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Abstract

In the first part of this article, we compute the rigid dualizing complex of a
quantum enveloping algebra. We consider the generic case and the case of
a specialization at a non root of unity. This answers a question of Yekutieli
([Y4]). In [C1] and [C2], we generalized D-module theory to Lie algebroids.
Using these results, we compute explicitly the rigid dualizing complex of
the algebra of differential operators defined by an affine Lie algebroid. This
generalizes results of Yekutieli [Y4].

1 Introduction

Grothendieck duality involves dualizing complexes which were introduced
in [Ha]. The extension of the definition of dualizing complexes to the non
commutative setting is due to Yekutieli ([Y1]). Let k be a field and let A
be a noetherian associative unital k-algebra. Denote by Aop the opposite
algebra and put Ae = A⊗kA

op. Let Db
f (A) be the bounded derived category

of complexes of left A-modules with finitely generated cohomologies. A
dualizing complex over A is roughly speaking a complex of bimodules R ∈
Db(Ae) such that the functors RHomA (−, R) and RHomAop (−, R) induce a
duality between Db

f (A) and Db
f (Aop). Dualizing complexes are not unique.

To rigidify the definition, Van den Bergh introduced the notion of rigid
dualizing complex. A dualizing complex is rigid if there is an isomorphism

R ≃ RHomAe(A,R ⊗R)
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in D(Ae). A rigid dualizing complex, if it exists, is unique up to isomor-
phism.

In the first part of this article, we compute the rigid dualizing complex of
the quantum enveloping algebra of a complex finite dimensional semi-simple
Lie algebra for q generic and also in the case of a specialization at a complex
number satisfying suitable conditions. This answers a question of Yekutieli
([Y4]). Let g be a finite dimensional semi-simple Lie algebra over C and
A its Cartan matrix. Let (d1, . . . , dn) be relatively prime entries such that
(diai,j) is symmetric and positive definite. Put

Cg = {ǫ ∈ C∗ | ǫ2di 6= 1 ∀i ∈ [1, n]}

Denote by Uq(g) the quantum enveloping algebra for q generic and Uǫ(g) its
specialization at ǫ ∈ C∗.

Theorem Let ǫ ∈ Cg. The rigid dualizing complex of Uq(g) and Uǫ(g)
are Uq(g)[dimg] and Uǫ(g)[dimg] respectively.

The theorem is a consequence of the following proposition which is in-
teresting by itself.

Proposition We have the following isomorphism of right Uq(g)-modules.

ExtiUq(g) (C(q), Uq(g)) = 0 if i 6= dimg

Extdimg

Uq(g) (C(q), Uq(g)) = C(q)

Replacing C(q) by C, a similar result holds for Uǫ(g) if ǫ ∈ Cg.

To prove the proposition, we use a filtration on Uq(g) and Uǫ(g) such that
the graded algebras are q-commutative algebras ([deC-K]). As corollaries
of this proposition, we obtain duality properties (already known for Lie
algebras) in the quantum group setting.

In the second part of this article, we compute the rigid dualizing complex
defined by a Lie Rinehart algebra over a smooth integral domain. Our com-
putation uses the generalization of D-module theory to Lie algebroids that
we developed in previous articles ([C1], [C2]) . Let G be an integral domain
which is a smooth commutative algebra of dimension n. Let LG be a Lie
Rinehart algebra ([R]) over G which is a projective G-module of constant
rank dLG

and let D(LG) be the algebra of generalized differential operators
defined by LG. We know from previous work that ΛdLG (L∗G) and ωG (the
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G-module of differential form of maximal degree) are right D(LG)-modules

so that HomG

(
ΛdLG (L∗G), ωG

)
is a left D(LG)-module.

Theorem The rigid dualizing complex of D(LG) is

D(LG)⊗
G
HomG

(
ΛdLG (L∗G), ωG

)
[dLG

+ n]

If LG is the module of vector fields over G, then D(LG) is the ring of
differential operators over G, DG. From our theorem, we deduce that the
rigid dualizing complex of DG is DG[2n]. If G is a point, LG is nothing
but a finite dimensional Lie algebra g. As a particular case of our theorem,
we get that the rigid dualizing complex of the enveloping algebra U(g) is
U(g) ⊗ Λdimg(g)[dimg]. These two particular cases were already treated in
[Y4].

Notation :

If k is the base field, we write ⊗ for ⊗k. If A is a k-algebra, we put
Ae = A⊗Aop.

Given a commutative totally ordered semi-group S, an S filtration of
an algebra A is a collection of subspaces (As)s∈S such that

⋃
s∈S A

s = A,

As ⊂ As′ if s < s′ and As · As′ ⊂ As+s′ . The associated graded algebra is

GrA = ⊕
s



As/
∑

s′<s

As′



 .

Let (H, i, µ,∆, S, ǫ) be a Hopf algebra. One defines the adjoint rep-
resentation from H with values in EndH by ad(x)u =

∑

i

aiuS(bi) where

∆(x) =
∑

i

ai ⊗ bi. Recall the following well known result ([D1] p. 387).

Lemma 1.1 Let (H, i, µ,∆, S, ǫ) be a Hopf algebra and V an H-module.
a) The map

Θ : H ⊗ V → H ⊗ V

a⊗ v 7→
n∑

i=1

a
′

i ⊗ a
′′

i v with ∆(a) =
n∑

i=1

a
′

i ⊗ a
′′

i

is an isomorphism between H ⊗ V endowed with the H module structure
given by left multiplication and H⊗V endowed with the H-module structure
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given by the coproduct. One checks that Θ−1 is given by :

Θ−1(a⊗ v) =
n∑

i=1

a
′

i ⊗ S(a
′′

i )v.

b) The map

Ψ : V ⊗H → V ⊗H

v ⊗ a 7→
n∑

i=1

va
′

i ⊗ a
′′

i with ∆(a) =
n∑

i=1

a
′

i ⊗ a
′′

i

is an isomorphism between V ⊗H endowed with the right H-module structure
given by right multiplication and V ⊗ H endowed with the right H-module
structure given by the coproduct. One checks that Ψ−1 is given by :

Ψ−1(v ⊗ a) =
n∑

i=1

vS(a
′

i) ⊗ a
′′

i .

For homological algebra and sheaves, we will use the same notation as
in [K-S].

Acknowledgments : I am grateful to M. Duflo, C. Kassel, M. van
den Bergh and M. Rosso for helpful discussions. I would like to thank A.
Yekutieli for making comments on an earlier version of this article.

2 Dualizing complexes

The next definition is due to Yekutieli [Y1].

Definition 2.0.1 Assume that A is a left and right noetherian ring. An
object R of Db(Ae) is called a dualizing complex if it satisfies the following
conditions.

a) R has finite injective dimension over A and Aop.
b) The cohomology of R is given by bimodules which are finitely generated

on both sides.
c) The natural morphisms Φ : A → RHomA(R,R) and Φ : A →

RHomAop(R,R) are isomorphisms in Db(Ae).

Remarks : ([Y1] and [Y3])
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1) A dualizing complex is only determined up to derived tensor product
with a tilting module ([Y3] theorem 4.5).

2) If A has finite injective dimension over A as a left and right A-module,
then A is a dualizing complex.

3) If R is a dualizing complex, then RHomA (−, R) defines a duality be-
tween the full subcategories of Db

f (A) and Db
f (Aop) consisting of complexes

with finitely generated cohomology.

The next definition is due to M. Van den Bergh [VdB1].

Definition 2.0.2 Let A be a left and right noetherian ring. A dualizing
complex R is rigid if

R ≃ RHomAe (A,AR⊗RA)

in D(ModAe). The notation AR and RA mean that we take the RHom over
the left and the right A-structures of R respectively.

Remark :

The rigid dualizing complex, if it exists, is unique up to isomorphism.

3 Rigid dualizing complex for quantum enveloping

algebras

3.1 The algebras Uq(g) and Uǫ(g)

For basic results on quantum groups, we refer the reader to [C-P].
Let q be an indeterminate and let A = C[q, q−1]. We will use the usual

notation :

[n]q =
qn − q−n

q − q−1
∈ A

[n]q! = [n]q [n− 1]q . . . [1]q(
n
j

)

q

= [n]q [n− 1]q . . . [n− j + 1]q / [j]q! ∀j ∈ IN

One knows that

(
n
j

)

q

is in A.

Let g be a finite dimensional semi-simple Lie algebra over C and A =
(ai,j)(i,j)∈[1,n]2 its Cartan matrix. The matrix A is not always symmetric
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but it is always symmetrizable ([K] chapter 4, proposition 4.9). This implies
that there exists a unique n-uple of integers with relatively prime entries
(d1, . . . , dn) such that (diai,j) is symmetric and positive definite. Put qi =
qdi .

We set
Cg = {ǫ ∈ C∗ | ǫ2di 6= 1, ∀i ∈ [1, n]}.

Following Jimbo, we consider the C(q)-algebra Uq(g) defined by the gen-
erators Ei, Fi,Ki,K

−1
i for i in [1, n] and the relations

(1) KiK
−1
i = K−1

i Ki = 1 KiKj = KjKi

(2) KiEjK
−1
i = q

ai,j

i Ej KiFjK
−1
i = q

−ai,j

i Fj

(3) EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

(4)

1−ai,j∑

s=0

(−1)s
(

1 − ai,j

s

)

qi

E
1−ai,j−s
i EjE

s
i = 0 if i 6= j

(5)

1−ai,j∑

s=0

(−1)s
(

1 − ai,j

s

)

qi

F
1−ai,j−s
i FjF

s
i = 0 if i 6= j

Uq(g), endowed with the comultiplication ∆, the antipode S and the counit
ǫ defined below is a Hopf algebra.

(6) ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei

(7) ∆(Fi) = Fi ⊗K−1
i + 1 ⊗ Fi

(8) ∆(Ki) = Ki ⊗Ki

(9) S(Ei) = −K−1
i Ei

(10) S(Fi) = −FiKi

(11) S(Ki) = K−1
i

(12) ǫ(Ei) = 0, ǫ(Fi) = 0, ǫ(Ki) = 1.

Uq(g) is called the quantum group associated to g with q generic. Let P
be the free abelian group with basis (ωi)i∈[1,n]. Define the following element

αj =
n∑

i=1

ai,jωi and put

Q =
n∑

i=1

ZZαi and Q+ =
n∑

i=1

ZZ+αi.
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For β =
n∑

i=1

kiαi ∈ Q let ht(β) =
n∑

i=1

ki. Denote by (, ) the ZZ-valued symmet-

ric bilinear form on Q such that (αi, αj) = diai,j. Let ri be the automorphism
of P defined by

ri(ωj) = ωj − δi,jαi ∀(i, j) ∈ [1, n].

Let W be the finite subgroup of GL(P ) generated by r1, . . . , rn. We put

Π = (α1, . . . , αn) R = WΠ and R+ = R ∩Q+.

Then R is the root system corresponding to the Cartan matrix A, W is its
Weyl group, R+ is the set of positive roots.

Let UA(g) be the A-subalgebra of Uq(g) generated by elements Ei, Fi,Ki,K
−1
i ,

[Ki, 0] =
Ki −K−1

i

qi − q−1
i

.

Note that relations (1),(2), (4), (5), (6), (7), (8), (9), (10), (11), (12)
together with relations

EiFj − FjEi = δi,j[Ki, 0]

(qi − q−1
i )[Ki, 0] = Ki −K−1

i

∆([Ki, 0]) = [Ki, 0] ⊗Ki +K−1
i ⊗ [Ki, 0]

S([Ki, 0]) = −[Ki, 0]
ǫ([Ki, 0]) = 0

define a Hopf algebra over A.
Given ǫ in C∗, we consider the specialization

Uǫ(g) = UA(g)/(q − ǫ)UA(g)

One defines the operators Ti (for i ∈ [1, n]) over Uq(g) by

TiEj = ad
(
−E

−ai,j

i

)
Ej if i 6= j

TiEi = −FiKi

TiFj = ad
(
−F

−ai,j

i

)
Fj if i 6= j

TiFi = −K−1
i Ei

TiKj = KjK
−ai,j

i

The operators Ti are also defined over Uǫ(g).
We will now recall a filtration defined on Uq(g) and Uǫ(g) by de Concini

and Procesi ([deC-P] proposition 1.7)
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Fix a reduced expression w0 = ri1ri2 . . . riN of the longest element of W .
This gives an ordering of the positive roots.

β1 = αi1 , β2 = ri1(αi2), . . . , βN = ri1 . . . riN−1
(αiN ).

One sets

Eβj
= Ti1 . . . Tij−1(Eis) and Fβj

= Ti1 . . . Tij−1(Fij )

For (k1, . . . , kN ) ∈ ZZ
N
+ and (l1, . . . , lN ) ∈ ZZ

N
+ and u ∈ Uq(g)0, define

Mk,l,u = F kN

βN
. . . F k1

β1
uEl1

β1
. . . ElN

βN
.

Define the height of this monomial by

ht(Mk,l,u) =
N∑

i=1

(ki + li)ht(βi).

Consider ZZ
2N+1
+ as a semi-group totally ordered with the lexicographic order

< such that u1 < . . . < u2N+1 where

ui = (δi,1, . . . , δi,2N+1)

is the standard basis of ZZ
2N+1
+ Define the degree of the monomial Mk,l,u as

being
d(Mk,l,u) = (kN , kN−1, . . . , k1, l1, . . . , lN , ht(Mk,l,u)) .

Given s ∈ ZZ
2N+1
+ , denote by ΣsUq(g) the linear span over C(q) of the

monomials Mk,l,u such that d(Mk,l,u) ≤ s. Define ΣsUǫ(g) ⊂ Uǫ(g) similarly.

Proposition 3.1.1 a) The (ΣsUq(g))
s∈ZZ2N+1 form a filtration of Uq(g) (sim-

ilarly Uǫ(g)).
b) The associated graded algebra GrUq(g) (respectively GrUǫ(g)) is an

associative algebra over C(q) (respectively C ) on generators Eα, Fα(α ∈
R+),Ki,K

−1
i (i ∈ [1, n]) subject to the following relations

KiKj = KjKi

KiK
−1
i = 1

EαFβ = FβEα

KiEα = q(α,αi)EαKi

KiFα = q−(α,αi)FαKi

EαEβ = q(α,β)EβEα if α > β

FαFβ = q(α,β)FβFα if α > β

(respectively same relations with q = ǫ provided that ǫ ∈ Cg).
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Proof : see [deC - P] (proposition 1.7)

Corollary 3.1.2 Let g be a finite dimensional semi-simple complex Lie al-
gebra. Assume that ǫ is in Cg. Then Uq(g) and Uǫ(g) are noetherian algebras
of finite homological dimension.

This follows from the filtration above (see [B-G]).
Uq(g) is a right (respectively left) module via right (respectively left)

multiplication. Using the antipode, one can transform right multiplication
into a left Uq(g)-action on Uq(g) denoted ·S

∀α, u ∈ Uq(g), α ·S u = uS(α).

Thus Uq(g) becomes a Uq(g) ⊗ Uq(g)-module. The antipode S provides an
isomorphism between the left modules (Uq(g), ·S) and Uq(g) endowed with
left multiplication. More precisely, it exchanges the two left module struc-
tures. Introduce the functor DUq(g) from Db

f (Uq(g)) to Db
f (Uq(g)) defined

by :
∀M• ∈ Db(Uq(g))
DUq(g)(M

•) = RHomUq(g) (M•, Uq(g)) [−dimg].

One introduces similarly the functor DUǫ(g) from Db
f (Uǫ(g)) to Db

f (Uǫ(g)).

The canonical arrow M• → D2
Uq(g)(M

•) is an isomorphism for M• = Uq(g).
Hence, by standard homological algebra arguments, one proves that for any
M• in Db

f (Uq(g)), D2
Uq(g)(M

•) = M•. In other words, DUq(g) is a duality
functor. Similarly, if ǫ ∈ Cg, DUǫ(g) is a duality functor.

3.2 Computation of ExtiUq(g) (C(q), Uq(g)) and ExtiUǫ(g) (C, Uǫ(g))

Proposition 3.2.1 Let g be a complex finite dimensional semi-simple Lie
algebra. We have the following isomorphisms

ExtiUq(g) (C(q), Uq(g)) = 0 for i 6= dimg

Extdimg

Uq(g) (C(q), Uq(g)) = C(q).

If we endow C(q) with the trivial representation and Extdimg

Uq(g) (C(q), Uq(g))
with right multiplication, the last isomorphism is an isomorphism of right
Uq(g)-modules. If ǫ is in Cg, the same result holds replacing Uq(g) by Uǫ(g)
and C(q) by C.
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Proposition 3.2.1 is already known for Lie algebras ([C1] proposition
5.4.1).

Proof of proposition 3.2.1 :
We do the proof in the case of Uq(g) and put U = Uq(g). We endow

Uq(g) with the filtration of proposition 3.1.1 and we put

GrU = C
B = C/ < Eβ1

, . . . , EβN
, Fβ1

, . . . , FβN
> .

Considering B as a C ⊗ Bop-bimodule, one has the following isomorphisms.

RHomC (C(q), C) ≃ RHomC

(
B⊗
B
C(q), C

)

≃ RHomB (C(q), RHomC (B, C))

The canonical arrow

RHomB (C(q),B)
L
⊗
B
RHomC (B, C) → RHomB (C(q), RHomC (B, C))

is an isomorphism because C(q) is a finitely presented B-module. Hence, we
get the following isomorphism

RHomC (C(q), C) ≃ RHomB (C(q),B)
L
⊗
B
RHomC (B, C) .

But RHomC (B, C) is a complex concentrated in one degree namely the de-
gree 2N where it is a B-module of rank one (see proposition 5.0.7 of the
appendix) and RHomB (C(q),B) is a one dimensional C(q)-module concen-
trated in degree n where it is B/ < K1 − 1, . . . ,Kn − 1 >. From this
computation, we deduce the following isomorphisms.

ExtiC (C(q), C) = 0 for i 6= dimg

Extdimg

C (C(q), C) = C(q).

Endow C(q) with the obvious good filtration. Consider a resolution of
C(q) ([Bj] p45)

. . . F2
d2→ F1

d1→ F0 → C(q) → 0

by free U -modules equipped with a filtration (ΓvFj)v∈ZZ2N+1 such that

• GrFj are free C-modules

• d preserves the filtration
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• . . . GrΓF2
Grd2→ GrΓF1

Grd1→ GrΓF0 → C(q) → 0 is a resolution of the
C-module C(q).

Put F ∗j = HomU (Fj , U). Endow F ∗j with the following filtration

φ ∈ Γ∗vF
∗
j ⇔ φ(ΓkFj) ⊂ Σk+vU.

Put d∗−j = HomU (dj , U) . The cohomology of the complex (F ∗• , d
∗) com-

putes the ExtjU (C(q), U)’s. The cohomology of the associated graded com-

plex (GrF ∗• , Grd
∗) computes the Extj

C
(C(q), C)’s (see [Bj] p. 72). We filter

ExtjU (C(q), U) by

Γ∗vExt
j
U (C(q), U) =

Kerd∗j
⋂

Γ∗v(F
∗
j ) + d∗(F ∗j−1)

d∗(F ∗j−1)
.

We know (see [Bj] p. 72 and the proof of proposition 2.1.7 of [C3] applied to
the complex (F ∗• , d

∗)) that the C-module GrΓ
∗

ExtjU (C(q), U) is a subfactor

of the C-module Extj
C
(C(q), C). It follows from the previous computation

that
ExtiU (C(q), U) = 0 for i 6= dimg

Extdimg

U (C(q), U) = C(q) or 0.

As D2
U (C(q)) = C(q), one has Extdimg

U (C(q), U) = C(q). Note that as Ki

acts by 1 on Extdimg

C (C(q), C) = C(q), it also acts by 1 on Extdimg

U (C(q), U).

Hence, if we endow C(q) with the trivial representation and Extdimg

U (C(q), U)
with right multiplication, the last isomorphism is an isomorphism of right
U -modules.

Proposition 3.2.1 allows to prove Poincaré duality for quantum groups.

Corollary 3.2.2 Let g be a semi-simple Lie algebra of finite dimension.
Let M be an Uq(g)-module. C(q) can be considered as a left and as a right
Uq(g)-module. For all i in IN, We have an isomorphism

Tor
Uq(g)
i (C(q),M) = Extn−i

Uq(g)(C(q),M)

The same result holds for Uǫ(g) with ǫ in Cg.

Proof of corollary 3.2.2 :
We prove the proposition for Uq(g). The Uq(g)-module C(q) admitting

a finite presentation, the canonical arrow

RHomUq(g)(C(q), Uq(g))
L
⊗

Uq(g)
M → RHomUq(g)(C(q),M)
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is an isomorphism. The proposition follows from proposition 3.2.1.
Proposition 3.2.1 allows also to prove duality properties existing for Lie

algebras ([C1]) in the quantum groups context.

Corollary 3.2.3 Let M be a finite dimensional Uq(g)-module. Put M∗ =
HomC(q) (M,C(q)). DUq(g)(M) and M∗ are isomorphic as left Uq(g)-modules.
A similar result holds for Uǫ(g) if ǫ is in Cg.

Proof of corollary 3.2.3 :
We have the following sequence of isomorphisms :
Let L• be a free resolution of C(q).

RHomUq(g) (M,Uq(g)) ≃ HomUq(g) (L• ⊗M,Uq(g))

≃ HomC(q)

(
M,HomUq(g) (L•, Uq(g))

)

≃ M∗ ⊗RHomUq(g) (C(q), Uq(g))

≃ M∗

Corollary 3.2.4 Let h and g be two finite dimensional semi-simple Lie
algebras. Denote by Uq(h) and Uq(g) the quantum groups contructed from
h and g for q generic. Let φ be an algebra morphism from Uq(h) to Uq(g).
Let M be a finite dimensional Uq(h)-module. Put M∗ = HomC(q)(M,C(q)).
One has an isomorphism

DUq(g)

(
Uq(g)

L
⊗

Uq(h)
M

)
≃ Uq(g)

L
⊗

Uq(h)
M∗[dimg − dimh].

We have a similar result for Uǫ(h) and Uǫ(g) the specialization of Uq(h) and
Uq(g) respectively at ǫ in Ch.

Proof of corollary 3.2.4:
We have the following isomorphism in Db(Uq(g))

RHomUq(g)

(
Uq(g)

L
⊗

Uq(h)
M,Uq(g)

)
≃ Uq(g)

L
⊗

Uq(h)
DUq(h)(M)[−dimh]

≃ Uq(g)
L
⊗

Uq(h)
M∗[−dimh]

Corollary 3.2.5 Let h, t and g be three finite dimensional semi-simple Lie
algebras. Denote by Uq(h), Uq(t) and Uq(g) the quantum groups contructed
from h, t and g respectively for q generic. Let φ be an algebra morphism
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from Uq(h) to Uq(g) and ψ an algebra morphism from Uq(t) to Uq(g). Let
M be a finite dimensional Uq(h)-module and let N be a finite dimensional
Uq(t)-module. Put M∗ = HomC(q)(M,C(q)) and N∗ = HomC(q)(N,C(q)).
For all n in ZZ, there is an isomorphism

Extn+dimh

Uq(g)

(
Uq(g)

L
⊗

Uq(h)
M,Uq(g)

L
⊗

Uq(t)
N

)
≃ Extn+dimt

Uq(g)

(
Uq(g)

L
⊗

Uq(t)
N∗, Uq(g)

L
⊗

Uq(h)
M∗

)
.

We have a similar result for Uǫ(h), Uǫ(t) and Uǫ(g) the specialization of
Uq(h) and Uq(g) respectively at ǫ in Ch

⋂
Ct.

Proof of corollary 3.2.5 :
We have the following sequence of isomorphisms

HomD(Uq(g))

(
Uq(g)

L
⊗

Uq(h)
M,Uq(g)

L
⊗

Uq(t)
N [n]

)

≃ HomD(Uq(g))

(
DUq(g)

(
Uq(g)

L
⊗

Uq(h)
N

)
,DUq(g)

(
Uq(g)

L
⊗

Uq(t)
M

)
[n]

)

≃ HomD(Uq(g))

(
Uq(g)

L
⊗

Uq(h)
N∗, Uq(g)

L
⊗

Uq(t)
M∗[n+ dimt − dimh]

)
.

Note that corollary 3.2.4 is used to get the last isomorphims. The corollary
follows.

Corollary 3.2.5 was proved for any Lie algebra in [C1]. Particular cases
of corollary 3.2.5 (for Lie algebras) can be found in [B-C], [C-S], [D2], [G].

3.3 Computation of the rigid dualizing complex of Uq(g) and

Uǫ(g)

Let g be a finite dimensional semi-simple complex Lie algebra. We identify
Uq(g ⊕ g) with Uq(g) ⊗ Uq(g). It has a structure of Uq(g) ⊗ Uq(g ⊕ g)op-
module described as follows : for all α, β, γ, a, b in Uq(g)

α · (a⊗ b) = (∆α)(a⊗ b)
(a⊗ b)(β ⊗ γ) = aβ ⊗ bγ

We have the same structure on Uǫ(g).

Lemma 3.3.1 a) The Uq(g)op⊗Uq(g)op -module C(q) ⊗
Uq(g)

Uq(g ⊕ g) is iso-

morphic to Uq(g) endowed with the following Uq(g)op⊗Uq(g)op-module struc-
ture

u · (α⊗ β) = S(α)uβ.
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b) Uq(g ⊕ g) ⊗
Uq(g)

C(q) ≃ (Uq(g) ⊗ Uq(g)) ⊗
Uq(g)

C(q) has a Uq(g) ⊗ Uq(g)op-

module structure defined by

∀α, β, u, v ∈ Uq(g)
α · (u⊗ v ⊗ 1) · β = αu⊗ S(β)v ⊗ 1

and so is isomorphic to the Uq(g) ⊗ Uq(g)op-module Uq(g).
The same result holds for Uǫ(g) if ǫ is in Cg.

Lemma 3.3.1 a) follows from lemma 1.1 a). Lemma 3.3.1 b) follows from
lemma 1.1 b).

Theorem 3.3.2 Let g be a complex finite dimensional semi-simple Lie al-
gebra. Assume that ǫ is in Cg. The rigid dualizing complex of Uq(g) and
Uǫ(g) are Uq(g)[dimg] and Uǫ(g)[dimg] respectively.

Proof of theorem 3.3.2 :
We prove the theorem for Uq(g). We write U for Uq(g). As U has finite

homological dimension, U and U [dimg] are dualizing complexes. We have
the following sequence of isomorphisms in Db(U ⊗ Uop)

RHomU⊗Uop (U,U U ⊗ UU ) ≃ RHomUop⊗Uop (UU⊗U , UU ⊗ UU )

≃ RHomUop⊗Uop

(
C(q)⊗

U
(U ⊗ U), UU ⊗ UU

)

≃ (U ⊗ U)⊗
U
RHomUop (C(q), U)

≃ (U ⊗ U)⊗
U

C(q)[−dimg]

≃ U [−dimg]

The first isomorphism follows from the identification of U and Uop through
S in the first summand of U ⊗ Uop and U ⊗ U respectively. U ⊗ U is then
endowed with the right U⊗U -module structure given by right multiplication
and with the U ⊗ Uop-module structure defined by :

∀α, β, u, v ∈ U
α · (u⊗ v ⊗ 1) · β = αu⊗ S(β)v ⊗ 1.

The second isomorphism follows from lemma 3.3.1 a). The fourth iso-
morphism follows from proposition 3.2.1. The last isomorphism follows from
lemma 3.3.1 b).

Shifting our arrows by [2dimg], one gets that U [dimg] is the rigid dual-
izing complex of U . This finishes the proof of the theorem.
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As in [Y4], using a result of Van den Bergh [VdB2], we get a corollary
of theorem 3.3.2 linking Hochschild cohomology and homology in a kind of
Poincaré duality. Let M be any Uq(g)e-module. Denote by Hp (Uq(g),M)
and Hp (Uq(g),M) the Hochschild cohomology and homology respectively.
We adopt the same notation for Uǫ(g).

Corollary 3.3.3 a) There are Uq(g)e-module isomorphisms

Hdimg (Uq(g), Uq(g)e) = Uq(g)
Hp (Uq(g), Uq(g)e) = 0 if p 6= dimg

b) Let M be any Uq(g)e-module, we have an isomorphism

Hp (Uq(g),M) ≃ Hdimg−p (Uq(g),M)

The same results hold for Uǫ(g) if ǫ is in Cg.

a) is a direct consequence of the proof of corollary theorem 3.3.2. b) is a
corollary of [VdB 2] (theorem 1).

4 Rigid dualizing complex for the algebra of dif-

ferential operators defined by an affine Lie alge-

broid

4.1 Definitions

Let X be a complex smooth affine variety and let OX be the sheaf of regular
functions on X. Let ΘX be the OX -module of regular vector fields on X.
We put GX = OX(X) and LX = LX(X).

Definition 4.1.1 A sheaf of Lie algebras , LX , is a sheaf of C-vector spaces
such that for any open subset U , LX(U) is equipped with a Lie bracket
compatible with the restriction morphisms.

A morphism between two sheaves of Lie algebras LX and MX is a CX -
module morphism which is a Lie algebra morphism on each open subset.

Definition 4.1.2 A Lie algebroid over X is a pair (LX , ω) where

• LX is a locally free OX -module,
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• LX is a sheaf of Lie algebras,

• ω is a OX -linear morphism of sheaves of Lie algebras from LX to ΘX

such that the following compatibility relation holds

∀(ξ, ζ) ∈ L2
X , ∀f ∈ OX , [ξ, fζ] = ω(ξ)(f)ζ + f [ξ, ζ].

One calls ω the anchor map. When there is no ambiguity, we will drop the
anchor map in the notation of the Lie algebroid. Note that (GX , LX) is a
Lie-Rinehart algebra ([R]).

A Lie algebroid (LX , ω) gives rise to a sheaf of generalized differential
operators. We will denote by D(LX) the sheaf associated to the presheaf:

U 7→ T+
C (OX(U) ⊕ LX(U)) /JU

where JU is the two sided ideal generated by the relations

∀(f, g) ∈ OX(U), ∀(ξ, ζ) ∈ LX(U)2

1)f ⊗ g = fg
2)f ⊗ ξ = fξ
3)ξ ⊗ ζ − ζ ⊗ ξ = [ξ, ζ]
4)ξ ⊗ f − f ⊗ ξ = ω(ξ)(f)

Definition 4.1.3 Let (LX , ωX) and (LY , ωY ) be Lie algebroids over X and
Y respectively. A morphism Φ from (LX , ωX) to (LY , ωY ) is a pair (f, F )
such that

• f : X → Y is an algebraic map

• F : LX → f∗LY = OX⊗f−1OY
f−1LY is an OX -module morphism

such that the two following conditions are satisfied:

1) The diagram

ΘX f∗ΘY
✲

Tf

LX f∗LY
✲F

❄

ωX

❄

f∗ωY

commutes (where Tf is the differential of f).
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2) OX⊗f−1OY

(
f−1D(LY )

)
endowed with the two following operations

∀(a, b) ∈ O2
X , ∀ξ ∈ LX , ∀v ∈ f−1D(LY )

a · (b⊗ v) = ab⊗ v
ξ · (b⊗ v) = ωLX

(ξ)(b) ⊗ v +
∑

i bai ⊗ ξiv

(where F (ξ) =
∑

i

ai ⊗ ξi with ai in OX and ξi in f−1LY ) is a left

D(LX)-module.

Note that condition 2) is equivalent to the following more explicit con-

dition. Let ξ and η be two elements of L2
X . Put F (ξ) =

m∑

i=1

ai ⊗ ξi and

F (η) =
m∑

j=1

bj ⊗ ηj , then

F ([ξ, η]) =
n∑

j=1

ωX(ξ)(bj) ⊗ ηj −
n∑

i=1

ωX(η)(ai) ⊗ ξi +
∑

i,j

aibj ⊗ [ξi, ηj ].

Our definition coincides with that of Almeida and Kumpera ([A-K]).

For examples of Lie algebroids and of Lie algebroid morphisms, see
[C1],[C2] and [C3].

Let (LX , ωX) and (LY , ωY ) be Lie algebroids over the smooth algebraic
varieties X and Y respectively. Let p1 and p2 be the projections from X×Y
over X and Y respectively. The OX×Y -module

LX×Y = OX×Y ⊗
p−1

1
OX

p−1
1 LX ⊕OX×Y ⊗

p−1

2
OY

p−1
2 LY

is endowed with a natural Lie algebroid structure over X × Y. The anchor
map of LX×Y is ωX×Y = LX×Y → ΘX×Y determined by

∀(f, g) ∈ OX ×OY , ∀(ξ, ζ) ∈ LX × LY

ωX×Y (ξ)(f ⊗ g) = ωX(ξ)(f)g
ωX×Y (ζ)(f ⊗ g) = fωY (ζ)(g).

On LX×Y , we put the Lie bracket extending that of LX and LY and satis-
fying the following relations [p−1

1 LX , p
−1
2 LY ] = 0.
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Let (LX , ωX) be a Lie algebroid. In the following we will make use of the
diagonal embedding VLX

= (v, V ) from (X,LX) to (X ×X,LX×X). One
has

v : X → X ×X
x 7→ (x, x)

V : LX → OX ⊗
v−1OX×X

v−1LX×X ≃ LX ⊕ LX

D 7→ D +D

4.2 Left and right-modules

The following proposition is classical for D-modules and is easy to generalize
to Lie algebroids.

Proposition 4.2.1 a) If M (respectively N ) is a right (respectively a left)
D(LX)-module, then M⊗

OX

N endowed with the two following operations :

∀a ∈ OX , ∀m ∈ M,∀n ∈ N ,∀D ∈ LX

(m⊗ n) · a = m⊗ a · n = m · a⊗ n
(m⊗ n) ·D = m ·D ⊗ n−m⊗D · n

is a right D(LX)-module.
b) If M and M′ are two right D(LX)-modules, then HomOX

(M,M′)
endowed with the two following operations

∀φ ∈ HomOX
(M,M′) , ∀m ∈ M,∀a ∈ OX ,∀D ∈ LX

(φ · a) (m) = φ(m) · a
(φ ·D) (m) = φ(m) ·D − φ(m ·D)

is a left D(LX)-module.

The following theorem is now a consequence of the previous proposition.

Theorem 4.2.2 Let E be right D(LX)-module which is a locally free OX -
module of rank one. The functor N • 7→ E ⊗

OX

N • establishes an equivalence of

categories between complexes of left and complexes of right D(LX)-modules.
Its inverse functor is given by M 7→ HomOX

(E ,M).

It is a well known fact that ΩX is endowed with a right DX-module
structure (see [S1] p. 9, [Bo] p. 226).
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Consider
KLX

= ΩX ⊗
OX

D(LX)

It is endowed with a natural D(LX)op⊗D(LX)op -module (the first right
D(LX)-module structure is given by right multiplication, the second one is
obtained from left multiplication by the theorem above) .

Let N • be an element of Db
coh (D(LX)op), then we set

∆LX
(N •) = RHomD(LX)op (N •,KLX

) [x].

The natural arrow N • 7→ ∆LX

(
∆LX

(N •)
)

is an isomorphism. That is why
∆LX

is called duality functor.

Proposition 4.2.3 If N is a right D(LX)-module which is locally free of
finite rank as OX-module, then

∆LX
(N ) = HomOX

(N ,ΩX) ⊗
OX

ΛdLX LX [x− dLX
]

4.3 Direct image

Let (X,LX) and (Y,LY ) be two Lie algebroids over two smooth algebraic
varieties X and Y respectively. Let Φ = (f, F ) be a Lie algebroid mor-
phism from (X,LX) to (Y,LY ). Then OX ⊗

f−1OY

f−1D(LY ) has a D(LX) ⊗

f−1D(LY )op module structure. It is called the transfer module of Φ and is
denoted DLX→LY

. One can also define the following f−1D(LY )⊗D(LX)op-
module

DLY←LX
= ΛdLX (LX) ⊗

OX

DLX→LY
⊗

f−1OY

f−1ΛdLY (LY )∗

Let N • be an object of Db (D(LX)op). Set

Φ!(N
•) = Rf!

(
N •

L
⊗

D(LX)
DLX→LY

)

If Φ = (f, Tf), we recover the D-module construction (see [S1] for exam-
ple). Then DΘX→ΘY

and DΘY←ΘX
are denoted DX→Y are denoted DY←X

respectively and Φ! is denoted f
!
.
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Theorem 4.3.1 Let X and Y be two complex algebraic smooth manifolds of
dimension x and y respectively. Let (LX , ωX) and (LY , ωY ) be Lie algebroids
over X and Y respectively. Let Φ = (f, F ) be a Lie algebroid morphism from
(LX , ωX) to (LY , ωY ). Let N • be an element of Db

coh (D(LX)op) such that
f is proper on the support of N •. Then there is a functorial isomorphism
from Φ!∆LX

(N •) to ∆LY
Φ! (N

•) in Db (D(LY )op) .

Remarks :

1) The theorem 4.3.1 generalizes Schneiders’ thesis ([S2], [S3] and also [S-
S]) where the case of relative differential operators is treated. The algebraic
smooth case had been previously treated by Bernstein ([Be], [Bo], [Ho]) (in
the D-modules context ) for a proper morphism. Moreover Mebkhout had
treated the absolute case (i.e Y consists in one point, see corollary 4.3.6) in
[Me1], [Me2].

2) If LX = LY = {0}, we recover Verdier duality.

4.4 Rigid dualizing complex for the algebra of differential

operators defined by an affine Lie algebroid

By proposition 4.2.1, µLX
= HomOX

(
ΛdLX L∗X ,ΩX

)
has a left module

structure. Hence D(LX) ⊗
OX

µLX
is a D(LX) ⊗D(LX)op-module.

Theorem 4.4.1 Let (X,LX) be a Lie algebroid over a smooth affine va-
riety. Put x = dimX, dLX

= rank(LX), GX = OX(X), LX = LX(X),
ωX = ΩX(X), D(LX) = D(LX)(X). The rigid dualizing complex of D(LX)
is

RLX
= D(LX) ⊗

GX

HomGX

(
ΛdLXL∗X , ωX

)
[x+ dLX

].

This theorem was proved in the case of enveloping algebras and D-
modules in [Y4].

Proof of theorem 4.4.1:
The proof of the theorem is analogous to the D-module case (see [Y4]). We
will make use of the two following lemmas.

Lemma 4.4.2 Let E be a right D(LX) which is a locally free OX -module.
There are two right D(LX)-module structures on E ⊗

OX

D(LX). The first one
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is given by right multiplication. The second one is obtained from left multi-
plication using proposition 4.2.1.a). There is an involution exchanging these
two structures.

The proof of lemma 4.4.2 can be found in [S-S] (lemma 2.3).

Lemma 4.4.3 D(LX) ⊗
OX

µLX
is endowed with a D(LX)⊗D(LX)op -module

structure defined by : for all P,Q ∈ D(LX), all D ∈ LX and all a ∈ OX ,

Q · (P ⊗ µ) = QP ⊗ µ
(P ⊗ µ) ·D = PD ⊗ µ− P ⊗D · µ
(P ⊗ µ) · a = Pa⊗ µ

µLX
⊗
OX

D(LX) is endowed with a D(LX)⊗D(LX)op -module structure defined

by : for all P,Q ∈ D(LX), all D ∈ LX and all a ∈ OX ,

a · (µ⊗ P ) = aµ⊗ P = µ⊗ aP
D · (µ⊗ P ) = D · µ⊗ P + µ⊗DP
(µ⊗ P ) ·Q = µ⊗ PQ

There is an involution between the D(LX)⊗D(LX)op-modules D(LX) ⊗
OX

µLX

and µLX
⊗
OX

D(LX)

Proof of lemma 4.4.3:
Let µ be a local basis of µLX

. The morphism

D(LX) ⊗
OX

µLX
→ µLX

⊗
OX

D(LX)

P ⊗ µ 7→ P ·2 (µ⊗ 1)

is well defined and provides an isomorphism between the D(LX)⊗D(LX)op-
module structures.

For short, we will write V for VLX
.

One sees that V !

(
ΛdLX L∗X

)
= v!

(
ΛdLX (L∗X) ⊗

OX

D(LX)

)
.

Moreover, as ∆LX
(ΩX) = ΛdLX (L∗X)[x − dLX

] (see [C1] theorem 3.2.1)
and ∆LX×X

◦V ! ≃ V !◦∆LX
(see [C1] theorem 4.3.1), we have an isomorphism
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of D(LX×X)op-modules

v!

(
ΛdLX (L∗X) ⊗

OX

D(LX)

)

≃ RHomD(LX×X)op

(
v!

(
ΩX ⊗
OX

D(LX)

)
,ΩX×X ⊗

OX×X

D(LX×X)

)
[x+ dLX

]

Hence the isomorphism

ΛdLX (L∗X) ⊗
OX

D(LX)

≃ RHomD(LX)⊗D(LX)op

(
D(LX),D(LX) ⊗

(
ΩX ⊗
OX

D(LX)

))
[x+ dLX

]
.

Using lemma 4.4.2, we get

µ−1
LX

⊗
OX

D(LX) ≃

RHomD(LX)⊗D(LX)op

(
D(LX),D(LX) D(LX) ⊗D(LX)D(LX)

)
[x+ dLX

].

Hence an isomorphism

D(LX) ⊗
OX

µLX
≃

RHomD(LX)⊗D(LX)op

(
D(LX),

(
D(LX) ⊗

OX

µLX

)
⊗

(
µLX

⊗
OX

D(LX)

))
[x+ dLX

].

Set
RLX

= D(LX) ⊗
OX

µLX
[x+ dLX

].

Using lemma 4.4.3, we get easily the following isomorphism in Db (D(LX))e :

RLX
≃ RHomD(LX)e (D(LX),RLX

⊗RLX
) .

Applying the exact functor “global section”, we get :

RLX
≃ RHomD(LX)e (D(LX), RLX

⊗RLX
) .

Analogs of corollaries 3.2.2, 3.2.3, 3.2.4 and 3.2.5 are already known for
Lie algebroids (see [C1], [C2]). As in [Y4], theorem 4.4.1 implies a kind of
Poincare duality between Hochschild cohomology and homology.
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Corollary 4.4.4 Let D(LX) be as in theorem 4.4.1.
a) We have the following isomorphisms of D(LX)e-modules:

Hx+dLX (D(LX),D(LX)e) = HomGX

(
ωX ,Λ

dLXL∗X

)
⊗
GX

D(LX)

H i (D(LX),D(LX)e) = 0 if i 6= x+ dLX
.

b) For any D(LX)e-module M , one has an isomorphism

H i (D(LX),M) ≃ Hx+dLX
−i

(
D(LX),HomGX

(
ωX ,Λ

dLXL∗X

)
⊗
GX

M

)

a) follows from the proof of theorem 4.4.1. b) is a direct application of
[VdB2] (theorem 1).

5 Appendix

In this appendix, we review results about q-commutative algebras and their
Koszul complexes. The reference for this appendix is [W] where the Koszul
complex is constructed in a more general situation. We assume that k is a
field of characteristic zero. Let Q = (qi,j)(i,j)∈[1,n]2 be an n× n-matrix such

that qi,i = 1 and qi,jqj,i = 1. Let V =
n
⊕
i=1
kei. Following [W], we define the

following graded algebras

SQ(V ) =
T (V )

< ei ⊗ ej − qi,jej ⊗ ei >

ΛQ(V ) =
T (V )

< ei ⊗ ej + qi,jej ⊗ ei >

One sees easily
ΛQ(V )∗ = ΛtQ(V ∗).

Lemma 5.0.5 Let Q = (qi,j)(i,j)∈[1,n]2 be an n×n-matrix such that qi,i = 1
and qi,jqj,i = 1. Put

Q =

(
Q1 B
C Q2

)

where Q1 and Q2 are matrices of order n1 and n2 respectively (with n =
n1 + n2). Put V1 = ke1 ⊕ . . . ⊕ ken1

and V2 = ken1+1 ⊕ . . . ⊕ ken. SQ(V )
has a natural left SQ1

(V1)-module structure and one has the following iso-
morphisms of left graded SQ1

(V1)-modules

SQ(V ) = SQ1
(V1) ⊗ SQ2

(V2).
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The same assertion holds for ΛQ(V ).

Theorem 5.0.6 k is a SQ(V )-module as follows : for all µ in k,

∀λ ∈ k, λ · µ = λµ
∀v ∈ V, v · µ = 0

The complex

K•Q =
(
SQ(V ) ⊗ Λ•Q(V ), d

)

where the differential dr : SQ(V ) ⊗ Λr
Q(V ) → SQ(V ) ⊗ Λr−1

Q (V ) is defined
by:

dr(m⊗ei1 ∧ . . .∧ein) =
r∑

i=1

(−1)k+1

(
k−1∏

h=1

qihik

)
meik ⊗ei1 ∧ . . .∧ êik ∧ . . .∧eir

is a resolution of the trivial SQ(V )-module k.

The theorem is due to Wambst ([W]) who proved it in a much more general
situation. For the simplified form we are interested in, one can adjust easily
the classical proof ([H-S] p 243). The resolution K•Q is called the Koszul
resolution of k.

Proposition 5.0.7 One has

a) Exti
SQ(V ) (k, SQ(V )) = 0 ifi 6= n

b) Extn
SQ(V ) (k, SQ(V )) = Λn

tQ(V ∗)

Proposition 5.0.7 b) was already proved in [Y2] (corollary 1.2.2).

Proof of proposition 5.0.7 :

We need to study the complex CQ(V ) = HomSQ(V )

(
K•Q, SQ(V )

)
. Denote

by (λ1, . . . , λn) the dual basis of (e1, . . . , en).
A computation shows that CQ(V ) is isomorphic to the complex(

Λ•tQ(V ∗) ⊗ SQ(V ), δ
)

with the differential

δ (λi1 ∧ . . . ∧ λir ⊗ P ) =
n∑

j=1

(−1)rqi1j . . . qirjλi1 ∧ . . . ∧ λir ∧ λj ⊗ ejP.
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We show the proposition by induction on n. For n = 1, the cohomology of
the complex CQ(V ) is easy to compute and the proposition follows. Assume
now that n > 1. Put

Q =

(
Q′ R
S 1

)

where Q′ is a (n− 1)× (n− 1)-matrix. Set V ′ = ke1 ⊕ . . .⊕ ken−1. Consider
the morphismes of complexes

α : CQ′(V ′) ⊗
SQ′ (V ′)

SQ(V )[−1] → CQ(V )

and
β : CQ(V ) → CQ′(V ′) ⊗

SQ′ (V ′)
SQ(V )

defined by

For {i1, . . . , it} ⊂ [1, n − 1],
α (λi1 ∧ . . . ∧ λit ⊗ P ′) ⊗ P = λi1 ∧ . . . ∧ λit ∧ λn ⊗ P ′P
For {i1, . . . , it} ⊂ [1, n − 1],
β (λi1 ∧ . . . ∧ λit ⊗ P ) = (λi1 ∧ . . . ∧ λit ⊗ 1) ⊗ P
If n ∈ {i1, . . . , it}, β (λi1 ∧ . . . ∧ λit ⊗ P ) = 0.

We have the following exact sequence of complexes

0 → CQ′(V ′) ⊗
SQ′ (V ′)

SQ(V )[−1]
α
→CQ(V )

β
→ CQ′(V ′) ⊗

SQ′ (V ′)
SQ(V ) → 0.

We get a long exact sequence of cohomology. It is then easy to see that
Exti

SQ(V ) (k, SQ(V )) = 0 if i 6= n, n − 1. Moreover, we have the follow-

ing exact sequence where µen denotes left multiplication by en and γn =
(−1)n−1q1,n . . . qn−1,n

0 → Hn−1 (CQ(V )) → k ⊗
SQ′ (V ′)

SQ(V )
γnµen−→ k ⊗

SQ′ (V ′)
SQ(V ) → Hn (CQ(V )) → 0.

The proposition follows.
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