
Operations for modules on Lie-Rinehart
superalgebras

Sophie Chemla

Let k be a field of characteristic 0 and let A be a supercommutative associative k-
superalgebra. Let L be a k − A-Lie-Rinehart superalgebra. From these data, one can

construct a superalgebra of differential operators V(A,L) (generalizing the enveloping
superalgebra of a Lie superalgebra). We will give a definition of Lie-Rinehart superalgebra

morphisms allowing to generalize the notions of inverse image and direct image. We will
prove that a Lie-Rinehart superalgebra morphism decomposes into a closed imbedding

and a projection. Furthermore, we will see that, under some technical conditions, a
closed imbedding decomposes into two closed imbeddings of different nature. The first

one looks like a Lie superalgebra morphism. The second one looks like a supermanifold
closed imbedding and satisfies a generalization of the Kashiwara’s theorem. Then, as in

the D-module theory, we introduce a duality functor. Finally, we will prove that, in the

closed imbedding case, the direct image and the duality functor commute.

1 Introduction

Let k be a commutative field of characteristic 0 and let A be an associative supercom-
mutative k-superalgebra with unity. (A,L, σ) is a k − A-Lie-Rinehart superalgebra or

a k − A-Lie-superalgebra if it is endowed with a k-Lie superalgebra structure and an
A-module structure satisfying the following compatibility relation: There exists a Lie

superalgebra and an A-module morphism σ : L → Derk(A) such that

∀(D,∆) ∈ L2, ∀a ∈ A, [D, a∆] = σ(D)(a)∆ + (−1)|a||D|a[D,∆].

Lie-Rinehart superalgebras are the algebraic analog of the Lie-algebroid concept ([19]).
They give rise to superalgebras of differential operators which generalize at the same time

enveloping superalgebras and superalgebras of differential operators on a supermanifold.

Let (A,L, σ) be a k − A Lie superalgebra and let V(A,L, σ) (or for short V(A,L)) be
the superalgebra of differential operators it defines. Most of the time we will need to

assume that L is a finitely generated projective A-module with a rank. This allows us
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to define Ber(L∗), the Berezinian module of L∗ = HomA(L, A) which plays the same

role as the differential forms of maximal degree for D-modules. We already know ([7])
that there is a correspondence (analogous to Bernstein’s correspondence) between left

and right V(A,L)-modules involving Ber(L∗). In this article, we will adopt a definition
of morphisms of Lie-Rinehart superalgebras which generalizes what happens in the Lie

superalgebra case and in the algebraic smooth supermanifold case. This definition is
compatible with the Lie algebroid morphisms defined by Almeida and Kumpera ([1]). We

will prove that a Lie-Rinehart superalgebra morphism decomposes into a closed imbedding
and a projection. Furthermore, we will see that, under some technical conditions, a closed

imbedding decomposes into two closed imbeddings of different nature.
- The first one looks like a Lie superalgebra morphism.

- The second one looks like a supermanifold closed imbedding and satisfies a general-
ization of the Kashiwara’s theorem.

Imbeddings of the second type were already studied by Levasseur ([17]) in the case
analogous to {x} →֒ X.

We then generalize the notions of inverse image and direct image existing in the D-

module theory. We will introduce the duality functor and prove that this latter commutes
with the direct image in the case of a closed imbedding. This will allow us to recover

some duality property for induced representations of Lie superalgebras.

Notations :
For most of the definitions about supermathematics, we refer the reader to [15]. k will

be a commutative field of characteristic zero. We will denote by 0̄ and 1̄ the elements of
Z/2Z. We will call superspace a k-vector space graded over Z/2Z, V = V0̄ ⊕ V1̄. Let V

and W be two superspaces. If f is a morphism of degree i from V to W and if v is in Vj ,
we put < v, f >= (−1)ijf(v). If V is a superspace, one defines the superspace ΠV which,

as a vector space, is equal to V but whose grading is (ΠV )0̄ = V1̄ and (ΠV )1̄ = V0̄. Let
us introduce the map π : V → ΠV which, as a morphism of vector spaces, equals the

identity. It is of degree 1̄. The symmetric superalgebra of V will be denoted by S(V ).
Let A be an associative supercommutative superalgebra with unity and let M be an

A-module. A basis of M is a family (mi)i∈I∐J ∈ M I
0̄ ×MJ

1̄ such that each element of M

can be expressed in a unique way as a linear combination of the (mi)i∈I∐J . If I and J
are finite, their cardinalities are independent of the basis of the A-module M . Then, the

dimension of M over A is the element | I | +ǫ | J | of Z [ǫ] /(ǫ2 − 1). If (e1, ..., en) is a
basis of the A-module M , then the family (e1, ..., en) where < ei, e

j >= δi,j is a basis of

HomA(M,A) called the dual basis of (e1, ..., en). Moreover, if M is an A-module, then
ΠM has a natural A-module structure defined by:

∀m ∈M, ∀a ∈ A, a · πm = (−1)|a|π(a ·m).

One defines supermatrices by assigning each line and each column a parity. In general even
lines and even columns are put first so that Mat(r+ ǫs, A) will be the set of matrices with

r even lines and columns and with s odd lines and columns. To get a correspondence
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between endomorphisms and matrices, one has to consider right A-modules. We will

denote by GL(r + ǫs, A) the group of invertible even elements of Mat(r + ǫs, A).
We will only consider localization with respect to even multiplicative systems. Let S

be a multiplicative system of A0̄, then MS will denote the localized module with respect to
S. If p = p0̄ ⊕p1̄ is a prime ideal (respectively f an element of A0̄), then Mp (respectively

Mf ) will denote the localization of M with respect to the multiplicative system A0̄ − p0̄

( respectively {fn | n ∈ N}).
If J is an ideal of A, we put

ΓJ(M) = ∪n∈N{m ∈M | ∃n ∈ N | Jn ·m = 0} = lim
−→
n∈N

HomB(B/Jn,M).

The functor ΓJ is left exact. We denote by Hj
J its jth right derived functor.

Let A be an abelian category of objects graded over Z/2Z. We will adopt the following

conventions for the complexes: we require that the differentials defining the complexes be
odd whereas the morphisms between complexes have to be even. If M• is a complex of

objects of A, M•[1] will be the complex defined by (M•[1])i = M i+1. We will denote by
D(A) the derived category of A. One can also define D−(A).

If B is an associative superalgebra with unity, then Modl
B (respectively Modr

B) will be
the category of graded left (respectively right) B-modules.

Let a be a k-Lie superalgebra. We will write U(a) for its enveloping superalgebra
and ∆ for the coproduct in U(a). If M is a left U(a)-module, then M∗ will be the

contragredient module. Let now g be a Lie superalgebra and h be a Lie subsuperalgebra.
Let V (respectively W ) be a left (respectively right) U(h)-module. We will denote by

Indg
h(V ) (respectively INDg

h(W )) be the left (respectively right) U(g)-module U(g) ⊗
U(h)

V

(respectively W ⊗
U(h)

U(g)). We define the coinduced space Coindg
h(V ) from V as being

HomU(h) (U(g), V ). The transpose of right multiplication on U(g) endows Coindg
h(V ) with

a left g-module structure. We thus get the coinduced representation from V . If V = k is
the trivial module, we put A = Coindg

h(k). One defines a k-superalgebra structure on A

as follows: for all (f, g) in A2 and u in U(g),

< u, f · g >=
∑

j

< u′j, f >< u′′j , g > (−1)|f ||u
′′
j
|

where ∆(u) =
∑

j u
′
j ⊗u

′′
j . The superalgebra A is associative, supercommutative and with

unity. It is a local superalgebra ([6]).

I am grateful to A. Arabia, M. Duflo, B. Keller, O. Mathieu and P. Schapira for helpful
discussions.
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2 Ring of differential operators defined by a k − A

Lie superalgebra

2.1 Recollections.

Let A be a supercommutative associative k-superalgebra with unity and let L be a

k-Lie superalgebra that is also an A-module. Assume that we are given σ : L → Der(A)

a morphism of Lie superalgebras and of A-modules. Assume moreover that for all D and
∆ belonging to L and all a in A, we have

[∆, aD] = a [∆, D] (−1)|a||∆| + σ(∆)(a)D.

(A,L, σ) is called a k − A-Lie-Rinehart superalgebra or k − A-Lie superalgebra. Let

V(A,L, σ) (or V(A,L)) be the superalgebra of differential operators generated (A,L, σ)
([9],[22]). It can be described as follows: V(A,L) is the k-superalgebra linearly generated

by the elements of A, the elements of L and the following relations:

($)





a · b = (ab)

D · a− (−1)|a||D|a ·D = σ(D)(a)

D · ∆ − (−1)|∆||D|∆ ·D = [D,∆]
a ·D = (aD)

Let V(A,L)n be the left A-submodule of V(A,L) generated by products of at most

n elements of L. We define thus a filtration on V(A,L). If L is A-projective, then the
graded A- superalgebra GrV(A,L) (with respect to this filtration) is isomorphic to the

symmetric superalgebra SA(L) ([22] p 198).

Examples

• The simplest example is obtained when σ is 0. Then, L is just an A-Lie superalgebra

and V(A,L) is its enveloping superalgebra.

• Let X be a paracompact smooth supermanifold (over R or C)([15]). Let X (respec-

tively OX ) be the underlying topological space (structural sheaf) of X . We write
X = (X,OX ). Put A = OX (X), L = Der OX (X) and σ = id. Then V(A,L) is the

superalgebra of differential operators over X. Moreover, Der OX (X) is a finitely

generated projective OX (X)-module (see [13] p. 31, [23] p 266 and [25] p 100).

• Let A be a k-Poisson superalgebra. Let Dev
A be the A-module of Kähler differentials

for A with a grading determined by | deva |=| a |. Then Dev
A is naturally endowed

with a k − A-Lie superalgebra structure ([12]). Note that this structure depends

on the Poisson bracket on A. There exists a similar construction for the differential
forms of degree one on a Poisson supermanifold.
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• Let g be a k-Lie superalgebra and A be a supercommutative associative superalgebra

with unity. Assume that there is a Lie superalgebra morphism σ0 : g → Der(A).
On L = A⊗ g, we put the following bracket : for all (a, a′, X,X ′) in A2 × g2,

[a⊗X, a′ ⊗X ′] = (−1)|X||a
′|aa′ ⊗ [X,X ′] + aσ0(X)(a′) ⊗X ′

−a′σ0(X
′)(a) ⊗X(−1)(|a|+|X|)(|a′|+|X′|).

Moreover, we extend σ0 to a A-module morphism σ from L to Der(A). We thus

define a k−A-Lie superalgebra structure on L denoted A#g and called the crossed

product of A and g. An example of this situation is the following. Let h be a sub-
superalgebra of g. Put A=Coindg

h(k) and take for σ0 : g → Der(A) the coinduced

representation.

• Let (A,LA, σA) be a k − A-Lie superalgebra and let (B,LB, σB) be a k − B- Lie

superalgebra. Put
LA⊗B = B⊗

k
LA ⊕A⊗

k
LB.

Then LA⊗B is a A ⊗ B-module. We define the A ⊗ B-module morphism σA⊗B :

LA⊗B → Der(A⊗B) as follows

∀D ∈ LA, ∀a ∈ A, ∀b ∈ B, σA⊗B(D)(a⊗ b) = σA(D)(a) ⊗ b

∀∆ ∈ LB, ∀a ∈ A, ∀b ∈ B, σA⊗B(∆)(a⊗ b) = a⊗ σB(∆)(b)(−1)|a||∆|.

On LA⊗B, we put the Lie bracket extending those of LA and LB and such that:

- [LA,LB] = 0

- (A⊗ B,LA⊗B, σA⊗B) is a k − A⊗ B-Lie superalgebra.

3 Equivalence of category between left V(A,L)-modules

and right V(A,L)-modules

The notations are the same as in the previous paragraph.

3.1 The Berezininan module.

Let us remark that a prime ideal p of A is characterized by its intersection with A0̄,
A0̄ ∩ p, which is a prime ideal of A0̄ (because A1̄ is included in p). One defines the

ringed space, Spec(A), as follows ([8],[16]). The underlying topological space X is the
set of prime ideals of A0̄ endowed with the Zariski topology. The structural sheaf OX of

Spec(A) is defined as in the non graded case. If f ∈ A0̄, let D(f) be the open subset

D(f) = {p ∈ Spec(A0̄)/f 6∈ p}.
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Then, (D(f))f∈A0̄
form a basis for the Zariski topology on Spec(A0̄).

Case of a finite dimensional free module.

Let M be a free A-module of dimension d0 + ǫd1. Put n = d0 + d1. Let (e1, ..., en) be a
basis of M such that (e1, ..., ed0

) are even and (ed0+1, ..., en) are odd. Let us denote by

(e1, ..., en) the dual basis and let d be left multiplication by
n∑

i=1

(−1)|ei|+1πei ⊗ ei in the

superalgebra SA(ΠM ⊕A M
∗). The endomorphism d does not depend on the choice of a

basis.

Proposition 3.1.1 The complex J(M) =
(
SA(ΠM ⊕M∗) = ⊕

n∈N

Sn(ΠM)⊗
A
S(M∗), d

)

has no cohomology except in degree d0. The A-module Hd0 (J(M)) is free of dimension 1

or ǫ. More precisely, the element πe1...πed0
⊗ ed0+1...en is a cycle whose class is a basis

of Hd0 (J(M)).

A proof of the proposition 3.1.1 is given in [18] p. 172.

Definition 3.1.2 The module Hd0 (J(M)) is called the Berezinian module of M and is

denoted Ber(M).

Remark :

Note that any basis [e] = (e1, ..., en) of M defines a basis of Ber(M), namely

ω[e] =
[
πe1...πed0

⊗ ed0+1...en
]
.

Case of a finitely generated projective A-module with a rank
Let M be a finitely generated projective A-module. Assume that the localized module

with respect to any prime ideal, Mp, has dimension d0 + ǫd1. Then M has a rank. We
will write : rkL = d0 + ǫd1 and erkL = d0. The proof of the existence of the Berezinian

module of M relies on the following result ([4] p. 141). Let us denote by I(M) the set of
all elements f of A0̄ such that Mf is a free Af -module.

Lemma 3.1.3 (D(f))f∈I(M) is an open covering of Spec(A).

We come now to the theorem which will allow us to define the Berezinian module of a
finitely generated projective A-module with a rank (see [7] for the proofs).

Theorem 3.1.4 Let M be a finitely generated projective A-module with a rank. There is
a unique A-module (up to isomorphism) denoted Ber(M) such that, for all f in I(M),

Ber(M)f is canonically isomorphic to Ber(Mf).

Definition 3.1.5 The module Ber(M) constructed by the previous theorem is called the

Berezinian module of M .
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3.2 Equivalence of categories.

In this paragraph, we recall that Bernstein’s correspondence between left and right

D-modules extends to our context. For short, we put V = V(A,L)

Proposition 3.2.1 If L is a finitely generated projective A-module with a rank, then

Ber(L∗) is endowed with a natural right V-module structure. In the case where L is free,
the action of L on Ber(L∗) is induced by its adjoint action on J(L∗).

Proof of the proposition 3.2.1 : see [7].

Corollary 3.2.2 Assume that L is a finitely generated projective A-module with a rank.

a) If M is a left V-module, then M⊗
A
Ber(L∗) is endowed with a right V-module struc-

ture determined by the following operations : for all m in M , ω in Ber(L∗), a in A and
D in L, we have

(m⊗ ω) · a = m⊗ ω · a = (−1)|a|(|m|+|ω|)a ·m⊗ ω
(m⊗ ω) ·D = −(−1)|D|(|m|+|ω|)D ·m⊗ ω +m⊗ ω ·D.

b) The functor Ω : M 7→ Ω(M) = M⊗
A

Ber(L∗) provides an equivalence between the

category of left V-modules and the category of right V-modules.

Remarks

In the case where L is a free finite dimensional A-module, Fel’dman ([9] p. 127)
exhibited an anti-involution of V (depending on the choice of a basis) which gives rise to

the same equivalence between left and right V-modules. The use of the Berezinian module
is more canonical.

The Bernstein’s equivalence was extended to the supermanifold case by Penkov ([20]).

4 Morphism of Lie-Rinehart superalgebras

Let (A,LA, σA) and (B,LB, σB) be two Lie-Rinehart superalgebras. When there is no
ambiguity, we will omit σA and σB in the formulas.

Definition 4.0.3 A Lie-Rinehart superalgebra morphism from (A,LA, σA) to (B,LB, σB)
is the datum of two maps (φ, ψ) such that

1) φ : B → A is a k-superalgebra morphism.

2) ψ : LA → A⊗
B
LB is a A-module morphism satisfying the two following properties :

a) Let D be in LA. If ψ(D) =
∑

i ai ⊗ ∆i with ai ∈ A and ∆i ∈ LB, then

∑

i

ai (φ ◦ σB(∆i)) = σA(D) ◦ φ.
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b) Put on VB the left VB-module structure given by left multiplication.Then

the two following operations endow A⊗
B
VB with a left VA- module structure:

∀D ∈ LA, ∀(a, g) ∈ A2, ∀m ∈ VB,

(∗) a · (g ⊗m) = ag ⊗m

(∗∗) D · (g ⊗m) = D(g) ⊗m+
∑

i gai ⊗ ∆i ·m

where ψ(D) =
∑

i ai ⊗ ∆i

Remarks :

1) This definition coincides with the definition given by Almeida and Kumpera in the
Lie-algebroids context ([1]).

2) Using the properties of the tensor product and the compatibility relation a), one
shows that the operation (**) is well defined. Among all the relations ($), the third

relation is the only one which is not automatically satisfied by A⊗
B
VB.

3) The condition b) of the definition may be replaced by the following condition : Let
D and D′ be two elements of LA. If ψ(D) =

∑
i ai ⊗ Di and ψ(D′) =

∑
i a
′
i ⊗ D′i with

(ai, a
′
i) ∈ A2 and (Di, D

′
i) ∈ L2

B, then

(∆) ψ([D,D′]) =
∑

i

D(a′i) ⊗D′i −
∑

i

D′(ai) ⊗Di(−1)|D||D
′|

+
∑

i,j

(−1)|D||a
′
j
|a′jai ⊗

[
Di, D

′
j

]
.

4) Our definition of Lie-Rinehart morphisms generalizes at the same time what hap-

pens in the Lie superalgebra case and in the algebraic smooth supervariety case.

Examples of Lie-Rinehart superalgebra morphisms

1) Assume that we have two crossed products (A,A⊗g, σ0 : g → Der(A)) and (B,B⊗
g′, σ′0 : g′ → Der(B)). Assume that we have a Lie superalgebra morphism f : g → g′ and

a superalgebra morphism φ : B → A such that

(&) ∀b ∈ B, ∀X ∈ g, φ[f(X)(b)] = X(φ(b)).

Here, we omit σ0 and σ′0 for short. Let ψ : A ⊗ g → A⊗
B

(B ⊗ g′) be the A-module

morphism extending f . Then (φ, ψ) is a Lie-Rinehart superalgebra morphism from A⊗ g

to B ⊗ g′.
We provide now an example of such a case. Let h be a subsuperalgebra of g. Let h′

be a Lie subsuperalgebra of g′ containing f(h). We have a map

φ : Coindg′

h′(k) → Coindg
h(k)

λ 7→ (u 7→< f(u), λ >)

8



where f is seen as a superalgebra morphism from U(g) to U(g′). One can check that the

relation & is satisfied. So that we have constructed a Lie-Rinehart superalgebra morphism
from

(
g,Coindg

h(k)
)

to
(
g′,Coindg′

h′(k)
)
.

2) Let (A,LA, σA) and (B,LB, σB) be two Lie-Rinehart superalgebras. Assume that

LB is a finite dimensional free B-module and that we can find a basis (f1, . . . , fn) of LB

such that [fi, fj ] = 0. Let φ : B → A be a superalgebra morphism and let ai be elements

of A such that | ai |=| fi |. Define ψ : LA → A⊗
B
LB defined by

ψ(D) =
∑

i

D(ai) ⊗ fi.

If the compatibility relation a) is satisfied, then (φ, ψ) is a Lie-Rinehart superalgebra

morphism from (A,LA) to (B,LB). We will now give a particular case of this example
which involves Poisson superalgebras. Let A = k[X1, . . . , Xn] be a Poisson superalgebra

such that {Xi, Xj} belongs to k and let B = k[Y1, . . . , Yp, Ỹ1, . . . , Ỹp] with | Yi |=| Ỹi | be
the Poisson superalgebra whose bracket is given by {Yi, Ỹj} = δi,j , {Yi, Yj} = {Ỹi, Ỹj} = 0.

Let φ : B → A be a superalgebra morphism. Define ψ : Dev
A → A⊗

B
Dev

B by

ψ(dXj) =
∑

i

−(−1)|Yi||Ỹi|{Xj, φ(Yi)} ⊗ dỸi +
∑

i

{Xj , φ(Ỹi)} ⊗ dYi.

Then (φ, ψ) is a Lie-Rinehart superalgebra morphism from (A,Dev
A ) to (B,Dev

B ).

5 Direct Image

This section is inspired by the affine case of the D-module theory ([3]). Let (A,LA, σA)

and (B,LB, σB) be two Lie-Rinehart superalgebras. We assume that LA (respectively
LB) is a finitely generated projective A-module (respectively B-module ) with a rank.

Let Φ = (φ, ψ) be a Lie-Rinehart superalgebra morphism from (A,LA, σA) to (B,LB, σB).
For short, we will write V(LA) or even VA for V(A,LA, σA) when there is no ambiguity.

We will adopt the same abbreviation for V(B,LB, σB).

By definition of a Lie-Rinehart superalgebra morphism, we know that A⊗
B
VB is a left

VA-module. It is also clearly endowed with a right VB-module structure commuting with

the previous one. This (VA,VB)-bimodule will be denoted VLA→LB
and will be called the

tranfer module. Let M be a left VB-module. The equality

A⊗
B
M = VLA→LB

⊗
VB

M,

endows A⊗
B
M with a left VA-module structure. A⊗

B
M will be called the inverse image of

M and will be denoted Φo(M).
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Let M be a right VB-module. The inverse image of M is the right VA-module(
ΩA ◦ Φo ◦ Ω−1

B

)
(M). The inverse image of Vr

B, that is to say VB considered as a right

VB-module under right multiplication, will be denoted VLB←LA
. It is a (VB,VA)-bimodule,

the left VB-module structure being given by left multiplication on VB. It is easily seen
that VLB←LA

is obtained from VLA→LB
by turning the left (respectively right) action of

VA (respectively VB) into a right (respectively a left) one.

Let M• be an element of D−
(
Modr

VA

)
(respectively D−

(
Modl

VA

)
). We define its

derived direct image as being the element M•
L
⊗
VA

VLA→LB
(respectively VLB←LA

L
⊗
VA

M•) of

D−
(
Modr

VB

)
(respectively D−

(
Modl

VB

)
).

Sometimes, to avoid ambiguity, we will denote by Φl
+ the direct image for left VA-

modules and Φr
+ the direct image for right VA-modules

The direct image behaves well under composition of morphisms as in the D-module
case ([3])

6 Decomposition of a Lie-Rinehart superalgebra mor-

phism

The assumptions are the same as in the previous section. We introduce the Lie-Rinehart

superalgebra (A⊗B,LA⊗B, σA⊗B) as in section 2.1. We decompose (φ, ψ) into two maps

(φ, ψ) = (s, S) ◦ (u, U) .

Let us first descibe S = (s, S):

s : B → A⊗ B
b 7→ 1 ⊗ b

and S : LA⊗B → (A⊗B)⊗
B
LB ≃ A⊗

k
LB is the A⊗ B-module morphism given by:

∀D ∈ LA, S(1 ⊗D) = 0 and ∀∆ ∈ LB, S(1 ⊗ ∆) = 1 ⊗ ∆.

Let us now describe U = (u, U). The algebra morphism u : A ⊗ B → A is defined by
u(a⊗ b) = aφ(b) and U : LA → A ⊗

A⊗B
LA⊗B ≃ LA ⊕ A⊗

B
LB is the A-module morphism

determined by : for all D in LA,

U(D) = D + ψ(D).

One checks easily that S and U are Lie-Rinehart superalgebra morphisms.

Definition 6.0.4 A Lie-Rinehart superalgebra morphism (φ, ψ) is a closed imbedding if
φ is onto.

U is a closed imbedding.
The study of S is very close to the study of a projection in the D-module theory (see

[3] p. 246), that is why we won’t reproduce it here.
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7 Study of a closed imbedding

7.1 Decomposition of a closed imbedding.

In this paragraph, we will study the closed imbedding case. Let (A,LA, σA) and
(B,LB, σB) be two Lie-Rinehart superalgebras and let U = (u, U) : (A,LA, σA) →
(B,LB, σB) be a closed imbedding. Then we can assume that A = B/J and that u is the
natural projection. Put

LB(J) = {D ∈ LB / D(J) ⊂ J}.

Along all this section, we will make the following hypothesis (assumption A) : We will
assume that we can find homogeneous generators x = (x1, . . . , xn) of J and homogeneous

elements (∂1, . . . , ∂n) of LB such that ∂i(xj) = δi,j .
Introduce

ΘB,x = {D ∈ LB / D(xi) = 0}.

Then,
LB = ⊕

i
B∂i ⊕ ΘB,x.

If x′ = (x′1, . . . , x
′
n) is another system of generators of J satisfying the assumption A then,

by a reasoning on the rank, it is easy to that x and x′ have the same number r of even
elements and the same number s of odd elements. We will always assume that the even

elements come first. We have the following isomorphism of left V(B,ΘB,x)-modules

VB ≃ ⊕
(α1,...,αn)∈Nr×{0,1}s

V(ΘB,x) ⊗ ∂α1

1 . . . ∂αn

n .

The natural injection ΘB,x →֒ LB(J) gives rise to anA-module isomorphism χx : A⊗
B

ΘB,x →

LB(J)/JLB.

Lemma 7.1.1 We have the following A-module isomorphism

A⊗
B
LB ≃ ⊕iA∂i ⊕A⊗

B
ΘB,x

and

U(LA) ⊂ A⊗
B

ΘB,x.

Proof of the lemma 7.1.1:
Let D be in LA. Put U(D) =

∑
ai ⊗Di with ai ∈ A and Di ∈ LB. We have

∑

i

ai ⊗Di =
∑

i,j

aiu (Di (xj)) ∂j +
∑

i

ai ⊗


Di −

∑

j

Di(xj)∂j


 .

But ∑

i

aiu (Di (xj)) = D (u(xi)) = 0.

11



So
∑
ai⊗Di ∈ A⊗

B
ΘB,x and this for any choice of x. This finishes the proof of the lemma.

The morphism σB induces a B-module morphism from ΘB,x to Der(A). Then A⊗
B

ΘB,x,

endowed with the following bracket : for all (a, a′) in A2 and all (D,D′) in ΘB,x,

[a⊗D, a′⊗D′] = aD(a′)⊗D′− (−1)(|a|+|D|)(|a′|+|D′|)a′D′(a)⊗D+ (−1)|D||a
′|aa′⊗ [D,D′]

is a k − A-Lie superalgebra. Moreover, the Lie bracket on LB(J) induces a Lie bracket

on LB(J)/JLB. Thus LB(J)/JLB is a k − A-Lie superalgebra. The morphism
(
id, χx

)

is a Lie-Rinehart superalgebra isomorphism.

Proposition 7.1.2 The morphism U1 : LA → LB(J)/JLB described by

LA → A⊗
B

ΘB,x

χx

→ LB(J)/JLB

D 7→
∑

i ai ⊗
(
Di −

∑
j Di(xj)∂j

)
7→ χx

(∑
i ai ⊗

(
Di −

∑
j Di(xj)∂j

))
.

does not depend on the choice of x. So that U1 = (id, U1) is a Lie-Rinehart superalgebra

morphism.

The proof of the proposition 7.1.2 is left to the reader.

Remark :
Using the universal property of the ring of differential operators V(A,LA) ([9] p.

125), one can see that U1 gives rise to a superalgebra morphism from V(A,LA) to
V(A,LB(J)/JLB).

We have the following isomorphisms of left V(A,LA)-modules

VLA→LB
≃ ⊕

(α1,...,αn)∈Nr×{0,1}s
V
(
ΘB,x

)
/JV

(
ΘB,x

)
⊗ ∂α1

1 . . . ∂αn
n

≃ ⊕
(α1,...,αn)∈Nr×{0,1}s

V (LB(J)/JLB) ⊗ ∂α1

1 . . . ∂αn
n .

Proposition 7.1.3 Let U2 = (u2, U2) : (A,LB(J)/JLB) → (B,LB) be the morphism
defined by : u2 = u and U2 ◦ χx : A⊗

B
ΘB,x → A⊗B LB is the natural injection. U2 does

not depend on x. U can be factorized as follows

U = U2 ◦ U1.

The proof of the proposition 7.1.3 is left to the reader.

Let M be a right V (LB)-module. Then it is clear that

MJ = Γ1
J(M) = {m ∈M / m · J = 0}

is a right V (A,LB(J)/JLB)-module.

We can now state the analog of the Kashiwara’s theorem.
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Theorem 7.1.4 We assume that A is satisfied and, for short, we put MA = LB(J)/JLB.

We consider the map (u2, U2) : (A,MA) → (B,LB).
1) Let N be a right V (MA)-module. The morphism

N → Γ1
J

(
N ⊗
V(MA)

VMA→LB

)

n 7→ n⊗ 1̄

is an isomorphism of right V (MA)-modules.

2) Let M be a right V (LB)-module such that ΓJ(M) = M . Then the morphism

(
MJ ⊗

V(MA)
VMA→LB

)
→ M

m⊗ v̄ 7→ m · v̄

is an isomorphism of right V (LB)-modules.

For the proof of the theorem 7.1.4 , see [3] p 261, [17].

Corollary 7.1.5 Under the same assumptions and notations as in the theorem, there
is an equivalence of categories between the category of right V (LB)-modules such that

ΓJ(M) = M and right V (MA)-modules.

Remarks :

1) This theorem was proved by Levasseur ([17]) in the case where B is a regular local

ring and J is the maximal ideal of A.

2) Let (x1, . . . , xn) be a set of homogeneous generators of J . If there exists (∂1, . . . , ∂n)
in LB such that the matrix X = (∂i(xj))i,j is invertible in B, then one can find di such

that di(xj) = δi,j .

Conclusion :
Assuming that A is satisfied, we have decomposed U into U1 and U2 such that U2

satisfies the Kashiwara’s theorem and U1 = (id, U1) rather looks like a Lie superalgebra
morphism.

7.2 Kashiwara’s theorem for left modules.

We keep the same notations as in the previous paragraph.

Proposition 7.2.1 We assume that we are in the case where A is satisfied. We are
considering the Lie-Rinehart superalgebra morphism U2 : (A,MA) → (B,LB). Let

(x1, ..., xn) be an homogeneous set of generators of J and let (∂1, . . . , ∂n) be elements of

LB such that ∂i(xj) = δi,j. Put x̄i = xi+J
2. As (x1, . . . , xn) is regular for B (see appendix
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2), (x̄1, . . . , x̄n) is a basis for the A-module J/J2. Denote by ωx the basis of Ber(J/J2)

it defines. Let M be a left V(LB)-module. Then Ber(J/J2)⊗
A

JM is endowed with a left

V(MA)-module structure as follows. Using the isomorphism χx : A⊗
B

ΘB,x → MA, the

two natural operations

∀D ∈ ΘB,x, ∀m ∈ JM, ∀a ∈ A,

χx (1̄ ⊗D) ·
(
ωx ⊗m

)
= ωx ⊗D ·m(−1)n|D|

a ·
(
ωx ⊗m

)
= ωx ⊗ a ·m(−1)n|a|

define an action of (A,LB(J)/JLB) on Ber(J/J2)⊗
A

JM .

Proof of the proposition 7.2.1:

We have to check that the definition of the two operations does not depend on the
choice of the system (x1, . . . , xn, ∂1, . . . , ∂n). So let us consider another such system

(x′1, . . . , x
′
n, ∂

′
1, . . . , ∂

′
n). There exist (ai,j) ∈ Bn2

and (bi,j) ∈ Bn2

such that

x′j =
∑

i

xiai,j and xj =
∑

i

x′ibi,j .

Denote by āi,j = ai,j + J ∈ A. Then the matrices X = (āi,j) and Y = (b̄i,j) (with

coefficients in A) are inverse from each other. We have

ωx′ = Ber(X)ωx.

We have to verify that for all m in JM , the following equality holds

ωx′ ⊗

(
D −

∑

i

D(x′i)∂
′
i

)
(Ber(Y ) ·m) = ωx ⊗D ·m.

A computation shows that this amounts to prove that

∂′j
(
D(x′j)

)
·m =

∑

i

bj,iD(ai,j)(−1)|D||xi| ·m.

The proposition follows then from the formula

str
(
D(X)X−1

)
= D (ber(X)) ber(X−1)

whose proof is given in the appendix 1.

Remark :

If A is noetherian, using the appendix 3, we have the following isomorphism of left VB-
modules

VLB←MA
≃ VB/VBJ ⊗

A
Ber

(
J/J2

)∗
.

We can now state the analog of the theorem 7.1.4 for left modules.
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Theorem 7.2.2 We keep the same assumptions and notations as in the previous propo-

sition. Moreover, we assume that A is noetherian.
1) Let N be a left V (MA)-module. The map

α : N → Ber(J/J2)⊗
A

Γ1
J

(
VLB←MA

⊗
V(MA)

N

)

n → ωx ⊗
((

1̄ ⊗ ω−1
x

)
⊗ n

)

(where 1̄ ∈ VB/VBJ) is a left V (MA)-module isomorphism.
2) Let M be a left V(LB)-module such that ΓJ(M) = M . The map

β : VLB←MA
⊗

V(MA)

(
Ber(J/J2)⊗

A
Γ1

J(M)
)

→ M
(
v̄ ⊗ ω−1

x

)
⊗
(
ωx ⊗m

)
→ v̄ ·m

(where v̄ ∈ VB/VBJ) is a left V(LB)-module isomorphism.

Proof of the theorem 7.2.2 :

Let (x1, . . . , xn, ∂1, . . . , ∂n) such that ∂i(xj) = δi,j. We have

L∗B = ⊕iB∂
∗
i ⊕ Θ∗B,x.

As [ΘB,x, ∂i] ⊂ ΘB,x, if we write Ber(L∗B) = ω[∂∗
i
] ⊗ Ber(Θ∗B,x), we have

∀D ∈ ΘB,x, ∀σ ∈ Ber(Θ∗B,x),(
ω[∂∗

i
] ⊗ σ

)
·D = ω[∂∗

i
] ⊗ σ ·D.

With this remark, one can check that α is a left V (MA)-module morphism. Clearly, β is
a left VB-module morphism. For the rest of the proof, we refer the reader to [3] p 261.

Corollary 7.2.3 Under the same hypothesis as in the previous theorem, there is an equiv-

alence of category between the category of left V(LB)-modules such that ΓJ(M) = M and
the category of left V(MA)-modules.

7.3 An application of Kashiwara’s theorem.

Let (B,LB) be a k − B-Lie superalgebra. Let J be an ideal of B. Put A = B/J

and MA = LB(J)/JLB. Put VB = V(B,LB) and VMA
= V(A,MA). We have a natural

imbedding U2 : (A,MA) → (B,LB) for which the tranfer module is VB/JVB.

Definition 7.3.1 Let M be a VMA
-module. We put

CoindVB

VMA
(M) = HomVMA

(VB/JVB,M) .

CoindVB

VMA
(M) is naturally endowed with a left VB-module structure as follows. For all ϕ

in CoindVB

VMA
(M), ū in VB/JVB and all v in VB,

< ū, v · ϕ >=< uv, ϕ > .
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From now on, we assume that we can find homogeneous generators x = (x1, . . . , xn) in

J and (∂1, . . . , ∂n) in LB such that ∂i(xj) = δi,j . We assume that (x1, . . . , xr) are even
whereas (xr+1, . . . , xn) are odd. Under this assumption, we have the following character-

ization of coinduced modules which is due to Levasseur ([17]). Denote by S the category
of left VB-modules which are Hausdorff and complete for the J-adic topology.

Proposition 7.3.2 Let M be a VMA
-module. CoindVB

VMA
(M) belongs to S.

Theorem 7.3.3 There exists an equivalence of categories between S and the category of

left VMA
-modules given by the following functors :

M ∈ Modl
VMA

7→ CoindVB

VMA
(M) ∈ S

W ∈ S 7→ W/JW ∈ Modl
VMA

Let W be a VB-module. VB being a projective B-module, it is flat. So it is the same to

derive ΓJ in the category of VB-modules and in the category of B-modules. So that the
Hj

J(W ) are naturally endowed with a VB-module structure.

Proposition 7.3.4 Let M be a VMA
-module. Under the same assumptions and notations

as before, Hr
J

(
CoindVB

VMA
(W )

)
and U2+(M) are canonically isomorphic as left VB-modules.

Proof of the proposition 7.3.4

Using Kashiwara’s theorem for left modules, we get

Hr
J(W ) ≃ U2+

(
Ber

(
J/J2

)
⊗
A

Extr
B (B/J,W )

)
.

But we have the following well known A-module isomorphism :

Extr
B (B/J,W ) ≃ Ber(J/J2)∗⊗

A
W/JW

(see [2] theorem 4.5 p. 13). Using the notations of the appendix 2 for the definition of

Kx = (S(ΠL), d), if we let ΘB,x act trivially on the li’s, then the components of the Koszul
complex are ΘB,x-modules and d is a ΘB,x- morphism. Then, one can see that the map

M = W/JW → Extr
B(B/J,W )

m 7→ ω−1
x ⊗m

is a ΘB,x-module isomorphism. This allows to finish the proof of the proposition.

Remarks :
1) One can show that if i 6= r, H i

J(W ) equals 0 (see [9]).

2) Assume that we are in the following situation : Let g be a Lie superalgebra and h be a
Lie subsuperalgebra of finite codimension. We put B = Coindg

h(k) and VB = V(B,B#g).

J will be the maximal ideal of B. If M is an h-module and r the dimension of (g/h)0̄.
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Then, applying the proposition 7.3.4, we get that the left VB-modules Hr
J

(
Coindg

h(M)
)

and U2+(M) are isomorphic. Then, using an induction criterion ([17], [8]), it is not hard

to see that
U2+(M) = VB/VBM ⊗

U(h)
(M ⊗ Ber (g/h)) .

So that
Hr

J

(
CoindVB

VMA
(W )

)
≃ VB/VBM ⊗

U(h)
(M ⊗ Ber (g/h)) .

We recover the result of [8] (theorem 3.1.1) but, in [8], the isomorphism we got was not

canonical whereas here it is.

8 The duality property

8.1 The duality functor.

In this paragraph, we will assume that A is noetherian. (A,LA, σA) will be a Lie-
Rinehart superalgebra such that LA is a finitely generated projective A-module with a

rank rk(LA) = d0 + ǫd1. We will put for simplicity VA = V(A,LA, σA). We will denote

by D−c
(
Modl

VA

)
the derived category of bounded above complexes of finitely generated

VA-modules.

Definition 8.1.1 Let M• be a bounded above complex of left VA-modules. We put

DA(M•) = RHom (M•,VA)⊗
A

Ber(LA)[d0].

DA(M•) is a bounded below complex of left VA-modules.

Proposition 8.1.2 Let M be a left VA-module which is a finitely generated projective

A-module. Then DA(M) is isomorphic to HomA(M,A) in D+(Modl
VA

).

Remark :

This property is known for D-modules ([11] p. 106).

This proposition was already proved for M = A in [7] (theorem 5.4.1). We leave it to
the reader to adjust the proof to the case where M is only a finitely generated projective

A-module.

8.2 A duality property.

In this paragraph, we will assume that A and B are noetherian supercommuta-
tive associative superalgebras with unity. (A,LA, σA) (respectively (B,LB, σB)) will

be a Lie-Rinehart superalgebra such that LA (respectively LB) is a finitely generated
projective A-module (respectively B-module) with a rank. We will put for simplicity

VA = V(A,LA, σA) and VB = V(B,LB, σB) .
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Theorem 8.2.1 Let U = (u, U) : (A,LA) → (B,LB) be an imbedding. Put A =

B/J . We assume that the hypothesis A is satisfied and we introduce as before MA =
LB(J)/JLB. Then

Ω−1
MA/LA

= HomA (Ber(L∗A),Ber(M∗
A)) [erk(MA) − erk(LA)]

is a complex of left VA-modules. Let M• be bounded above complex of finitely generated
VA-modules. DB ◦ U+(M• ⊗ Ω−1

MA/LA
) and U+ ◦ DA(M•) are functorially isomorphic in

D+
(
Modl

VB

)

Proof of the theorem 8.2.1
We adjust the proof for D-modules ([3] p 261) to our case. Let us first prove the theorem

in the case of the left module VA. Let x = (x1, . . . , xn) be homogeneous generators of J
such that there exists (∂1, . . . , ∂n) in Ln

B satisfying ∂i(xj) = δi,j for all i and j in [1, n].

We assume that (x1, . . . , xr) are even and (xr+1, . . . , xn) are odd.
Using the appendix 3, we have the following isomorphism of left VB-modules

VLB←LA
≃ VB/VBJ⊗

A
ΩMA/LA

⊗
A

Ber(J/J2)∗.

where, on the right hand side, VB acts by left multiplication. Hence

(DB ◦ U+)
(
VA ⊗ Ω−1

MA/LA
)
)

= RHomVB

(
VB/VBJ⊗

A
Ber(J/J2)∗,VB

)
⊗
B

Ber(LB)[r + erk(LA)].

As VB is a projective B-module, we have

(DB ◦ U+)(VA ⊗ Ω−1
MA/LA

) ≃ RHomB

(
Ber(J/J2)∗,VB

)
⊗
B

Ber(LB)[r + erk(LA)].

As x is a regular sequence, using results and notations of the appendix 2, we get

(DB ◦ U+)
(
VA ⊗ Ω−1

MA/LA
)
)

≃ HomB (Kx,VB)⊗
B

Ber(LB)[erk(LA)]

≃ Kx⊗
B
VB⊗

B
Ber(LB)[erk(LA)].

So, using again the property of the Koszul complex (see appendix 2), we see that this

complex of VB-modules is quasi-isomorphic to VB/JVB⊗
B

Ber(LB)[erk(LA)] (where VB acts

by right multiplication turned to a left action). This quasi-isomorphism does not depend
on the choice of (x1, . . . , xn, ∂1, . . . , ∂n). Moreover VA ⊗ Ω−1

MA/LA
is a right VA-module by

right multiplication on VA. Along all the previous isomorphisms, one may keep track of
this action as follows. On VB/VBJ⊗

A
Ber(J/J2)∗, this right action becomes

∀v̄ ∈ VB/VBJ, ∀∆ ∈ ΘB,x,
(
v̄ ⊗ ωx

)
· 1 ⊗ ∆ = v∆ ⊗ ωx.

Then we let ΘB,x act on Kx as in the proof of the proposition 7.3.4. Finally one can

see that our computations transform this right VA-action into the left VA action on
VB/JVB⊗

B
Ber(LB) given by the definition 4.0.3 b).
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On another hand, we have the following isomorphisms of complexes of left VB-modules.

(U+ ◦DA)(VA) = U+

(
Vr

A⊗
A

Ber(LA)
)

[erk(LA)]

≃ Vr
A⊗
VA

VB/JVB⊗
B

Ber(LB)[erk(LA)]

≃ VB/JVB⊗
B

Ber(LB)[erk(LA)]

Right multiplication on VA transforms as before.

So, we have constructed a quasi-isomorphism between the complexes of VB-modules
(DB ◦ U+)(VA) and (U+ ◦DA)(VA) commuting with right multiplication by VA (that is to

say with the endomorphisms of VA considered as a left VA-module).

To extend our construction to any bounded above complex of finitely generated VA-
modules, we proceed as in [3] p. 280.

Remarks

1) This duality theorem is well known for D-modules (see [3] p. 178).
2) Assume that we are in the Lie superalgebra case. We have a finite dimensional Lie

superalgebra g and h a subsuperalgebra of g. Let h0 be the even dimension of h. The

tranfer modules are

Vh→g = U(g) andVg←h = Ber(h∗) ⊗ U(g) ⊗ Ber(g).

Using an induction criterion ([17],[8] p. 380), it is not hard to see that, if V is a h-module,

Ber(h∗) ⊗ U(g) ⊗ Ber(g) ≃ U(g) ⊗
U(h)

(V ⊗ Ber (g/h)) .

So that, if V is finite dimensional, the duality theorem gives

Exti
U(g)

(
Indg

h(V ), U(g)
)

=

{
INDg

h(V
∗ ⊗ Ber(h∗)) if i = h0

0 if i 6= h0.

We recover a duality result proved independantly by Brown and Levasseur ([5]) and by
Kempf ([14]) when g is semi-simple and V is a Verma module. This duality theorem was

extended in [7] but, in [7], only h is supposed to be finite dimensional.
3) We have :

Theorem 8.2.2 The notations and the assumptions are the same as in the theorem 8.2.1.
Put LA = h0 + ǫh1. Let M be a left VA-module which is a finitely generated projective

A-module. On ṼB = Ber(L∗B)⊗
B
VB, there are two right VB-module structures which com-

mute. The first one is obtain by right multiplication. The second one is obtained by

transformation of left multiplication into a right VB-module structure. We have

Exti
VB

(
U r

+

(
M⊗

A
Ber (LB(J)/JLB)∗

)
, ṼB

)
=





0 if i 6= h0

U r
+

(
M∗⊗

A
Ber(LA)∗

)
if i = h0.
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where the Ext is taken over right VB-modules and affects the second right module structure

on ṼB.

The proof of the theorem 8.2.2 is left to the reader.

Example

PutB=Coindg
h(k), LB = B#g. Let M be the maximal ideal ofB. We have LB(M)/MLB =

h. Let h′ be a subsuperalgebra of h. Put dimh′ = h0 + ǫh1 and V = V (B,B#g)

Exti
VB

(
(M ⊗ Ber(h∗)) ⊗

U(h′)
V/MV, Ṽ

)
=





0 if i 6= h0

(M∗ ⊗ Ber(h′)∗) ⊗
U(h′)

V/MV if i = h0.

9 Appendices

9.1 Appendix 1.

In this appendix, we will prove a formula linking the supertrace ([15] p. 14) and the
Berezinian.

Proposition 9.1.1 Let C be a supercommutative associative superalgebra with unity. Let
X be an element of GL(r + ǫs, C) and D be in Der(C). We denote by D(X) the matrix

defined by
D(X)i,j = (−1)|row i||D|D(Xi,j).

We have
str
(
D(X)X−1

)
= D(Ber(X))BerX−1

Proof of the proposition 9.1.1 :

Let us first prove the non graded case We write X =



L1

. . .

Ln


 where Li is the ith line of

X. We have

D(det(X)) =
∑

i

det




L1

. . .
D(Li)

. . .
Ln



.

We then develop the first term following the first line, the second term following the

second line and so on. The result follows then from the expression of A−1 in terms of the
cofactor matrix and det(A).
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Let us now treat the graded case. Let X and Y be two elements of GL(r + ǫs, C). It

is easy to check the relation

D(XY ) = D(X)Y +XD(Y ).

We decompose X into four blocks following the parity of the lines and the columns. We
put (

A B

C D

)
.

We express X as a product of three matrices ( see [15] p 16)

X = X+X0X−

where

X+ ∈

{(
1 B
0 1

)}
, X0 ∈

{(
A 0
0 D

)}
and X− ∈

{(
1 0
C 1

)}
.

Then, thanks to the previous remark, it is enough to prove the proposition for X+, X0 and

X−. And, for these three latter matrices, the formula is obvious if one uses the explicit
expression of the Berezinian character ([15] p 15).

9.2 Appendix 2.

In this appendix we will recall some material about regular sequences in the supercase

([21]). All along this paragraph, B will be a supercommutative associative superalgebra
with unity.

Definition 9.2.1 Let M be a B-module. A sequence (x1, . . . , xn) of homogeneous ele-
ments of B is regular for M if, for all i in [1, n], the annihilator of xi in M/x1M + . . .+

xi−1M , AnnM/x1M+...+xi−1M(xi), is equal to
(
xi − (−1)|xi|xi

)
M/x1M + . . .+ xi−1M .

Assume that (x1, . . . , xr) are even and that (xr+1, . . . , xn) are odd. Let L be the free

B-module with dimension r + ǫ(n − r) and with basis (l1, . . . , ln) with (l1, . . . , lr) even

and (lr+1, . . . , ln) odd. On SB(ΠL), we put the differential equal to
∑

i xi
∂

∂(πli)
. We thus

define the Koszul complex associated to the sequence x = (x1, . . . , xn). Denote it by Kx.
Denote by Kx the dual complex. Lastly let J be the ideal generated by (x1, . . . , xn). We

have the following proposition.

Proposition 9.2.2 If (x1, . . . , xn) is regular, then

a) H0(Kx) = B/J and Hi(Kx) = 0 if i > 0.
b) Hr(Kx) = Ber (J/J2)

∗
and H i(Kx) = 0 if i 6= r.

We will now see an example of regular sequence.
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Proposition 9.2.3 Let (B,LB) be a k−B Lie-Rinehart superalgebra. Let M be a V(LB)-

module which is noetherian as a B-module. Assume that we have a sequence (x1, . . . , xn)
of homogeneous elements such that there exists (∂1, . . . , ∂n) in LB such that ∂i(xj) = δi,j .

Then (x1, . . . , xn) is regular in M .

This proposition is already proved in [24]. We give another proof.

Proof of the proposition 9.2.3 :

We will proceed by induction on n.
For n = 1:

If | x1 |= 0̄, we want to prove that Annx1
(M) = 0. Assume that there exists m in

M − {0} such that x1m = 0. Consider the sequence of increasing graded B-submodules

In = {a ∈ M/xn
1a = 0}.

For all n in N, ∂n
1m ∈ In+1 − In. So that the sequence In does not become stationnary.

This contredicts the noetherianity hypothesis. Hence Annx1
(M) = 0.

If | x1 |= 1̄, it is easy to prove that Annx1
(M) = x1M .

Let B < ∂1 > be the Lie-Rinehart subsuperalgebra of LB generated by B and ∂1. For

the case n = 1, we have just used the fact that M was a B < ∂1 >-module.
Assume now that we have proved that (x1, . . . , xi−1) is regular, then as M/x1M +

. . .+ xi−1M is a B < ∂i >-module, we may use the case n = 1, to finish the proof of the
proposition.

9.3 Appendix 3.

Let (A,LA, σA) (respectively (B,LB, σB)) be a Lie-Rinehart superalgebra such that

LA (respectively LB) is a finitely generated projective A-module (respectively B-module)
with a rank.

Proposition 9.3.1 Let U = (u, U) : (A,LA) → (B,LB) be a closed imbedding. Put A =
B/J . We assume that the hypothesis A is satisfied and that A is noetherian. Introduce

as before MA = LB(J)/JLB. Put

Ω−1
MA/LB

=
(
A⊗

B
Ber(L∗B)

)
⊗
A

Ber(MA).

Ω−1
MA/LB

is a free A-module canonically isomorphic to Ber(J/J2).

Remark :
The noetherianity condition is here to insure that LB(J)/JLB is a finitely generated A-

module.
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Proof of the proposition 9.3.1 :

Using the isomorphism

Ω−1
MA/LB

= Ber(⊕iA∂
∗
i )⊗

A
Ber(A⊗BΘB,x)

∗⊗
A

Ber(MA) where < ∂i, ∂
∗
j >= δi,j,

one can see easily that Ω−1
MA/LB

is isomorphic to Ber(⊕iA∂
∗
i ). Denote by Ωx the basis of

Ω−1
MA/LB

defined by the ∂i’s. We want to investigate how Ωx behaves under a change of

coordinates. Let us consider another system (x′1, . . . , x
′
n, ∂

′
1, . . . , ∂

′
n) such that ∂

′

i(x
′

j) = δi,j .

There exist (ai,j) ∈ Bn2

and (bi,j) ∈ Bn2

such that

x′j =
∑

i

xiai,j and xj =
∑

i

x′ibi,j .

Denote by āi,j = ai,j + J ∈ A. Then the matrices X = (āi,j) and Y = (b̄i,j) (with

coefficients in A) are inverse from each other.
By a localization argument, we put ourselves in the case where LB(J)/JLB is a

finitely generated free A-module and let (e1, ..., ep) be a basis of LB(J)/JLB. Then,
(∂1, . . . , ∂n, χ

−1
x (e1), . . . , χ

−1
x (ep)) and (∂′1, . . . , ∂

′
n, χ

−1
x′ (e1), . . . , χ

−1
x′ (ep)) are two basis of

A⊗
B
LB. We will denote by (∂∗1 , . . . , ∂

∗
n, χ

−1
x (e1)

∗, . . . , χ−1
x (ep)

∗) and

(∂
′∗
1 , . . . , ∂

′∗
n , χ

−1
x′ (e1)

∗, . . . , χ−1
x′ (ep)

∗) their dual basis. One can prove that :

∂
′∗
k =

∑n
i=1 ∂

∗
j · āj,k

χ−1
x′ (ej)

∗ = χ−1
x (ej)

∗ +
∑

i ∂
∗
i · < ∂i, χ

−1
x′ (ej)

∗ > .

In the latter equalities, we consider A⊗BL∗B as a right A-module which allows us to use

matrices (see [18] p.168). The transfer matrix from (∂∗1 , . . . , ∂
∗
n, χ

−1
x (e1)

∗, . . . , χ−1
x (ep)

∗) to

(∂
′∗
1 , . . . , ∂

′∗
n , χ

−1
x′ (e1)

∗, . . . , χ−1
x′ (ep)

∗) is of the form

(
(ai,j) ∗
(0) I

)
.

So its Berezinian equals the Berezinian of X. Whence

Ωx′ = Ber(X)Ωx.

It is clear that this equality remains true in the case where LB(J)/JLB is only a projective
A-module. This finishes the proof of the proposition 9.3.1.
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