
FROBENIUS AND QUASI-FROBENIUS LEFT HOPF ALGEBROIDS

SOPHIE CHEMLA

ABSTRACT. We study when left (op)Hopf algebroids in the sense of Takeuchi-
Schauenburg give rise to a Frobenius or quasi-Frobenius extension. The case of Hopf
algebroids in the sense of Böhm was treated by G. Böhm ([?]). Contrary to Hopf alge-
broids, (op)Hopf left algebroids don’t necessarily have an antipode but their Hopf-Galois
map is invertible. We make use of recent results about left Hopf algebroids ([?], [?], [?]).
Our results are applied to the restricted enveloping algebra of a restricted Lie-Rinehart
algebra.

1. INTRODUCTION

Left bialgebroids, called also ˆA-bialgebras ([?]), generalize k-bialgebras (k being a
commutative ring included in the center) to the case where the basis is not necessarily
commutative. A left bialgebroid U “ pU, s`, t`,∆, µ, εq over A is the data of

– A k-algebra structure pU, µq on U .
– Two morphisms of k-algebras s` : AÑ U and t` : Aop Ñ U commuting.
– A comultiplication, which is a morphism ofAe-algebras, defined onU and taking

values in the Takeuchi product Ut`ˆAs`U Ă Ut`bAs`U .
– a counit ε.

A left (respectively right) bialgebroid overA has two duals, a left one and a right one. Both
duals are endowed with a right (respectively left) bialgebroid structures over A ( [?]).

There exist two main generalizations of Hopf algebras to the non commutative setting:

– Hopf algebroids in the sense of Böhm for which an antipode is assumed to exist.
– Left Hopf algebroids in the sense of Takeuchi-Schauenburg (or ˆA Hopf alge-

bras) where one only assumes that the Hopf-Galois map is an isomorphism.

It has been shown recently ([?], [?]) that, under finiteness conditions, the right (left)
dual of a left (op)Hopf algebroid are right (op)Hopf algebroids.

Hopf algebroids are left Hopf and opHopf algebroids but the converse is in general not
true (see [?]). For example, (restricted) enveloping algebras of (restricted) Lie-Rinehart
algebras are left Hopf and opHopf algebroids but are not, in general, Hopf algebroids.

More recently, Hopf algebras were studied from a more categorical point of view: bial-
gebras were viewed as bimonads ([?]) and left Hopf algebroids as Hopf monads ([?], [?]).
Hopf categories were defined in [?]. Under certain conditions, the latter provide weak
Hopf algebras (see [?] section 6) and thus Hopf algebroids.

Sweedler ([?]) introduced the notion of integral for Hopf algebras and the Larson
Sweedler theorem for Hopf modules was proved in [?]. These results were generalized
to Hopf algebroids ([?]), to Hopf bimonads ([?], [?]) and more recently to Hopf categories
([?]).

Recently, a Maschke type theorem for Hopf monoids relating the separability of the
underlying monoid to the existence of a normalized integral was proved in [?]. This work
covers the case of a Hopf monoid in braided monoidal categories, weak Hopf algebras,
Hopf algebroids over a central basis and Hopf monads on autonomous monoidal categories
([?]).
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Many authors have studied relations between Hopf algebras and Frobenius algebras:
[?], [?], [?], etc... The following question arises: when is a left Hopf algebroid a (quasi-
)Frobenius extension of its basis? In [?], it is shown that any finite dimensional weak Hopf
algebra is quasi-Frobenius. These questions are treated for Hopf algebroids in [?] with an-
swers involving integrals. In [?], weak Hopf algebras that are Frobenius are characterized
by a criterion on their semi-simple base algebra A.

Let pU, s`, t`,∆, µ, εq be a left Hopf algebroid satisfying some projectiveness and finite-
ness assumptions. We study when the extension t` : A Ñ U is Frobenius ([?]) or quasi-
Frobenius (in the sense of Muller [?]). We show:

– The extension t` : A Ñ U is Frobenius if and only if the Aop-module of its left
integrals is a free Aop-module of rank one.

– The extension t` : A Ñ U is quasi-Frobenius if and only if the Aop module of
its left integrals is a projective finitely generated Aop-module.

The main tool is the fundamental theorem for Hopf-modules in the setting of left Hopf
algebroids ([?]) and the dual theory for left Hopf algebroids demonstrated by Schauenburg
([?]) and Kowalzig ([?]).

We apply our results to restricted enveloping algebras of restricted Lie-Rinehart
algebras.
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Notations
Fix an (associative, unital, commutative) ground ring k. Unadorned tensor products

will always be meant over k. All other algebras, modules etc. will have an underlying
structure of a k-module. Secondly, fix an associative and unital k-algebra A, i.e., a ring
with a ring homomorphism ηA : k Ñ ZpAq to its centre. Denote by Aop the opposite
algebra and by Ae :“ Ab Aop the enveloping algebra of A, and by A-Mod the category
of left A-modules.

The notions of A–ring and A–coring are direct generalizations of the notions of al-
gebra and coalgebra over a commutative ring. An A-ring pH,µ, ηq is a monoid in the
monoidal category (Ae-Mod, bA, A) of Ae-modules fulfilling the associativity and the
unitarity conditions. It is well known (see [?]) that A–rings H correspond bijectively to
k–algebra homomorphisms ι : A ÝÑ H . An A-ring H is endowed with an Ae-module
structure:

@h P H, a, b P H, a ¨ h ¨ b “ ιpaqhιpbq.

An A-coring C is a comonoid in the monoidal category of Ae-modules satisfying the
coassociativity and the counitarity conditions. As usual, we adopt Sweedler’s Σ–notation
∆pcq “ cp1q b cp2q or ∆pcq “ cp1q b cp2q for c P C .

2. PRELIMINARIES

We list here those preliminaries with respect to bialgebroids and their duals that are
needed to make this article self contained; see, e.g., [?] and references below for an
overview on this subject.

2.1. Bialgebroids. For an Ae-ring U given by the k-algebra map η : Ae Ñ U , consider
the restrictions s :“ ηp´ b 1Uq and t :“ ηp1U b ´q, called source and target map,
respectively. Thus an Ae-ring U carries two A-module structures from the left and two
from the right, namely

a Ż u Ž b :“ spaqtpbqu, a § u đ b :“ utpaqspbq, @ a, b P A, u P U.
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If we let UŽbAŻU be the corresponding tensor product of U (as an Ae-module) with itself,
we define the (left) Takeuchi-Sweedler product as

UŽˆAŻU :“
 
ř

iuibu
1
i P UŽbAŻU |

ř

ipa§uiqbu
1
i “

ř

iuibpu
1
iđaq, @a P A

(

. (2.1)

By construction, UŽˆA ŻU is an Ae-submodule of UŽbA ŻU ; it is also an Ae-ring via
factorwise multiplication, with unit 1U b 1U and η

UŽˆAŻU
pab ãq :“ spaq b tpãq.

Symmetrically, one can consider the tensor product Uđ bA §U and define the (right)
Takeuchi-Sweedler product as Uđ ˆA §U , which is an Ae-ring inside Uđ bA §U .

Definition 2.1.1. A left bialgebroid pU,Aq is a k-module U with the structure of an Ae-
ring pU, s`, t`q and an A-coring pU,∆`, εq subject to the following compatibility relations:

(i ) the Ae-module structure on the A-coring U is that of ŻUŽ ;
(ii ) the coproduct ∆` is a unital k-algebra morphism taking values in UŽˆAŻU ;

(iii ) for all a, b P A, u, u1 P U , one has:

εp1U q “ 1A, εpa Ż u Ž bq “ aεpuqb, εpuu1q “ ε
`

u đ εpu1q
˘

“ ε
`

εpu1q § u
˘

. (2.2)

A morphism between left bialgebroids pU,Aq and pU 1, A1q is a pair pF, fq of maps F :
U Ñ U 1, f : AÑ A1 that commute with all structure maps in an obvious way.

Remark 2.1.2. Szlachànyi has shown that left bialgebroids may be interpreted in terms of
bimonads ([?]).

As for any ring, we can define the categories U -Mod and Mod-U of left and right
modules over U . Note that U -Mod forms a monoidal category but Mod-U usually
does not. However, in both cases there is a forgetful functor U -Mod Ñ Ae-Mod, resp.
Mod-U Ñ Ae-Mod given by the formulas : for m PM, n P N, a, b P A

a Żm Ž b :“ s`paqt`pbqm, a §m đ b :“ ns`pbqt`paq

For example, the base algebra A itself is a left U -module via the left action

upaq :“ εpu đ aq “ εpa § uq, @u P U, @a P A, (2.3)

but in general there is no right U -action on A.
Dually, one can introduce the categories U -Comod and Comod-U of left resp.

right U -comodules, both of which are monoidal; here again, one has forgetful functors
U -Comod Ñ Ae-Mod and Comod-U Ñ Ae-Mod. More precisely (see, e.g., [?]), a
(say) left comodule is a left comodule of the coring underlying U , i.e., a left A-module M
and a left A-module map ∆M : M Ñ UŽ bA M, m ÞÑ mp´1q bA mp0q, satisfying the
usual coassociativity and counitality axioms. On any M P U -Comod there is an induced
right A-action given by

ma :“ εpmp´1q đ aqmp0q, (2.4)
and ∆M is then an Ae-module morphism M Ñ UŽ ˆA M, where UŽ ˆA M is the Ae-
submodule of UŽ bA M whose elements

ř

i ui bA mi fulfil
ř

i a § ui bA mi “
ř

i uit
lpaq bA mi “

ř

i ui bA mi ¨ a, @a P A. (2.5)

The following identity is easy to check

∆M pambq “ slpaqmp´1qs
lpbq bA mp0q.

Coinvariant elements of a comodule will play an important role in the sequel:

Definition 2.1.3. Let pU,A, s`, t`,∆, εq be a left bialgebroid over A.
(i ) Let pM,∆M q be a left U -comodule. An element m in M is coinvariant if

∆M pmq “ 1 b m. The set of coinvariant elements will be denoted M cov . It
is endowed with a natural Aop-module structure via t`.

(ii ) Let pN,∆N q be a right U -comodule. An element n in N is coinvariant if
∆N pnq “ n b 1. The set of coinvariant elements will be denoted N cov . It is
endowed with a natural A-module structure via s`.
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Examples 2.1.4. (i ) If U is a left bialgebroid, then s`Us` “ ŻUđ is a left U -
comodule and the t`pAq-module of its coinvariant elements is t`pAq.

(ii ) t`Ut` “ §UŽ is a right U -comodule and the s`pAq-module of its coinvariant
elements is s`pAq.

The notion of a right bialgebroid is obtained from that of left bialgebroid exchanging
the role of Ż, Ž and §, đ. Then one starts with the Ae-module structure given by § and đ

instead of Ż and Ž and the coproduct takes values in Uđ ˆA §U instead of UŽ ˆA ŻU . We
refer to [?] for details.

Remark 2.1.5. The opposite of a left bialgebroid pU,A, s`, t`,∆`, εq yields a right bial-
gebroid pUop, A, t`, s`,∆`, εq. The coopposite of a left bialgebroid is the left bialgebroid
given by pU,Aop, t`, s`,∆coop

` , εq.

Left and right comodules over a right bialgebroid W are also well defined.

2.2. Dual bialgebroids. Let pU,Aq be a left bialgebroid, M,M 1 P U -Mod be left U -
modules. Define

HomAoppM,M 1q :“ HomAoppMŽ,M
1
Žq, HomApM,M 1q :“ HomApŻM , ŻM

1 q,
HomAoppN,N 1q :“ HomAoppNđ, N

1
đq, HomApN,N

1q :“ HomAp§N , §N
1 q.

In particular, for M 1 :“ A, we set M* :“ HomApM,Aq and M* :“ HomAoppM,Aq,
called, respectively, the left and right dual of M .

If M “ U , the two duals U˚ (the right dual) and U˚ (the left dual) are endowed
with an Ae-ring structure, and even a right bialgebroid structure under finiteness and
projectiveness conditions ([?] ).

The case of U˚:
For a P A, let us introduce the two elements s˚r paq and t˚r paq of U˚ defined by

@u P U, ă t˚r paq, u ą“ a ă ε, u ą, ă s˚r paq, u ą“ă ε, us`paq ą . (2.6)

Endowed with the following multiplication, U˚ is an associative k-algebra with unit ε:
For all φ, φ1 P U˚ and all u P U

@

u , φ φ1
D

“

A

s`
`@

up1q , φ
D˘

up2q , φ
1
E

(2.7)

Then s˚r : A Ñ U˚ and t˚r : Aop Ñ U˚ are algebra morphisms and define an Ae-ring
structure on U˚:

φ đ a “ φs˚r paq and a § φ “ φt˚r paq.

The product on U˚ can be written :
@

u , φ φ1
D

“

A

up2q , t
˚
r

`@

up1q , φ
D˘

φ1
E

(2.8)

If UŽ is a finite projective Aop-module, the following formula defines a coproduct on U˚ :
@

uu1 , φ
D

“

A

u t`
`@

u1 , φp2q
D˘

, φp1q

E

“

A

u , φp1q s
˚
r

`@

u1 , φp2q
D˘

E

Lastly we have a counit η P U˚
@

1 , φ
D

“ ηpφq. (2.9)

Thus pU˚, A, s˚r , t
˚
r ,∆, ηq is a right bialgebroid.

The case of U˚: If ŻU is a finite projective A-module, U˚ is endowed with the right
bialgebroid structure over A such that pUcoopq˚ “ pU˚qcoop.

In a similar way, if W is a right bialgebroid, then its left dual ˚W and its right dual ˚W
are endowed with an Ae-ring structure. Under finiteness and projectiveness conditions,
they are left bialgebroids . Moreover the left bialgebroids ˚pU˚q and ˚pU˚q are canonically
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isomorphic to U . The formulas above also describe the left bialgebroid structure on ˚W
and ˚W (φ P W and u P˚ W , ψ P W and u P˚ W ). See for example [?] for a detailled
exposition.

Remark 2.2.1. Under the appropriate finiteness conditions, the right bialgebroids
˚pUopcoopq and pU˚qopcoop are isomorphic.

2.2.2. The module-comodule correspondence
The classical bialgebra module-comodule correspondence extends to bialgebroids.

Proposition 2.2.3. 1) Let pU,Aq be a left bialgebroid.
(i ) There exists a functor Comod-U Ñ Mod-U*; namely, if M is a right U -

comodule with coaction m ÞÑ mp0q bA mp1q, then

M bA U* ÑM, mbk ψ ÞÑ mp0qψpmp1qq, (2.10)

defines a right module structure over the Ae-ring U*. If ŻU is finitely gener-
ated A-projective (so that U* is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U* Ñ Comod-U such that there is an equivalence
Comod-U »Mod-U* of categories.

(ii ) Likewise, there exists a functor U -Comod Ñ Mod-U*; namely, if N is a left
U -comodule with coaction n ÞÑ np´1q bA np0q, then

N bA U* Ñ N, nbk φ ÞÑ φpnp´1qqnp0q, (2.11)

defines a right module structure over the Ae-ring U*. If UŽ is finitely generated
A-projective (so that U* is a right bialgebroid), this functor is monoidal and
has a quasi-inverse Mod-U* Ñ U -Comod such that there is an equivalence
U -Comod »Mod-U* of categories.

2) Similar statements holds in the case of right bialgebroids.

The case 1qpiiq of the above Proposition ?? can also be found in [?, §5]. An explicit
proof and a description of all involved functors is given in [?, §3.1].

2.3. Left Hopf and opHopf algebroids. For any left bialgebroid U , define the Hopf-
Galois maps

α` : §U bAop UŽ Ñ UŽ bA ŻU, ubAop v ÞÑ up1q bA up2qv,
αr : Uđ b

A
ŻU Ñ UŽ bA ŻU, ubA v ÞÑ up1qv bA up2q.

and for a right bialgebroid W the Hopf-Galois maps

β` : WŽ bB §W ÑWđ bB §W, w b y ÞÑ ywp1q b wp2q,

βr : §W b
Bop
WŽ ÑWđb

B
§W, w b y ÞÑ wp1qb y wp2q.

These maps give rise to the following definition ([?]):

Definition 2.3.1. 1) A left bialgebroidU is called a left Hopf algebroid orˆA Hopf algebra
if α` is a bijection. Likewise, it is called a left opHopf algebroid if αr is a bijection. In
either case, we adopt for all u P U the following (Sweedler-like) notation

u` bAop u´ :“ α´1
` pubA 1q, ur`s b

A ur´s :“ α´1
r p1bA uq, (2.12)

and call both maps u ÞÑ u` bAop u´ and u ÞÑ ur`s b
A ur´s translation maps.

2) Let W be a right B-bialgebroid. Then W is called a right Hopf algebroid (=RHB),
respectively a right opHopf algebroid (=RopHB) if the map βr, resp. β`, is a bijection. If
w PW , one sets β´1

r p1b wq “ w´ b w` and the translation map is w ÞÑ w´ bBop w`.

Remarks 2.3.2. Let pU,A, s`, t`,∆, εq be a left bialgebroid.
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(i ) In case A “ k is central in U , one can show that α` is invertible if and only if U is a
Hopf algebra, and the translation map reads u`bu´ :“ up1qbSpup2qq, where S is
the antipode of U . On the other hand, U is a Hopf algebra with invertible antipode if
and only if both α` and αr are invertible, and then ur`sbur´s :“ up2qbS

´1pup1qq.
(ii ) The underlying left bialgebroid in a Hopf algebroid with bijective antipode is both

a left Hopf and opHopf algebroid (but not necessarily vice versa [?]); see [?] [Prop.
4.2] for the details of this construction.

(iii ) Definition ?? extends to the bimonad framework ([?], [?]) to give left Hopf bimon-
ads.

Remark 2.3.3. The right bialgebroid pW,A, sr, tr,∆, εq is a right (op)Hopf algebroid if
and only if the left bialgebroid W op

coop is a (op)Hopf algebroid. This remark will allow us
not to treat the case of right bialgebroids in detail.

The following proposition collects some properties we will need of the translation maps
[?]:

Proposition 2.3.4. Let U be a left bialgebroid.
(i ) If U is a left Hopf algebroid, the following relations hold:

u` bAop u´ P U ˆAop U, (2.13)
u`p1q bA u`p2q bAop u´ “ up1q bA up2q` bAop up2q´, (2.14)
u` bAop u´p1q bA u´p2q “ u`` bAop u´ bA u`´, (2.15)

puvq` bAop puvq´ “ u`v` bAop v´u´, (2.16)

u`u´ “ s`pεpuqq, (2.17)

ps`paqt`pbqq` bAop ps`paqt`pbqq´ “ s`paq bAop s`pbq, (2.18)

where in (??) we mean the Takeuchi-Sweedler product

UˆAopU :“
 
ř

iui b vi P §U bAop UŽ |
ř

iui Ž ab vi “
ř

iui b a § vi, @a P A
(

.

(ii ) Analogously, if U is a right Hopf algebroid, one has:

ur`s b
A ur´s P U ˆ

A U, (2.19)

where in (??) we mean the Sweedler-Takeuchi product

U ˆA U :“
 
ř

iui b vi P Uđ b
A

ŻU |
ř

ia Ż ui b vi “
ř

iui b vi đ a, @a P A
(

.

ur`s b
A ur´s satisfies properties similar to those satisfied by u` bAop u´.

The following theorem, originally due to [?] was improved in [?]. It asserts that, ifU is a
left Hopf and opHopf algebroid such that UŽ (respectively ŻU ) is a projective Aop-module
(respectively A-module), there is an equivalence of categories between U -Comod and
Comod-U .

Theorem 2.3.5. Let pU,Aq be a left bialgebroid.
(i ) Let pU,Aq be additionally a left Hopf algebroid such that UŽ is projective. Then

there exists a (strict) monoidal functor F : Comod-U Ñ U -Comod; namely, if
M is a right U -comodule with coaction m ÞÑ mp0q bA mp1q, then

λM : M Ñ UŽ bA M, m ÞÑ mp1q´ bA mp0qεpmp1q`q, (2.20)

defines a left comodule structure on M over U .
(ii ) Let pU,Aq be a left (op)Hopf algebroid such that ŻU is projective. Then there exists

a (strict) monoidal functor G : U -Comod Ñ Comod-U ; namely, if N is a left
U -comodule with coaction n ÞÑ np´1q bA np0q, then

ρN : N Ñ N bA ŻU , n ÞÑ εpnp´1qr`sqnp0q bA np´1qr´s, (2.21)

defines a right comodule structure on N over U .
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(iii ) If U is both a left Hopf and opHopf algebroid and if both UŽ and ŻU are projective,
then the functors mentioned in (i) and (ii) are quasi-inverse to each other and we
have an equivalence

U -Comod » Comod-U

of monoidal categories.

Remark 2.3.6. The equivalence of categories of Theorem ?? preserves coinvariant ele-
ments.

Applying Theorem ?? to the situation of Theorem ??, the functor F can be transformed
into a functor between the module categories over the left and the right dual algebra of U
and this functor in turn induces an algebra morphism between these dual algebras. Thus,
the functor F comes from an algebra morphism S˚ : U˚ Ñ U˚ and the functor G comes
from an algebra morphism S˚ : U˚ Ñ U˚. The morphism S˚ an S˚ are studied in [?]:

Theorem 2.3.7. Let pU,Aq be a left bialgebroid.

(i ) If pU,Aq is moreover a left Hopf algebroid, the map S* : U* Ñ U* is defined by

@ψ P U˚, @u P U, S*pφqpuq :“ εU
`

u`t
`pφpu´qq

˘

is a morphism of Ae-rings with augmentation; if, in addition, both ŻU and UŽ

are finitely generated A-projective, then pS*, idAq is a morphism of right bialge-
broids.

(ii ) If pU,Aq is a left opHopf algebroid instead, the map S* : U* Ñ U*

@ψ P U˚, @u P U, S*pψqpuq :“ ε
`

ur`ss
`pψpur´sqq

˘

is a morphism of Ae-rings with augmentation; if, in addition, both ŻU and UŽ

are finitely generated A-projective, then pS*, idAq is a morphism of right bialge-
broids.

(iii ) If pU,Aq is simultaneously both a left Hopf and opHopf left algebroid, S˚ : U* Ñ

U* is an isomorphism and S˚ “ pS˚q´1.

The maps S˚ and S˚ have even more properties.

Proposition 2.3.8. U˚ is endowed with the following left U -action :

@pu, vq P U2, @ψ P U˚, ă uã ψ, v ą“ă ψ, vu ą .

U˚ is endowed with the following left U -action :

@pu, vq P U2, @φ P U˚, ă u ‚ φ, v ą“ u` ră φ, u´v ąs . (2.22)

The map S˚ sends pU˚, ‚q to pU˚,ãq.

The proof of the proposition ?? is straightforward.

The following recent result will play a key role in our study. It was proved by categorical
arguments in [?]. Kowalzig ([?]) gave an explicit formula for the translation map of the
dual.

Theorem 2.3.9. ([?], [?]) 1) If U is a left Hopf algebroid, then U˚ (respectively U˚) is a
right Hopf algebroid.

2) IfU is a left opHopf algebroid, thenU˚ (respectivelyU˚) is a right opHopf algebroid.
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2.4. Left and right integrals. Left and right integrals were defined for Hopf algebras in
[?] and were generalized to bialgebroids in [?]. They were also defined in the more abstract
context of bimonads on a monoidal category ([?]) and that of Hopf categories ([?]). Let us
recall their definition in our framework:

Definition 2.4.1. Let pU,A, s`, t`,m,∆, εq be a left bialgebroid. A left integral of U is an
element u0 of U such that

@u P U, uu0 “ s`pă ε, u ąqu0.

The set of left integrals of U will be denoted
ş`

U
.

Let pW,A, sr, tr,m,∆, εq be a right bialgebroid. A right integral of W is an element
w0 of W such that

@w P U, w0w “ w0s
rpă ε, ψ ąq.

The set of left integrals of W will be denoted
şr

W
.

Remark 2.4.2. The left integrals of U are the same as the left integrals of Ucoop. The right
integrals of W are the same as the right integrals of Wcoop.

Indeed, let u0 P
ş`

U
. Forall u P U , one has uu0 “ s`εpuqu0. In particular, t`εpuqu0 “

s`εpuqu0. The remark follows.

Proposition 2.4.3. Let U be a left opHopf algebroid. An element l is in
ş`

U
if and only if it

satisfies the following property :

@u P U, ulr`s b lr´s “ lr`s b lr´su.

Remark 2.4.4. In the case of Hopf algebroids, this proposition follows from the scholium
2.8 of [?]. The proof uses the properties of ur`s b ur´s and is left to the reader.

3. HOPF-MODULES

Left-left Hopf modules are the objects of study of the fundamental theorem for Hopf
modules ([?]). The latter states that, if H is a k-Hopf algebra, there is an equivalence of
categories between left-left Hopf modules and k-vecteor spaces. Left-left Hopf modules
can be defined in the case of Hopf algebroids (in the sense of Böhm) ([?]), in the framework
of bimonads over a monoidal category ([?]) and in the context of Hopf categories ([?]). In
all these cases, the Larson-Sweedler theorem for Hopf modules was proved. We will use
only a part of this theorem that follows from a flat descent argument.

Definition 3.1. 1) Let pU,A, s`, t`,∆, εq be a left bialgebroid over the k-algebra A.
We will say that M is endowed with a left-left Hopf U -module structure if

– (i) M is endowed with a left U -module structure.
– (ii) M is endowed with a left U -comodule structure denoted ∆M .
– (iii) These two structures are linked by the following relation: For all m P M

and all u P U ,

up1qmp´1q b up2qmp0q “ ∆M pu ¨mq.

(iv) a ¨m “ s`paqm. In the left hand side, a ¨m is the left A-module structure
coming from the left U -comodule structure.

2) Let pW,B, sr, tr,∆, Bq be a right bialgebroid over the k-algebra A. We will say that
M is endowed with a right-right Hopf W -module structure if

– (i) M is endowed with a right W -module structure.
– (ii) M is endowed with a right W -comodule structure denoted ∆M .
– (iii) These two structures are linked by the following relation : for all m P M ,
w PW and b P B

mp0qwp1q bmp1qwp2q “ ∆M pm ¨ wq.

(iv) m ¨ b “ msrpbq.
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Example 3.2. If P is a right A-module, then §U bAop P is a left left Hopf U -module as
follows: For all pu, vq P U2 and all x P P ,

u ¨ pv b xq “ uv b x and ∆UbN pv b xq “ vp1q b vp2q b x.

It will follow from the fundamental theorem for Hopf modules that, if U is a left Hopf
algebroid and under flatness conditions, all left-left Hopf U -modules are of this type (up to
isomorphisms).

Example 3.3. If N is a left U -module, then UŽ bA N is a left -left Hopf U -module as
follows: For all pu, vq P U2 and all n P N ,

u ¨ pv b nq “ up1qv b up2qn and ∆UbN pv b nq “ vp1q b vp2q b n.

Examples ?? and ?? are linked as explained in the following proposition which proof is
left to the reader.

Proposition 3.4. 1) Let N be a left U -module. The map

δN :§ U bAop NŽ Ñ UŽbAŻN
ub n ÞÑ up1q b up2qn

is a morphism of left-left Hopf U -modules from Examples ?? to ??.
2) If U is a left Hopf algebroid it is an isomorphism.

In the study of integrals for Hopf algebras, a technic is to apply the fundamental theorem
to the Hopf module U˚. In the case of a Hopf algebras, U˚ and ˚U coincide. In [?]
(Proposition 4.4.) ˚U is endowed with a left -left Hopf U -module in the case where U is a
Hopf algebroid. This structure is then transferred to U˚ using the antipode. We will endow
U˚ with a left left Hopf U -module structure and we will transfer this structure to U˚ using
the map S˚.

Proposition 3.5. Let pU, s`, t`,∆, εq be a left-Hopf left bialgebroid over A such that UŽ

is a finitely generated and projective right A-module. We set U˚ “ HomAoppU,Aq. Let
pe1, . . . , enq P U

n
Ÿ and pe˚1 , . . . , e

˚
nq P U

˚n be a dual basis (([?] p. 203) of the projective
Aopmodule UŽ.

– (i) We endow U˚ with the U -action of equation ??.
– (ii) We endow U˚ with the left U -comodule structure determined par right mul-

tiplication on U˚(see Theorem ??)

∆pφq “
ÿ

eiŽ b§ φe
˚
i . (3.1)

– (iii) With the two structures above, U˚ is a left-left Hopf U -module.

Proof:
Assertion (i) is proved in [?].
Assertion (ii) is well known (see [?] for details).
Let us now check assertion (iii). As UŽ is a projective finitely generated Aop-module,

we may identify UŽbA§U
˚ with HomAoppUŽ, UŽq as follows:

UŽbA§U
˚ Ñ HomAoppUŽ, UŽq

ub φ ÞÑ
“

v ÞÑ t` pă φ, v ąqu
‰

On one hand,

∆M pu ‚ φqpvq “ t`pă pu ‚ φqe˚i , v ąqei
“
??

t`
“

ă s`pă vp1q, u ‚ φ ąqvp2q, e
˚
i ą

‰

ei

“ s`pă vp1q, u ‚ φ ąqvp2q.

On the other hand, let us compute ă up1q ‚ φp´1q b up2q ‚ φp0q, v ą.
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Before starting our computation, let us remark the following relation:

t`
“

u`p2qpaq
‰

u`p1q “
??
t`
“

ε
`

u`p2qs
`paq

˘‰

u`p1q “
??
t`
“

ε
`

u`p2q
˘‰

u`p1qt
`paq “ u`t

`paq

(3.2)
ă up1q ‚ φp´1q b up2q ‚ φp0q, v ą “ t`pă up2q ‚ φp0q, v ąqup1q ‚ φp´1q

“ t`
“

ă up2q ‚ φe
˚
i , v ą

‰

up1qei
“
??

t`
“

ă up2q`
`

ă φe˚i , up2q´v ą
˘‰

up1qei

“
??

t`
“

ă u`p2q pă φe˚i , u´v ąq
‰

u`p1qei

“
??

u`t
` ră φe˚i , u´v ąs ei

“
??

u`t
`
“

ă s`pă φ, u´p1qvp1q ąqu´p2qvp2q, e
˚
i ą

‰

ei

“ u`s
`pă φ, u´p1qvp1q ąqu´p2qvp2q

“
??

u``s
`pă φ, u´vp1q ąqu`´vp2q

“
??

“

u`s
`pă φ, u´vp1q ąq

‰

`

“

u`s
`pă φ, u´vp1q ąq

‰

´
vp2q

“
??

s`ε
“

u`s
`pă φ, u´vp1q ąq

‰

vp2q

“
??

s`
“

u`
`

ă φ, u´vp1q ą
˘‰

vp2q

“ s`
“

ă u ‚ φ, vp1q ą
‰

vp2q.l

Remark 3.6. Let U be a left Hopf algebroid. We know from [?], [?] that pU˚qopcoop is a left
Hopf algebroid. By Proposition ?? and Remark ??, Uopcoop “

“

pU˚qopcoop
‰˚

is a left left Hopf
pU˚qopcoop-module. Thus U is a right right Hopf U˚-module. We will adopt the following
convention: An element u P U (respectively φ P U˚) will be denoted ǔ if considered as
element of Uopcoop (respectively φ̌ P pU˚qopcoop) . The structure on U is defined as follows:
For all u, v P U and all φ P U˚

ǔv̌ “ v̌u

∆puq “ up0q b up1q P UŽbA§U
˚ if ∆̌pǔq “ ǔp1q b ǔp0q P pU˚qopcoopŽbAop§U

op
coop

Corollary 3.7. Let U be a left Hopf and opHopf algebroid overA such that UŽ is a finitely
generated and projective right A-module. Then U˚ endowed with

– the left U -module structure

@u P U, @ψ P U˚, @v P U, ă uã ψ, v ą“ă ψ, vu ą

– the left U -comodule structure defined by the right U˚-module structure

@ψ P U˚, @φ P U˚, ψ ¨ φ “ ψS˚pφq.

is a left left Hopf U -module.

Proof:
The isomorphism S˚ : U˚ Ñ U˚ ([?]) transfers the structure of Theorem ?? onto the

structure of Corollary ??. l

We will make use of a flat descent theorem for corings from Brzezinski ([?]) .

Theorem 3.8. Let U be a left Hopf algebroid.
1) Let M be a left-left Hopf U -module.
The set of covariant elements M cov “ tm PM, ∆M pmq “ 1bmu is endowed with

a right A-module denoted Ž as follows: For all m PM cov and all a P A,

m ¨Ž a “ t`paqm.

2) The map γM
γM :§ U bM

cov
Ž Ñ M

ubm ÞÑ um

is an epimorphism of left-left Hopf U -modules. If the left A-module §U is flat, the map
γM is an isomorphism of left-left Hopf U -modules.
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Proof : 1) is obvious.
2) It follows from [?] that left-left Hopf U -modules are left comodules over the coring

W “ pUŽbAŻU,∆b id, εb idq where the U ´ U -bimodule structure is given by

@pu, x, y, vq P U4, u ¨ pxb yq ¨ v “ up1qxb xp2qyv.

The coring W is studied in [?]. It was shown to possess a grouplike element and to be
Galois if and only if U is a left Hopf algebroid. Thus, one can apply theorem 5.6 of [?]. l

Remark 3.9. Theorem ?? holds for right right Hopf-modules with appropriate hypothesis.

Corollary 3.10. Let U be a left Hopf algebroid.
Let M be a left-left Hopf U -module different from t0u, then M cov ‰ t0u.

Applying the corollary to the left-left Hopf U -module U˚, we get the following propo-
sition.

Corollary 3.11. Let U be a left Hopf algebroid such that the Aop- module UŽ is finitely
generated projective. The right bialgebroid U˚ admits a right integral.

Proof:
1) Let φ P U˚. The left A-module structure on the U -comodule U˚ is a ¨ φ “ φt˚r paq.

If we set ∆φ “ φp´1q b φp0q P UŽbA§U
˚, then for all ψ P U˚, one has (equation ??)

φψ “ φp0qt˚r pă ψ, φp´1q ąq.

Consequently, pU˚qcov “ tφ P U˚,@ψ P U˚, φψ “ εpφq ¨ψ “ φt˚r pă 1, ψ ąqqu ‰ H.
If φ P pU˚qcov , then φs˚r pă ψ, 1 ąq “

??
φt˚r pă ψ, 1 ąq “ φψ. Thus φ P

şr

U˚
and the first

assertion is proved.

Remark 3.12. This proposition was proved for Hopf categories in [?] (Proposition 9.5)
and [?] (Proposition 4.10).

4. FROBENIUS EXTENSION

A monomorphism of k-algebras s : AÑ U defines an Ae-module structure on U :

@pa, bq P A2, @u P U, a ¨ u ¨ b “ spaquspbq.

As usual, a ¨u ¨ b will be denoted aŻuđ b. Recall that an Ae-module structure on U defines
an Ae-module structure on U˚ as follows :

@ψ P U˚, @a P A, @v P U, a § ψ “ spaq ã ψ, ă ψ đ a, v ą“ă ψ, v ą a.

Definition 4.1. ([?]) A monomorphism of k-algebras s : A Ñ U is called a Frobenius
extension if

(i ) ŻU is finitely generated and projective
(ii ) Endow U˚ with the left U -module structure given by the transpose of the right

multiplication

@ψ P U˚, @pu, vq P U2, pv ã ψqpuq “ ψpuvq.

The U bAop-modules UUđ and U˚đ are isomorphic

Remarks 4.2. (i ) The second property holds if and only if there exist a Frobenius
system pθ,

ř

xi b yiq where θ : U Ñ A is a Ae-module map and xi b yi P
UđbAŻU such that

@u P U,
ÿ

i

s ˝ θpuxiqyi “ u “
ÿ

i

xis ˝ θpyiuq.

If χ : U Ñ U˚ is an isomorphism of U bAop-module, one has θ “ χp1q.
(ii ) Let t0 P U be the element such that χpt0q “ ε. Then t0 P

ş`

U
.



12 SOPHIE CHEMLA

(iii ) IfA “ k is a field, the k-algebra U is Frobenius if and only if the monomorphism
k Ñ U is a Frobenius extension.

(iv ) Morita ([?]) showed that the monomorphism s : AÑ U is a Frobenius extension
if and only if the restriction functor is a Frobenius functor.

Proposition 4.3. Let pU,A, s`, t`,∆`, εq be a left Hopf algebroid such that theAop-module
U˚Ž is flat. The extension t` : Aop Ñ U is Frobenius if and only if

(i ) UŽ is a finitely projective Aop-module
(ii ) §

´

ş`

U

¯

is a free A-module of rank 1.

Proof:
We start the proof by preliminary remarks :
We have seen in Proposition ?? that there exists a correspondence between left U -

module structures and right U˚-comodule structures. The left U -module structure á on
U˚ (u á φ “ă φ,´u ą ) corresponds to the right U˚-comodule structure on U˚ given
by the coproduct. Left multiplication endows U with a left U -module. It defines a right
U˚-comodule structure which coinvariant elements are

ş`

Ucoop
“
ş`

U
(Proposition ?? ).

Assume that t` : Aop Ñ U is Frobenius. Then U pUcoopqscoop is isomorphic to
U pUcoopq˚scoop˚

. In other words, UUt` is isomorphic to UU
˚
t`˚ . Then, using our

preliminary remarks, considered as a right U˚-comodule, U is isomorphic to the right
U˚-comodule U˚. Thus the Aop-module U cov “

ş`

U
is isomorphic to pU˚qcov “ t`˚pAq

(see Examples ??) and condition (ii) is satisfied.

Assume that §

´

ş`

U

¯

is a free A-module of rank 1. The fundamental theorem applied
to the right-right Hopf U˚-module U (see Remark ??) gives an isomorphism of right U˚-
modules and of right U˚-comodules

§

ż `

U

bAopU˚Ž “ U.

It follows that U is isomorphic to U˚ as right U˚module and as right U˚-comodules (that
is left U -modules). Using our preliminary remark, UU is isomorphic to UU

˚. Moreover
(see Proposition ?? for the notation) u ‚ t`˚paq “ ut`paq. Indeed, u considered as an
element of Uopcoop will be denoted ǔ and φ P U˚, considered as an element of pU˚qopcoop,
will be denoted φ̌. By definition of the left action of pU˚qopcoop on Uopcoop “

“

pU˚qopcoop
‰˚

,
we have: For all u in U and a in A,

ˇt`˚paq ‚ ǔ “ă ǔ, ˇs`˚paq´ ą .

Thus
ă u ‚ t`˚paq, φ ą“ă u, φs`˚paq ą“ă ut`paq, φ ą

so that u ‚ t`˚paq “ ut`paq.
Now, the assertion follows from U˚ “ pUcoopq˚coop. We have proved that the extension

t` : Aop Ñ U is Frobenius. l.

Remark 4.4. (i ) In [?] (Theorem 1), it is shown that a A-Hopf algebra (with A
commutative) satisfying the two conditions of the theorem is Frobenius.

(ii ) In [?], M.C. Iovanov and L. Kadison investigate when a weak Hopf algebra (in-
troduced in [?]) is Frobenius (see Remark ??).

In [?], a collection of conditions equivalent to the Frobenius condition is given in the
setting of Hopf algebroids. In the following theorem, we generalize them to the setting of
left Hopf and opHopf algebroid.
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Theorem 4.5. Let pU,A, s`, t`,∆, εq be a left Hopf and opHopf algebroid such that UŽ

and ŻU are finitely generated projective. The following assertions are equivalent:

– 1.
´

şr

U˚

¯

Ž
is a free Aop-module of rank 1.

– 2. The extension s` : AÑŻ U is Frobenius.
– 3.

´

ş`

U

¯

đ
is a free Aop-module of rank 1.

– 4. The extension sr˚ : Aop ÑŻ pU˚q
op
coop is Frobenius.

– 5. There exists a right integral ψ0 P
şr

U˚
such that the map

Uđ Ñ pU˚qđ
u ÞÑ uã ψ0

is an isomorphism of U bAop-module.
– 6. There exists a t0 P

ş`

U
such that the map

ŻpU˚q Ñ ŻU
ψ ÞÑ t0 â ψ “ t`pă ψ, t0p2q ąqt0p1q

is an isomorphism of right U˚-modules.
– 7. The extension s˚r : AÑ pU˚qopcoop is Frobenius.
– 8. The extension t` : Aop Ñ U is Frobenius.
– 9. The extension tr˚ : AÑ pU˚q

op
coop is Frobenius.

– 10. The extension t˚r : AÑ pU˚qopcoop is Frobenius.
– 11. There exists a right integral φ0 P

şr

U˚
such that the map

§U Ñ § pU
˚q

u ÞÑ uá φ0

is an isomorphism of U bA-module.
– 12. There exists a t0 P

ş`

U
such that the map

§pU
˚q Ñ §U
φ ÞÑ t0 à φ “ s`

`

ă φ, t0p1q ą
˘

t0p2q

is an isomorphism of right U˚-modules.

Proof:
Let us first make the following remark:
If the A-module ŻU is finitely generated projective, then the Aop-module pU˚qŽ is

finitely generated projective (by the definition of multiplication in U˚). Consequently as,
under our hypothesis, the right bialgebroids U˚ and U˚ are isomorphic, the Aop-module
pU˚qŽ is isomorphic.

Similarly, if the Aop-module UŽ is finitely generated projective, then the A-module
ŻpU˚q is finitely generated projective and ŻpU

˚q is finitely generated projective.

1. ñ 2. By application of the Theorem ?? to the left-left Hopf U -module U˚ (see
Corollary ??), we get an isomorphism from UUđ to UU˚đ, which proves that s` : A Ñ U
is Frobenius.

2. ñ 3. follows from Proposition ??. Recall that if t0 P
ş`

U
, then t0t`paq “ t0s

`paq.
3. ñ 4. is true: Indeed, it is 1. ñ 2. applied to the left bialgebroid pU˚qopcoop.
4. ñ 1. is 2. ñ 3. applied to the left bialgebroid pU˚qopcoop.
5. ñ 2. by definition of a Frobenius extension and 1. ñ 5. by Theorem ?? applied to

the left left Hopf module U˚.
5. is equivalent to 6. because one goes from one to other replacing U by pU˚qopcoop.
Thus, conditions 1., 2., 3., 4., 5. and 6. are equivalent.
7. is equivalent to 4.: AsU is a left Hopf and opHopf algebroid, the map S˚ : U˚ Ñ U˚

is an isomorphism of right bialgebroids.
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8. is equivalent to 1. If t0 is a left integral for U , then it is a left integral for Ucoop.
Moreover, for any a P A, one has t0s`paq “ t0t

`paq so that the A-module §

ş`

U
is free of

dimension 1 if and only if the Aop-module
´

ş`

U

¯

đ
is so.

Condition 9. (respectively 10., 11., 12. ) is obtained from condition 7. ( respectively 4.,
5., 6.) replacing U by Ucoop. l

5. QUASI-FROBENIUS EXTENSION

Definition 5.1. ([?]) Recall that anAe-module structure on U defines anAe-module struc-
ture on U˚ as follows :

@ψ P U˚, @a P A, @v P U, a § ψ “ spaq ã ψ, ă ψ đ a, v ą“ă ψ, v ą a.

Endow U˚ with the left U -module structure given by the transpose of the right multiplica-
tion

@ψ P U˚, @pu, vq P U2, pv ã ψqpuq “ ψpuvq.

A monomorphism of k-algebras s : AÑ U is called left quasi-Frobenius if
(i ) ŻU is finitely generated and projective

(ii ) The U bAop-module UUđ is a direct summand in a finite direct sum of copies of
U˚đ.

Remarks 5.2. (i ) Quasi-Frobenius functors were introduced in [?]. The monomor-
phism s : A Ñ U is a quasi-Frobenius extension if and only is the restriction
functor is a quasi Frobenius functor.

(ii ) A finitely generated projective Hopf algebra over a commutative ring is quasi-
Frobenius ([?]).

(iii ) In [?], it is shown that weak Hopf algebras are quasi-Frobenius.

A counterexample of a Hopf algebroid U (such that ŻU is finitely generated projective)
which is not quasi-Frobenius is exhibited in [?] (Lemma 5.3). In the same article, condi-
tions are given for a Hopf algebroid to be quasi-Frobenius. In the following proposition,
we extend the results obtained in [?] and characterize the left Hopf algebroids that are a
quasi-Frobenius extension of their basis.

Proposition 5.3. Let pU,A, s`, t`q be a left Hopf algebroid such that the Aop-module U˚Ž

is flat. The extension t` : Aop Ñ U is quasi-Frobenius if and only if
(i ) UŽ is a finitely projective Aop-module

(ii ) §

´

ş`

U

¯

is a projective A-module.

Proof: The proof is similar to that of Proposition ??.

Assume that t` : Aop Ñ U is quasi-Frobenius. Then U pUcoopqscoop is a direct summand
of a finite direct sum of copies of U pUcoopq˚scoop˚

. In other words, UUt` is a direct
summand of a finite direct sum of copies UU˚t`˚ . Then, using the preliminary remark in
the proof of Proposition ??, considered as a right U˚-comodule, U is a direct summand of
a finite direct sum of copies of the right U˚-comodule U˚. Thus U cov “

ş`

U
is a direct

summand of a finite direct sum of copies of pU˚qcov “ t`˚pAq (see Examples ??) and
condition (ii) is satisfied.

Assume that §

´

ş`

U

¯

is a finitely generated projective A-module. Theorem ?? applied
to the right-right Hopf U˚-module U (see Remark ??) gives an isomorphism of right U˚-
modules and of right U˚-comodules

§

ż `

U

bAopU˚Ž “ U.
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It follows that U is a direct summand of a finite direct sum of copies of U˚ as right
U˚module and as right U˚-comodules (that is left U -modules). Using the preliminary
remark in the proof of Theorem ??, UU is a direct summand of a finite direct sum of
copies of UU˚. Moreover u ¨ t`˚paq “ ut`paq.

Now, the assertion follows from U˚ “ pUcoopq˚coop. We have proved that the extension
t` : Aop Ñ U is left quasi-Frobenius. l.

6. APPLICATION TO RESTRICTED LIE-RINEHART ALGEBRAS.

In this section, we apply our theory to the restricted enveloping algebra of a restricted
Lie-Rinehart algebra. We will assume that k is a field of characteristic p.

Definition 6.1. ([?]) Let A be a commutative k-algebra with unity. A restricted Lie-
Rinehart algebra pA,L, p´qrps, ωq over A is a Lie-Rinehart over A ([?]) such that

(i ) pL, p´qrpsq is a restricted Lie algebra over k;
(ii ) the anchor map ω : LÑ DerpAq is a restricted Lie algebra morphism;

(iii ) For all a P A and all X P L, the following relation holds

paXqrps “ apXrps ` ωppaXqp´1qpaqX.

Examples 6.2. (i ) If A is a commutative k algebra, then pA,DerpAq, p´qp, idq is a
restricted Lie-Rinehart algebra ([?] lemma 1).

(ii ) In [?], it is shown that weakly restricted Poisson algebras give rise to restricted
Lie-Rinehart algebras.

(iii ) The restricted crossed product: Assume that g is a restricted Lie algebra and that
there exists a morphism of restricted Lie-algebras σ : gÑ DerpAq. Then, there
exists a unique structure of restricted Lie-Rinehart algebra on A b g (extending
that of g) with anchor ω : Ab gÑ DerpAq, ωpabXq “ aσpXq and such that:
For all X,Y P g and all a, b P A

rabX, bb Y s “ aσpXqpbq b Y ´ bσpY qpaq bX ` abb rX,Y s

The enveloping algebra UApLq of a Lie-Rinehart pA,L, ωq is defined in [?] by a univer-
sal property. It is explicitely constructed as follows :

UApLq “
T`k pA‘ Lq

I

where I is the two sided ideal generated by the following relations : For all a, b P A and
all D,D1 P L,

piq ab b´ ab
piiq abD ´ aD
piiiq D bD1 ´D1 bD ´ rD,D1s
pivq D b a´ abD ´ ωpDqpaq

If L is a projective A-module, a Poincaré-Birkhoff-Witt theorem is established in [?].
The restricted universal enveloping algebra of a restricted Lie-Rinehart algebra is de-

fined as follows ( [?]):

Definition 6.3. LetA be a commutative k-algebra and let pA,L, p´qr´s, ωq be a restricted
Lie-Rinehart algebra. The restricted universal enveloping algebra is a universal triple
pU 1ApLq, ιA, ιLq with an associative algebra map ιA : A Ñ U 1ApLq and a restricted Lie
algebra map ιL : LÑ U 1ApLq such that for all D P L and a P A

ιApaqιLpDq “ ιLpaDq
ιLpDqιApaq ´ ιApaqιLpDq “ ιR pωpDqpaqqq

One has U 1ApLq “
UApLq

ă Dp ´Drps, D P L ą
.
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Remark 6.4. Let p be a prime ideal of A. Then pLp, Apq is endowed with a unique
structure of restricted Lie-Rinehart algebra over Ap extending that of pL,A, p´qr´sq([?]).
Moreover, U 1ApLqp “ U 1Ap

pLpq.

An appropriate version of the Poincaré-Birkhoff-Witt theorem holds for U 1ApLq.

Theorem 6.5. ([?], see also [?]) Let pA,L, ωq be a restricted Lie-Rinehart algebra in char-
acteristic p. If L is a free A-module with ordered basis peiqiPI , then U 1ApLq is a free
A-module with basis

tιLpei1q
α1 . . . tιLpeilq

αl | l ě 0, i1 ă ¨ ¨ ¨ ă il, 1 ď αi ă pu

From now on, when there is no ambiguity, we will write D P L for its image ιLpDq in
U 1ApLq.

Let pL,Aq be a Lie-Rinehart algebra. It is well known that its enveloping algebra is
endowed with a standard left bialgebroid structure for which it is left Hopf and opHopf
([?]). If pL,Aq is a restricted Lie-Rinehart algebra, its restricted enveloping algebra U 1ApLq
is also endowed with a standard left bialgebroid structure as follows:

(i ) s` “ t` “ ιA
(ii ) The coproduct ∆ is defined by

@a P A, ∆paq “ ab 1, @D P L, ∆pDq “ D b 1` 1bD

(iii ) εpDq “ 0 and εpaq “ a.
Moreover, for this structure, U 1ApLq is left Hopf and

@D P L, D` bD´ “ D b 1´ 1bD
@a P A, a` b a´ “ ab 1

As U 1ApLq is cocommutative, it is also opHopf.
Set J 1ApLq “ pU 1ApLqq˚ the restricted jet bialgebroid of pL,Aq. A priori, J 1ApLq is a

right bialgebroid. But as it is a commutative algebra, it can be seen as a left bialgebroid.
Thus, both U 1ApLq and J 1ApLq are left Hopf and opHopf algebroids.

Proposition 6.6. Assume that L is a free finitely generated A-module with basis e “
pe1, . . . , enq. Introduce λi P J 1ApLq defined by

@α1, . . . , αr P r0, p´ 1s, ă λi, e
α1
1 . . . eαn

n ą“ δα1,0 . . . δαi,1 . . . δαn,0.

One has λip “ 0.
J 1ApLq “ krλ1, . . . , λns.

1) ωe “ λ1
p´1 . . . λn

p´1 belongs to
ş`

J 1ApLq
.

2) Ż

ş`

J 1ApLq
and §

ş`

J 1ApLq
are free A-module of dimension 1 with basis ωe.

Proof: 1) Let µ “
ř

sr˚paα1,...αr
qλα1

1 . . . λαn
n .

µωe “ sr˚pa0,...,0qωe “ sr˚pă µ, 1 ąqωe.

2) Let ω “
ř

sr˚pωα1,...αr
qλα1

1 . . . λαn
n be an element of

ş`

J 1ApLq
. For all i P r1, ns, one

has λiω “ 0. It is then easy to see that ω “ sr˚pωp´1,...,p´1qλ
p´1
1 . . . λp´1

n . It is easy to
check that ωe is free. Thus it forms a basis of

ş`

J 1ApLq
.

The second assertion follows from the equality sr˚paqωe “ tr˚paqωe, which is due to the
fact that ωe is a left integral. l

Remark 6.7. With the same assumptions on L, the same proof shows that
ş`

S1ApLq
“ Aep´1

1 . . . ep´1
n .

Corollary 6.8. Assume that L is a free finitely generated A-module. The left bialgebroids
U 1ApLq and J 1ApLq satisfy all the equivalent conditions of the Theorem ??
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Remark 6.9. It is shown in [?] that the restricted enveloping algebra of a finite dimen-
sional restricted Lie algebra (over a field) is Frobenius.

Proposition 6.10. Assume that L is a finitely generated projective A-module with a rank.
Then

ş`

U 1ApLq
and

ş`

J 1ApLq
are projective A-module of rank one. Thus, s` : A Ñ U 1ApLq,

sr˚ : AÑ J 1ApLq and tr˚ : AÑ J 1ApLq are left quasi-Frobenius extensions.

Proof: Let L1 be a finitely generated module such that L‘L1 “ F is finitely generated
free. We endow F with the following restricted Lie-Rinehart structure:

(i ) The Lie bracket onF extends that onL. Moreover, for allX P L and all pY, Y 1q P
L2
1, rX,Y s “ rY, Y 1s “ 0.

(ii ) The anchor ωF : F Ñ DerkpAq extends that of L. Moreover, for all Y in L1,
one has ωF pY q “ 0.

(iii ) The p-operation extends that of L. Moreover, for all Y P L1, one has Y rps “ 0.
In other term, F is the direct sum of L with the abelian restricted Lie-Rinehart algebra
L1 and U 1ApF q “ U 1ApLq b S1ApL1q. From Theorem ??,

ş`

U 1ApF q
is a free A-module of

dimension 1. From Remark ??, we knows that
ş`

S1ApL1q
is S1A

rpp´1q
pL1q where r is the

rank of L1. We now show that
ż `

U 1ApLq

bA

ż `

S1ApL1q

“

ż `

U 1ApF q

.

The inclusion
ş`

U 1ApLq
bA

ş`

S1ApL1q
Ă

ş`

U 1ApF q
is easy to check. The equality follows from a

localization argument (Remark ??) and Theorem ??).
Thus,

ş`

U 1ApLq
“ HomA

´

ş`

S1ApL1q
,
ş`

U 1ApF q

¯

, which is a projective A-module.
Let p be a prime ideal of A and pLp, Apq the restricted Lie-Rinehart algebra over Ap

extending pL,A, p´qr´sq (Remark ??). As Lp is a free finite Ap-module, by application

of Theorem ??, the Ap-module,
ş`

U 1Ap
pLpq

is free of dimension one. Thus
´

ş`

U 1ApLq

¯

p
is a

projective Ap-module of rank one by Lemma ??.
One shows similarly that sr˚ : A Ñ J 1ApLq and tr˚ : A Ñ J 1ApLq are a left quasi-

Frobenius extensions.l

Let p be a prime ideal of A. Localization of the A-module (for left multiplication
by elements of A) UApLq and localization of the A-module (for right multiplication by
elements of A) UApLq are isomorphic to UAp

pLpq.

Lemma 6.11. Let L be a restricted Lie-Rinehart algebra which is a finitely generated A-
module and let p be a prime ideal of A. Then

´

ş`

U 1ApLq

¯

p
“
ş`

U 1Ap
pLpq

´

ş`

J 1ApLq

¯

p
“

ş`

J 1Ap
pLpq

Proof:
We only prove the first equality. The proof of the second one is similar. Any element of

U 1Ap
pLpq can be written

1

σ
ˆ
u

1
or
v

1
ˆ

1

τ
with u, v P U 1ApLq and σ, τ P A´ p.

First we prove the inclusion
´

ş`

U 1ApLq

¯

p
Ă
ş`

U 1Ap
pLpq

.

If u0 is in
ş`

U 1ApLq
and σ P A´ p, then

1

τ
ˆ vu0 ˆ

1

σ
“

1

τ
ˆ εpvqu0

1

σ
“ ε

ˆ

1

τ
v

˙

u0
1

σ
.
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Thus u0 ˆ
1

σ
P
ş`

U 1Ap
pLpq

.

Second we prove the inclusion
ş`

U 1Ap
pLpq

Ă

´

ş`

U 1ApLq

¯

p
. Let u0 P U 1ApLq and σ0 P A´p

such that u0 ˆ
1

σ0
P
ş`

U 1Ap
pLpq

. Then for any v P U 1ApLq,

v

1
u0 ˆ

1

σ0
“
εpvq

1
u0 ˆ

1

σ0
“
εpvqu0

1
ˆ

1

σ0

As U 1ApLq is finitely generated as an A-module, there exists τ P A´ p such that

@v P U 1ApLq, vu0τ “ εpvqu0τ

Thus u0τ is in
ş`

U 1ApLq
and u0 ˆ

1

σ0
is in

´

ş`

U 1ApLq

¯

p
.

Remark 6.12. If the anchor is 0, U 1ApLq is a projective finitely generated A-Hopf algebra
and Theorem ?? was already known ([?])
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[BSz2] G. Böhm and K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, J.

Algebra 274 (2004), no. 2, 708–750.
[BV] A. Bruguières and A. Virelizier, Hopf monads, Advances in Mathematics 215, (2007), 679-733.
[BLV] A. Bruguières, S. Lack and A. Virelizier, Hopf monads on monoidal categories, Advances in Mathematics

227, issue 2(2011), 745-800.
[Br] T. Brzezinski, The structure of corings, Algebra and Representation Theory 5 (2002), 389-410.
[BCM] T. Brzezinski-S. Caenepeel-G. Militaru, Doi-Koppinen modules for quantum groupoids, J. Pure Appli.

Algebra 175 (2002) 46-62.
[BFVV] M. Buckley, T. Fieremans, C. Vasikopoulou and J. Vercruysse, A Larson-Sweedler theorem for Hopf

V-categories, Adv. Maths. 376 (2021).
[BYZ] Y.-H Bao, Y. Ye, J.J Zhang, Restricted Poisson algebras, Pacific Journal of Maths., 289 (2017), 1-34.
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