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Abstract

Using extremal projectors, Zhelobenko solved extremal equations in a generic
Verma module of a complex semi-simple Lie algebra. We will solve similar
equations in the semi-classical case. Our proof will be geometric. In the
appendix, we give a factorization for the extremal projector of the Virasoro
algebra in the semi-classical case.

Résumé

En utilisant les projecteurs extrémaux, Zhelobenko a résolu des équations
extrémales dans le cas d’un module de Verma générique d’une algèbre de
Lie semi-simple complexe. Nous résolvons des équations similaires dans le
cas semi-classique. Notre preuve sera géométrique. Dans l’appendice, nous
donnons une factorisation du projecteur extrémal pour l’algèbre de Virasoro
dans le cas semi-classique.

1 Introduction

Let g be a complex semi-simple finite dimensional Lie algebra, h a Cartan
subalgebra of g and ∆ the root system associated to h. We will write ∆+

(respectively ∆−) for the set of positive (respectively negative) roots of ∆

and put ρ =
1

2

∑

γ∈∆+

γ. We will denote by B = (α1, . . . , αl) the set of simple
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roots. Let gγ be the root space associated to the root γ. We put

n = ⊕
γ∈∆+

gγ , b = h⊕ n , n− = ⊕
γ∈∆+

g−γ .

Let R(h) be the field of rational functions on h∗. One introduces the al-
gebra U ′(g) = U(g) ⊗

S(h)
R(h). Let us consider the generic Verma module

V =
U ′(g)

U ′(g)n
. Zhelobenko ([Z1]) showed that V n = R(h)1+ (where 1+ =

1 + U ′(g)n). The decomposition V = n−V ⊕ R(h)1+ defines a projector p
onto R(h)1+ called the extremal projector. Inspired by a work of Asherova,
Smirnov and Tolstoy ([A-S-T]), Zhelobenko ([Z1]) showed that p factorizes
into elementary projectors. Let (γ1, . . . , γm) be a normal ordering on the
positive roots. Introduce the following notations:

pα =
∞
∑

k=0

(−1)k

k!fα,k
ek−αe

k
α

fα,0 = 1,
if k > 0, fα,k = (hα + ρ(hα) + 1) . . . (hα + ρ(hα) + k)

(eδ being the root vector associated to the root δ and hδ the coroot). We
have p = pγ1 . . . pγm ([Z1]). Let w = s1 . . . sj be a reduced decomposition of
w ∈ W (with sk = sβk

, βk a simple root ). Put wi = s1 . . . si. The roots
γi = wi−1(βi) (w0 = 1) are pairwise distinct and

∆w = {α ∈ ∆+ | w−1(α) < 0} = {γ1, . . . , γj}.

Put nw = ⊕
α∈∆w

gα. In [Z2], Zhelobenko gives an explicit description of V nw .

We will establish similar results for the symmetric algebra (the so-called
semi-classical case).

Let us consider the analytic manifold (g/n)∗. We will endow it with

the following coordinate system
(

(e−α)α∈∆+
, (hαi

)i∈[1,l]
)

. We will call Uδ the

open subset of (g/n)∗ defined by the equation hδ 6= 0. We define Φδ to be
the following rational map of Uδ:

∀λ ∈ Uδ, Φδ(λ) = exp

(

e−δ(λ)

hδ(λ)
eδ

)

· λ
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where the dot denotes natural action of n on (g/n)∗. By composition, Φδ

defines an algebra morphism of A(Uδ) which we call πδ. We put

Uw = Uγ1 ∩ . . . ∩ Uγj .

We will denote by P(Uw) (respectively A(Uw)) the set of regular functions
(respectively analytic functions) on Uw and we will write P(Uw)

nw (respec-
tively A(Uw)

nw) the set of invariant functions of P(Uw) (respectively A(Uw))
under the action of nw. We prove the following result:

Theorem The algebra morphism πw = πγ1 ◦ . . . ◦πγj does not depend on
the reduced expression of w. It establishes an isomorphism between

Cw = {f ∈ A(Uw) |
∂f

∂e−γ1

= . . .
∂f

∂e−γj

= 0}

and A(Uw)
nw . Moreover πw sends Cw ∩ P(Uw) onto P(Uw)

nw .

Let Nw be the connected simply connected group whose Lie algebra is
nw. The main ingredient of the proof will be the choice of a point in each
Nw-orbit lying in Uw in accordance with the following proposition :

Proposition Let λ be in Uw. The point ΦγjΦγj−1
. . .Φγ1(λ) is the unique

point of the orbit Nw · λ whose coordinates e−γ1 , . . . , e−γj vanish.

In the appendix, we shall give a factorization for the extremal projector
of the Virasoro algebra in the semi-classical case. Note that the non commu-
tative case is still open. It is very different from the semi-simple case because
the Virasoro algebra does not admit any normal ordering.

Notations

Along all this article g will denote a complex semi-simple finite dimen-
sional Lie algebra and h,∆,∆+,∆−, n, n−, B = (α1, . . . , αl) will be as above.
Denote by W the Weyl group associated to these choices and w its longest
element. Let γ be an element of ∆+ and let hγ be the unique element of
[gγ , g−γ] such that γ(hγ) = 2. If eγ is in gγ, then there exists a unique e−γ

such that (hγ, eγ , e−γ) is a sl(2)-triple. If α and β are two roots, we set
[eα, eβ] = Cα,βeα+β with the convention that Cα,β is zero if α + β is not a
root.
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The ordering (γ1, . . . , γm) on the positive roots is normal if any composite
root is located between its components. Thus for all positive roots γi, γj, γk,
the equality γk = γi+γj implies i ≤ k ≤ j or j ≤ k ≤ i. There is a one to one
correspondence between normal orderings and reduced expression of w ([Z2]).
Let us recall it. Denote by si the reflexion with respect to a simple root βi.
If w = s1 . . . sm, then (β1, s1(β2), . . . , s1 . . . si−1(βi), . . . , s1 . . . sm−1(βm)) are
in normal ordering.

If V is a vector space, S(V ) will be the symmetric algebra of V . Lastly,
if P is in S(V ), S(V )P will be the localization of S(V ) with respect to
{P n | n ∈ N}.

Acknowledgments

I would like to thank M. Duflo for suggesting to me to study the semi-
classical case and for helpful discussions. I am grateful to the referee for
indicating to me that the main theorem could be proved in a geometric way.

2 Extremal equations in (g/n)∗

We consider (g/n)∗ as an analytic manifold. We endow it with the following

coordinate system
(

(e−α)α∈∆+
, (hαi

)i∈[1,l]

)

. If δ is a positive root, we will

denote by Uδ the open subset of (g/n)∗ defined by the equation hδ 6= 0. If U
is an open subset for the Zariski topology, we will write A(U) for the algebra
of analytic functions on U and P(U) for the algebra of regular functions on
U . We will define Φδ to be the following rational map of Uδ

∀λ ∈ Uδ, Φδ(λ) = exp

(

e−δ(λ)

hδ(λ)
eδ

)

· λ.

By composition, Φδ defines an algebra morphism of A(Uδ) which we call πδ.
We will denote by Xδ the natural action of eδ on P(Uδ). Remark that Xδ is
a derivation. If f is in P(Uδ), we have

(∗) πδ(f) =
∞
∑

k=0

(−1)k
ek−δ

k!hk
δ

Xk
δ · f

where e−δ denotes the multiplication by e−δ. The operator πδ is the commu-
tative analog of the Zhelobenko’s elementary projector.
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Let w = s1 . . . sj be a reduced decomposition of w ∈ W (with sk =
sβk

, βk ∈ B). Put wi = s1 . . . si. The roots γi = wi−1(βi) (w0 = 1) are
pairwise distinct and

∆w = {α ∈ ∆+ | w−1(α) < 0} = {γ1, . . . , γj}.

An ordering in ∆w is called normal if it coincides with the initial segment
of some normal ordering in ∆+ (that is compatible with one of the reduced
expression of w). Note that (γ1, . . . , γj) is a normal ordering of ∆w. Put

Uw =
⋂

δ∈∆w

Uδ.

We have

P(Uw) =

(

S(g)

S(g)n

)

hγ1
...hγj

= S
(

g

n

)

hγ1
...hγj

.

We will denote by Nw the connected and simply connected group whose Lie
algebra is nw = ⊕

α∈∆w

gα. We will start by proving the following proposition.

Proposition 2.1 Let λ be in Uw. The point ΦγjΦγj−1
. . .Φγ1(λ) is the unique

point of the orbit Nw ·λ whose coordinates e−γ1 , . . . , e−γj vanish. In particular
ΦγjΦγj−1

. . .Φγ1 does not depend on the normal ordering on ∆w.

Proof of the proposition 2.1:
Complete (γ1, . . . , γj) into a normal ordering on the positive roots (γ1, . . . , γm).
g/n is endowed with the basis (e−γ1 , . . . , e−γm , hα1

, . . . , hαl
). Let

(

e∗−γ1
, . . . , e∗−γm

, h∗
α1
, . . . , h∗

αl

)

be the dual basis. We will often identify the
point aγ1e

∗
−γ1

+ . . . + aγme
∗
−γm

+ b1h
∗
α1

+ . . . + blh
∗
αl

with its coordinates
(aγ1 , . . . , aγm , b1, . . . , bl). Let us see that there is a unique point in Nw ·λ whose
coordinates e−γ1 , . . . , e−γj vanish. Assume that there are two such points f =
(0, . . . , 0, aγj+1

, . . . , aγm , b1, . . . , bl) and f ′ = (0, . . . , 0, a′γj+1
, . . . , a′γm , b

′
1, . . . , b

′
l).

Then there exist complex numbers (t1, . . . , tj) such that
exp(t1eγ1 + . . .+ tjeγj ) · f = f ′. One can show easily the following equalities

eγl · e
∗
−γk

= −Cγl,−γke
∗
−γl−γk

eγl · h
∗
−αi

= −h∗
−αi

(hγl)e
∗
−γl

.

From these equalities, one deduces easily that the term in e∗−γ1
of exp(t1eγ1 +

. . .+ tjeγj ) · (0, . . . , 0, aγj+1
, . . . , aγm , b1, . . . , bl) is −t1f(hγ1). As f is in Uw, we
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get t1 = 0. We reproduce the same reasoning to show that t2, t3, . . . , tj are
zero. So that we have proved that the two points f and f ′ coincide. It is not
difficult to deduce from the normal ordering property that Φγi sends the point
(xγ1 , . . . , xγm , y1, . . . , yl) to a point (x′

γ1
, . . . , x′

γi−1
, 0, x′

γi+1
, . . . , x′

γm
, y1, . . . , yl)

and that it sends the point (0, . . . , 0, xγi , . . . , xγm , y1, . . . , yl) to a point
(0, . . . , 0, x′

γi+1
, . . . , x′

γm
, y1, . . . , yl). So that ΦγjΦγj−1

. . .Φγ1(λ) is the unique
point of Nw · λ whose coordinates e−γ1 , . . . , e−γj vanish. This finishes the
proof of the proposition 2.1.

As a consequence of the previous proposition, we may write Φw for the
operator ΦγjΦγj−1

. . .Φγ1 . The algebra homomorphism defined by Φw on
A(Uw) will be denoted by πw. Using the proposition 2.1, we will give a
geometric proof of the following result.

Theorem 2.2 1) If nw denotes the linear hull of (e−α)α∈∆w
, one hasKerπw =

nwA(Uw).
2) The operator πw is the projector onto A(Uw)

nw with kernel nwA(Uw)
and its restriction to P(Uw) is the projector onto P(Uw)

nw with kernel nwP(Uw).
3) The operator πw establishes an isomorphism Πw between

Cw = {f ∈ A(Uw) |
∂f

∂e−γ1

= . . .
∂f

∂e−γj

= 0}

and A(Uw)
nw . Moreover Πw sends Cw ∩ P(Uw) onto P(Uw)

nw . If f is in
A(Uw)

nw , Π−1
w (f) is the restriction of f to the subvariety of equations e−γ1 =

. . . = e−γj = 0.

Proof of the theorem 2.2:
From the previous proposition, the inclusion nwA(Uw) ⊂ Kerπw is clear.
Moreover, a standard reasoning shows that

A(Uw) = Cw ⊕ nwA(Uw).

Then one sees easily that Kerπw ∩ Cw = {0}. So that we have nwA(Uw) =
Kerπw.

Let us now show that Imπw = A(Uw)
nw and that πw is a projector. Let

α be in ∆w. For any f in A(Uw) and any λ in Uw, we have

(eα ◦ πw) (f)(λ) =
d

dt
f
(

Φγj . . .Φγ1exp(−teα)λ
)

|t=0
.
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But for any t, Φγj . . .Φγ1exp(−teα)λ is the unique point of Nw · λ whose
coordinates e−γ1 , . . . , e−γj vanish. So that eα ◦ πw = 0. We have thus proved
the inclusion Imπw ⊂ A(Uw)

nw . Now it is clear that πw is a projector : check
that πw◦πw = πw on coordinates using the formula (*). The reverse inclusion
A(Uw)

nw ⊂ Imπw will be a consequence of the following lemma.

Lemma 2.3 Let k be in [1, j] and let f be in A(Uw). If Xγkf = 0, then
πγkf = f .

Proof of the lemma 2.3 :
We first remark that (πγk(e−γ1), . . . , πγk(e−γk−1

), e−γk , πγk(e−γk+1
), . . . , πγk(e−γm),

hα1
, . . . , hαl

) is a coordinate system in Uw. Indeed, one may see by induc-
tion that for any i ≤ k − 1 (respectively i ≥ k + 1), e−γi may be ex-
pressed as a regular function of (πγk(e−γ1), . . . , πγk(e−γi), hα1

, . . . , hαl
) (re-

spectively (πγk(e−γi), . . . , πγk(e−γm), hα1
, . . . , hαl

) ). We put (ǫ1, . . . , ǫm+l) =
(

πγk(e−γ1), . . . , πγk(e−γk−1
), e−γk , πγk(e−γk+1

), . . . , πγk(e−γm), hα1
, . . . , hαl

)

. In

these coordinates, we have Xγk = hγk

∂

∂ǫk
. So that if Xγkf = 0, then f does

not depend on ǫk and it becomes clear that there exists g such that f = πγkg.
As πγk is a projector, we have πγkf = πγkπγkg = πγkg, which finishes the proof
of the lemma.
It is clear from the proof that πw sends Cw ∩ P(Uw) onto P(Uw)

nw .

In particular πw|P(Uw) is the projector onto S(h)hγ1
...hγm

with kernel n−P(Uw).
By analogy to Asherova, Tolstoy, Smirnov and Zhelobenko’s work, we will
call it the extremal projector.

The proposition 2.1 gives a geometric interpretation of the projector πw.

3 Appendix : Extremal projector for the Vi-

rasoro algebra in the semi-classical case

In this section, we shall give a factorization of the Virasoro algebra extremal
projector in the semi-classical case. Note that the non commutative case is
still open. It is very different from the semi-simple case because the Virasoro
algebra does not admit any normal ordering. Recall that the Virasoro algebra
V ir is the infinite dimensional Lie algebra generated by {ei | i ∈ Z} ∪ {c}
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with commutation rules

[ei, ej] = (j − i) ei+j +
(j3 − j)

12
δi+j,0c, [ei, c] = 0.

V ir admits the following triangular decomposition

V ir = V ir+ ⊕ V ir0 ⊕ V ir−

where
V ir+ = ⊕

i≥1
Cei, V ir0 = Ce0 ⊕ Cc, V ir− = ⊕

i≤−1
Cei.

We will also use the notation

V irr,+ = ⊕
i≥r

Cei and V irr,− = ⊕
i≤−r

Cei.

V irr,+ and V irr,− are Lie subalgebras of V ir.
Let R(V ir0) be the field of fractions of S(V ir0). We introduce the algebra

S ′(V ir) = S(V ir) ⊗
S(V ir0)

R(V ir0) = S ′ (V ir/V ir−) .

There is a natural action of V ir− on S ′ (V ir/V ir−). Through this action, for

any negative i, ei defines a derivation Xi of S
′

(

V ir

V ir−

)

. Set

Tr =

(

S ′(V ir)

S ′(V ir)V ir−

)V irr,−

The result and the proof of the following lemma is left to the reader.

Lemma 3.1

Tr = ⊕
k1,...,kr−1∈N

R(V ir0)e
k1
1 . . . e

kr−1

r−1

As a consequence of the lemma 3.1, we have the following decomposition

S ′ (V ir/V ir−) = Tr ⊕ V irr,+S
′ (V ir/V ir−) .

The proof of the next lemma is an easy computation.
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Lemma 3.2 For any i > 1, the operator πi =
∞
∑

k=0

(−1)k

k!
(

2ie0 +
(i3−i)c

12

)k
ekiX

k
−i

is an algebra morphism and satisfies the relations

X−i ◦ πi = 0 and πi ◦ ei = 0

(where ei denotes multiplication by ei).

It is not hard to see that the operator Πr =
∞
∏

i=r

πi is well defined. Actually

∞
∏

i=r

πi(e
a1
1 . . . eakk ) =

∏

r≤i≤k

πi(e
a1
1 . . . eakk ) = 0 (by the lemma 3.2).

Theorem 3.3 The operator Πr satisfies the relations

∀i ≥ r, X−i ◦ Πk = 0, Πk ◦ ei = 0.

It is the projector onto Tr with kernel V irr,+S
′

(

V ir

V ir−

)

.

In particular, Π1 is the extremal projector.

Proof of the theorem 3.3
The relations of a) are easy to check and they prove that Πr is a projector.
To prove that the kernel of Πr is V irr,+, we proceed as in the semi-simple
case. The inclusion ImΠr ⊂ Tr is a consequence of a). To prove the reverse
inclusion, remark that if x is in Tr, then Πrx = x, so that x is in ImΠr.
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