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Abstract. We prove a twisted Poincaré duality for (full) Hopf algebroids

with bijective antipode. As an application, we recover the Hochschild twisted
Poincaré duality of Van Den Bergh ([27]). We also get a Poisson twisted

Poincaré duality, which was already stated for oriented Poisson manifolds in

[8].

1. Introduction

Left bialgebroids over a (possibly) non-commutative basis A generalize bialge-
bras. If U is a left bialgebroid, there is a natural U -module structure on A and the
category of left modules over a left bialgebroid U is monoidal. Nevertheless, A is
generally not a right U -module. Left Hopf left bialgebroids (or ×A -Hopf algebras
[24]) generalize Hopf algebras. In a left Hopf left bialgebroid U , the existence of
an antipode is not required but, for any element u ∈ U , there exists an element
u+ ⊗ u− corresponding to u(1) ⊗ S(u(2)). The more restrictive structure of full
Hopf algebroids ([2]) ensures the existence of an antipode. If L is a Lie-Rinehart
algebra (or Lie algebroid) over a commutative k-algebra A ([23]), there exists a
standard left bialgebroid structure on its enveloping algebra V (L). This structure
is left Hopf. Kowalzig showed ([17]) that V (L) is a full Hopf algebroid if and
only if there exists a right V (L)-module structure on A. If X is a C∞ Poisson
manifold and A = C∞(X), the A-module of global differential one forms Ω1(X) is
endowed with a natural Lie-Rinehart structure over A, which is of much interest
([5], [9], [11], [15], [22], [28] etc...). In particular, Huebschmann ([11]) exhibited
a right V (Ω1(X))-module structure on A (denoted AP ) that makes V (Ω1(X))
a full Hopf algebroid. He also interpreted the Lichnerowicz Poisson cohomology
Hi

Pois(X) as ExtiV (Ω1(X))(A,A) and the Poisson homology HPois
i (X) ([4], [16]) of

X as TorV (Ω1(X))(AP , A).
A Poincaré duality theorem was proved in [5] for Lie-Rinehart algebras and then

extended to left Hopf left bialgebroids in [18]. It asserts, under some conditions,
that if ExtiU (A,U) = 0 for i 6= d then, for all left U -modules M and all n ∈ N,
there is an isomorphism

ExtnU (A,M) ' TorUd−n(M ⊗A Λ, A),

where Λ := ExtdU (A,U) is endowed with the right U -module structure given by right
multiplication in U . If U = V (L) is the enveloping algebra of a finitely generated
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projective Lie-Rinehart algebra L, it is shown in [5] that ExtnV (L)(A, V (L)) = 0 if

n 6= dimL. Moreover, Extdim L
V (L) (A, V (L)) ' Λdim L

A (L∗).
We give a new formulation of Poincaré duality in the case where U as well as its

coopposite Ucoop is left Hopf and A is endowed with a right U -module structure
(denoted AR) such that the the Ae-module IAR J is invertible.

Theorem 3.5 Let U be a left and right Hopf left bialgebroid over A. Assume
the following:

(i ) ExtiU (A,U) = {0} if i 6= d and set Λ = ExtdU (A,U).
(ii ) The left U -module A admits a finitely generated projective resolution of

finite length.
(iii ) A is endowed with a right U -module structure (denoted AR) such that the

Ae-module IAR J is invertible.
(iv ) Let T be the left U -module HomA(AR J ,Λ J ) (see Proposition 2.7). The

A-module B T and the Aop-module TC are projective.

Then, for all left U -modules M and all i ∈ N, there is an isomorphism

ExtiU (A,M) ' TorUd−i (AR, TC⊗A BM) .

Assume now that H is a full Hopf algebroid. The antipode allows us to transform
any left (resp. right) H-module M (resp. N) into a right (resp. left ) H-module
denoted MS (resp. SN). Thus from the left H-module structure on A, we can
construct a right H-module structure AS . From the right H-module structure on
Λ, we can make a left H-module structure denoted SΛ. The duality states the
following:

ExtiH(A,M) ' TorHd−i (AS , SΛ⊗A M) .

In the special case of the (full) Hopf algebroid A⊗Aop, we recover the Hochschild
twisted Poincaré duality of [27]. In the special case where X is a Poisson manifold
and H = V (Ω1(X)), the duality above can be rewritten in terms of Poisson coho-
mology and homology. Let M be a left H-module. The coproduct on H allows
us to endow SΛ ⊗A M with a left H-module structure. Denote by Hi

Pois(M) the
Poisson cohomology with coefficients in M and let HPois

i (SΛ⊗A M) denote the
Poisson homology with coefficients in SΛ⊗A M . There is an isomorphism

Hi
Pois(M) ' HPois

d−i (SΛ⊗A M) .

This formula was stated in [8] for oriented Poisson manifolds (see also [20] for poly-
nomial algebras with quadratic Poisson structures, [30] for linear Poisson structures,
[21] for general polynomial Poisson algebras).

Notations

Fix an (associative, unital, commutative) ground ring k. Unadorned tensor
products will always be meant over k. All other algebras, modules etc. will have
an underlying structure of a k-module. Secondly, fix an associative and unital k-
algebra A, i.e., a ring with a ring homomorphism ηA : k → Z(A) to its centre.
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Denote by Aop the opposite algebra and by Ae := A⊗Aop the enveloping algebra
of A, and by A−Mod the category of left A-modules.

The notions of A–ring and A–coring are direct generalizations of the notions of
algebra and coalgebra over a commutative ring.

Definition 1.1. An A–coring is a triple (C,∆, ε) where C is an Ae–module (with
left action LA and right action RA), ∆ : C −→ C ⊗A C and ε : C −→ A are
Ae–module morphisms such that

(∆⊗ idC)◦∆ = (idC⊗∆)◦∆, LA ◦(ε⊗ idC)◦∆ = idC = RA ◦(idC⊗ε)◦∆.

As usual, we adopt Sweedler’s Σ–notation ∆(c) = c(1)⊗c(2) or ∆(c) = c(1)⊗c(2)

for c ∈ C .

The notion of A-ring is dual to that of A-coring. It is well known (see [1]) that
A–rings H correspond bijectively to k–algebra homomorphisms ι : A −→ H. An
A-ring H is endowed with the following Ae-module structure :

∀h ∈ H, a, b ∈ H, a · h · b = ι(a)hι(b).

2. Preliminaries

We recall the notions and results with respect to bialgebroids that are needed
to make this article self content; see, e.g., [17] and references below for an overview
on this subject.

2.1. Bialgebroids. For an Ae-ring U given by the k-algebra map η : Ae → U ,
consider the restrictions s := η(− ⊗ 1U ) and t := η(1U ⊗ −), called source and
target map, respectively. Thus an Ae-ring U carries two A-module structures from
the left and two from the right, namely

a Bu C b := s(a)t(b)u, a Iu J b := ut(a)s(b), ∀ a, b ∈ A, u ∈ U.

If we let UC⊗A BU be the corresponding tensor product of U (as an Ae-module)
with itself, we define the (left) Takeuchi-Sweedler product as

UC×ABU :=
{∑

iui⊗u
′
i ∈ UC⊗ABU |

∑
i(a Iui)⊗u′i =

∑
iui⊗(u′i J a), ∀a ∈ A

}
.

By construction, UC×A BU is an Ae-submodule of UC⊗A BU ; it is also an Ae-ring
via factorwise multiplication, with unit 1U⊗1U and η

UC ×A B U
(a⊗ã) := s(a)⊗t(ã).

Symmetrically, one can consider the tensor product UJ ⊗A IU and define the
(right) Takeuchi-Sweedler product as UJ ×A IU , which is an Ae-ring inside UJ ⊗A

IU .

Definition 2.1. ([26]) A left bialgebroid (U,A) is a k-module U with the struc-
ture of an Ae-ring (U, s`, t`) and an A-coring (U,∆`, ε) subject to the following
compatibility relations:

(i ) The Ae-module structure on the A-coring U is that of BUC .
(ii ) The coproduct ∆` is a unital k-algebra morphism taking values in U C×A

BU .
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(iii ) For all a, b ∈ A and u, u′ ∈ U , one has:

ε(1U ) = 1A, ε(a Bu C b) = aε(u)b, ε(uu′) = ε
(
u J ε(u′)

)
= ε
(
ε(u′) Iu

)
. (2.1)

A morphism between left bialgebroids (U,A) and (U ′, A′) is a pair (F, f) of maps
F : U → U ′, f : A→ A′ that commute with all structure maps in an obvious way.

As for any ring, we can define the categories U − Mod and Mod−U of left
and right modules over U . Note that U − Mod forms a monoidal category but
Mod−U usually does not. However, in both cases there is a forgetful functor
U −Mod→ Ae −Mod, respectively Mod−U → Ae −Mod given by the following
formulas: For m ∈M, n ∈ N and a, b ∈ A,

a Bm C b := s`(a)t`(b)m, a Im J b := ns`(b)t`(a).

For example, the base algebra A itself is a left U -module via the left action

u(a) := ε(u J a) = ε(a Iu), ∀u ∈ U, ∀a ∈ A, (2.2)

but in general, there is no right U -action on A.

Example 2.2. Let A be a commutative k-algebra and Derk(A) the A-module of
k-derivations of A. Let L be a Lie-Rinehart algebra ([23]) over A with anchor
ρ : L → Derk(A). Its enveloping algebra V (L) is endowed with a standard left
bialgebroid ([28]) described by the following: For all a ∈ A, D ∈ L and u ∈ V (L),

(i ) s` and t` are equal to the natural injection ι : A→ V (L);
(ii ) ∆` : V (L)→ V (L)⊗AV (L), ∆`(a) = a⊗A1, ∆`(D) = D⊗A1+1⊗AD ;

(iii ) ε(u) = ρ(u)(1).

In this example, the left action of V (L) on A coincides with the anchor extended
to V (L).

2.2. Left and right Hopf left bialgebroids. For any left bialgebroid U , define
the Hopf-Galois maps

α` : IU ⊗Aop UC → UC ⊗A BU, u⊗Aop v 7→ u(1) ⊗A u(2)v,
αr : UJ ⊗A

BU → UC ⊗A BU, u⊗A v 7→ u(1)v ⊗A u(2).

With the help of these maps, we make the following definition due to Schauen-
burg [24]:

Definition 2.3. A left bialgebroid U is called a left Hopf left bialgebroid or ×A

Hopf algebra if α` is a bijection. Likewise, it is called a right Hopf left bialgebroid
if αr is a bijection. In either case, we adopt for all u ∈ U the following (Sweedler-
like) notation

u+ ⊗Aop u− := α−1
` (u⊗A 1), u[+] ⊗A u[−] := α−1

r (1⊗A u), (2.3)

and call both maps u 7→ u+ ⊗Aop u− and u 7→ u[+] ⊗A u[−] translation maps.

Remarks 2.4. Let (U,A, s`, t`,∆, ε) be a left bialgebroid.
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(i ) In case A = k is central in U , one can show that α` is invertible if and
only if U is a Hopf algebra, and the translation map reads u+ ⊗ u− :=
u(1) ⊗ S(u(2)), where S is the antipode of U . On the other hand, U is a
Hopf algebra with invertible antipode if and only if both α` and αr are
invertible, and then u[+] ⊗ u[−] := u(2) ⊗ S−1(u(1)).

(ii ) The underlying left bialgebroid in a full Hopf algebroid with bijective
antipode is both a left and right Hopf left bialgebroid (but not necessarily
vice versa); see [2] [Prop. 4.2] for the details of this construction recalled
in paragraph 3.10

Example 2.5. If L is a Lie-Rinehart algebra over a commutative k-algebra A with
anchor ρ, then its enveloping algebra V (L), endowed with its standard bialgebroid
structure, is a left Hopf left bialgebroid. The translation map is described as follows
(see Proposition 2.6; in this case, A = Aop and s` = t`) : If a ∈ A and D ∈ L,

a+ ⊗Aop a− = a⊗Aop 1, D+ ⊗Aop D− = D ⊗Aop 1− 1⊗Aop D.

It is also a right Hopf left bialgebroid as it is cocommutative.

The following proposition collects some properties of the translation maps [24]:

Proposition 2.6. Let U be a left bialgebroid.

(i ) If U is a left Hopf left bialgebroid, the following relations hold:
u+ ⊗Aop u− ∈ U ×Aop U,

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ UC ⊗A BU,
u(1)+ ⊗Aop u(1)−u(2) = u⊗Aop 1 ∈ IU⊗AopUC ,

u+(1) ⊗A u+(2) ⊗Aop u− = u(1) ⊗A u(2)+ ⊗Aop u(2)−,
u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−,

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−,
u+u− = s`(ε(u)),

ε(u−) Iu+ = u,
(s`(a)t`(b))+ ⊗Aop (s`(a)t`(b))− = s`(a)⊗Aop s`(b),

where, in (i), we mean the Takeuchi-Sweedler product

U×AopU :=
{∑

iui ⊗ vi ∈ IU ⊗Aop UC |
∑

iui C a⊗ vi =
∑

iui ⊗ a I vi, ∀a ∈ A
}
.

(ii ) There are similar relations for u[+] ⊗A u[−] if U is a right Hopf left bial-
gebroid (see [7] for an exhaustive list).

The existence of a translation map if U is a left or right Hopf left bialgebroid
makes it possible to endow Hom-spaces and tensor products of U -modules with
further natural U -module structures. These structures were systematically studied
in [7] (proposition 3.1.1). They generalize the case of V (L) ([6], see [3], [14] for the
particular case L = Der(A))

Proposition 2.7. Let (U,A) be a left bialgebroid, M,M ′ ∈ U − Mod and
N,N ′ ∈ Mod−U be left resp. right U -modules. We denote the respective actions
by juxtaposition.

(i ) Let (U,A) be additionally a left Hopf left bialgebroid.
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(a) The Ae-module HomAop(M,M ′) carries a left U -module structure
given by

(u · f)(m) := u+

(
f(u−m)

)
. (2.4)

(b) The Ae-module HomA(N,N ′) carries a left U -module structure via

(u · f)(n) :=
(
f(nu+)

)
u−. (2.5)

(c) The Ae-module IN ⊗Aop MC carries a right U -module structure via

(n⊗Aop m) · u := nu+ ⊗Aop u−m. (2.6)

(ii ) Let (U,A) be a right Hopf left bialgebroid instead.
(a) The Ae-module HomA(M,M ′) carries a left U -module structure given

by

(u · f)(m) := u[+]

(
f(u[−]m)

)
. (2.7)

(b) The Ae-module HomAop(N,N ′) carries a left U -module structure
given by

(u · f)(n) :=
(
f(nu[+])

)
u[−]. (2.8)

(c) The Ae-module NJ ⊗A
BM carries a right U -module structure given

by

(n⊗A m) · u := nu[+] ⊗A u[−]m. (2.9)

Corollary 2.8. ([7]) Let U be left and right left bialgebroid. For any N ∈ Mod−U ,
the evaluation map

PJ⊗A B HomA( IP,I N)→ N, p⊗A φ 7→ φ(p) (2.10)

is a morphism of right U -modules.

Proof. a very similar result is stated in [7], Proposition 3.2.1.� �

3. Poincaré duality

We start by recalling the definition of an invertible module ( [10]).

Definition 3.1. Let A be k-algebra. An A ⊗ Aop-module X is invertible if there
exists an A⊗Aop-module Y and isomorphisms of A⊗Aop-modules

f : X ⊗A Y → A
g : Y⊗AX → A

such that for all (x, y) ∈ X2 and all (x′, y′) ∈ Y

f(x, y′)y = xg(y′, y) and x′f(x, y′) = g(x′, x)y′.

Remark 3.2. In [29], Yekutieli classifies invertible A ⊗ Aop-modules in the case
where A is a non-commutative graded algebra.

Proposition 3.3. ([12] p. 167)
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Let A be a k-algebra and let P be an A⊗Aop-module. Then, if M is an A-module,
we endow HomA(P,M) with the A ⊗ Aop-module structure: For all (a, b) ∈ A,
p ∈ P and λ ∈ HomA(P,M),

< a · λ · b, p >=< λ, p · a > b.

P an invertible Ae-module if and only if it satisfies the following conditions:

• The A-module P is finitely generated projective A-module.
• The left A⊗Aop-module morphism

g : A→ HomA(P, P ), a 7→ {p 7→ p · a}

is an isomorphism.
• The evaluation map

ev : P⊗A HomA(P,A)→ A, p⊗Aop φ 7→ φ(p) (3.1)

is an isomorphism of A⊗Aop-modules.

Remark 3.4. Let U be a left and right Hopf left bialgebroid over A. If moreover,
P is endowed with a right U -module structure such that the A ⊗ Aop-module
structure on P is isomorphic to that given by I and J , then the evaluation map
is an isomorphism of left U -modules (Corollary 3.1).

We can now state twisted Poincaré duality:

Theorem 3.5. Let U be a left and right Hopf left bialgebroid over A. Assume the
following:

(i ) ExtiU (A,U) = {0} if i 6= d and set Λ = ExtdU (A,U) with the right U -
module structure given by right multiplication on U .

(ii ) The left U -module A admits a finitely generated projective resolution of
finite length.

(iii ) A is endowed with a right U -module structure (denoted AR) such that the
Ae-module IAR J is invertible.

(iv ) Let T be the left U -module HomA( IAR,I Λ) (see Proposition 2.7). The
A-module B T and the Aop-module TC are projective.

Then, for all left U -modules M and all n ∈ N, there is an isomorphism

ExtiU (A,M) ' TorUd−i (AR, TC⊗A BM) .

Remark 3.6. In the case where U is the enveloping algebra V (L) of a finitely
generated projective Lie-Rinehart algebra L over A with anchor ρ : L→ Derk(A),
the hypothesis are all verified (see [5]). More precisely, if L is a projective A-module
with constant rank n, then ExtiV (L)(A, V (L)) = {0} if i 6= n. To describe the right

V (L)-module ExtnV (L)(A, V (L)), we make use of the Lie derivative L over the Lie
Rinehart algebra L, which we briefly recall.

The k-Lie algebra L acts on L∗ = HomA(L,A) as follows : For all D,∆ ∈ L
and λ ∈ L∗,

LD(λ)(∆) = ρ(D) [λ(∆)]− λ([D,∆]).



8 SOPHIE CHEMLA, SORBONNE UNIVERSITÉ

By extension, the Lie derivative LD is also defined on Λn
A(L∗). This allows us to

endow Λn
A(L∗) with a natural right V (L)-module structure determined as follows:

∀a ∈ A, ∀D ∈ L, ∀ω ∈ Λn
A(L∗), ω · a = aω, ω ·D = −LD(ω).

The right V (L)-modules ExtnV (L)(A, V (L)) and Λn
A(L∗) are isomorphic ([5], see [3]

or [14] for the special case L = Derk(A)).
In the particular case where X is a n-dimensional Poisson manifold, A = C∞(X),

L = Ω1(X), L∗ = Der(A), the Lie derivative Ldf over Λn
A(L∗) = Λn

A(Der(A)) is
the Lie derivative with respect to the Hamiltonian vector field Hf = {f,−}.

Proof. To prove the theorem 3.5, we will make use of the following lemma where
the U -module structures are given by Proposition 2.7:

Lemma 3.7. ([18], Lemma 16) Let U be a right Hopf left bialgebroid. Let N be a
right U -module and let M and T be two left U -modules. There is an isomorphism
of k-modules:

(NJ⊗A B T )⊗UM ' N⊗U (TC⊗A BM).

Let P • be a bounded finitely generated projective resolution of the left U -module
A and let Q• be a projective resolution of the left U -module M . The following
computation holds in Db(k −Mod), the bounded derived category of k-modules.

RHomU (A,M) ' HomU (P •,M)
' HomU (P •, U)⊗U M
' Λ[−d]⊗U Q

•

' [AR J⊗A B T ]⊗U Q
• [−d] (Remark 3.4)

' AR⊗U (TC⊗A BQ•) (previous lemma)
' AR ⊗L

U (TC⊗A BM)

The last isomorphism follows from the fact the A-module B T is projective and
from the lemma:

Lemma 3.8. Denote by `U the left U -module structure on U given by left multi-
plication. The map

αr(T ) : `UJ⊗A B T → TC⊗A BU
u⊗ t 7→ u(1)t⊗ u(2)

is an isomorphism. One has α−1
r (t ⊗ u) = u[+] ⊗ u[−]t. Thus the U -module

TC⊗A BU is projective if the A-module B T is projective.

�

Remark 3.9. (i ) In the case where U = A ⊗ Aop (see examples 3.12),
ExtiU (A,M) is the Hochschild cohomology and we recover Van den Berg’s
Hochschild twisted Poincaré duality. Moreover, the beginning of the proof
is similar to that of [27] (Theorem 1).

(ii ) The isomorphism ExtnU (A, ,M) ' TorUd−n(MC⊗A I Λ, A) is proved in
[18]. But, one can show that if the A-module Λ J is projective, one has
an isomorphism TorUd−n(MC⊗A I Λ, A) ' TorUd−n(Λ,M).
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In the case of full Hopf algebroids, there is a natural choice of right U -module
structure on A.

3.10. Reminder on full Hopf algebroids. Recall that a full Hopf algebroid
structure ([1], [2]) on a k-module H consists of the following data:

(i ) a left bialgebroid structure H` := (H,A, s`, t`,∆`, ε) over a k-algebra A;
(ii ) a right bialgebroid structure Hr := (H,B, sr, tr,∆r, ∂) over a k-algebra

B;
(iii ) the assumption that the k-algebra structures for H in (i) and in (ii) be

the same;
(iv ) a k-module map S : H → H;
(v ) some compatibility relations between the previously listed data for which

we refer to op. cit.

The detailled definition with the same notation can be found in [19]. We shall
denote by lower Sweedler indices the left coproduct ∆` and by upper indices the
right coproduct ∆r, that is, ∆`(h) =: h(1) ⊗A h(2) and ∆r(h) =: h(1) ⊗B h(2) for
any h ∈ H. A full Hopf algebroid (with bijective antipode) is both a left and right
Hopf left bialgebroid but not necessarily vice versa. In this case, the translation
maps in (2.3) are given by

h+⊗Aop h− = h(1)⊗Aop S(h(2)) and h[+]⊗Bop h[−] = h(2)⊗Bop S−1(h(1)), (3.2)

formally similar as for Hopf algebras.

The following lemma [1, 2] will be needed to prove the main result in this sub-
section.

Proposition 3.11. Let H = (H`, Hr) be a (full) Hopf algebroid over A with
bijective antipode S. Then the following statement holds:

(i ) The maps ν := ∂s` : A→ Bop and µ := εsr : B → Aop are isomorphisms
of k-algebras.

(ii ) One has ν−1 = εtr and µ−1 = ∂t`.
(iii ) The pair of maps (S, ν) : H` → (Hr)

op
coop gives an isomorphism of left

bialgebroids.
(iv ) The pair of maps (S, µ) : Hr → (H`)

op

coop gives an isomorphism of right
bialgebroids.

Examples 3.12. (i ) Let A be a k-algebra, then Ae = A⊗k A
op is a A-Hopf

algebroid described as follows: For all a, b ∈ A,
• s`(a) = a⊗k 1, t`(b) = 1⊗k b;
• ∆` : Ae → Ae ⊗A A

e, a⊗ b 7→ (a⊗k 1)⊗A (1⊗k b);
• ε : Ae → A, a⊗ b 7→ ab;
• sr(a) = 1⊗k a, tr(b) = b⊗k 1;
• ∆r : Ae → Ae ⊗Aop Ae, a⊗ b 7→ (1⊗k a)⊗A (b⊗k 1) ;
• ∂ : Ae → A, a⊗ b 7→ ba.

(ii ) Let A be a commutative k-algebra and L be a Lie-Rinehart algebra over A.
Its enveloping algebra V (L) is endowed with a standard left bialgebroid
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structure (see Example 2.2). Kowalzig ([17]) has shown that the left
bialgebroid V (L) can be endowed with a Hopf algebroid structure if and
only if there exists a right V (L)-module structure on A. Then the right
bialgebroid structure V (L)r is described as follows: For any a ∈ A, D ∈ L
and u ∈ V (L),
(a) ∂(u) = 1 · u;
(b) ∆r : V (L) → V (L) J⊗A I V (L), ∆r(D) = D ⊗A 1 + 1 ⊗A D −

∂(X)⊗A 1 and ∆r(a) = a⊗ 1;
(c) S(a) = a, S(D) = −D + ∂(D).

It is in particular the case if X is a C∞ Poisson manifold, A = C∞(X)
and L = Ω1(X) is the A-module of global differential 1-forms on X.
Huebschmann has shown ([11]) that there is a right V (Ω1(X))-module
stucture on A determined as follows: For all (a, u, v) ∈ A3,

a · u = au and a · udv = {au, v}.

Thus, V (Ω1(X)) is endowed with a (full) Hopf algebroid structure.

Notation 3.13. Let (H`, Hr, S) be a full Hopf algebroid over A.

(i ) If N is a right H` -module, we will denote by SN the left H`-module
defined by

∀h ∈ H, ∀n ∈ N, h ·S n = n · S(h).

(ii ) If M is a left H` -module, we will denote by MS the right H`-module
defined by

∀h ∈ H, ∀m ∈M, m ·S h = S(h) ·m.

Remark 3.14. If H = (H`, Hr, S) is a Hopf algebroid over a k-algebra A. We
have the following module structures:

• a left H` -module structure given by h ·` a = ε(hs`(a)) = ε(ht`(a)).
• a right Hr-module structure given by α ·r h = ∂(sr(α)h) = ∂(tr(a)h).

Thanks to the Proposition 3.11, these two structures are linked by the relation

S(h) ·` µ(α) = µ[α ·r h].

Theorem 3.15. Let (H`, Hr) be a full Hopf algebroid over A with bijective antipode
S. Consider A with its left H-module structure (as in Remark 3.14). We keep the
notation of Proposition 3.11, in particular µ = εsr and ν = ∂s`.

(i ) If a ∈ A, then 1 ·S t`(a) = a. Thus the A-module I (AS) is free with basis
1.

(ii ) If a ∈ A, then α ·S s`(a) = µν(a)α. Thus the Aop-module AS J is free
with basis 1.

(iii ) If N is a right H`-module, the left H`-module HomA( I (AS),I N) is
isomorphic to SN .

(iv ) The Ae-module IAS J (defined from the right H`-module structure on
AS) is invertible.
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Proof. (i ) Using Proposition 3.11, we have:

1 ·S t`(a) = S(t`(a))[1] =
Prop. 3.11

trν(a)[1] = ε [trν(a)] = a.

(ii ) Similarly, on has: 1 ·S s`(a) = S(s`(a))(1) = εsrν(a) = µν(a).
(iii ) The map

HomA( IAS ,I N) → SN
λ 7→ λ(1)

is an isomorphism of left H`-modules as shows the following computation.
Let α ∈ AS , h ∈ H` and λ ∈ HomA( IAS ,I N). Using Assertion 1 and
Theorem 3.11, we have:

(h · λ)(1) = λ(1 ·S h(1))S(h(2))
= λ

[
S(h(1))(1)

]
S(h(2))

= λ
[
εS(h(1))

]
S(h(2))

= λ
[
1 ·S t`εS(h(1))

]
S(h(2))

= λ(1)t`ε[S(h(1))]S(h(2))
= λ(1)t`ε[S(h)(2))]S(h)(1)

= λ(1)S(h).

(iv ) Let N be a right H`-module and let n ∈ N . Denote by λn the element
of HomA( IAS ,I N) determined by λn(1) = n. By assertions 1 and 2,
the map (AS) J⊗A B HomA( IAS ,I N) → N, p ⊗Aop φ 7→ φ(p) is an
isomorphism with inverse n 7→ 1⊗ λn.

We need now to check that the map A → HomA( IAS ,I AS), a 7→
{p 7→ p J a} is an isomorphism. By assertion 3, this boils down to showing
that A → S(AS), a 7→ 1 J a is an isomorphism . But, this is true as
1 J a = µν(a). Indeed,

1 J a = S2(s`(a))(1) = εS2
[
s`(a)

]
= µ∂

[
S(s`(a))

]
= µνε(s`(a)) = µν(a).

�

We can now state twisted Poincaré duality for full Hopf algebroids.

Theorem 3.16. Let (A,H`, Hr) be a Hopf algebroid over A with bijective antipode
S. As in Proposition 3.11, we set µ = εsr and ν = ∂s`. Assume the following:

(i ) ExtiH`(A,H`) = {0} if i 6= d and set Λ = ExtdH`(A,H`).

(ii ) I ExtdH`(A,H`) is a projective A-module and ExtdH`(A,H`) J is a projec-
tive Aop-module.

(iii ) The left H`-module A admits a finitely generated projective resolution of
finite length.

Then for all left H-modules M and all i ∈ N, there is an isomorphism

ExtiH`(A,M) ' TorH
`

d−i (AS , SΛ C⊗A BM) .
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As an application, we find a Poincaré duality for smooth Poisson algebras. As-
sume that X is a C∞ Poisson manifold, L = Ω1(X) and M is a V (L)-module. Hueb-
schmann ([11]) has shown that for any i ∈ N, the k-space ExtiV (Ω1(X))(A,M) coin-

cides with the ith Poisson cohomology space with coefficients in M , Hi
Pois(A,M).

Also, the k-space Tor
V (Ω1(X))
i (AS ,M) coincides with the ith Poisson homology

space with coefficients in M , HPois
i (A,M).

Corollary 3.17. Let X be a C∞ n-dimensional Poisson manifold, A = C∞(X)
and M a left V (Ω1(X))-module. Let S be the antipode of the (full) Hopf alge-
broid V (Ω1(X)) (see Examples 3.12). Then T is isomorphic to S

(
Λn
AΩ1(X)∗

)
=S

[Λn
ADer(A)] where df acts (on the right) on Λn

ADer(A) as the opposite of the Lie
derivative of the Hamiltonian vector field Hf (see Remark 3.6). For all i ∈ N,
there is an isomorphism

Hi
Pois(A,M) ' HPois

n−i (A, S [Λn
ADer(A)]⊗A M).

Remark 3.18. This formula is proved in [8] for oriented Poisson manifolds and
M = A (see also [20] for polynomial algebras with quadratic Poisson structures,
[30] for linear Poisson structures, [21] for general polynomial Poisson algebras).
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