the following relation:

t [us@) (@] wr) 5 ¥ [€ (w5’ (@) ] urq) 5 1 [ (va) | ur@t' (@) = ust'(a)
(32)

th(< Ugz) ® P(0),V >)U(1) ® (1)

= ¢[< U(2) ® (be;k,'u >] U(1)€i

= tf < U(2)+ (< (be;'kau(Q)—v >)] u(l)ei
=t [<up) (< def,u—v >)]uyyes

= uytt[< def,u_v >]e;

< u(1) ® P(—1) ®U(2) ® P(0), v >

= u,tt [< st(< &, U_(1)V(1) >)U_(2)V(2), €] >] €;
= ups' (< du_ya) >Ju-@)ve)
= u,yst(< G, u_v(1) >)uy_v(g)
= [uys'(< o, u_vg) >)]+ [uss'(< ¢, u_vay >)]_ v
= sbe [u+sé(< ¢, u_v() >)] V(2)
5 ¢ Lur (< du_vy >)]ve
= s [< uep,u) >] V().
Remark 3.6. Let U be a left Hopf algebroid. We know from [?], [?] that (U*)% " is a left

coop
Hopf algebroid. By Proposition ?? and Remark ??, UZ, , = [(U *)ggop] *isa left left Hopf
(U*),p-module. Thus U is a right right Hopf U*-module. We will adopt the following

convention: An element u € U (respectively ¢ € U * ) will be denoted 1 if considered as
element of USL  (respectively ¢ € (U*)%L ). The structure on U is defined as follows:

coop coop
Forallu,v e U and all p € U*
UD = VU
Aw) =u® @uM e U.@a,U* if Aa) = 1M @a € (U*)%,y,«®a0, UL,

Corollary 3.7. Let U be a left Hopf and opHopf algebroid over A such that U is a finitely
generated and projective right A-module. Then U, endowed with

— the left U-module structure
YVuelU, VyelU,, YveU <u—1,v>=<,vu>
— the left U-comodule structure defined by the right U*-module structure

is a left left Hopf U-module.
Proof:

The isomorphism S* : U* — U, ([?]) transfers the structure of Theorem ?? onto the
structure of Corollary ??. ]

We will make use of a flat descent theorem for corings from Brzezinski ([?]) .

Theorem 3.8. Let U be a left Hopf algebroid.

1) Let M be a left-left Hopf U-module.

The set of covariant elements MY = {m € M, Apr(m)=1®m} is endowed with
aright A-module denoted < as follows: For all m € M and all a € A,

m -, a=t(a)m.
2) The map s
Yy UQMey — M
uRXm — um
is an epimorphism of left-left Hopf U-modules. If the left A-module ,U is flat, the map
v is an isomorphism of left-left Hopf U-modules.
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Proof : 1) is obvious.
2) It follows from [?] that left-left Hopf U-modules are left comodules over the coring
W = (U.®4,U, A®id, e ® id) where the U — U-bimodule structure is given by

Y(u,z,y,0v) e UL, u-(zQy)-v= U(1)T @ T(2)Yv.

The coring W is studied in [?]. It was shown to possess a grouplike element and to be
Galois if and only if U is a left Hopf algebroid. Thus, one can apply theorem 5.6 of [?]. []

Remark 3.9. Theorem ?? holds for right right Hopf-modules with appropriate hypothesis.

Corollary 3.10. Let U be a left Hopf algebroid.
Let M be a left-left Hopf U-module different from {0}, then M“°V # {0}.

Applying the corollary to the left-left Hopf U-module U*, we get the following propo-
sition.

Corollary 3.11. Let U be a left Hopf algebroid such that the A°?- module U, is finitely
generated projective. The right bialgebroid U* admits a right integral.

Proof:
1) Let ¢ € U*. The left A-module structure on the U-comodule U* is a - ¢ = ¢t¥*(a).
If we set Ad = ¢~V @ ¢(©) € U,®4,U*, then for all ) € U*, one has (equation ??)
o = 0Ot (< v,V >).

Consequently, (U*)*" = {¢p e U*,Vp e U*, ¢p = €(d) -9 = ¢tf(< 1,9 >))} # .
If ¢ € (U*)“°Y, then ¢s (< 1,1 >) = Pt (< 1,1 >) = ¢p. Thus ¢ € STU* and the first

assertion is proved.

Remark 3.12. This proposition was proved for Hopf categories in [?] (Proposition 9.5)
and [?] (Proposition 4.10).

4. FROBENIUS EXTENSION
A monomorphism of k-algebras s : A — U defines an A°-module structure on U :
Y(a,b) e A%, YueU, a-u-b=s(a)us(b).

As usual, a - u-b will be denoted a >u <« b. Recall that an A°-module structure on U defines
an A¢-module structure on U, as follows :

Vipe Uy, Vae A, YoeU, artp=s(a)—1, <yp<av>=<t,v>a.
Definition 4.1. ([?]) A monomorphism of k-algebras s : A — U is called a Frobenius

extension if

(i) WU is finitely generated and projective
(i) Endow U, with the left U-module structure given by the transpose of the right
multiplication

V¢ € U*a V(U,’U) € U23 (U - 77/1)(“) = 77[}(1’“})
The U ® A°P-modules yU, and U, , are isomorphic

Remarks 4.2. (i) The second property holds if and only if there exist a Frobenius
system (0, x; ® y;) where 0 : U — A is a A®-module map and x; ® y; €
U®a,U such that

Yu € U, 23 o O(ux;)y; = u= ins o O(y;u).

If x : U — Uy is an isomorphism of U ® A°P-module, one has 0 = x(1).
(ii) Lettg € U be the element such that x(tg) = €. Then tg € Sg
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(iii) If A = kis a field, the k-algebra U is Frobenius if and only if the monomorphism
k — U is a Frobenius extension.

(iv) Morita ([?]) showed that the monomorphism s : A — U is a Frobenius extension
if and only if the restriction functor is a Frobenius functor.

Proposition 4.3. Let (U, 4, s°, !, A’, ¢) be a left Hopf algebroid such that the A°P-module
U*, is flat. The extension t¢ : A°? — U is Frobenius if and only if
(i) U, is a finitely projective A°P-module

@ii) » (SZU) is a free A-module of rank 1.

Proof:

We start the proof by preliminary remarks :

We have seen in Proposition ?? that there exists a correspondence between left U-
module structures and right U*-comodule structures. The left U-module structure — on
U* (u — ¢ =< ¢, —u > ) corresponds to the right U*-comodule structure on U* given
by the coproduct. Left multiplication endows U with a left U-module. It defines a right

U*-comodule structure which coinvariant elements are SEUCOOP = Sfj (Proposition 2? ).

Assume that t¢ : A°? — U is Frobenius. Then 17(Ueoop)
U (Ucoop)*scoop*
preliminary remarks, considered as a right U*-comodule, U is isomorphic to the right
U*-comodule U*. Thus the A°?-module U®*? = Sé is isomorphic to (U*)c°" = t'*(A)
(see Examples ??) and condition (ii) is satisfied.

$coop 18 1SOmMorphic to
In other words, yU,e is isomorphic to yU*.ex. Then, using our

Assume that , (S[ZJ) is a free A-module of rank 1. The fundamental theorem applied

to the right-right Hopf U*-module U (see Remark ??) gives an isomorphism of right U*-
modules and of right U*-comodules

4
>J ®A0PU*< = U
U

It follows that U is isomorphic to U* as right U*module and as right U*-comodules (that
is left U-modules). Using our preliminary remark, ;U is isomorphic to yyU™*. Moreover
(see Proposition ?? for the notation) u e t**(a) = wut‘(a). Indeed, u considered as an

element of UZk,, will be denoted @ and ¢ € U*, considered as an element of (U*)2P,

will be denoted ¢. By definition of the left action of (U*)%,, on U2, = [(U*)%,.]",
we have: For all v in U and a in A,
t*(a) o 1 =< U, s (a)— > .
Thus
<uet™(a),p >=< u, ps"*(a) >=< ut*(a), >

so that u e t*(a) = ut’(a).

Now, the assertion follows from U* = (Ucoop) xcoop- We have proved that the extension
tt . A°P — U is Frobenius. [].

Remark 4.4. (i) In [?] (Theorem 1), it is shown that a A-Hopf algebra (with A
commutative) satisfying the two conditions of the theorem is Frobenius.
(i) In[?], M.C. lovanov and L. Kadison investigate when a weak Hopf algebra (in-
troduced in [?)]) is Frobenius (see Remark ??).

In [?], a collection of conditions equivalent to the Frobenius condition is given in the
setting of Hopf algebroids. In the following theorem, we generalize them to the setting of
left Hopf and opHopf algebroid.
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Theorem 4.5. Let (U, A, s*,t*, A, ¢) be a left Hopf and opHopf algebroid such that U,
and .U are finitely generated projective. The following assertions are equivalent:

~ 1. (§;,.) isafree A°P-module of rank 1.
Uy p

— 2. The extension s’ : A —, U is Frobenius.
- 3. (Sé) is a free A°P-module of rank 1.

- 4. xtension s, : —, i ius.
4. The extension s}, : A°P Usx)eb,, 1s Frobenius

— 5. There exists a right integral 1y € SZ* such that the map

U‘ - (U*)<

u = u— 1

is an isomorphism of U ® A°P-module.
— 6. There exists a g € SEU such that the map

D(U*) - U
Y ot — Y =t'(< ¥, to) >)toq)
is an isomorphism of right U,-modules.
— 7. The extension sy : A — (U*)2b,  is Frobenius.
— 8. The extension t* : A°? — U is Frobenius.
— 9. The extension t, : A — (U, )%, is Frobenius.

coop

— 10. The extension ' : A — (U*)2P, is Frobenius.

— 11. There exists a right integral ¢ € §,.. such that the map
U — . (U%)

u > u— @

is an isomorphism of U ® A-module.
— 12. There exists a tg € SEU such that the map

S(U*) — U
¢ = to—¢=s"(< o toa)>)tor)

is an isomorphism of right U*-modules.

Proof:

Let us first make the following remark:

If the A-module .U is finitely generated projective, then the A°?-module (U*). is
finitely generated projective (by the definition of multiplication in U*). Consequently as,
under our hypothesis, the right bialgebroids U* and U, are isomorphic, the A°P-module
(U )« is isomorphic.

Similarly, if the A°?-module U. is finitely generated projective, then the A-module
»(Uy) is finitely generated projective and . (U*) is finitely generated projective.

1. = 2. By application of the Theorem ?? to the left-left Hopf U-module U, (see
Corollary ??), we get an isomorphism from U, to Uy, which proves that s* : A — U
is Frobenius.

2. = 3. follows from Proposition ??. Recall that if ¢, € SZU, then ot (a) = tos’(a).

3. = 4. is true: Indeed, itis 1. = 2. applied to the left bialgebroid (U)o,

4. = 1.is 2. = 3. applied to the left bialgebroid (Uy)25,,,.

5. = 2. by definition of a Frobenius extension and 1. = 5. by Theorem ?? applied to
the left left Hopf module U..

5. is equivalent to 6. because one goes from one to other replacing U by (Us)2%,,-

Thus, conditions 1., 2., 3., 4., 5. and 6. are equivalent.

7. is equivalent to 4.: As U is a left Hopf and opHopf algebroid, the map S* : U* — U,
is an isomorphism of right bialgebroids.
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8. is equivalent to 1. If ¢g is a left integral for U, then it is a left integral for Ucoop.
Moreover, for any a € A, one has tgs’(a) = tot‘(a) so that the A-module , Sfj is free of
dimension 1 if and only if the A°P-module (Sé) is so.

Condition 9. (respectively 10., 11., 12.) is obtained from condition 7. ( respectively 4.,
5.,6.) replacing U by Ucoop. [J

5. QUASI-FROBENIUS EXTENSION

Definition 5.1. ([?]) Recall that an A°-module structure on U defines an A¢-module struc-
ture on Uy as follows :

VipeUs, VYaeA, YvelU, ary=s(a)—1, <vaav>=<i,v>a.

Endow U, with the left U-module structure given by the transpose of the right multiplica-
tion

Ve Uy, Y(u,v) e U? (v —1p)(u) = Y(uv).
A monomorphism of k-algebras s : A — U is called left quasi-Frobenius if

(i) U is finitely generated and projective
(ii) The U ® A°P-module U, is a direct summand in a finite direct sum of copies of
U*4 .

Remarks 5.2. (i) Quasi-Frobenius functors were introduced in [?]. The monomor-
phism s : A — U is a quasi-Frobenius extension if and only is the restriction
functor is a quasi Frobenius functor.

(ii) A finitely generated projective Hopf algebra over a commutative ring is quasi-
Frobenius ([?]).
(iii) In[?), it is shown that weak Hopf algebras are quasi-Frobenius.

A counterexample of a Hopf algebroid U (such that .U is finitely generated projective)
which is not quasi-Frobenius is exhibited in [?] (Lemma 5.3). In the same article, condi-
tions are given for a Hopf algebroid to be quasi-Frobenius. In the following proposition,
we extend the results obtained in [?] and characterize the left Hopf algebroids that are a
quasi-Frobenius extension of their basis.

Proposition 5.3. Let (U, A, s, t*) be a left Hopf algebroid such that the A°?-module U*,
is flat. The extension ¢* : A°? — U is quasi-Frobenius if and only if

(i) U, is a finitely projective A°P-module
@) . (S[ZJ) is a projective A-module.

Proof: The proof is similar to that of Proposition ??.

Assume that t* : A% — U is quasi-Frobenius. Then U(Ucoop) seos, 15 @ direct summand
of a finite direct sum of copies of U(Ucoop)*scoop* In other words, U, is a direct
summand of a finite direct sum of copies U™ ex. Then, using the preliminary remark in
the proof of Proposition ??, considered as a right U*-comodule, U is a direct summand of
a finite direct sum of copies of the right U*-comodule U*. Thus U = Sé is a direct
summand of a finite direct sum of copies of (U*)°? = t**(A) (see Examples ??) and
condition (ii) is satisfied.

Assume that , (SZU) is a finitely generated projective A-module. Theorem ?? applied

to the right-right Hopf U*-module U (see Remark ??) gives an isomorphism of right U*-
modules and of right U*-comodules

4
>J ®A0PU*4 = U
U
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It follows that U is a direct summand of a finite direct sum of copies of U* as right
U*module and as right U*-comodules (that is left U-modules). Using the preliminary
remark in the proof of Theorem ??, yU is a direct summand of a finite direct sum of
copies of yU*. Moreover u - t'*(a) = ut‘(a).

Now, the assertion follows from U* = (Ucoop)xcoop- We have proved that the extension
th: AP — U is left quasi-Frobenius. [].

6. APPLICATION TO RESTRICTED LIE-RINEHART ALGEBRAS.

In this section, we apply our theory to the restricted enveloping algebra of a restricted
Lie-Rinehart algebra. We will assume that £ is a field of characteristic p.

Definition 6.1. ([?]) Let A be a commutative k-algebra with unity. A restricted Lie-
Rinehart algebra (A, L, (—)!P!, w) over A is a Lie-Rinehart over A ([?]) such that

(i) (L, (—)")) is a restricted Lie algebra over k;
(ii) the anchor map w : L — Der(A) is a restricted Lie algebra morphism;
(iii) Foralla e Aandall X € L, the following relation holds

(aX)P) = aP XIPL 4 ((aX)P~1)(a) X.

Examples 6.2. (i) If Ais a commutative k algebra, then (A, Der(A), (—)P,id) is a
restricted Lie-Rinehart algebra ([?] lemma 1).
(i) In [?], it is shown that weakly restricted Poisson algebras give rise to restricted
Lie-Rinehart algebras.

(iii) The restricted crossed product: Assume that g is a restricted Lie algebra and that
there exists a morphism of restricted Lie-algebras o : § — Der(A). Then, there
exists a unique structure of restricted Lie-Rinehart algebra on A ® g (extending
that of g) with anchor w : AQ g — Der(A), w(a® X) = ao(X) and such that:
Forall XY egandall a,be A

[a®X,bRY] =ac(X)(b)®Y —bo(Y)(a) ® X + ab® [X,Y]

The enveloping algebra U4 (L) of a Lie-Rinehart (A, L, w) is defined in [?] by a univer-
sal property. It is explicitely constructed as follows :
_Ti(AeL)
S

where [ is the two sided ideal generated by the following relations : For all a,b € A and
all D,D' e L,

Ua(L)

(1) a®b—ab
(1) a®D —aD
(tit) D®D' —D'®D —[D,D’]
(v) D®a—a®D —w(D)(a)
If L is a projective A-module, a Poincaré-Birkhoff-Witt theorem is established in [?].
The restricted universal enveloping algebra of a restricted Lie-Rinehart algebra is de-
fined as follows ( [?]):

Definition 6.3. Ler A be a commutative k-algebra and let (A, L, (=)=, w) be a restricted
Lie-Rinehart algebra. The restricted universal enveloping algebra is a universal triple
(UL(L),ta,tr) with an associative algebra map 14 : A — U’y (L) and a restricted Lie
algebramap v, : L — U, (L) such that forall D € L and a € A

ta(a)ep (D) = v (aD)

vr(D)eala) — va(a)er (D) = tr (w(D)(a)))
_ Ua(L)
" < Dp — DIp]

One has U/ (L) FETAS

)
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Remark 6.4. Let p be a prime ideal of A. Then (Ly, Ay) is endowed with a unique
structure of restricted Lie-Rinehart algebra over A, extending that of (L, A, (—)[=1)([2]).
Moreover, U (L), = U} (Ly).

An appropriate version of the Poincaré-Birkhoff-Witt theorem holds for U’y (L).

Theorem 6.5. ([?], see also [?]) Let (A, L, w) be a restricted Lie-Rinehart algebra in char-
acteristic p. If L is a free A-module with ordered basis (e;);er, then U/ (L) is a free
A-module with basis

{ep(e)™ o {ep(e))™ 120, 41 <---<i, 1<a;<p}

From now on, when there is no ambiguity, we will write D € L for its image ¢, (D) in
Uy (L).

Let (L, A) be a Lie-Rinehart algebra. It is well known that its enveloping algebra is
endowed with a standard left bialgebroid structure for which it is left Hopf and opHopf
([?]). If (L, A) is arestricted Lie-Rinehart algebra, its restricted enveloping algebra U, (L)
is also endowed with a standard left bialgebroid structure as follows:

(i) st =t =14
(ii) The coproduct A is defined by
Vae A, A()=a®1l, VDeL, AD)=D®1+1®D
(iii) €(D) =0and€(a) = a.
Moreover, for this structure, U/, (L) is left Hopf and
VDelL, D,®D_=D®1-1QD
YVae A, ay®a_=a®1

As U’y (L) is cocommutative, it is also opHopf.

Set J, (L) = (U;(L)), the restricted jet bialgebroid of (L, A). A priori, J);(L) is a
right bialgebroid. But as it is a commutative algebra, it can be seen as a left bialgebroid.
Thus, both U’y (L) and J/, (L) are left Hopf and opHopf algebroids.

Proposition 6.6. Assume that L is a free finitely generated A-module with basis e =
(e1,...,ey). Introduce \; € J/; (L) defined by

(e}
Vai,...,a, €[0,p—1], <A,ef’...e8" >=060,0---0a;1---0a,.0-

One has \;? = 0.
JW(L) = E[M1,- ., Al

—1 —1 L
Dwe =M1 00AP belongstoSJ;l(L).

2) SZIA () and SZIA (1) are free A-module of dimension 1 with basis we.

Proof: 1) Let o = Y, 85 (Gay....a0 ) AT .  AD™.
Hwe = Sy (ag, . 0)we = Sg(< p, 1 >)we.
2)Letw = Y sh(way,..an)ATL - .. A2 be an element of Si,A(L). For all i € [1,n], one
has A;w = 0. It is then easy to see that w = s;(wp_l,__.m_l))\f_l .. AP Ttis easy to
check that w, is free. Thus it forms a basis of Si.,A (L)
The second assertion follows from the equality s}, (a)we = ¢, (a)w,, which is due to the

fact that w, is a left integral. []

Remark 6.7. With the same assumptions on L, the same proof shows that

£ _ p—1 p—1
SS,A(L) = Ael™" .. el

Corollary 6.8. Assume that L is a free finitely generated A-module. The left bialgebroids
U’y (L) and J'y (L) satisfy all the equivalent conditions of the Theorem ??
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Remark 6.9. It is shown in [?] that the restricted enveloping algebra of a finite dimen-
sional restricted Lie algebra (over a field) is Frobenius.

Proposition 6.10. Assume that L is a finitely generated projective A-module with a rank.
Then Sé, ) and Sﬁ, () are projective A-module of rank one. Thus, s : A — Uy (L),
A A

sh:A— J)(L)and t}, : A — J' (L) are left quasi-Frobenius extensions.

Proof: Let L, be a finitely generated module such that L.® L, = F'is finitely generated
free. We endow F' with the following restricted Lie-Rinehart structure:

(i) The Lie bracket on F extends that on L. Moreover, forall X € Landall (Y,Y”) €
L%, [X,Y]=[Y,Y']=0.
(ii) The anchor wp : F' — Dery(A) extends that of L. Moreover, for all Y in L4,
one has wp(Y) = 0.
(iii’) The p-operation extends that of L. Moreover, for all Y € L4, one has vyl = .

In other term, F' is the direct sum of L with the abelian restricted Lie-Rinehart algebra
Ly and U)(F) = U4(L) ® S4(L1). From Theorem ??, Sé, () 18 a free A-module of
A
dimension 1. From Remark ??, we knows that Sg, (Ly) 18 5" "~(L,) where r is the
A
rank of 1. We now show that

4 0 0
[ O O
vpw  Jsuan oy

. Y ¢ ¢ . .
The inclusion SUA (1) ®4 SS,A (L) © SUZ; () 18 €asy to check. The equality follows from a
localization argument (Remark ??) and Theorem ?7?).
¢ ¢ ¢ Lo L
Thus, SU,A(L) = Homy (SS’A(Ll)’ SU;‘(F)>, which is a projective A-module.
Let p be a prime ideal of A and (L,, A,) the restricted Lie-Rinehart algebra over A,
extending (L, A, (—)[7) (Remark ??). As L, is a free finite A,-module, by application

of Theorem ??, the A,-module, is free of dimension one. Thus (Sé/ ( L)) is a
A p

¢
v, 2a)
projective A,-module of rank one by Lemma ??.
One shows similarly that s, : A — J(L) and t}, : A — J,(L) are a left quasi-
Frobenius extensions.[ ]

Let p be a prime ideal of A. Localization of the A-module (for left multiplication
by elements of A) U4 (L) and localization of the A-module (for right multiplication by
elements of A) U (L) are isomorphic to Ua, (Ly).

Lemma 6.11. Let L be a restricted Lie-Rinehart algebra which is a finitely generated A-
module and let p be a prime ideal of A. Then

4 4
(Ser,), =S o
(), =55

7)), =, @)

Proof:
We only prove the first equality. The proof of the second one is similar. Any element of
1
U, (Ly) can be written — x Lor Y x 2 with u,veU)y(L)ando, 7€ A—p.
g T
. . . Y ¢
First we prove the inclusion (SUZ; ( L)) . c SUZ;p (L)

and o € A — p, then

1 1 1 1 (1) 1
—xovug X — = — X e(vV)up— =€ | —v | up—.

If ug isin ;)
A

T g T g
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1
Thus ug x € SUAF,(Lp)'

. Y ¢
Second we prove the inclusion SUﬁap (L) < (SU;‘(L))'J. Letug € U/y(L)andop € A—p
1 Y
such that ug x . € SU;‘F (1,)- Then for any v € U/ (L),

v 1 €(v) 1 elv)uy 1
—Ug X — = —/Uyg X — =
1 g0 1 go 1 g0

As U’y (L) is finitely generated as an A-module, there exists 7 € A — p such that

Vo e Uy(L), wvuot = e(v)ugt

.o 1. . e
Thus ugT is in SU;‘(L) and ug x - isin (SUA(L)),J'
Remark 6.12. Ifthe anchor is 0, U’y (L) is a projective finitely generated A-Hopf algebra
and Theorem ?? was already known ([?])
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