Extremal projectors in the semi-classical case

Sophie Chemla

September 16, 1997

Abstract

Using extremal projectors, Zhelobenko solved extremal equations in a generic Verma module of a complex semi-simple Lie algebra. We will solve similar equations in the semi-classical case. Our proof will be geometric. In the appendix, we give a factorization for the extremal projector of the Virasoro algebra in the semi-classical case.

Résumé

En utilisant les projecteurs extrémaux, Zhelobenko a résolu des équations extrémales dans le cas d'un module de Verma générique d'une algèbre de Lie semi-simple complexe. Nous résolvons des équations similaires dans le cas semi-classique. Notre preuve sera géométrique. Dans l'appendice, nous donnons une factorisation du projecteur extrémal pour l'algèbre de Virasoro dans le cas semi-classique.

1 Introduction

Let \mathfrak{g} be a complex semi-simple finite dimensional Lie algebra, \mathfrak{h} a Cartan subalgebra of \mathfrak{g} and Δ the root system associated to \mathfrak{h} . We will write Δ^+ (respectively Δ^-) for the set of positive (respectively negative) roots of Δ and put $\rho = \frac{1}{2} \sum_{\gamma \in \Delta^+} \gamma$. We will denote by $B = (\alpha_1, \ldots, \alpha_l)$ the set of simple roots. Let \mathfrak{g}_{γ} be the root space associated to the root γ . We put

$$\mathfrak{n} = \underset{\gamma \in \Delta^+}{\oplus} \mathfrak{g}_{\gamma}, \quad \mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n} \quad , \mathfrak{n}_- = \underset{\gamma \in \Delta^+}{\oplus} \mathfrak{g}_{-\gamma}$$

Let $R(\mathfrak{h})$ be the field of rational functions on \mathfrak{h}^* . One introduces the algebra $U'(\mathfrak{g}) = U(\mathfrak{g}) \underset{S(\mathfrak{h})}{\otimes} R(\mathfrak{h})$. Let us consider the generic Verma module

 $V = \frac{U'(\mathfrak{g})}{U'(\mathfrak{g})\mathfrak{n}}$. Zhelobenko ([Z1]) showed that $V^{\mathfrak{n}} = R(\mathfrak{h})1_+$ (where $1_+ = 1 + U'(\mathfrak{g})\mathfrak{n}$). The decomposition $V = \mathfrak{n}^- V \oplus R(\mathfrak{h})1_+$ defines a projector p onto $R(\mathfrak{h})1_+$ called the extremal projector. Inspired by a work of Asherova, Smirnov and Tolstoy ([A-S-T]), Zhelobenko ([Z1]) showed that p factorizes into elementary projectors. Let $(\gamma_1, \ldots, \gamma_m)$ be a normal ordering on the positive roots. Introduce the following notations:

$$p_{\alpha} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! f_{\alpha,k}} e^k_{-\alpha} e^k_{\alpha}$$

$$f_{\alpha,0} = 1,$$

if $k > 0, \ f_{\alpha,k} = (h_{\alpha} + \rho(h_{\alpha}) + 1) \dots (h_{\alpha} + \rho(h_{\alpha}) + k)$

 $(e_{\delta} \text{ being the root vector associated to the root } \delta \text{ and } h_{\delta} \text{ the coroot}).$ We have $p = p_{\gamma_1} \dots p_{\gamma_m}$ ([Z1]). Let $w = s_1 \dots s_j$ be a reduced decomposition of $w \in W$ (with $s_k = s_{\beta_k}, \beta_k$ a simple root). Put $w_i = s_1 \dots s_i$. The roots $\gamma_i = w_{i-1}(\beta_i)$ ($w_0 = 1$) are pairwise distinct and

$$\Delta_w = \{ \alpha \in \Delta_+ \mid w^{-1}(\alpha) < 0 \} = \{ \gamma_1, \dots, \gamma_j \}.$$

Put $\mathbf{n}_w = \bigoplus_{\alpha \in \Delta_w} \mathbf{g}_{\alpha}$. In [Z2], Zhelobenko gives an explicit description of $V^{\mathbf{n}_w}$. We will establish similar results for the symmetric algebra (the so-called semi-classical case).

Let us consider the analytic manifold $(\mathfrak{g}/\mathfrak{n})^*$. We will endow it with the following coordinate system $((e_{-\alpha})_{\alpha\in\Delta_+}, (h_{\alpha_i})_{i\in[1,l]})$. We will call U_{δ} the open subset of $(\mathfrak{g}/\mathfrak{n})^*$ defined by the equation $h_{\delta} \neq 0$. We define Φ_{δ} to be the following rational map of U_{δ} :

$$\forall \lambda \in U_{\delta}, \ \Phi_{\delta}(\lambda) = exp\left(\frac{e_{-\delta}(\lambda)}{h_{\delta}(\lambda)}e_{\delta}\right) \cdot \lambda$$

where the dot denotes natural action of \mathfrak{n} on $(\mathfrak{g}/\mathfrak{n})^*$. By composition, Φ_{δ} defines an algebra morphism of $\mathcal{A}(U_{\delta})$ which we call π_{δ} . We put

$$U_w = U_{\gamma_1} \cap \ldots \cap U_{\gamma_i}$$

We will denote by $\mathcal{P}(U_w)$ (respectively $\mathcal{A}(U_w)$) the set of regular functions (respectively analytic functions) on U_w and we will write $\mathcal{P}(U_w)^{\mathfrak{n}_w}$ (respectively $\mathcal{A}(U_w)^{\mathfrak{n}_w}$) the set of invariant functions of $\mathcal{P}(U_w)$ (respectively $\mathcal{A}(U_w)$) under the action of \mathfrak{n}_w . We prove the following result:

Theorem The algebra morphism $\pi_w = \pi_{\gamma_1} \circ \ldots \circ \pi_{\gamma_j}$ does not depend on the reduced expression of w. It establishes an isomorphism between

$$\mathcal{C}_w = \{ f \in \mathcal{A}(U_w) \mid \frac{\partial f}{\partial e_{-\gamma_1}} = \dots \frac{\partial f}{\partial e_{-\gamma_j}} = 0 \}$$

and $\mathcal{A}(U_w)^{\mathfrak{n}_w}$. Moreover π_w sends $\mathcal{C}_w \cap \mathcal{P}(U_w)$ onto $\mathcal{P}(U_w)^{\mathfrak{n}_w}$.

Let N_w be the connected simply connected group whose Lie algebra is \mathbf{n}_w . The main ingredient of the proof will be the choice of a point in each N_w -orbit lying in U_w in accordance with the following proposition :

Proposition Let λ be in U_w . The point $\Phi_{\gamma_j} \Phi_{\gamma_{j-1}} \dots \Phi_{\gamma_1}(\lambda)$ is the unique point of the orbit $N_w \cdot \lambda$ whose coordinates $e_{-\gamma_1}, \dots, e_{-\gamma_i}$ vanish.

In the appendix, we shall give a factorization for the extremal projector of the Virasoro algebra in the semi-classical case. Note that the non commutative case is still open. It is very different from the semi-simple case because the Virasoro algebra does not admit any normal ordering.

Notations

Along all this article \mathfrak{g} will denote a complex semi-simple finite dimensional Lie algebra and $\mathfrak{h}, \Delta, \Delta_+, \Delta_-, \mathfrak{n}, \mathfrak{n}_-, B = (\alpha_1, \ldots, \alpha_l)$ will be as above. Denote by W the Weyl group associated to these choices and \overline{w} its longest element. Let γ be an element of Δ^+ and let h_{γ} be the unique element of $[\mathfrak{g}_{\gamma}, \mathfrak{g}_{-\gamma}]$ such that $\gamma(h_{\gamma}) = 2$. If e_{γ} is in \mathfrak{g}_{γ} , then there exists a unique $e_{-\gamma}$ such that $(h_{\gamma}, e_{\gamma}, e_{-\gamma})$ is a sl(2)-triple. If α and β are two roots, we set $[e_{\alpha}, e_{\beta}] = C_{\alpha,\beta}e_{\alpha+\beta}$ with the convention that $C_{\alpha,\beta}$ is zero if $\alpha + \beta$ is not a root. The ordering $(\gamma_1, \ldots, \gamma_m)$ on the positive roots is normal if any composite root is located between its components. Thus for all positive roots $\gamma_i, \gamma_j, \gamma_k$, the equality $\gamma_k = \gamma_i + \gamma_j$ implies $i \leq k \leq j$ or $j \leq k \leq i$. There is a one to one correspondence between normal orderings and reduced expression of \overline{w} ([Z2]). Let us recall it. Denote by s_i the reflexion with respect to a simple root β_i . If $\overline{w} = s_1 \ldots s_m$, then $(\beta_1, s_1(\beta_2), \ldots, s_1 \ldots s_{i-1}(\beta_i), \ldots, s_1 \ldots s_{m-1}(\beta_m))$ are in normal ordering.

If V is a vector space, S(V) will be the symmetric algebra of V. Lastly, if P is in S(V), $S(V)_P$ will be the localization of S(V) with respect to $\{P^n \mid n \in \mathbb{N}\}.$

Acknowledgments

I would like to thank M. Duflo for suggesting to me to study the semiclassical case and for helpful discussions. I am grateful to the referee for indicating to me that the main theorem could be proved in a geometric way.

2 Extremal equations in $(\mathfrak{g}/\mathfrak{n})^*$

We consider $(\mathfrak{g}/\mathfrak{n})^*$ as an analytic manifold. We endow it with the following coordinate system $((e_{-\alpha})_{\alpha\in\Delta_+}, (h_{\alpha_i})_{i\in[1,l]})$. If δ is a positive root, we will denote by U_{δ} the open subset of $(\mathfrak{g}/\mathfrak{n})^*$ defined by the equation $h_{\delta} \neq 0$. If Uis an open subset for the Zariski topology, we will write $\mathcal{A}(U)$ for the algebra of analytic functions on U and $\mathcal{P}(U)$ for the algebra of regular functions on U. We will define Φ_{δ} to be the following rational map of U_{δ}

$$\forall \lambda \in U_{\delta}, \ \Phi_{\delta}(\lambda) = exp\left(\frac{e_{-\delta}(\lambda)}{h_{\delta}(\lambda)}e_{\delta}\right) \cdot \lambda.$$

By composition, Φ_{δ} defines an algebra morphism of $\mathcal{A}(U_{\delta})$ which we call π_{δ} . We will denote by X_{δ} the natural action of e_{δ} on $\mathcal{P}(U_{\delta})$. Remark that X_{δ} is a derivation. If f is in $\mathcal{P}(U_{\delta})$, we have

$$(*) \quad \pi_{\delta}(f) = \sum_{k=0}^{\infty} (-1)^k \frac{e_{-\delta}^k}{k! h_{\delta}^k} X_{\delta}^k \cdot f$$

where $e_{-\delta}$ denotes the multiplication by $e_{-\delta}$. The operator π_{δ} is the commutative analog of the Zhelobenko's elementary projector.

Let $w = s_1 \dots s_j$ be a reduced decomposition of $w \in W$ (with $s_k = s_{\beta_k}, \beta_k \in B$). Put $w_i = s_1 \dots s_i$. The roots $\gamma_i = w_{i-1}(\beta_i)$ ($w_0 = 1$) are pairwise distinct and

$$\Delta_w = \{ \alpha \in \Delta_+ \mid w^{-1}(\alpha) < 0 \} = \{ \gamma_1, \dots, \gamma_j \}.$$

An ordering in Δ_w is called normal if it coincides with the initial segment of some normal ordering in Δ^+ (that is compatible with one of the reduced expression of \overline{w}). Note that $(\gamma_1, \ldots, \gamma_j)$ is a normal ordering of Δ_w . Put

$$U_w = \bigcap_{\delta \in \Delta_w} U_\delta.$$

We have

$$\mathcal{P}(U_w) = \left(\frac{S(\mathfrak{g})}{S(\mathfrak{g})\mathfrak{n}}\right)_{h_{\gamma_1}\dots h_{\gamma_j}} = S\left(\frac{\mathfrak{g}}{\mathfrak{n}}\right)_{h_{\gamma_1}\dots h_{\gamma_j}}$$

We will denote by N_w the connected and simply connected group whose Lie algebra is $\mathbf{n}_w = \bigoplus_{\alpha \in \Delta_w} \mathbf{g}_{\alpha}$. We will start by proving the following proposition.

Proposition 2.1 Let λ be in U_w . The point $\Phi_{\gamma_j} \Phi_{\gamma_{j-1}} \dots \Phi_{\gamma_1}(\lambda)$ is the unique point of the orbit $N_w \cdot \lambda$ whose coordinates $e_{-\gamma_1}, \dots, e_{-\gamma_j}$ vanish. In particular $\Phi_{\gamma_j} \Phi_{\gamma_{j-1}} \dots \Phi_{\gamma_1}$ does not depend on the normal ordering on Δ_w .

Proof of the proposition 2.1:

Complete $(\gamma_1, \ldots, \gamma_j)$ into a normal ordering on the positive roots $(\gamma_1, \ldots, \gamma_m)$. $\mathfrak{g}/\mathfrak{n}$ is endowed with the basis $(e_{-\gamma_1}, \ldots, e_{-\gamma_m}, h_{\alpha_1}, \ldots, h_{\alpha_l})$. Let $\begin{pmatrix} e_{-\gamma_1}^*, \ldots, e_{-\gamma_m}^*, h_{\alpha_1}^*, \ldots, h_{\alpha_l}^* \end{pmatrix}$ be the dual basis. We will often identify the point $a_{\gamma_1}e_{-\gamma_1}^* + \ldots + a_{\gamma_m}e_{-\gamma_m}^* + b_1h_{\alpha_1}^* + \ldots + b_lh_{\alpha_l}^*$ with its coordinates $(a_{\gamma_1}, \ldots, a_{\gamma_m}, b_1, \ldots, b_l)$. Let us see that there is a unique point in $N_w \cdot \lambda$ whose coordinates $e_{-\gamma_1}, \ldots, e_{-\gamma_j}$ vanish. Assume that there are two such points $f = (0, \ldots, 0, a_{\gamma_{j+1}}, \ldots, a_{\gamma_m}, b_1, \ldots, b_l)$ and $f' = (0, \ldots, 0, a_{\gamma_{j+1}}, \ldots, a_{\gamma_m}, b_1', \ldots, b_l')$. Then there exist complex numbers (t_1, \ldots, t_j) such that $exp(t_1e_{\gamma_1} + \ldots + t_je_{\gamma_j}) \cdot f = f'$. One can show easily the following equalities

$$e_{\gamma_l} \cdot e^*_{-\gamma_k} = -C_{\gamma_l, -\gamma_k} e^*_{-\gamma_l - \gamma_k}$$
$$e_{\gamma_l} \cdot h^*_{-\alpha_i} = -h^*_{-\alpha_i} (h_{\gamma_l}) e^*_{-\gamma_l}.$$

From these equalities, one deduces easily that the term in $e_{-\gamma_1}^*$ of $exp(t_1e_{\gamma_1} + \dots + t_je_{\gamma_j}) \cdot (0, \dots, 0, a_{\gamma_{j+1}}, \dots, a_{\gamma_m}, b_1, \dots, b_l)$ is $-t_1f(h_{\gamma_1})$. As f is in U_w , we

get $t_1 = 0$. We reproduce the same reasoning to show that t_2, t_3, \ldots, t_j are zero. So that we have proved that the two points f and f' coincide. It is not difficult to deduce from the normal ordering property that Φ_{γ_i} sends the point $(x_{\gamma_1}, \ldots, x_{\gamma_m}, y_1, \ldots, y_l)$ to a point $(x'_{\gamma_1}, \ldots, x'_{\gamma_{i-1}}, 0, x'_{\gamma_{i+1}}, \ldots, x'_{\gamma_m}, y_1, \ldots, y_l)$ and that it sends the point $(0, \ldots, 0, x_{\gamma_i}, \ldots, x_{\gamma_m}, y_1, \ldots, y_l)$ to a point $(0, \ldots, 0, x'_{\gamma_{i+1}}, \ldots, x'_{\gamma_m}, y_1, \ldots, y_l)$. So that $\Phi_{\gamma_j} \Phi_{\gamma_{j-1}} \ldots \Phi_{\gamma_1}(\lambda)$ is the unique point of $N_w \cdot \lambda$ whose coordinates $e_{-\gamma_1}, \ldots, e_{-\gamma_j}$ vanish. This finishes the proof of the proposition 2.1.

As a consequence of the previous proposition, we may write Φ_w for the operator $\Phi_{\gamma_j}\Phi_{\gamma_{j-1}}\ldots\Phi_{\gamma_1}$. The algebra homomorphism defined by Φ_w on $\mathcal{A}(U_w)$ will be denoted by π_w . Using the proposition 2.1, we will give a geometric proof of the following result.

Theorem 2.2 1) If $\overline{\mathfrak{n}}_w$ denotes the linear hull of $(e_{-\alpha})_{\alpha \in \Delta_w}$, one has $Ker \pi_w = \overline{\mathfrak{n}}_w \mathcal{A}(U_w)$.

2) The operator π_w is the projector onto $\mathcal{A}(U_w)^{\mathfrak{n}_w}$ with kernel $\overline{\mathfrak{n}}_w \mathcal{A}(U_w)$ and its restriction to $\mathcal{P}(U_w)$ is the projector onto $\mathcal{P}(U_w)^{\mathfrak{n}_w}$ with kernel $\overline{\mathfrak{n}}_w \mathcal{P}(U_w)$.

3) The operator π_w establishes an isomorphism Π_w between

$$\mathcal{C}_w = \{ f \in \mathcal{A}(U_w) \mid \frac{\partial f}{\partial e_{-\gamma_1}} = \dots \frac{\partial f}{\partial e_{-\gamma_j}} = 0 \}$$

and $\mathcal{A}(U_w)^{\mathfrak{n}_w}$. Moreover Π_w sends $\mathcal{C}_w \cap \mathcal{P}(U_w)$ onto $\mathcal{P}(U_w)^{\mathfrak{n}_w}$. If f is in $\mathcal{A}(U_w)^{\mathfrak{n}_w}$, $\Pi_w^{-1}(f)$ is the restriction of f to the subvariety of equations $e_{-\gamma_1} = \dots = e_{-\gamma_i} = 0$.

Proof of the theorem 2.2:

From the previous proposition, the inclusion $\overline{\mathfrak{n}}_w \mathcal{A}(U_w) \subset Ker\pi_w$ is clear. Moreover, a standard reasoning shows that

$$\mathcal{A}(U_w) = \mathcal{C}_w \oplus \overline{\mathfrak{n}}_w \mathcal{A}(U_w).$$

Then one sees easily that $Ker\pi_w \cap \mathcal{C}_w = \{0\}$. So that we have $\overline{\mathfrak{n}}_w \mathcal{A}(U_w) = Ker\pi_w$.

Let us now show that $\operatorname{Im} \pi_w = \mathcal{A}(U_w)^{\mathfrak{n}_w}$ and that π_w is a projector. Let α be in Δ_w . For any f in $\mathcal{A}(U_w)$ and any λ in U_w , we have

$$(e_{\alpha} \circ \pi_w)(f)(\lambda) = \frac{d}{dt} f\left(\Phi_{\gamma_j} \dots \Phi_{\gamma_1} exp(-te_{\alpha})\lambda\right)_{|t=0}$$

But for any t, $\Phi_{\gamma_j} \dots \Phi_{\gamma_1} exp(-te_\alpha)\lambda$ is the unique point of $N_w \cdot \lambda$ whose coordinates $e_{-\gamma_1}, \dots, e_{-\gamma_j}$ vanish. So that $e_\alpha \circ \pi_w = 0$. We have thus proved the inclusion $Im\pi_w \subset \mathcal{A}(U_w)^{\mathfrak{n}_w}$. Now it is clear that π_w is a projector : check that $\pi_w \circ \pi_w = \pi_w$ on coordinates using the formula (*). The reverse inclusion $\mathcal{A}(U_w)^{\mathfrak{n}_w} \subset Im\pi_w$ will be a consequence of the following lemma.

Lemma 2.3 Let k be in [1, j] and let f be in $\mathcal{A}(U_w)$. If $X_{\gamma_k} f = 0$, then $\pi_{\gamma_k} f = f$.

Proof of the lemma 2.3:

We first remark that $(\pi_{\gamma_k}(e_{-\gamma_1}), \ldots, \pi_{\gamma_k}(e_{-\gamma_{k-1}}), e_{-\gamma_k}, \pi_{\gamma_k}(e_{-\gamma_{k+1}}), \ldots, \pi_{\gamma_k}(e_{-\gamma_m}), h_{\alpha_1}, \ldots, h_{\alpha_l})$ is a coordinate system in U_w . Indeed, one may see by induction that for any $i \leq k-1$ (respectively $i \geq k+1$), $e_{-\gamma_i}$ may be expressed as a regular function of $(\pi_{\gamma_k}(e_{-\gamma_1}), \ldots, \pi_{\gamma_k}(e_{-\gamma_i}), h_{\alpha_1}, \ldots, h_{\alpha_l})$ (respectively $(\pi_{\gamma_k}(e_{-\gamma_i}), \ldots, \pi_{\gamma_k}(e_{-\gamma_m}), h_{\alpha_1}, \ldots, h_{\alpha_l})$). We put $(\epsilon_1, \ldots, \epsilon_{m+l}) = (\pi_{\gamma_k}(e_{-\gamma_1}), \ldots, \pi_{\gamma_k}(e_{-\gamma_{k-1}}), e_{-\gamma_k}, \pi_{\gamma_k}(e_{-\gamma_{k+1}}), \ldots, \pi_{\gamma_k}(e_{-\gamma_m}), h_{\alpha_1}, \ldots, h_{\alpha_l})$. In these coordinates, we have $X_{\gamma_k} = h_{\gamma_k} \frac{\partial}{\partial \epsilon_k}$. So that if $X_{\gamma_k} f = 0$, then f does not depend on ϵ_k and it becomes clear that there exists g such that $f = \pi_{\gamma_k} g$. As π_{γ_k} is a projector, we have $\pi_{\gamma_k} f = \pi_{\gamma_k} \pi_{\gamma_k} g = \pi_{\gamma_k} g$, which finishes the proof of the lemma.

It is clear from the proof that π_w sends $\mathcal{C}_w \cap \mathcal{P}(U_w)$ onto $\mathcal{P}(U_w)^{\mathfrak{n}_w}$.

In particular $\pi_{\overline{w}|\mathcal{P}(U_{\overline{w}})}$ is the projector onto $S(\mathfrak{h})_{h_{\gamma_1}...h_{\gamma_m}}$ with kernel $\mathfrak{n}_-\mathcal{P}(U_{\overline{w}})$. By analogy to Asherova, Tolstoy, Smirnov and Zhelobenko's work, we will call it the extremal projector.

The proposition 2.1 gives a geometric interpretation of the projector π_w .

3 Appendix : Extremal projector for the Virasoro algebra in the semi-classical case

In this section, we shall give a factorization of the Virasoro algebra extremal projector in the semi-classical case. Note that the non commutative case is still open. It is very different from the semi-simple case because the Virasoro algebra does not admit any normal ordering. Recall that the Virasoro algebra Vir is the infinite dimensional Lie algebra generated by $\{e_i \mid i \in \mathbb{Z}\} \cup \{c\}$

with commutation rules

$$[e_i, e_j] = (j - i) \ e_{i+j} + \frac{(j^3 - j)}{12} \delta_{i+j,0} c, \quad [e_i, c] = 0.$$

Vir admits the following triangular decomposition

$$Vir = Vir_{+} \oplus Vir_{0} \oplus Vir_{-}$$

where

$$Vir_{+} = \bigoplus_{i \geq 1} \mathbb{C}e_{i}, \ Vir_{0} = \mathbb{C}e_{0} \oplus \mathbb{C}c, \ Vir_{-} = \bigoplus_{i \leq -1} \mathbb{C}e_{i}.$$

We will also use the notation

$$Vir_{r,+} = \underset{i \ge r}{\oplus} \mathbb{C}e_i$$
 and $Vir_{r,-} = \underset{i \le -r}{\oplus} \mathbb{C}e_i$.

 $Vir_{r,+}$ and $Vir_{r,-}$ are Lie subalgebras of Vir.

Let $R(Vir_0)$ be the field of fractions of $S(Vir_0)$. We introduce the algebra

$$S'(Vir) = S(Vir) \underset{S(Vir_0)}{\otimes} R(Vir_0) = S'(Vir/Vir_-).$$

There is a natural action of Vir_{-} on $S'(Vir/Vir_{-})$. Through this action, for any negative *i*, e_i defines a derivation X_i of $S'\left(\frac{Vir}{Vir_{-}}\right)$. Set

$$T_r = \left(\frac{S'(Vir)}{S'(Vir)Vir_{-}}\right)^{Vir_{r,-}}$$

The result and the proof of the following lemma is left to the reader.

Lemma 3.1

$$T_r = \bigoplus_{k_1, \dots, k_{r-1} \in \mathbb{N}} R(Vir_0) e_1^{k_1} \dots e_{r-1}^{k_{r-1}}$$

As a consequence of the lemma 3.1, we have the following decomposition

$$S'(Vir/Vir_{-}) = T_r \oplus Vir_{r,+}S'(Vir/Vir_{-}).$$

The proof of the next lemma is an easy computation.

Lemma 3.2 For any i > 1, the operator $\pi_i = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \left(2ie_0 + \frac{(i^3-i)c}{12}\right)^k} e_i^k X_{-i}^k$ is an algebra morphism and satisfies the relations

$$X_{-i} \circ \pi_i = 0$$
 and $\pi_i \circ e_i = 0$

(where e_i denotes multiplication by e_i).

It is not hard to see that the operator $\Pi_r = \prod_{i=r}^{\infty} \pi_i$ is well defined. Actually $\prod_{i=r}^{\infty} \pi_i(e_1^{a_1} \dots e_k^{a_k}) = \prod_{r \le i \le k} \pi_i(e_1^{a_1} \dots e_k^{a_k}) = 0$ (by the lemma 3.2).

Theorem 3.3 The operator Π_r satisfies the relations

 $\forall i \ge r, \ X_{-i} \circ \Pi_k = 0, \ \Pi_k \circ e_i = 0.$

It is the projector onto T_r with kernel $\operatorname{Vir}_{r,+}S'\left(\frac{\operatorname{Vir}}{\operatorname{Vir}_{-}}\right)$.

In particular, Π_1 is the extremal projector.

Proof of the theorem 3.3

The relations of a) are easy to check and they prove that Π_r is a projector. To prove that the kernel of Π_r is $Vir_{r,+}$, we proceed as in the semi-simple case. The inclusion $Im\Pi_r \subset T_r$ is a consequence of a). To prove the reverse inclusion, remark that if x is in T_r , then $\Pi_r x = x$, so that x is in $Im\Pi_r$.

4 Bibliography

[A-S-T] Asherova R. M.-Smirnov Y. F.-Tolstoi V. N., Description of a class of projection operators for semi-simple complex Lie algebras, *Matem. Zametki* **26** No. 1, 15-25, (1979).

[Z1] Zhelobenko D. P. , An introduction to the theory of S-algebras over reductive Lie algebras, Representations of infinite Lie groups and algebras, Gordon and Breach, New York (1986).

[Z2] Zhelobenko D. P. Extremal cocycles of Weyl groups, *Functional analysis and its applications*, **21**, No 3, (1987), p. 11-21.

Sophie Chemla Institut de Mathématiques Université Paris VI, Case 82 4, place Jussieu, 75252 Paris Cedex 05 (FRANCE) schemla@math.jussieu.fr Fax: +33 01 44 27 26 87