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Abstract

Extending material from the theory of D-modules to Lie algebroids (see also
[C3]), we introduce an inverse image functor and show that it preserves co-
herence under appropriate circumstances. As in the case of D-modules, a
suitable non characteristicity notion enables us to give a sufficient condition
in order for the duality functor and the inverse image functor to commute.
This generalizes a result for D-modules due to Kashiwara-Kawai-Sato but,
even in the case of D-modules, our proof is different from theirs. In par-
ticular, we obtain a new duality formula for complexes of modules over an
ordinary Lie algebra and, as a special case, we get a new adjunction formula
for modules over Lie algebras. Moreover, our result will shed some light on
the behaviour of Poisson cohomology (a notion introduced by Lichnerowitz)
under a Poisson map (in the analytic case).

1 Introduction

We will follow the notation of [K-S-1] for sheaf theory. Let X be a complex
manifold, OX the sheaf of holomorphic functions on X, ΘX the sheaf of
holomorphic vector fields and DX the sheaf of rings of differential operators
on X. A complex Lie algebroid over X is a pair (LX , ωLX

) where

• LX is endowed with the structure of a sheaf of C- Lie algebras and with
that of a locally free OX -module of constant finite rank.

• ω is anOX -linear morphism of sheaves of C-Lie algebras from LX to ΘX

(called the anchor map) such that the following compatibility relation
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holds
[ξ, fζ ] = ω(ξ)(f)ζ + f [ξ, ζ ]

for any (ξ, ζ) ∈ LX and any f ∈ OX .

The Lie algebroid LX gives rise to the sheaf of algebras of generalized
differential operators generated by OX and LX , D(LX). If LX = ΘX and
ω = id then D(LX) is the sheaf of rings of differential operators over X. If X
is a point, LX is a Lie algebra and D(LX) is its enveloping algebra. But there
are many more Lie algebroids. In particular, Poisson manifolds give rise to
Lie algebroids (if X is a Poisson manifold, then (X,Ω1

X) is a Lie algebroid)
and actions of groups over manifolds give rise to Lie algebroids. Denote by
RHomD(LX) (OX ,−) the right derived functor of HomD(LX) (OX ,−). It is
interesting to notice that RHomD(LX) (OX ,OX) computes Lie algebra coho-
mology with values in OX = C if X is a point, De Rham cohomology if
LX = ΘX and Poisson cohomology if X is a Poisson manifold and LX = Ω1

X

([Li], [Hu]).
The construction of D(LX) is analogous to the construction of DX . This

remark gave us the idea (see [C2], [C3]) of extending material from the theory
of D-modules to Lie algebroids. Recall that basic concepts in the theory of
D-modules are due to Bernstein and Kashiwara. We refer the reader to [Bj],
[Bo], [Ho] and [S2] for an introduction to D-modules theory.

Let dLX
be the rank of LX . As in theD-modules case, D(LX)⊗

OX

ΛdLXLX is

endowed with a D(LX)⊗D(LX)-module structure and we have the following
duality functor in the derived category of bounded complexes of left D(LX)-
modules with coherent cohomology Db

coh(D(LX)) (see [C3]) :

DLX
(N •) = RHomD(LX)

(
N •,D(LX)⊗

OX

ΛdLXLX

)
[dLX

]

which is defined for any N • ∈ Db
coh (D(LX)). A Lie algebroid morphism

([A-K], [C2], [C3]) Φ from (LX , ωLX
) to (LY , ωLY

) is a pair (f, F ) where
f is an analytic map from X to Y and F is an OX -module morphism
from LX to f ∗LY = OX ⊗

f−1OY

f−1LY with some requirements (see section

2.3 for details). One of the requirements gives the existence of a transfer
(D(LX)⊗ f−1D(LY )op) -bimodule

DLX→LY
= OX ⊗

f−1OY

f−1D(LY )

2



(extending the transfer bimodule in the D-modules case, see [C3]). Denote

by
L
⊗ the derived functor of the tensor product. We define ([C3]), as in the

D-modules case an inverse image functor Φ−1 : Db (D(LY )) → Db (D(LX))
as follows.

Φ−1(R•) = DLX→LY

L
⊗

f−1D(LY )
f−1R•.

In this article, we will study this inverse image functor. Generalizing the
D-modules case (see [S2] for an exposition), we introduce the notion of non
characteristicity and we prove the theorem (due to Kashiwara in the case of
D-modules):

Theorem 3.4.4 Let (X,LX) and (Y,LY ) be Lie algebroids over the com-
plex manifolds X and Y respectively. Let Φ = (f, F ) be a Lie algebroid
morphism from (X,LX) to (Y,LY ). Let R• be an object of Db

coh (D(LY )).
Assume that R• is non characteristic with respect to Φ. Then Φ−1(R•) is in
Db

coh(D(LX)).

Then we establish the following duality theorem which generalizes a re-
sult of D-modules due to Sato, Kawai and Kashiwara ([SKK]). We do not
know whether the proof of [SKK] can be generalized to Lie algebroids and,
even in the D-modules case, our proof is different from theirs.

Theorem 4.1.1 Let Φ = (f, F ) be a Lie algebroid morphism from (X,LX)
to (Y,LY ). Let R• be an object of Db

coh (D(LY )) which is supposed to be non
characteristic with respect to Φ. Then there is a functorial isomorphism from
DLX

◦ Φ−1(R•) to Φ−1 ◦DLY
(R•).

As a particular case, we get a duality formula for complexes of modules
over Lie algebras.

Combining Theorem 4.1.1 with the results of [C3] concerning the direct
image, we obtain adjunction formulas in the Lie algebroids setting (see [K-S
2] for the D-modules case). In particular, we get a new adjunction formula for
modules over Lie algebras. Moreover, our result will shed some light on the
behaviour of Poisson cohomology under a Poisson map (in the analytic case).
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Notation

IfA is a sheaf of rings onX, one denotes byDb (A) (respectively Db
coh (A))

the derived category of bounded complexes of left A-modules (respectively of
left A-modules with coherent cohomology). In the sequel, we will take A =
D(LX) or A = D(LX)⊗D(LX). IfM• andM′• are objects of Db (D(LX)),
one puts

ExtiD(LX) (M•,M′•) = H i
(
RHomD(LX) (M•,M′•)

)
.

For the theory of filtered sheaves of rings, we refer the reader to [S2]. Let
FA be a filtered sheaf of rings. One writes GrFA for the associated graded
sheaf of rings. If FM is a filtered FA-module, one denotes by GrFM the
associated graded GrFA-module. Let FM and FN be two FA-modules.
A morphism of filtered FA-modules from FM to FN , Fu, is a morphism
Fu : M→N of the underlying A-modules such that

Fu (FkM) ⊂ FkN .

The group of morphisms of FA-modules from FM to FN will be denoted
by HomFA (FM,FN ). With this notion of morphism, the category of FA-
modules is an additive category. Let k ∈ ZZ. One denotes by FM(k) the
sheaf of FA-modules endowed with the filtration Fk+nM. One defines also
the sheaf of filtered groups FHomFA (FM,FN ) by setting

FkHomFA (FM,FN ) = HomFA (FM,FN (k)) .

To an element Fu of HomFA (FM,FN ), one associates a morphism GrFu
from GrFM to GrFN . One defines also the sheaf of groups
HomGFA (GrFM, GrFN ) and the sheaf of graded groups
GHomGFA (GrFM, GrFN ) (see [S2]). In the category of FA-modules, the
notion of strict morphism is defined. Let Fu be an element of

4



HomFA (FM,FN ). Denote by KerFu the sheaf kernel of Fu filtered with
the family KerFu

⋂
FkM. Similarly, one defines the sheaf of graded GrFA-

modules KerGrFu. Recall that Fu is strict if and only if GrKerFu =
KerGrFu.

An exact sequence of FA-modules is a sequence

FM
Fu
−→ FN

Fv
−→ FP

such that KerFkv = ImFku.

A finite free FA-module is a FA-module of the form
n
⊕
i=1
FA(ri). If

FM is a finite free FA-module, then the underlying sheaf of modules of
FHomFA (FM,FN ) is HomA (M,N ). A finite free resolution of the FA-
module FM is an exact sequence (of FA-modules) of the form

. . . −→
n1

⊕
i=1
FA(ri,1) −→

n0

⊕
i=1
FA(ri,0) −→ FM→ 0.

2 Lie algebroids

2.1 Definitions

Let X be a complex analytic manifold and letOX be the sheaf of holomorphic
functions on X. Let ΘX be the OX -module of holomorphic vector fields on
X.

Definition 2.1.1 A sheaf in Lie algebras LX is a sheaf of C-vector spaces
such that for any open subset U , LX(U) is equipped with the structure of a
Lie algebra and the restriction morphisms are Lie algebra homomorphisms.

A morphism between two sheaves of Lie algebras LX andMX is a CX -module
morphism which is a Lie algebra morphism on each open subset.

Definition 2.1.2 A complex Lie algebroid over X is a pair (LX , ω) where

• LX is a locally free OX-module of finite constant rank,

• LX is a sheaf of C-Lie algebras,
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• ω : LX → ΘX is an OX-linear morphism of sheaves of C-Lie algebras
such that the following compatibility relation holds :

∀(ξ, ζ) ∈ L2
X , ∀f ∈ OX , [ξ, fζ ] = ω(ξ)(f)ζ + f [ξ, ζ ]

for any (ξ, ζ) in LX and for any f in OX.

One calls ω the anchor map. When there is no ambiguity, we will drop the
anchor map in the notation of the Lie algebroid. If (LX , ω) is a Lie algebroid

over X, then
(
LX|U , ω|U

)
is a Lie algebroid over U which will be denoted by

LU .
A Lie algebroid (LX , ω) gives rise to the sheaf of generalized differential

operators generated by OX and LX which is denoted by D(LX).

Definition 2.1.3 D(LX) is the sheaf associated with the presheaf:

U 7→ T+
C (OX(U)⊕ LX(U)) /JU

where JU is the two sided ideal generated by the relations

∀(f, g) ∈ OX(U), ∀(ξ, ζ) ∈ LX(U)2

1)f ⊗ g = fg
2)f ⊗ ξ = fξ
3)ξ ⊗ ζ − ζ ⊗ ξ = [ξ, ζ ]
4)ξ ⊗ f − f ⊗ ξ = ω(ξ)(f)

D(LX) is endowed with the filtration (FnD(LX))n∈IN = (D(LX)n)n∈IN defined
as follows:

D(LX)0 = OX

D(LX)n = D(LX)n−1 · LX +D(LX)n−1

The anchor map ωLX
: LX → ΘX induces a sheaf of rings morphism from

D(LX) to DX .
As LX is a locally free OX-module of finite rank, we have the following

theorem due to Rinehart [R].

Theorem 2.1.4 The sheaves of OX-algebras SOX
(LX) and GrFD(LX) are

isomorphic.
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Proof of theorem 2.1.4:
The proof of this theorem is done in the affine case (that is to say the

case of a Lie-Rinehart algebra) in [R]. The case of Lie algebroids follows.

Proposition 2.1.5 The sheaf D(LX) is coherent, noetherian and has finite
global homological dimension. Moreover, there exists an integer p such that,
locally, every coherent D(LX)-moduleM has a free resolution of less than p
or equal to p. In other words, any point x has an open neighborhood V such
that there exists a resolution of the type

0→ D(LV )lp → . . .→ D(LV )l0 →M|V → 0.

The proof of proposition 2.1.5 in the D-modules case extends to the set-
ting of Lie algebroids ([S2] p.14).

A sheaf of rings (respectively graded rings) is syzygic if it is coherent,
has finite global homological dimension and syzygic fibers (i.e any finite type
S(LX,x)-module has a finitely free resolution of finite length).

Proposition 2.1.6 The sheaf S(LX) is syzygic. Hence, locally, any coherent
FD(LX)-module FM has a finite free resolution. In other words, any point
x has an open neighborhood V such that there exists a resolution of the type

· · · →
n1

⊕
i=1
FD(LV )(ri,1)→

n0

⊕
i=1
FD(LV )(ri,0)→ FM|V → 0.

See [S2] for details.

Proposition 2.1.7 Let M• be a complex of FD(LX)-modules. If
Hj (GrM•) is a coherent S(LX)-module, then Hj(M•) is a coherent D(LX)-
module.

Proof of proposition 2.1.7:

We put

M• : 0→M0
d0−→M1 −→ . . .

For each i, endow Kerdi and Imdi−1 with the induced filtration. We have
the following strict short exact sequence (i.e the arrows are strict morphisms)

0→ Imdi−1 → Kerdi →H
i(M•)→ 0.
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Consequently, we get the short exact sequence

0→ GrImdi−1 → GrKerdi → GrHi(M•)→ 0.

And, as GrKerdi ⊂ KerGrdi and ImGrdi ⊂ GrImdi, we have the following
inclusion

GrHi(M•) ⊂ Hi(GrM•)

from which the proposition follows.

2.2 Resolution of OX as a left D (LX)-module.

Let (LX , ωX) be a Lie algebroid over X. Set L∗X = HomOX
(LX ,OX). Con-

sider the graded left D(LX)-module D(LX)⊗
OX

∧•(LX) = ⊕
n
D(LX)⊗

OX

ΛnLX

where D(LX) acts by left multiplication. It is known ([R] p 200) that the en-
domorphism of degree -1, d, defined below is a differential onD(LX)⊗

OX

∧•(LX).

∀v ∈ D(LX), ∀ξi ∈ LX ,

d(v ⊗ ξ1 ∧ ... ∧ ξn) =
n∑

i=1

(−1)i−1vξi ⊗ ξ1 ∧ ... ∧ ξ̂i ∧ ... ∧ ξn

+
∑

k<i

(−1)i+kv ⊗ [ξk, ξi] ∧ ξ1 ∧ ... ∧ ξ̂k ∧ ... ∧ ξ̂i ∧ ... ∧ ξn

d(v ⊗ 1) = ωX(v)(1)

where the notation x̂ means that x is omitted.

Theorem 2.2.1 Let (LX , ωX) be a Lie algebroid. The complex K•LX
defined

by
∀n ∈ ZZ, K−n

LX
= D(LX)⊗

OX

Λn(LX)

and the differential above is a resolution of OX by locally free left D(LX)-
modules. Filter Ki

LX
by FkK

i
LX

= FkD(LX)⊗
OX

ΛiLX . Then

0→ K
dLX

LX
→ K

dLX
−1

LX
(1)→ · · · → K1

LX
(dLX

− 1)→ K0
LX

(dLX
)→ OX → 0

is a resolution of OX by locally free left FD(LX)-modules.

Proof of theorem 2.2.1 : See [R] p 202.

We call K•LX
the Koszul resolution of the left D(LX)-module OX .
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2.3 Lie algebroid morphisms

Definition 2.3.1 Let (LX , ωX) and (LY , ωY ) be Lie algebroids over X and
Y respectively. A morphism Φ from (LX , ωX) to (LY , ωY ) is a pair (f, F )
such that

• f : X → Y is a holomorphic map

• F : LX → f ∗LY = OX ⊗
f−1OY

f−1LY is an OX-module morphism such

that the two following conditions are satisfied:

1) The diagram

ΘX f ∗ΘY
✲

Tf

LX f ∗LY
✲F

❄

ωX

❄

f ∗ωY

commutes (where Tf is the differential of f).

2) Let ξ and η be two sections of LX. Put F (ξ) =
m∑

i=1

ai ⊗ ξi and

F (η) =
m∑

j=1

bj ⊗ ηj with ai, bj ∈ OX and ξi, ηj ∈ f−1LY . Then

F ([ξ, η]) =
n∑

j=1

ωX(ξ)(bj)⊗ ηj −
n∑

i=1

ωX(η)(ai)⊗ ξi +
∑

i,j

aibj ⊗ [ξi, ηj ].

The condition 2) is equivalent to the following property : OX ⊗
f−1OY

f−1D(LY )

endowed with the two operations below is a left D(LX)-module.

∀(a, b) ∈ O2
X , ∀ξ ∈ LX , ∀v ∈ f

−1DY

a · (b⊗ v) = ab⊗ v
ξ · (b⊗ v) = ωX(ξ)(b)⊗ v +

∑
i bai ⊗ ξiv

(where F (ξ) =
∑

i

ai ⊗ ξi with ai ∈ OX and ξi ∈ f−1LY ).
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Our definition ([C2], [C3]) coincides with that of Almeida and Kumpera
([A-K]).

Notation :

OX ⊗
f−1OY

f−1D(LY ) considered as a D(LX)⊗ f−1D(LY )op-module will be de-

noted DLX→LY
(as in [C3]).

Remark :

Let (LX , ωLX
) be a Lie algebroid. Then KerωLX

endowed with the operations
below is a D(LX)-module which is coherent as an OX -module: for any f ∈
OX , any D ∈ LX and any ∆ ∈ KerωLX

,

D ·∆ = [D,∆]
f ·∆ = f∆

The composition of two Lie algebroid morphisms is a Lie algebroid mor-
phism.

2.4 Examples

1) The Lie algebroid (X,ΘX , id) gives rise to the usual ring of differential
operators. Moreover, if f : X → Y is a morphism between complex analytic
manifolds, then its differential Tf : ΘX → OX ⊗

f−1OY

f−1ΘY defines a Lie

algebroid morphism (f, Tf) from (X,ΘX) to (Y,ΘY ).
2) Let g be a finite dimensional Lie algebra. It is a Lie algebroid over a

point with trivial anchor map. The ring of differential operators in this case
is the universal enveloping algebra of g. Lie algebroid morphisms generalize
Lie algebra morphisms.

3) Let g be a Lie algebra. Assume that there is a Lie algebra morphism
σ : g→ ΘX . Then OX ⊗ g has a natural Lie algebroid structure with anchor
map ω defined by

∀f ∈ OX , ∀ξ ∈ g, ω(f ⊗ ξ) = fσ(ξ).

The Lie algebra bracket on OX ⊗ g is given

[f ⊗ ξ, g ⊗ η] = fσ(ξ)(g)⊗ η − gσ(η)(f)⊗ ξ + fg ⊗ [ξ, η].
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Let G and G′ be two complex Lie groups with Lie algebras g and g′ and let
χ : G→ G′ be a Lie group morphism. We will denote by dχ the differential
of χ at the unity. Let X (respectively X ′) be an analytic manifold with
action of G (respectively G′). Let f : X → X ′ be an equivariant map in
the sense that

∀g ∈ G, ∀x ∈ X, f(g · x) = χ(g) · f(x).

Let us define F : OX ⊗ g→ OX ⊗
f−1OX′

f−1 (OX′ ⊗ g′) by

F (f ⊗ ξ) = f ⊗ 1⊗ dχ(ξ)

Then (f, F ) is a Lie algebroid morphism from OX ⊗ g to OX′ ⊗ g′.
4) Take the same notation as in the example 5. Assume that X = V is

a finite dimensional vector space and that G is a connected algebraic group
acting on V . Put LieG = g and LV = ω(OV⊗g). Ifmaxv∈V dimG·v = dimG,
then LV is a locally freeOV -module ([P] p. 186) and (V,LV ) (with the natural
embedding as an anchor) is a Lie algebroid.

5) Let X be an analytic Poisson manifold. The Poisson bracket on OX

is denoted by { , }. The OX-module of differential forms of degree 1, Ω1
X , is

endowed with a natural Lie algebroid structure (see [Hu]) with anchor map

Ω1
X → ΘX

fdg 7→ f{g, •}.

Recall that the Lie bracket on Ω1
X is given by

[f ⊗ da, g ⊗ db] = fg ⊗ d{a, b}+ f{a, g} ⊗ db− g{b, f} ⊗ da.

Let Y be another Poisson analytic manifold and let f : X → Y be a Pois-
son map. We endow the OX -module OX ⊗

f−1OY

f−1Ω1
Y with a Lie algebroid

structure as follows : We define the Lie algebra bracket by

∀(a, a′) ∈ OX , ∀(b, b′, v, v′) ∈ OY

[a⊗ dv, a′ ⊗ dv′] = a{v ◦ f, a′} ⊗ dv′ − a′{v′ ◦ f, a} ⊗ dv
+ aa′ ⊗ d{v, v′}

and the anchor map by

OX ⊗
f−1OY

f−1Ω1
Y → ΘX

a⊗ dv 7→ a{v ◦ f, .}.
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The couple (f, id) is a Lie algebroid morphism from

(
X,OX ⊗

f−1OY

f−1Ω1
Y

)
to

(Y,Ω1
Y ).

We construct the following correspondence :

OX ⊗
f−1OY

f−1Ω1
Y

(id,F )

wwppppppppppp (f,id)

''
NNNNNNNNNNN

(X,Ω1
X) (Y,Ω1

Y ),

where F is defined as follows : for all α in OX and all β in OY ,

OX ⊗
f−1OY

f−1Ω1
Y → Ω1

X

α⊗ βdq 7→ α(β ◦ f)d(q ◦ f).

6) Let (X,LX) be a Lie algebroid. We associate to it the abelian Lie
algebroid (X,Lab

X ) defined by

• Lab
X = LX

• The Lie bracket on Lab
X is zero

• The anchor map on Lab
X is 0.

Let Φ = (f, F ) be a Lie algebroid morphism from (X,LX) to (Y,LY ). It
induces a Lie algebroid morphism Φab = (f, F ab) from (X,Lab

X ) to (Y,Lab
Y ).

For other examples of Lie algebroids, see [M] and [C3].

2.5 The characteristic variety

Let (X,LX) be a Lie algebroid over X. Let LX be the vector bundle as-
sociated with LX and let π be the projection from L∗X to X. As in the
D-modules case ([S2]), one can define the notion of good filtration for a
coherent D(LX)-module (see [Bj] p. 24). Locally, each coherent D(LX)-
module admits a good filtration. Let N be a coherent D(LX)-module and

12



let U be an open subset on which N|U admits a good filtration. The subset

Supp

(
OL∗

U
⊗

π−1S(LU )
π−1GrN|U

)
does not depend on the good filtration. The

characteristic variety, char(N ), is the closed conic subset of L∗X defined by

Supp

(
OL∗

U
⊗

π−1S(LU )
π−1GrN

)
= char(N )

⋂
L∗U .

If N • is an element of Db (D(LX)), set

char(N •) =
⋃

j∈Z

charHj (N •) .

Then charN • = charN •[1]. As in the D-modules case, one can show the

following property: If N ′• → N • → N ′′•
+1
→ is a distinguished triangle in

Db
coh (D(LX)), then charN • ⊂ charN ′• ∪ charN ′′•.

3 Some operations for modules on Lie alge-

broids

In this section, we generalize some basic notions of D-modules theory due to
Bernstein and Kashiwara. We refer the reader to [Bj], [Bo], [Ho] and [S2] for
an exposition.

3.1 Left and right-modules

The following proposition is classical for D-modules and is easy to generalize
to Lie algebroids ([C2], [C3]).

Proposition 3.1.1 a) If N and N ′ are left D(LX)-modules, then N ⊗
OX

N ′

endowed with the two following operations :

∀a ∈ OX , ∀n ∈ N , ∀n′ ∈ N ′, ∀D ∈ LX

a · (n⊗ n′) = a · n⊗ n′ = n⊗ a · n′

D · (n⊗ n′) = D · n⊗ n′ + n⊗D · n′

is a left D(LX)-module.
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b) If M (respectively N ) is a right (respectively a left) D(LX)-module,
then M⊗

OX

N endowed with the two following operations :

∀a ∈ OX , ∀m ∈M, ∀n ∈ N , ∀D ∈ LX

(m⊗ n) · a = m⊗ a · n = m · a⊗ n
(m⊗ n) ·D = m ·D ⊗ n−m⊗D · n

is a right D(LX)-module.
c) If M and M′ are two right D(LX)-modules, then HomOX

(M,M′)
endowed with the two following operations

∀φ ∈ HomOX
(M,M′) , ∀m ∈M, ∀a ∈ OX , ∀D ∈ LX

(a · φ) (m) = φ(m) · a
(D · φ) (m) = −φ(m) ·D + φ(m ·D)

is a left D(LX)-module.
d) If N and N ′ are two left D(LX)-modules, then HomOX

(N ,N ′) en-
dowed with the two following operations

∀φ ∈ HomOX
(N ,N ′) , ∀m ∈M, ∀a ∈ OX , ∀D ∈ LX

(a · φ) (m) = a · φ(m)
(D · φ) (m) = D · φ(m)− φ(D ·m)

is a left D(LX)-module.

The following theorem is now a consequence of the previous proposition.

Theorem 3.1.2 Let E be a right D(LX)-module which is a locally free OX-
module of rank one. The functor N • 7→ E ⊗

OX

N • establishes an equivalence of

categories between complexes of left and complexes of right D(LX)-modules.
Its inverse functor is given by M• 7→ HomOX

(E ,M•).

It is a well known fact that ΩdimX
X (the sheaf of differential forms of maximal

degree) is endowed with a right DX-module structure (see [S2] p.9, [Bo] p.
226 ). By the morphism D(LX) → DX , ΩdimX

X has a structure of right
D(LX)-module. Hence theorem 3.1.2 applies in particular if E = ΩdimX

X . Put

L∗X = HomOX
(LX ,OX)

14



and let dLX
be the rank of LX . Then one may take E = ΛdLX (L∗X). Indeed,

LX acts on L∗X as follows :

< D,∆ · λ >=< [D,∆], λ > +∆(< D, λ >)

for any (D,∆) ∈ L2
X and any λ ∈ L∗X . Hence LX acts on Λ(L∗X). The action

of an element D of LX on Λ(L∗X) is called the Lie derivative of D and is
denoted LD. Put det(L∗) = ΛdLX (L∗X). Then det(L∗X), endowed with the
following two operations,

∀σ ∈ det(L∗X), ∀D ∈ LX , ∀a ∈ OX

σ · a = a · σ
σ ·D = −LD(σ)

is a right D(LX)-module (see [C1]).

Consider
HLX

= HomOX

(
ΛdLX (L∗X),D(LX)

)

= D(LX)⊗
OX

ΛdLX (LX)

and
HLX

= HomOX
(ΩX ,D(LX))

= D(LX)⊗
OX

Ω−1
X

They are endowed with a natural D(LX)⊗D(LX)-left module structure (the
first left D(LX)-module structure is given by left multiplication, the second
one is obtained by proposition 3.1.1 c) .

3.2 Duality functor

If N • is an element of Db
coh (D(LX)), we set

DLX
(N •) = RHomD(LX) (N •,HLX

) [dLX
].

Since the natural arrow N • 7→ DLX

(
DLX

(N •)
)

is an isomorphism (see

[C3]), one calls DLX
a duality functor. Similarly, one sets

∆LX
(N •) = RHomD(LX)

(
N •,HLX

)
[dimX].
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∆LX
is a duality functor.

Let N and N ′ be two D(LX)-modules. We endow RHomOX
(N ,N ′) with

a left D(LX)-module structure as follows. Let I• be an injective resolution
of N ′ in the category of left D(LX)-modules. Then, as D(LX) is a flat OX-
module, I• is an injective resolution of N ′ in the category of OX -modules.
Hence, one has

RHomOX
(N ,N ′) ≃ HomOX

(N , I•) .

As, by proposition 3.1.1, the right-hand side is endowed with a left D(LX)-
module structure, so is the left-hand side. In other words, deriving the
functor HomOX

(N , •) in the category of left D(LX)-modules is the same as
deriving it in the category of OX -modules.

Lemma 3.2.1 Let N and N ′ be two left D(LX)-modules. The objects
RHomD(LX) (N ,N ′) and RHomD(LX) (OX , RHomOX

(N ,N ′)) are isomorphic
in Db(CX)

Proof of lemma 3.2.1 :
Let K•LX

be the Koszul resolution of OX and let N ′ → I• be an injec-
tive resolution of the D(LX)-module N ′. One has the following sequence of
isomorphisms :

RHomD(LX) (OX , RHomOX
(N ,N ′)) ≃ HomD(LX)

(
K•LX

,HomOX
(N , I•)

)

≃ HomD(LX)

(
K•LX

⊗
OX

N , I•)

)

≃ RHomD(LX) (N ,N ′)

Proposition 3.2.2 IfN is a left D(LX)-module which is coherent as an OX-
module, then DLX

(N ) and RHomOX
(N ,OX) are isomorphic in Db(OX).

This proposition is well known for D-modules (see [Ho] p. 93). Note that in
the D-module case, the OX-moduleN is necessarily locally free of finite rank.

Proof of proposition 3.2.2 :
If N is a locally free OX -module of finite rank, the proposition was already
proved in [C3].
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Assume now that N is only a coherent OX-module, then one has the
following sequence of left D(LX)-modules.

DLX
(N ) ≃ RHomD(LX) (OX , RHomOX

(N ,HLX
)) [dLX

]

≃ RHomD(LX)

(
OX , RHomOX

(N ,OX) ⊗
OX

HLX

)
[dLX

]

≃ DLX
(OX)

L
⊗
OX

RHomOX
(N ,OX)

≃ RHomOX
(N ,OX) .

The first isomorphism follows from lemma 3.2.1, the second one follows from
the fact that N is a coherent OX -module, the third one follows from the fact
that OX is a coherent D(LX)-module and the last isomorphism follows from
DLX

(OX) ≃ OX .

Corollary 3.2.3 Let M• and N • be two elements of Db
coh(D(LX)).

There is an isomorphism from RHomD(LX) (M•,N •) to

RHomD(LX)

(
OX , DLX

(M•)
L
⊗
OX

N •
)

Proof of corollary 3.2.3 :
Let K•LX

the Koszul resolution of OX and let P• →M•
|V be a bounded lo-

cally free resolution ofM•
|V . The morphism we are looking for, χLX

(P•,N •)
or χLX

for short, can be made explicite as follows : It is a morphism from

Hom•D(LX) (P•,N •) to Hom•D(LX)

(
K•LX

,Hom•D(LX) (P•,HLX
) ⊗
OX

N •
)

[dLX
],

and if φp is in Homp

D(LX) (P•,N •) then χ(φp) is defined by

∀α ∈ D(LX)⊗
OX

Λq
OX

(LX), χ(φp)(α) = 0 if q 6= dLX

∀ω ∈
∧dLX

OX
(LX), χ(φp)(1⊗ ω)(ei,r) = (1⊗ ω)⊗ φp(ei,r)

where (ei,r)i∈[1,nr] is a basis of the free module Pr. It is easy to check that χ
is a morphism of complexes

Remark :

Note that ifM• andN • are bounded complexes of filtered FD(LX)-modules,
we could take a resolution P• of M•

|V by finite free FD(LV )-modules.
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Then FHom•FD(LX)

(
K•LX

,FHom•FD(LX) (P•,HLX
) ⊗
OX

N •
)

[dLX
] and

FHom•FD(LX) (P•,N •) are complexes of filtered FD(LV )-modules. The mor-
phism χLX

(P•,N •) is a morphism of filtered complexes and

(#) GrχLX
(P•,N •) = χLab

X
(GrP•, GrN •) .

Corollary 3.2.4 Let M• and N • be two elements of Db
coh(D(LX)). The

groups HomDb(D(LX)) (M•,N •) and HomDb(D(LX))

(
OX , DLX

(M•)
L
⊗
OX

N •
)

are

isomorphic.

3.3 Direct images

In this paragraph we recall results of [C3].
Let Φ = (f, F ) be a Lie algebroid morphism from (LX , ωX) to (LY , ωY ).

Let M• be an object of Db (D(LX)op). In [C3], the direct image functor is
defined by

Φ!(M
•) = Rf!

(
M• L

⊗
D(LX)

DLX→LY

)
.

Then Φ!(M
•) is in Db (D(LY )op). If Φ = (f, Tf), we recover the D-module

construction (see [S2] for example). Then DΘX→ΘY
is denoted by DX→Y and

Φ! is denoted by f
!
.

Proposition 3.3.1 Let Φ and Ψ be Lie algebroids morphism from (LX , ωX)
to (LY , ωY ) and from (LY , ωY ) to (LZ , ωZ) respectively, then

Ψ! ◦ Φ! = (Ψ ◦ Φ)! .

The proof of proposition 3.3.1 is similar to the D-modules case (see [Bo] p.
251).

We recall here a definition due to Kashiwara (see [S-S]).

Definition 3.3.2 A right coherent D(LX)-module is good if, for any compact
subset K of X, there exists an open neighborhood U of K such thatM|U has
a filtration (Mk)k∈[1,n] by coherent right D(LU)-submodules such that each
quotient Mk/Mk−1 is generated by a coherent OU -module.
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Note that if X is a smooth algebraic variety, all the coherent D(LX)-
modules are good. Good D(LX)-modules form a thick subcategory of the
category of coherent D(LX)-modules. The associated full subcategory of
Db (D(LX)op) consisting of objects with good cohomology is denoted by
Db

good (D(LY )op)

Theorem 3.3.3 Assume thatM• is in Db
good (D(LX)op) and that f is proper

on Supp(M), then Φ!(M) is in Db
good (D(LY )op).

The proof of Schneiders ([S2] p. 38) in the case of D-modules extends without
any change to our situation. The particular case where f is projective and
M has a global good filtration was treated in [Ka].

Theorem 3.3.4 Let X and Y be two complex manifolds. Let (LX , ωX)
and (LY , ωY ) be Lie algebroids over X and Y respectively. Let Φ = (f, F )
be a Lie algebroid morphism from (LX , ωX) to (LY , ωY ). Let M• be an
element of Db

good (D(LX)op) such that f is proper on the support of M•.
Then there is a functorial isomorphism from Φ!∆LX

(M•) to ∆LY
Φ! (M

•) in
Db

good (D(LY )op) .

Theorem 3.3.4 generalizes a result in Schneiders’ thesis [S1] (see also the
work of Schapira-Schneiders [S-S]) where the case of relative differential op-
erators is treated. The algebraic smooth case had been previously treated by
Bernstein ([Be], [Bo], [Ho]) (in the D-modules context ) for a proper mor-
phism. Moreover Mebkhout had treated the absolute case (i.e Y consists of
a single point, see corollary 4.3.6 in [Me1], [Me2]).

3.4 Inverse image

Let Φ = (f, F ) be a Lie algebroid morphism from (LX , ωX) to (LY , ωY ). Let
R• be an object of Db (D(LY )). Set

Φ−1(R•) = DLX→LY

L
⊗

f−1D(LY )
f−1R•.

Then Φ−1(R•) is in Db (D(LX)). We call it the inverse image of R• by Φ. If
Φ = (f, Tf), we recover the D-module construction (see [S2] for example).
Then DΘX→ΘY

is denoted by DX→Y and Φ−1 is denoted by f−1.
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Remark :

If X = Y and f = id, then Φ−1(R•) is nothing but R• considered as an
element of Db (D(LX)). We will write Φ−1(R•) = R•|LX

.

To define the inverse image of an object of Db (D(LY )op), as in the D-
modules case, one uses the (f−1D(LY )⊗D(LX)op)-bimodule DLY←LX

de-
fined by

DLY←LX
= ΛdLX (L∗X)⊗

OX

DLX→LY
⊗

f−1OY

f−1ΛdLY (LY ).

Proposition 3.4.1 Let Φ and Ψ be Lie algebroids morphisms from (LX , ωX)
to (LY , ωY ) and from (LY , ωY ) to (LZ , ωZ) respectively . Then

Φ−1 ◦Ψ−1 = (Ψ ◦ Φ)−1.

The proof of proposition 3.4.1 is analogous to the D-modules case (see [Bo]
p. 251).

Proposition 3.4.2 Let Φ be a Lie algebroid morphism from (LX , ωX) to

(LY , ωY ). There is an isomorphism between Φ−1

(
M•

L
⊗
OY

N •
)

and

Φ−1 (M•)
L
⊗
OX

Φ−1 (N •) for any M•,N • in Db (D(LY ))

The proof of proposition 3.4.2 is analogous to the D-modules case. We refer
the reader to [Bj].

Proposition 3.4.3 Let Φ = (f, F ) be a Lie algebroid morphism from (X,LX)
to (Y,LY ) and let Φab = (f, F ab) be the Lie algebroid morphism it induces
between the abelian Lie algebroids (X,Lab

X ) and (Y,Lab
Y ). Let R be a filtered

FD(LY )-module and let

L• : · · · →
n1

⊕
i=1
FD(LY )(ri,1)→

n0

⊕
i=1
FD(LY )(ri,0)→R→ 0

be a filtered resolution ofR. Then Φ−1(R) is isomorphic to Of−1V ⊗
f−1OV

f−1L•

and we filter it by the image of the complex Of−1V ⊗
f−1OV

f−1FkL
•. One has

an isomorphism

GrΦ−1(R) ≃ Φab−1
(GrR).
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Proof of proposition 3.4.3 :
The image of the complex Of−1V ⊗

f−1OV

f−1FkL• in Of−1V ⊗
f−1OV

f−1FL• is

isomorphic to the complex Of−1V ⊗
f−1OV

f−1FkL• itself because the compo-

nents of L• are of the type FD(LY )(r). As GrFLi is a free OV -module,

the complexes Gr

(
Of−1V ⊗

f−1OV

f−1FL•
)

and

(
Of−1V ⊗

f−1OV

f−1GrFL•
)

are

isomorphic. This finishes the proof of the proposition.

The following question arises naturally: Let R• be an element of
Db

coh (D(LY )). Give a sufficient condition so that Φ−1(R•) is in Db
coh(D(LX)).

To do so, we introduce, as in the D-modules case, the notion of non
characteristicity.

Let LX (respectively LY ) be the vector bundle associated to LX (respec-
tively LY ). We have the following diagram

L∗X
tF
←− X ×Y L

∗
Y

Fπ−→ L∗Y

where, for x ∈ X and λ ∈ L∗f(x), one has

tF (x, f(x), λ) = (x,t F (λ))
Fπ (x, f(x), λ) = (f(x), λ) .

Denote by NS(X ×Y L
∗
Y ) the null section of X ×Y L

∗
Y . Let R• be in

Db
coh (D(LY )). We will say that R• is non characteristic with respect to

Φ if the following inclusion holds.

F−1
π (char(R•))

⋂
{(x, f(x), λ) ∈ X ×Y L

∗
Y | λ ◦ Fx = 0} ⊂ NS(X ×Y L

∗
Y ).

Kashiwara has shown that, in the D-modules case, the non characteristicity
condition ensures that Φ−1(R•) is in Db

coh(D(LX)) (see [S2]). We will now
generalize this result to Lie algebroids.

Theorem 3.4.4 Let (X,LX) and (Y,LY ) be Lie algebroids over the complex
manifolds X and Y respectively. Let Φ = (f, F ) be a Lie algebroid morphism
from (X,LX) to (Y,LY ). Let R• be an element of Db

coh(D(LY )) which is
supposed to be non characteristic with respect to Φ. Then Φ−1(R•) is in
Db

coh(D(LX)) and

Char(Φ−1(R•)) ⊂t FFπ(CharR•).
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Proof of theorem 3.4.4
Let R• be an element of Db

coh(D(LY )) which is supposed to be non char-
acteristic for Φ. By a standard induction argument on the number of non
zero cohomology groups of R•, one sees that it is enough to prove the theo-
rem for a module which we will denote by R. The question being local, we
may assume

LX = OXe1 ⊕ . . .⊕OXer

LY = OY er+1 ⊕ . . .⊕OY em.

One may shrink Y so that R is endowed with a good filtration. The module
GrR is then a graded coherent S(LY )-module non characteristic for the
morphism Φab (the morphism induced by Φ on the abelian Lie algebroids Lab

X

and Lab
Y ).

Hence propositions 2.1.7 and 3.4.3 show that it is enough to prove the
theorem in the case of Φab ( that is to say the abelian case) for a graded
coherent S(LY )-module non characteristic for Φab. Introduce the following
maps :

t : X → X × Y
x 7→ (x, f(x))

q : X × Y → Y
(x, y) 7→ f(x)

T : LX → LX ⊕

(
OX ⊗

f−1OY

f−1LY

)

D 7→ D + F (D)

and the following abelian Lie algebroids :



X × Y,Pab
X×Y = OX×Y ⊗

p−1

1
OX

p−1
1 T (Lab

X )





(
X × Y,Qab

X×Y = OX×Y ⊗
q−1OY

q−1Lab
Y

)
.

(id, T ) is a Lie algebroid isomorphism from
(
X,Lab

X

)
to

(
X, T (Lab

X )
)
.

The pair (t, id) defines a Lie algebroid morphism from
(
X, T (LX)ab

)
to

22



(
X × Y,Pab

X×Y

)
. Let ψ be the map

Pab
X×Y → Qab

X×Y

b⊗ (D +
∑

i

ai ⊗∆i) 7→ b

(
∑

i

ai ⊗∆i

)
.

The pair Ψab = (id, ψ) is a Lie algebroid morphism from Pab
X×Y to Qab

X×Y .

Lastly the pair (q, id) is a Lie algebroid morphism from
(
X × Y,Qab

X×Y

)
to

(
Y,Lab

Y

)
. Then we have (f, F ab) = (q, id) ◦ (id, ψ) ◦ (t, id) ◦ (id, T ). This

factorization shows that it is enough to prove our proposition in the cases
where (f, F ab) = (id, F ab) and (f, F ab) = (f, id).

a) Case where Φab = (f, id).

Necessarily Lab
X = OX ⊗

f−1OY

f−1Lab
Y . In this case any module is non char-

acteristic with respect to Φab and Φab−1
(
SOY

(Lab
Y )
)

= SOX
(Lab

X ). Thus the
coherence is established.

b) Case where Φab = (id, F ab).

We introduce the abelian Lie algebroid over Z = X×Y ,
(
Z, aZ = Pab

Z ⊕Q
ab
Z

)

and we factorize (id, F ab) = (id,Πab) ◦ (id, Iab) where

Iab : Pab
Z → aZ

D 7→ D + F ab(D)

Πab : aZ → Qab
Z

D + ∆ 7→ ∆

The case of (id,Πab) is easy. Let us now treat the case of (id, Iab). Put
P

′ab
Z = Iab(Pab

Z ). Introduce the following abelian Lie algebroids with zero
anchor (over Z):

Vj = P
′ab
Z ⊕OZer+1 . . .⊕OZer+j .

We have the following sequence of Lie algebroids embeddings :

V0 = P
′ab
Z →֒ V1 →֒ . . . →֒ Vm−r = aZ .
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So we may assume that m− r = 1 and we are in the following situation

Iab : P
′ab
Z →֒ P

′ab
Z ⊕OZer+1.

Let η be the element of a∗Z such that η|P ′
Z

= 0 and η(er+1) = 1.
Restricting Z, we can take (σ1, . . . , σq) to be a generating system of the

S(aZ)-module R. For each j, denote by Ij the annihilating (graded) ideal of

σj in S(aZ). The module
S(aZ)

Ij

is non characteristic for Φab.

Let z be in Z. If t 6= 0, the pair (z, te∗r+1) is not in char(
S(aZ)

Ij

). So there

exists an homogeneous element sj in Ij such that sj(z, ter+1) 6= 0. Put

sj =
pj∑

l=0

αl,je
l
r+1

with αl,j ∈ Spj−l(P ′Z). Shrinking Z, we may assume that αpj ,j is an invertible
element of OZ . We have a natural epimorphism

q

⊕
j=1

SOZ
(aZ)

< sj >
→ GrR→ 0.

So it is enough to prove that
SOZ

(aZ)

< sj >
is a coherent SOZ

(P
′ab
Z )-module. And

this is obvious because Euclidean division in SOZ
(aZ) provides an isomor-

phism of SOZ
(P ′Z)-modules χ :

SOZ
(aZ)

< sj >
→ SOU

(P ′Z)pj . This finishes the

proof of the proposition.

4 A duality theorem

This section is devoted to the generalization of a duality theorem due to
Kashiwara, Kawai and Sato in the D-modules case (see [SKK]).

4.1 Statement

We will construct a functorial arrow DLX
Φ−1(R•) → Φ−1DLY

(R•) for any
element R• in Db(D(LY )) such that Φ−1(R•) is in Db

coh (D(LX)). Our con-
struction will be in particular valid if R• is non characteristic for Φ.
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Using corollary 3.2.4 , the element 1 of HomDb(D(LY ))(R
•,R•) provides an

arrow

OY → DLY
(R•)

L
⊗
OY

R•

in Db (D(LY )). Hence an arrow

Φ−1(OY ) = OX → Φ−1

(
DLY

(R•)
L
⊗
OY

R•
)

≃ Φ−1
(
DLY

(R•)
) L
⊗
OX

Φ−1 (R•)

Using the fact that D2
LX

(Φ−1(R•)) ≃ Φ−1(R•) and corollary 3.2.4 again, we
get an arrow

DLX
Φ−1(R•)→ Φ−1DLY

(R•).

Theorem 4.1.1 Let Φ be a Lie algebroid morphism from (X,LX) to (Y,LY ).
Let R• be in Db

coh (D(LY )) which is supposed to be non characteristic with
respect to Φ. The functorial morphism from DLX

Φ−1(R•) to Φ−1DLY
(R•)

constructed above is an isomorphism.

4.2 Proof of theorem 4.1.1

As the proof of theorem 3.4.4, the proof of theorem 4.1.1 is into two steps.
First, we will reduce to the abelian case, then we will prove the theorem in
the abelian case.

a) Reduction to the abelian case.

Preliminary remark :

Let Q• be a bounded complex of locally free D(LX)-modules and N • be a
bounded complex of D(LX)-modules. Let CX

α
−→ S• be a resolution of CX

by c-soft sheaves. One has an isomorphism (see [K-S 3] exercise 4.7)

HomDb(D(LX))(Q
•,N •) ≃ H0

(
X,Hom•D(LX)(Q

•,N •)⊗
CX

S•
)
.

There is a morphism

H0
(
Hom•D(LX) (Q•,N •)

)
→ HomDb(D(LX))(Q

•,N •)

[φ] 7→ [φ⊗ α(1)].
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If [φ] is an isomorphism, so is [φ ⊗ α(1)]. We will say that the morphism
[φ⊗ α(1)] is induced by φ.

To show that the morphism we have constructed is an isomorphism, we
may assume that R• is a module (denoted R) which is non characteristic
with respect to the morphism Φ and endowed with a good filtration. Then
GrR is a coherent S(LY )-module non characteristic for Φab. As we may
reason locally, we may take P• to be a resolution of R by finite free D(LY )-
modules. With the notation of corollary 3.2.3, we see that the arrow OY →

DLY
(R)

L
⊗
OY

R in Db(D(LY )) is induced by the arrow Γ (X,χLY
(P•,P•)) (id)

from K•LY
to HomD(LY ) (P•,HLY

) ⊗
OY

P•[dLY
].

The arrow OX → Φ−1
(
DLY

(R)
) L
⊗
OX

Φ−1 (R) in Db(D(LX)) is induced

by the morphism idOX
⊗ Γ (X,χLY

(P•,P•)) (id) from OX ⊗
f−1OY

f−1K•LY
to

OX ⊗
f−1OY

f−1

(
HomD(LY ) (P•,HLY

) ⊗
OY

P•
)

[dLY
]. One sees that the arrow

DLX
◦ Φ−1(R) → Φ−1 ◦ DLY

(R) is also induced by a morphism and we
want to see that this morphism is an isomorphism.

We have

GrΓ (X,χLY
(P•,P•)) (id) = Γ

(
X,χLab

Y
(GrP•, GrP•)

)
(id)

Gr (idOX
⊗ f−1Γ (X,χLY

(P•,P•)) (id)) =

idOX
⊗ f−1Γ

(
X,χLab

Y
(GrP•, GrP•)

)
(id).

Using the last remark of section 3.2 (equality #), one sees that it is enough
to show the theorem 4.1.1 for the case of Φab.

b) Proof of theorem 4.1.1 in the abelian case.

From now on, we assume that Φ = Φab and that R is a graded S(LY )-
module non characteristic for Φab. As in the proof of theorem 3.4.4, we intro-
duce the maps t, q, T as well as the abelian Lie algebroids Pab

X×Y and Qab
X×Y

and we factorize (f, F ab) into

(f, F ab) = (q, id) ◦ (id, ψ) ◦ (t, id) ◦ (id, T ).
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This factorization shows that it is enough to prove the theorem in the case
where (f, F ab) = (id, F ab) and (f, F ab) = (f, id).

Let us first treat the case where Φab = (f, id). Necessarily
LX = OX ⊗

f−1OY

f−1LY . In this case any module is non characteristic with re-

spect to Φab so that we can assume thatR = S(LY ). Then Φab−1
(
SOY

(Lab
Y )
)

=

SOX
(Lab

X ) and the morphism of functor DLX
◦ (Φab)−1 → (Φab)−1 ◦DLY

is the
identity as easily checked for R = S(LY ). So the theorem is proved in the
case where Φab = (f, Id).

Let us now treat the case where Φab = (id, F ). As in the proof of
theorem 3.4.4, we introduce the abelian Lie algebroid over Z = X × Y ,(
Z, aZ = Pab

Z ⊕Q
ab
Z

)
and we factorize (id, F ab) into

(id, F ab) = (id,Πab) ◦ (id, Iab).

We can treat the cases where (id, F ab) = (id,Πab) and (id, F ab) = (id, Iab)
independently.

Assume that (id, F ab) = (id,Πab). Recall that DaZ

(
S(aZ)

S(aZ)Pab
Z

)
is iso-

morphic to S(Qab
Z )⊗
OZ

Λ
d
Qab

Z (Qab
Z )[dQab

Z
] in Db

(
S(Qab

Z )⊗ S(Qab
Z )op

)
([C2]).

These remarks allow us to write the following sequence of isomorphisms in
Db(S

(
Qab

Z )
)

:

DaZ
(R•) ≃ DaZ

(
S(aZ)

S(aZ)Pab
Z

⊗
S(Qab

Z
)
R•)

)

≃ RHomS(QZ)

(
R•, DaZ

(
S(aZ)

S(aZ)Pab
Z

))

≃ DQZ
(R•) .

Let us now treat the case where Φab = (id, Iab). Put P ′Z = Iab(Pab
Z ).

Reasoning as in the proof of theorem 3.4.4 and keeping the notation , we may
assume that QY is a one dimensional free OY -module and put QY = OY er+1.
We have then the following Lie algebroids embedding

P ′Z →֒ aZ = P ′Z ⊕OZer+1.
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R is a graded coherent S(aZ)-module non characteristic for the morphism
Φab = (id, Iab).

We know from the proof of theorem 3.4.4 that there exists an epimorphism

q

⊕
j=1

SOZ
(aZ)

< uj >
→R→ 0

with uj of the form

uj =
pj∑

l=0

αl,je
l
r+1

with αl,j ∈ Spj−l(P ′Z) and αpj ,j invertible in OZ .

Consequently, it is enough to show the theorem for R =
SOZ

(aZ)

< uj >
and in

this case it is easy to make the arrow

DP ′
Z
◦ (Φab)−1(R)→ (Φab)−1 ◦DaZ

(R)

explicit, and to see that it is an isomorphism. This finishes the proof of
theorem 4.1.1.

Corollary 4.2.1 Let Ψ be a Lie algebroid morphism from (X,LX) to (Y,LY ).
Let R be a left D(LY )-module which is coherent as an OY -module.
For short, put N ∗ = RHomOY

(N ,OY ) with its D(LY )-module structure
defined in section 3.2. There is a functorial isomorphism of

right D(LX)-modules from Ext
dLX

+i

D(LX)

(
DLX→LY

L
⊗

f−1D(LY )
f−1N ,D(LX)

)
to

Tor
f−1D(LY )
i

(
f−1

(
N ∗ ⊗ ΛdLY (L∗Y )

)
,DLY←LX

)
.

5 Adjunction formulas and applications

5.1 Adjunction formulas

Generalizing the results of [K-S 2] ( chapter 7), we obtain the following
adjunction formulas.

Theorem 5.1.1 Let (X,LX) and (Y,LY ) be two Lie algebroids over X and
Y respectively. Set dLX

= rank(LX) and dLY
= rank(LY ). Let Φ = (f, F ) be
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a Lie algebroid morphism from (X,LX) to (Y,LY ).

a) LetM ∈ Db(D(LY )) and N ∈ Db(D(LX)op). Then Φ!(N )
L
⊗
D(LY )

M and

Rf!

(
N

L
⊗
D(LX)

Φ−1(M)

)
are isomorphic in Db(CY ).

b) Assume thatM is in Db
coh(D(LY )) and that Φ is non characteristic for

M. The objects Rf!RHomD(LX)

(
Φ−1(M),N

)
[dLX

− dLY
] and

RHomD(LY ) (M,Φ!(N )) are isomorphic in Db(CY )

c) Assume that N is in Db
good (D(LX)) and that f is proper

on SuppN . Then Rf∗RHomD(LX)

(
N ,Φ−1M

)
[dimX − dimY ]

and RHomD(LY )

(
Φ!(ΩX ⊗

OX

N ),ΩY ⊗
OY

M

)
are isomorphic in Db(CY )

Proof of theorem 5.1.1 : a) is straightforward , b) follows from theorem
4.1.1 and c) follows from theorem 3.3.4.

5.2 Applications

Application 1

Note that the proof of theorem 4.1.1 holds in the case of Lie algebras over
any field k. As a corollary of Theorem 5.1.1, we get the result below where
we adopt the following notation : Let V be an n dimensional vector space,
and let det(V ) = Λn(V ).

Corollary 5.2.1 Let h and g be two finite dimensional Lie algebras over a
field and let φ be a Lie algebra morphism from h to g. Let M be a finitely
generated U(g)-module. Assume that

char(M) ∩ {λ ∈ g
∗ | λ|φ(h) = 0} = {0}.

Let N be a h-module. Then, for all i in ZZ, we have an isomorphism

Exti+dimh

U(h)

(
M|h, N

)
≃ Exti+dimg

U(g)

(
M ⊗ det(g∗), (N ⊗ det(h∗))

L
⊗

U(h)
U(g)

)
.
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Application 2

Let X be an analytic Poisson manifold. We consider the Lie algebroid
(X,Ω1

X) (see section 2.4). Let R• be an element of Db (D(Ω1
X)). The co-

homology of the complex RHomD(Ω1

X
) (OX ,R•) is called the canonical coho-

mology of X with values in R• ([Li],[Hu]). We set

C•can (R•) = RHomD(Ω1

X
) (OX ,R

•) .

Let (Y,Ω1
Y ) be another holomorphic manifold endowed with a complex struc-

ture and let f : X → Y be a Poisson map. Consider the correspondence

OX ⊗
f−1OY

f−1Ω1
Y

Φ=(id,F )

wwppppppppppp Ψ=(f,id)

''
NNNNNNNNNNN

(X,Ω1
X) (Y,Ω1

Y ),

where F is defined as follows : for all α in OX and all β in OY ,

OX ⊗
f−1OY

f−1Ω1
Y → Ω1

X

α⊗ βdq 7→ α(β ◦ f)d(q ◦ f).

Let N be a left D

(
OX ⊗

f−1OY

f−1Ω1
Y

)
-module. Taking M = OY , the

adjunction formula tells us that we have the following isomorphisms

RHom
D

(
OX ⊗

f−1OY

f−1Ω1

Y

) (OX ,N ) [dimY − dimX] ≃ RHomD(Ω1

X
) (OX ,Φ!N )

Rf!RHom
D

(
OX ⊗

f−1OY

f−1Ω1

Y

) (OX ,N ) ≃ RHomD(Ω1

Y
) (OY ,Ψ!N )

Noticing that Ψ!(N ) is nothing but N considered as a left D (Ω1
Y )-module,

we deduce the isomorphism

C•can,Y (N ) ≃ Rf!C•can,X(Φ!N )[dimX − dimY ].

Application 3
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Let (X,LX) be a Lie algebroid over X. Let x0 be a point of X. Define
the sheaf Mx0

of ideals of OX by :

Mx0
(U) = {f ∈ OX(U) | f(x0) = 0}

for any open subset U of X. Define the (not necessarily locally free) Lie
algebroid L(Mx0

) by

L(Mx0
) = {D ∈ LX | D(Mx0

) ⊂Mx0
}.

Let L(x0) be the Lie algebra

OX

Mx0

⊗
OX

LX(Mx0
) = LX(x0).

Let us consider the Lie algebroid morphism I = (ǫ, I) : ({pt},LX(x0)) →
(X,LX) where ǫ({pt}) = x0 and I is defined by tensoring the canonical
embedding LX(Mx0

) →֒ LX . For any D(LX)-module R supposed to be non
characteristic with respect to I, the adjunction formula gives

Ext
i+dimLX(x0)
U(LX(x0))

(
R

Mx0
R
,W

)
≃ Exti+rkLX

D(LX ) (R, I !(W )) .

In particular,

H i+dimLX(x0) (LX(x0),W ) ≃ Exti+rkLX

D(LX) (OX , I !(W )) .

Example :

Assume that X = V is a finite dimensional vector space on which a
connected algebraic group G acts locally freely (that is maxv∈V dimG · v =
dimG). Put LieG = g. If LV = OV ⊗g (as in example 5 ) and x0 = 0V , then
L(0V ) = g. Consider the Lie algebroidMV = (V, ωV (OV ⊗ g)). We have the
isomorphism

H i+dimg (g,W ) ≃ Exti+rkMV

D(MV )

(
OV , ωV ◦ I !

(W )
)
.

But dimg = rkMV ([P] p. 186). Assume that g is semi-simple. Then W
can be written as a direct sum of irreducible representations. Let p be the
multiplicity of k in W . Then

ExtiD(MV )

(
OV , ωV ◦ I !

(W )
)

=
(
Λi(g)g

)p
.
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