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Abstract : Some duality properties for induced representations of enveloping
algebras involve the character Tradg. We extend them to deformation Hopf alge-
bras A of a noetherian Hopf k-algebra A, satistying Eazti‘o (k, Aop) = {0} except
for i = d where it is isomorphic to k. These duality properties involve the charac-
ter of A defined by right multiplication on the one dimensional free k[[h]]-module
Extd, (k[[h]], A). In the case of quantized enveloping algebras, this character lifts
the character Tradg. We also prove Poincaré duality for such deformation Hopf
algebras in the case where Ay is of finite homological dimension. We explain the
relation of our construction with quantum duality.

1. INTRODUCTION

In this article k& will be a field of characteristic 0 and we set K = k[[h]].
Let Ag be a noetherian algebra. We assume moreover that k has a left Ag-module
structure such that there exists an integer d satisfying

Eatly (k, Ag) = {0} if i # d
Emtio(k, Ag) ~ k.

It follows from Poincaré duality that any finite dimensional Lie algebra g verifies
these assumptions. In this case d = dimg and the character defined by the right

representation of U(g) on Eact?j(’;)g (k,U(g)) is Trady ([C1]). The algebra of regular

fonctions on an affine algebraic Poisson group and algebra of formal power series
also satisfy these hypothesis. Let A, be a deformation algebra of Ay. Assume that
there exists an Aj-module structure on K that reduces modulo A to the Ag-module
structure we started with. The following theorem constructs a new character of
Ay, which will be denoted by 64, .

Theorem 5.0.7

With the assumptions made above, one has :

a) Bxtly, (K, Ap) = {0} is zero if i # d

b) Ext‘ih (K, Ap) is a free K-module of dimension one. The right Ap-module
structure given by right multiplication lifts that of Ag on Extfgo(k, Ap).
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The right Ap-module Ext% (K, A;) will be denoted by Q4,. If there is an
ambiguity, the integer d will be written d4,, .

Theorem 5.0.7 applies to universal quantum enveloping algebras, quantization
of affine algebraic Poisson groups and to quantum formal series Hopf algebras.

Let g be a Lie bialgebra. Denote by F[g] the formal series Poisson algebra U(g)*.
If Up(g*) is a quantum enveloping algebra such that Uy (g*)/hUy(g*) is isomorphic
to U(g*) as a coPoisson Hopf algebra, we show that one may construct a resolu-
tion of the trivial Uy (g*)-module k[[h]] that lifts the Koszul resolution of the trivial
U(g*)-module k. If F},[g] is a quantum formal series algebras such that Fy,[g]/hFy[g]
is isomorphic to F[g] as a Poisson Hopf algebra, we construct a resolution of the
trivial Fj,[g]-module that lifts the Koszul resolution of the trivial F[g]-module k
and that respects quantum duality ([Dr], [Ga]). This construction is not explicit
but it allows to show that, if F,[g] and Uy (g*) are linked by quantum duality, the
following equality holds 0, g = hfy, (g+)-

As an application of theorem 5.0.7, we show Poincaré duality :

Theorem 8.1.1

We make the same assumitions as above. Let M be an Ap-module. Assume that
K is an Ap-module of finite projective dimension. One has an isomorphism of K-
modules for all integer i :

Eatl, (K,M)~Tor}" _,(Qa,,M).
v h

From now on, we assume that Ay, is a deformation Hopf algebra.

Brown and Levasseur ([B-L]) and Kempf ([Ke]) had shown that, in the semi-
simple context, the Ext-dual of a Verma module is a Verma module. In [C1], we
have extended this result to the Ext-dual of an induced representation of any Lie
superalgebra. In this article, we show that this result can be generalized to quantum
groups provided that the quantization is functorial. Such a functorial quantization
has been constructed by Etingof and Kazdhan ([E-K1], [E-K2], [E-K3], [E-S]). As
the result holds for quantized universal enveloping algebras, for quantized functions
algebras and for quantum formal series Hopf algebras, we state it in the more gen-
eral setting of Hopf algebras.

Corollary 8.2.2

Let Ay, (respectively By ) be a topological Hopf deformation of Ag (respectively
By). We assume that there exists a morphism of Hopf algebras from By, to Ay such
that Ay, is a flat By” -module. We also assume that By, satisfies the condition of the
theorem 5.0.7. Let V' be a Bp-module which is a free finite dimensional K-module.
Then

a) Bxty, (Ahj?v, Ah> is {0} if i is different from dp,, .
h
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b) The right Aj,-module Emtiih Ap®V, Ap ) is isomorphic to (Qp, @ V*) @ Ay,
Bn Bn
where Q)p, ® V* is endowed with the following right Bj-module structure :

Yu € Bth € V*, Yw € QBh7
(W f) u= lim > 05, ()0 f S,

j
A(u) = lim Z Ui, DU,
J

n—-+o0o
Sy, being the antipode of By,.

Proposition 8.2.3 Let Ay, be a Hopf deformation of Ag, By be a Hopf defor-
mation of By and Cy be a Hopf deformation of Cy. We assume that there exists a
morphism of Hopf algebras from By to An and a morphism of Hopf algebras from
Ch, to Ay, such that Ay, is a flat B, -module and a flat C}¥-module. We also assume
that By, and Cy, satisfies the hypothesis of theorem 5.0.7. Let V' (respectively W ) be
a By-module (respectively Cp-module) which is a free finite dimensional K-module.
Then, for all integer n, one has an isomorphism

Eat” ™ Ay 0V, Ao W
An B, Ch

~ Ethidch ((Qch ®@W*) g@Ah, (Qp, @ V) g@Ah> .

The right By, (respectively Cj,)-module structure on Qp, @ V* (respectively Q¢, ®
W* ) are as in Corollary 8.2.2.

Remark :

Proposition 8.2.3 is already known in the case where g is a Lie algebra,  and ¢ are
Lie subalgebras of g, Ay, By, and C}, are their corresponding enveloping algebras.
In this case one has dp, = dimb and d¢, = dimk€. More precisely :

Generalizing a result of G. Zuckerman ([B-C]), A. Gyoja ([G]) proved a part
of this theorem (namely the case where h = g and n = dimb = dim#t) under the
assumptions that g is split semi-simple and b is a parabolic subalgebra of g. D.H
Collingwood and B. Shelton ([C-S]) also proved a duality of this type (still under
the semi-simple hypothesis) but in a slighly different context.

M. Duflo [Du2] proved proposition 8.2.3 for a g general Lie algebra, h = &,
V = W™ being one dimensional representations.

Proposition 8.2.3 is proved in full generality in the context of Lie superalgebras
in [C1].

Wet set A5, = Ap, ® A}, Using the properties as a Hopf algebra (as in [C2]), we
show that all the Ext%\e (Ap, Ap, @Ah)’s are zero except one. More precisely :
h k[[R]]

Proposition 8.3.1 Assume that Ay, satisfies the conditions of the theorem 5.0.7.
Assume moreover that Ay ® Ag¥ is noetherian. Consider A, ® Ap with the fol-
k[[h]

lowing ;l\fl-module structure :

V(Oévﬂ,%y)GAh, Oé($®y)ﬂ:ax®yﬂ
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a) HHY, (Ap EQQ\”A;L) is zero if i # da, .
k[[h

—

b) The Zl%—module HHj?’L (Ap Ap,) is isomorphic to Qa, ® Ap, with the fol-
' E[[h]]

[[]
lowing A§ -module structure :

V(a, B,2) € A, o (w®a) B =wba,(5)®S(B)zS™ ()
where a = Za; ® af (to be taken in the topological sense)

?

This result has already been obtained in [D-E] for a deformation of the algebra
of regular functions on a smooth algebraic affine variety. From this, as in [VdB],
we deduce a relation between Hochschild homology and Hochschild cohomology for
the ring Ap.

We start the article by a study of algebras endowed with a decreasing filtration
and filtered modules over such algebras. Our study relies on the use of the associ-
ated graded algebra and graded module and on the use of the topology defined by
a decreasing filtration. We apply this study to deformation algebras endowed with
the h-adic filtration and filtered modules over such algebras. In [K-S], a study of
the derived category of Ap-modules is carried out using the right derived functor

M
f the functor M +— —.
of the functor M — -
Acknowledgments :
I am grateful to B. Keller, D. Calaque, B. Enriquez and V. Toledano for helpful
discussions.

2. GRADED LINEAR ALGEBRA

In this section, we fix notation about graded linear algebra. A graded k-algebra
GA is the data of a k-algebra with unit and a family of k-vector spaces (GyA)iez
of A satisfying :

a. A= @tEZGtA

b. 1€ GyA

C. GtA . GZA C Gt+lA~
We will also assume that G;A = 0 for ¢ < 0.

A graded GA-module GM is the data of a GA-module and a family of k-vector
space (GyM),., of GM such that

GM = @tEZGtM
G:A-GM C Gt+lM

We will always also assume that G; M = 0 if t << 0.

Let GM and GN be two graded GA-modules. A morphism of graded GA-
modules from GM to GN is a morphism of GA-modules f: GM — GN such that
f(G¢M) C G¢N. The group of morphisms of graded G A-modules from GM to GN
will be denoted Homga (GM, GN). With this notion of morphisms, the category of
graded GA-modules is abelian. Thus it is suitable for homological algebra.

For r € Z and any graded GA-module GM, we define the shifted graded G A-
module GM (r) to be the GA-module GM endowed with the grading defined by

Vt € Z, GtM(T') = Gt_;,_TM.
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Let us denote Homq 4, (GM,GN) the graded group defined by setting
G Hom 4 (GM,GN) = Homga(GM,GN(t)).

The it? right derived functor of the functor Hom 4 (—, N) will be denoted Extl, 4 (—, N).
A graded GA-module GL is finite free if there are integers di,ds,...,d, such
that

GL~ & GA(—d;).
=1

A graded GA-module GM is of finite type if there exists a finite free graded G A-
module GL and an exact sequence in the category of graded G A-modules

GL —- GM — 0.

This means that there are homogeneous elements my € G4, M,...,m, € Gq, M
such that any m € GgM may be written as

n
m = g Ad—d; M,
i=1

where aq—d; € Gd,diA.
A graded ring GA is noetherian if any graded G A-submodule of a graded G A-
module of finite type is of finite type.

In the sequel, all the GA-modules we will consider will be graded so that we will
say ”GA-module” for ”graded G A-module”.

3. DECREASING FILTRATIONS

In this section, we give results about decreasing filtrations. These results are
proved in [Schn] in the framework of increasing filtrations. For the sake of com-
pleteness, we give detailled proofs of the results even if most of our proofs are
obtained by adjusting those of Schneiders.

We will consider a k-algebra endowed with a decreasing filtration ...Fi 1A C
F,AC--- C ;A C FyA = A. The order of an element a, o(a), is the biggest ¢
such that a € F;A. The principal symbol of a is the image of a in Fy4)/Fy(a)+1- It
will be denoted by [a].

A filtered module over F'A is the data of an A-module M and a family (F;M),,
of k-subspaces such that

o | JEM =M
teZ
L] Ft+1M C FtM
L] FtA,FlM C Ft+lM

We will assume that F;M = M for t << 0. We have the notion of principal sym-
bol. We endow such a module with the topology for which a basis a neighborhoods
is (F;M),c;. The topological space M is Hausdorff if and only if NyezFi M = {0}.
If M is Hausdorff, the topology defined by the filtration is defined by the following
metric

V(z,y) € FM, d(z,y) =[|x —y || with
||z —yl|l=2"" wheret = Sup{j €Z |z —y € F;M}
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M
Note that M is Hausdorfl if and only if the natural map from M to lim——-— is
tez”t
injective. The metric space (M, d) is complete if and only if the natural map from

M to lim
1
tez "t

is an isomorphism.

Example :

Let k be a field and set K = E[[h]]. If V is a K-module, it is endowed with the
following decreasing filtration --- C h®V C "'V C ... C hV C V.
The topology induced by this filtration is the h-adic topology.

Recall the following result :

Lemma 3.0.1. Let N be a Hausdorff filtered module. Let P be a submodule of N
which is closed in N. Let p the canonical projection from N to N/P.

a) The topology defined by the filtration p(FyN) on N/P is the quotient topology.
N/P is Hausdorff and its topology is defined by the distance d(Z,y) =|| Z — 7 ||
where

Iz [l=Inf{llall,a €z}
b) If N is complete, then N/P is complete for the quotient topology.

Proof of the lemma :

a) As P is closed in N, then 0 is closed in N/P. Thus, its complement in N/P,
U, is open. Let Z an element of N/P different from 0. As U is open, there exists
n € IN such that z € p(F,,N)+Z C U. Hence T ¢ p(F,,N) and we have proved that

ﬂ p(F,,N) ={0}. Hence N/P is Hausdorff. It is easy to check that the open ball

nelN
of center 0 and radius 2~* in N/P for the distance defined is p(F4+1N).

b) we refer to [Schw] p 245. O.

Let FM and FN be two filtered FA-modules. A filtered morphism Fu :
FM — FN is a morphism v : M — N of the underlying A-modules such that
u(FyM) C FyN. It is continuous if we endow M and N with the topology defined
by the filtrations. Denote by Fyu the morphism w g, @ FtM — FyN. Denote by
Hompa(FM,FN) the group of filtered morphisms from FM to FN. The kernel
of Fu is the kernel of u filtered by the family Ker Fun F;M. If M is complete and
N is Hausdorff, then KerFu, endowed with the induced topology is complete.

To a filtered ring F'A is associated a graded ring GA defined by
GA = @]NGtA with GtA = FtA/FH_lA
te

the multiplication being induced by that of FA. To a filtered F'A-module F M is
associated a graded GA-module GM defined by setting
GM = & GiM with G:M = F;M/F (1M
tez

the action of GA on GM being induced by that of FA. If z is in Fy M, we will
write o¢(z) for the class of © in FyM/F; 1 M. A filtered morphism of F'A-modules
Fu: FM — FN induces a morphism of abelian groups Giu : GiM — G:N and a
morphism of GA-modules Gu : GM — GN.
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An arrow Fu: FM — FN is strict if it satisfies u(FyM) = w(M) N FyN.

An exact sequence of F'A-modules is a sequence

FM 2 EN £ pp

such that KerFiv = ImF;u. It follows from this definition that Fu is strict. if
moreover F'v is strict, we say that it is a strict exact sequence.

Proposition 3.0.2. a) Consider Fu : FM — FN and Fv : FN — FP two
filtered FA-morphisms such that Fvo Fu = 0. If the sequence

rvM 2 PN 2% PP
is strict exact, then

oM £ aN &4 ap

18 exact.
b) Conversely, assume that FM is complete for the topology defined by the fil-
tration and that FN is Hausdorff for the topology defined by the filtration. If the

sequence

oM £ aN £ ap

is exact, then the sequence
FM % PN 2% PP
s strict exact.

Proof of the proposition :

a) Let ny € GyN be such that Gyv(ny;) = 0. There is nj € FyN such that
ny = o¢(n}). Hence v(ny) € Fyp1 P. Since Fu is strict, we find nf,; € F;,1 N such
that v(n{ ;) = v(n}). Then v(n} —n{ ;) = 0 and there is m; € F;M such that
u(my) = ny —ny, . This shows that

Gtu (O’t(mt)) = O't(né) = Ny.

b ) Let us prove that Fv is strict. Assume that p; € FP N Imv. Let | be the
biggest integer such that p; = v(n;) with n; € F;N. We need to show that [ > .
Assume that [ < ¢. One has

G (o1(m)) = o1 (v(n)) = ou(pe) = 0.
Hence 3m; € FiM such that Gyu (o;(my)) = oy(n;). Thus we have
ny—u(my) € FixaM and v (ng —u(my)) = py
which contredicts the definition of .
Let us prove that KerFiyv = ImFu. Let ny € KerFiv. One has: Gi(v) (0¢(nt)) =
0. Hence there exists m; in Fy M such that
or(ne) = Gi(u) (o¢(me)) -

Hence ny — u(my) € KerFuvN Fyy 1 N. We can reproduce the previous reasoning to
n; —u(my) and produce an element myyq in Fyy1 M such that ny —u(mg +mei1) €
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P
KerFvN FiyaN. The sequence U, = Z my4; is a Cauchy sequence, hence it con-

1=0
o0
verges and n; = u <Z mt+l>. O

=0

Corollary 3.0.3. Let FA be a filtered k-algebra and let FM and FN two FA-
modules. Let Fu : FM — FN be a morphism of F'A-modules. Then GKerFu C
KerGFu and ImGFu C GImFu. Assume moreover that F'M is complete and FN is
Hausdorff, then the following conditions are equivalent :

(a) Fu is strict

(b) GKerFu = KerGFu

(¢) InGFu = GImFu.

Proof :
One has :

FiKeru = KeruNn F M
FiImu = ImunF;N

F:M N Keru
G:K ==
et FeriMN Kleru
FtM nu— (Ft+1N)
KerGiu =
et Ft+11\%‘ﬂ u_l(Ft+1N)
ulr'¢
I G e ———————
= B N N u(F M)
o ImunNFN
mi= ——— —
K . Imun Ft+1M

The second part of the corollary follows from applying the previous proposition to
the strict exact sequence F'M — Imu — 0.
Indeed Fu is strict if and only the following sequence

FM 2% Tmu — 0

is a strict exact sequence of F'A-modules when Imu is endowed with the induced
topology. Then we apply 3.0.2 .

Let us recall this well known result about complexes of filtered modules.

Proposition 3.0.4. Let (M*®,d®) be a complex of complete F A-modules. H*(M®)
. ) Kerd; N F, M + I'md;_1 Kerd; N F,M?

ltered 1l F,H*(M®) = ~ —
is filtered as follows FyH"(M?*) | Trmdi; | Tmdiy O E M1
If d; and d;—1 are strict, then GH*(M?®) is isomorphic to H'(GM?®)

Proof of the proposition 3.0.4:
We consider the following exact sequence

0 — Imd;_; — Kerd; -2 H'M® — 0.
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we endow Kerd; and I'md;_, with the induced filtration. One has

F.Kerd; = Kerd; N F,M?
FiImd;,_1 = Imd;_1 N FtMi

) Kerd; N FyM* + Imd;
p(FiKerd) — erd; N Iy +Im

= F,H'(M?*).
The exact sequence above is strict exact. It stays exact if one takes the graded
modules. Thus, we have the following exact sequence of G A-modules
0 — GImd;—; — GKerd; > GH'M*® — 0.
Then GHi(M‘) N GKerd; N KerGd;

o Glmdi,1 o ImGdi,1
the proposition. O

~ H'(GM?®). This finishes the proof of

Remark :
The isomorphism from GyH*(M?®) to H (G;M*) is given by

GH'(M®*) — HY(GM?*)
ocl(xz) —  c(o(x)).

For any r € Z and for any F'A-module F M, we define the shifted module F M (r)
as the module M endowed with the filtration (Fy M), .

An FA-module module is finite free if it is isomorphic to an F'A-module of the
type ®f_, FA(—d;) where dy,...,d, are integers. An FA-module F'M is of finite
type if there exists a strict epimorphism F'L — F'M where F'L is a finite free F'A-
module. This means that we can find m; € Fy, M,...,m, € Fy,M such that any
m € FyM may be written as

p
m = 5 ag—q,m;
=1

where ag_q4, € Fa_q,A.

Proposition 3.0.5. Let F'A be a filtered k-algebra and FM be an F A-module.

a) If FM is an F A-module of finite type generated by (s1,...,s,) then GM is a
GA-module of finite type generated by ([s1],...,[sr]). Conversely, assume that F A
is complete for the topology given by the filtration and that FM is a FA-module
which is Hausdorff for the topology defined by the filtration. If GM is a G A-module
of finite type generated by ([s1],...,[s:]), then FM is an F A-module of finite type
generated by (s1,...,5S;)

b) If FM is a finite free FA-module, then GM is a finite free GA-module.
Conwversely, assume that F'A is complete for the topology given by the filtration and
FM is a FA-module Hausdorff for the topology defined by the filtration. If GM is
a finite free GA-module, then F'M is a finite free FA-module.

Proof of the proposition :

a) If FM is an F'A-module of finite type, then there is a strict exact sequence
oN | FA(—d;) — FM — 0. If we apply proposition 3.0.2, we see that GM is a
G A-module of finite type. Conversely, assume that GM is a GA-module of finite
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type generated by o1 = [s1],...,0, = [s;]. Assume that s; € Fg, M — F4,_1 M. Let
x in F, M. There exists a; 9 € Gr,—q, A such that

T
on(x) = Zamm.
i=1

Let a0 € Fy—q, A such that 0,4, (a;0) = a;0. We have
i

xr — E Q085 € Fn+1M~
i=1
Reasoning in the same way, one can construct o; 1 € F;,—g,4+1A such that

r

xr — Z(Oxi,o + 041'71)81' € FyoM

i=1
o0
Going on that way, we construct an element Zam in F,_q, A such that
j=1
T oo
Tr = Z Z ;5| Si-

i=1 \j=1

Hence F'M is a finite type F A-module.

b) apply proposition 3.0.2.0

Definition 3.0.6. A filtered k-algebra is said to be (filtered) noetherian if it satisfies
one of the following equivalent conditions :
o Any filtered submodule (not necessarily a strict submodule) of a finite type
FA-module is of finite type
o Any filtered ideal (not necessarily a strict ideal) of F A is of finite type.

Proposition 3.0.7. Let F A be a filtered complete k-algebra and denote by GA its
associated graded algebra. If GA is graded noetherian, then F A is filtered noether-
an.

Proof of the proposition :
We assume that GA is a noetherian algebra. We need to prove that a filtered
submodule F'M’ of a finitely generated F'A-module FM is finitely generated.

First we assume that FM is Hausdorff. For this case, we reproduce the proof of
[Schl.

If FM' is strict, then the associated GA-module GM’ is a submodule of the
G A-module GM associated to FM. Since GA is noetherian and GM is finitely
generated so is GM' and the conclusion follows.

To prove the general case, we may assume that the image of the inclusion FM' —
FM is equal to FM. In this case, using a finite systeme of generators of FM, it is
easy to find an integer [ such that

F,M' C F,M C Fy_ M.

We will prove the result by induction on [.
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For [ = 1, let us introduce the auxiliary G A-modules
GKo = OtezFsM' [ Fy (i M
GK) = ©iezFyM/F M’
These modules satisfy the exact sequences

0—-GKy—GM — GK; —0

0— GK;(1) - GM' — GKy — 0

Since GM is a finite type GA-module, so are GKy and GK;. Hence GM’ is also
finitely generated and the conclusion follows.
For [ > 1, we define the auxiliary F A-module FM" by setting

FM" = F (WM + F,M'.
Since we have
FM'" Cc FEbM C Fy o M”
the preceeding discussion shows that F'M” is finitely generated. Moreover
FM' c FEM" C Fy_ )M’

and the conclusion follows from the induction hypothesis.

We no longer assume that FM is Hausdorff
As F'M is a finite type F'A-module, there exists a strict exact sequence

FL= & FA(~d;) -2 FM — 0.
1=1

We will denote by p, the map from FyL to F;M induced by p. As p is strict, the
map p; is surjective. Let F'M’ be a submodule (not necessarily strict) of FM. Then
p 1 (FM') is an F A-submodule of FL if we endow it with the filtration

E [p~ (M) =p; (FM') = p~ (F,M') N FL.
As FL is Hausdorff, we know from the first part of the proof that the F"'A-module
p~'M’ is finite type. Hence there exist oy € Fy, [p7*M'],...,0p € F5, [p~'M']
such that any x of Fy [p~'M'] can be written

P
T = Zad_(siai with aq_s, € Fy_s,A.
i=1

Let y in FyM'. As p is strict, there exist z € Fy [p~'M’] such that y = p(x). Then
y can be written

P
y= Zad_,;ip(ai) with agq—s, € Fq—s,A.
i=1

We have proved that F M’ is a finite type F'A-module O.

Proposition 3.0.8. Assume that F'A is noetherian for the topology given by the
filtration. Any FA-module of finite type has an infinite resolution by finite free
F A-modules i.e there is an exact sequence

-—-FL,—-FL;, 1 — - --+-—FLy— FM —0
where each FLg is a finite free FA-module.
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Remark :
For such a resolution of F'M, the sequence

-+-—>GL; —-GLy_1— -+ —>GLy—GM — 0
is a resolution of the GA-module GM.

Proposition 3.0.9. Assume FA is noetherian and complete. If GA is of finite
(left) global homological dimension, so is A.

Proof : we adjust the proof of [Schn] proposition 10.3.5. to decreasing filtrations.
Let us start by a lemma.

Lemma 3.0.10. If FN is a finite type F A-module, then it is complete.

First we assume that FN is Hausdorff. —Let FN be a finite type Hausdorff
FA-module. We have a strict exact sequence

FL=a" FA(-d;) 2> FN — 0.

The filtration on FN is given by p(F;L). Let us endow the kernel K of p with the
induced topology. We have a strict exact sequence

0—-FK—-FL—FN — Q0.

As N is Hausdorff, K = p~1({0}) is closed in F'L. The filtered F'A-module FN is
isomorphic to F'L/K, endowed with the quotient topology. Hence, F'N is complete
(see lemma 3.0.1).

We no longer assume that FN is Hausdorff. From the first case, F'K, endowed
with the induced topology is complete and hence closed in FL. As FN ~ FL/K,
the FA-module F'N is Hausdorff.

Lemma 3.0.11. Assume that F'A is noetherian and complete. Then, for any F A-
module of finite type FM and any complete FFA-module FN,

Ext’, ,(GM,GN) = 0 = Ext}, (M,N) = 0.

Let
+—FL,—FL, 1—-+-—FLy—FM —20

be a filtered resolution of F'N by finite free F'A-modules. Applying the graduation
functor, we get a resolution

-+—GL, - GLy_1 —---—GLy — GM — 0.
Assuming m]éA(GM, GN) = {0} means that the sequence
Homg 4 (GL;j—1,GN) — Homg,(GL;j,GN) — Hom¢ 4,(GLj+1,GN)

is an exact sequence of GA-modules. When FL = % FA(—d;) is finite free, the

FA-module FHom(FL,FN)=®! {FN(d;) is comf)Telte and the natural map
GFHomp4(FL,FN) — Hom-4(GL,GN)

is an isomorphism. Hence the sequence

FHompa (FLi_1, FN) — FHompy (FL;, FN) — FHompa (FLi4 1, FN)
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is a strict exact sequence of F'A-modules (proposition 3.0.2). When FL is finite
free, the underlying module of FHomp 4 (F'L, F'N) is Homa (L, N). This finishes the
proof of the lemma.

Denote by dg 4 the (left) global homological dimension of GA. Let M be a finite
type A-module. One has an epimorphism

A" 25 M — 0.
We endow M with the filtration p(FA™). Similarly, we endow N with a filtration

FN such that FN is a finite F"A-module. From the two previous lemmas, we
deduce that for any finite type A modules M and N,

Ext), (M,N) =0 if j>dga + 1.
Let now N be any A-module. We have N = lim N’ where N’ runs over all finitely

generated submodules of N. Let L*® be a resolution of M by finitely generated free
A-modules. We have for all j > dga + 1

Ext/(M, N) Ext} (M, lim N')
— (HomA(L: lim N'))
— H (th Homp (L*, N’))
= lim B (Homa (L*,N'))
= lizn Ext), (M, N’)

where, in the equality before the last equality, we used the fact that the functor lim
is exact because the set of finitely generated submodules of M is a directed set ([Ro]

proposition 5.33). Thus we have proved : if M is a finitely generated A-module
and N is any A-module, then

Ext!(M,N) = {0} if j >dga + 1.

From this, we deduce ([Ro] theorem 8.16), that the global (left) dimension of A is
finite and inferior or equal to dga. O

Remark : The lemma 3.0.10 is proved in [K-S] in the case an Ap-module (Ap,
being a deformation algebra) endowed with the h-adic filtration.

4. DEFORMATION ALGEBRAS

4.1. Definition and properties. In this section k will be a field of characteristic
0 and we will set K = k[[h]].

Definition 4.1.1. A topologically free K-algebra Ay is a topologically free K-
module together with a K-bilinear (multiplication) map Ay X Ap — A making
Ay, into an associative algebra.

Let Ag be an associative k-algebra. A deformation of Ag is topologically free
K-algebra Ay, such that Ag ~ Ap/hAp as algebras.

Remark :
If Ay, is a deformation algebra of Aj, we may endow it with the h-adic filtration.
hA
We then have GA,, = @ —— ~ Ag[h] as k[h]-algebra.

ielN hitlA,
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From proposition 3.0.6, we deduce that a deformation algebra of a noetherian
algebra is noetherian.

Examples ([C-P]):
Before giving a list of examples, let us recall the following definition :

Definition 4.1.2. A deformation of a Hopf algebra (A, ¢, u, e, A, S) over a field k
is a topological Hopf algebra (Ap, iy, tin, €n, Ap, Sy) over the ring k[[h]] such that
i) Ay, is isomorphic to Ag[[h]] as a k[[h]]-module
ii) Ap/hAp is isomorphic to Ay as Hopf algebra.

Ezample 1 : Quantized universal enveloping algebras (QUEA)

Definition 4.1.3. Let g be a Lie bialgebra. A Hopf algebra deformation of U(g)

U}L(g)
, Un(g), h that
h(g) suc a hUh(g)

called a quantization of U(g).

is isomorphic to U(g) as a coPoisson Hopf algebra is

Quantizations of Lie bialgebras have been constructed in [E — K1J.

Example 2 : Quantization of affine algebraic Poisson groups

Definition 4.1.4. A quantization of an affine algebraic Poisson group (G,{,}) is
a Hopf algebra deformation Fy(G) of the Hopf algebra F(G) of regular functions
Fi(G)
hFn(G)

on G, such that is isomorphic to (F(G),{,}) as Poisson Hopf algebra.

Quantization of affine algebraic Poisson groups have been constructed by Etingof
and Kazhdan ([E-S], see also [C-P] for the case where G is simple).

Ezamples 3: Quantum formal series Hopf algebras (QFSHA)

The vector space dual U(g)* of the universal enveloping algebra U(g) of a Lie
algebra can be identified with an algebra of formal power series and it has a natural
Hopf algebra structure, provided we interpret the tensor product U(g)* ® U(g)* in
a suitable completed sense. If g is a Lie bialgebra, U(g)* is a Hopf Poisson algebra.

Definition 4.1.5. A quantum formal series Hopf algebra is a topological Hopf

B
algebra By, over k[[h]] such that h?h is isomorphic to U(g)* as a topological Poisson
h

Hopf algebra for some finite dimensional Lie bialgebra.

The following proposition is proved in [K-S] (theorem 2.6)

Proposition 4.1.6. Let A, be a deformation algebra of Ag and let M be an
Ap-module. Assume that
(i) M has no h-torsion
(1i)M/hM is a flat Ag-module
(iii) M = lim M/h"M
pa—

then M is ;ﬂat Ap-module.
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5. A QUANTIZATION OF THE CHARACTER trad

Theorem 5.0.7. Let Ay be a noetherian k-algebra and let Ay, be a deformation of
Ag. Assume that k has a left Ag-module structure such that there exists an integer

d such that )
{ Extly (k,Ag) ={0}if i #d
Extﬁi% (k,Ag) ~ k

Assume that K is endowed with a Ap-module structure which reduces modulo h to
the Ag-module structure on k we started with. Then

a) BExtly, (K, Ay) is zero if i # d.

b) Extih (K, Ap) is a free K-module of dimension 1. By right multiplication, it
is a right Ap-module. It is a lift of the right Ag-module structure (given by right
multiplication ) on Ext% (k,Ao).

Notation : The right Aj,-module Ext‘ih (k, Ap,) will be denoted Q4, and the
character defined by this action 4, .

Remark : In [K-S] (paragraph 6), Kashiwara and Schapira make a similar con-
struction in the set up of D@-algebroids. In [C2], it is shown that a result similar
to theorem 5.0.7 holds for U,(g) (g semi-simple).

Ezample 1 : Quantized universal enveloping algebras
Poincaré duality gives us the following result for any finite dimensional Lie alge-
bra.

{ Bty (k. U(g)) = {0} ifi # 0

Bt (k,U(g)) = A%m9(g) .

The character defined by the right action of U(g) on E:ct?]i(ygf (k,U(g)) is tradg
([C1]). Thus, the character defined by the theorem 5.0.7 is a quantization of the
character tradsg.

e If g is a complex semi-simple algebra, as H'(g,k) = {0} ([H-S] p 247), there
exists a unique lift of the trivial representation of Uy (g), hence the representation
Qu, (g) 1s the trivial representation.

e Let a be a k-Lie algebra. Denote by a; the Lie algebra obtained from a by
multiplying the bracket of a by h. Thus, for any elements X and Y of aj, >~ a,

[X,Y]a, = h[X,Y]s.

—

Denote by U (ay,) the h-adic completion of U(ay,). Then U/(a\h) is a Hopf deformation
of (a®,§ = 0). The character § — defined by the theorem in this case is given by

U(ah)
VX €a, 9@ (X) = htradq,(X).

Thus, even if g is unimodular, the character defined by the right action of Uy (g) on
Qu, (g) = A%™9(g*)[[h]] might not be trivial.

e We consider the following Lie algebra : a = ke; with non zero bracket

T

[e2, e4] = e1. Consider k[[h]]-Lie algebra structure on a[[h]] defined by the following
non zero brackets

[63, 65] = h€3

[62, 64] = 261
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Um]) is a quantization of U(a). It is easy to see that
GUW])(@) =0if i#5
ot (5) = -
Ezample 2

The theorem 5.0.7 also applies to quantization of affine algebraic Poisson groups.
If G is an affine algebraic Poisson group with neutral element e, we take k to be
given by the counit of the Hopf algebra F(G). One has [A-K]

Eatiy ) (k, F(G)) = {0} if i # dimG
Batding (k, F(G)) = A9 (Mo M2)")
where
M, ={f € F(G)| f(e) = 0}.

Let g be a real Lie algebra. The algebra of regular functions on g*, F(g*), is
isomorphic to S(g) and is naturally equipped with a Poisson structure given by :

VX,Y € g, {X,Y} =[X,Y].

In the example above, U/(g\h) is a quantization of the Poisson algebra F(g*). F(g*)

acts trivially on Extif(rgf’) (k, F(g*)) whereas the action of Fj(g*) ~ U(gn) on

Ext;lfﬁg*) (k, Frn(g*)) is not trivial.

Ezample 8 : The theorem 5.0.7 also applies to quantum formal series Hopf alge-
bras.

Proof of the theorem 5.0.7:
Let us consider a resolution of the A,-module K by filtered finite free Aj-modules
L pp Mpp O % pr 9 pro i fo)
FL' = @& FAp(=my,)
so that the graded complex

QL R G GO Gt G0 GO s kln) — {0)

is a resolution of the Ag[h]-module k[h]. Consider the complex M® = (Hom, (L®, Ap),t 8°).
Recall that there is a natural filtration on Hom a, (L%, Aj,) defined by

FyHoma, (L', Ap) = {\ € Homa, (L', Ap,) | A (F,L") C FiypAn}.
One has an isomorphism of right F'A-modules
FHom, (L', Ap) = & FA(m;;)
j=1
Hence
GFHomy, (L', Ap) ~ Homg, 4, (GL*, GAp)

and the complex Hom, 4, (GL, GA) computes MZ‘Ah (k[h], GAR). We have the
following isomorphisms of right Ag[h]-modules.

Exta, (k[h], GAR) = Extiy, ) (k[h], Ao[h]) = Extly, (k, Ao)[h].
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If ¢ # d, then MEA}L (k[h], GA}) = {0}. This means that the sequence

Homg 4 (GLi—1,GAw) 2% Home o (GLi, GAR) 25" Home 4 (GL; 41, GA)

is an exact sequence of G Ap-modules. Hence, applying 3.0.2 the sequence

FHompa (FL;_1, FN) ‘8, FHompga (FL;, FN) 2y FHompa (FLi41, FN)
is strict exact. As F'L; is finite free, the underlying module of FHompg 4 (FL;, FN)
is Homy (L;, N). Hence we have proved that Extl, (K, Ay) = {0} if i # d.
We have also proved that all the maps ?0; are strict. Hence, by proposition 3.0.4,
we have for all integer 4

GEaty, (k[[h]], An) = Extg 4, (k[h], Ao[h)) = Eatly, (k, Ao)[h]

The F Ap-modules ExtiAh (K, Ayp) are finite type FA-modules, hence they are
Hausdorff and even complete (see lemma 3.0.10).

As Ext} (K,Ay) is Hausdorff and GExt%, (k[[h]], An) ~ Eaxt4 (k,Ao)[h], the
k[[h]]-module Ext} (K, Ay) is a one dimensional.

This finishes the proof of the theorem 5.0.7. O

From now on, we assume that Ay, is a topological Hopf algebra and that its action
on K is given by the counit. The antipode of Ay will be denoted Sp,.

If V is a left Ap-module, we set V" (respectively V?) the right Aj,-module defined
by

Va € A, Yo €V, v-g, a= Sp(a)-v (respectively v g1 @ = S, Ha) - v).

Similarly, if W is a right Aj-module, we set W' (respectively W?) the left Aj-
module defined by

Va € Ap, YVw € W, a-g, w=w-Sy(a) (respectively a gorw=w- S, Ha)).

One has (VT)A =V, (V’))l =V, (Wl)p = W and (WA)T = W. Thus, we have
defined two (in the case where S? # id) equivalences of categories between the
category of left Aj,-modules and the category of right Ap-modules, that is to say
left A7P-modules.

Let Mod (Ay) be the abelian category of left Ap-modules and D (Mod(Ay)) be
the derived category of the abelian category Mod(A}). We may consider A, as an
Ap®AjP-module. Introduce the functor D, from D (Mod (Ay)) to D (Mod (A;7))

VYM® € D (Ah) s DA;L(M.) = RHO?’TLA}L (M., Ah) .
If M is a finitely generated module, the canonical arrow M — Dgor 0 Dy, (M) is

an isomorphism.

Let V be a left Ap-module, then, by transposition, V* = Homg(V, K) is natu-
rally endowed with a right Ap-module structure. Using the antipode, we can also
see it as a left module structure. Thus, one has :

Vu € ALVfEVE, u-f=f-Sh(u).



18 Sophie Chemla

We endow Q4, ® V* with the following right Aj,-module structure :
Vu e ApVf e V¥, Vw € Qy,,
(wew) u= lm » O, f S},
J

where A(u) = lim Zujn®u

n—-+oo

Theorem 5.0.8. Let V' be an Ap-module free of finite type as a k[[h]]-module.
Then D4, (V) and V* ® Qya, are isomorphic in D (A}P).

Proof of the theorem :

In the proof of this theorem, we will make use of the following lemma (see [Dul],
[C1)).
Lemma 5.0.9. Let W be a left Ap-module. Ap@W is endowed with two different
structures of Ap ® AP -modules. The first one denoted (Ah®W)1 s described as
follows : Let w be an element of W and let u,a be two elements of Ap. We set
A(a) = lim a;, ®@aj,. Then

n—-+4oo
7

(uRw) -a=ua®w
a- (u@w)= hrf a; ,u®ai, -w
The second one denoted (Ah®W)2 is described as follows : Then
a-(uRw)=auw
(u@w)-a= lim Zua”L@Sh (vf,) - w

n—-+o0o

The Ap @ AP -modules (Ah®W)1 and (Ah®W)2 are isomorphic.
Proof of the lemma :

The map
v (Ah@W)z - (Ah@W)1
li ! "o
URQwW n—1>I—ir-loo Zuz,n ® Ujp W
where A(u) = lim Zul n @ uj,, is an isomorphism of A; ® AjP-modules from

n—-4o0o
(Ah®W)2 to (Ah®W) . Moreover
(u®w) Z i, ® Sp(uy,) - w
This finishes the proof of the lemma.

Let L°® be a resolution of K by free Ajp-modules. We endow L’ ® V with the
following left Ap-module structure :

a-(l®v)= hm Zaln~ aj, .

Then L®* ® V is a resolution of V' by free Ah—modules. Using the relation
: = i ¢ "oy,
a-l v n—1>r-|l:loo ;a%n [l ® Sh (azm) U]
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one shows the following sequence of Aj-isomorphisms

DAh(V) Homag, (L®V7Ah)
HomAh (L7 (Ah ® V*)1>
Homa, (L. (Ay @ V*)y)
RHomAh (K, Ah) ®V*.0

11 IR

6. LINK WITH QUANTUM DUALITY

6.1. Recollection on the quantum dual principle. The quantum dual prin-
ciple ([Dr], see [G] for a detailed treatment) states that there exist two functors,
namely () : QUEA — QFSA and ()' : QFSA — QUEA which are inverse
of each other. If Up(g) is a quantization of U(g) and F}[[g]] is a quantization of
Fllg]] = U(g)*, then Uj(g)’ is a quantization of F[[g*]] and F},[[g]]" is a quantization
of U(g*).

Let’s recall the construction of the functor ()" : QFSA — QUEA which is the
one we will need. Let g be a Lie bialgebra and Fj[[g]] a quantization of F[[g]] =
U(g)*. For simplicity we will write F}, instead of F}[[g]]. If €, denotes the counit
of F,, set I := ¢, '(hk[[h]]) and J = Kerey. Let

FY=Y =Y 'nm=Jn 1"

n>0 n>0 n>0

be the k[[h]]-subalgebra of k((h)) ® Fj, generated by h™'I. As I = J + hF},, one
K[[h]]

has F}* = Zh’”]n. Define F;’ to be the h-adic completion of the k[[h]]-module
n>0

F*. The coproduct (respectively counit, antipode) on Fj, provides a coproduct

(respectively counit, antipode) on F} and F,’ is endowed with a Hopf algebra

structure. A precise description of F}’ is given in [G]. Let us recall it as we will need

it for our computations. The algebras Fj,/hFy, and k[[Z1,...,T,]] are isomorphic.
We denote 7 : Fy, — F}/hF, be the natural projection. We may choose T; €
n~1(z;) for any j such that €, (z;) = 0, then F), and k[[z1, ..., zy, h]] are isomorphic

as k[[h]]- topological module and J is the set of formal series f whose degree in the
xj, Ox (f) (that is the degree of the lowest degree monomials occuring in the series
with non zero coefficients) is strictly positive. As Fj,/hF}, is commutative, one has

:Eixj — .’ﬂjCEi = hXi,j

with x;; € Fi. As x;,; is in J, it can be written as follows :
n
Xi,j = an(h)wa + fij(@1, ... 20, h)
a=1

with ax(fi’j) >1. If T; = hill'j, then
FY ={f= Pu(ir,....,&)h" | P.(X1,...,Xp) € K[X1,..., X,]}.
relN

Thus F,' and k[Z1, ..., Z,][[h]] are isomorphic as a topological k[[h]]-modules. One
has

TiZj — Tj&; = an(h)fa +h7 (@, @, h)
a=1
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where f; ;(#1,...,4n, h) is obtained from f; j(z1,...,2,) by writing z; = hi;. The
element h='f; j(Z1,...,&,,h) is in hk[E1,...,#,][[h]]. The k-span of the set of
cosets {e; = #; mod hF}'} is a Lie algebra isomorphic to g*. The map ¥ : FY —
U(g*)[[h]] defined by

] <ZPT(£1,...,5En)h”> = ZPT(el,...,en)hr

relN relN

Ey

is an isomorphism of topological k[[h]]-modules. The algebra is isomorphic to

\%

U(g*) and Fj(g)V is a quantization of the coPoisson Hopf algebra U(g*). Denote
by -5 multiplication on F}, and its transposition to U(g*)[[h]] by ¥. To compute

et .. et el . ebr we proceed as follows : we compute #91 ... F%n - Z50 ... £
in F} and write it under the form ZPT(fl, ..., &n)h". Then
relN
eft..epn elil .. .el,’L" = ZPr(el, o en)h’
relN

If uw and v are in U(g*)[[h]], one writes u x v = Zh’”ur(u,v). One knows that the

relN
first non zero pu, is a 1-cocycle of the Hochschild cohomology.

If Pin k[X4,...,X,] can be written P = Z aily___yl-anl ... Xn one sets

T1yeenyin

P®(eq,... e,) = E ag, .., ine?“...ef?’"

and if g € k[X1,...,X,][[h]] can be written g = ZPT(Xl, ..., X;)h", then one
i=1
sets :

g®(e1,...,en) = ZP,@(el, o ep)hl
i=1

Fact :
(Fp)Y is isomorphic as an algebra to

T <ié§1k“h“6i>
T

where I is the closure (in the h-adic topology ) of the two sided ideal generated by
the relations

Un(g") ~

eiQej —e;j®e = ch(h)e;c +h! VZ%(eh...,en,h).
k=1

Let us prove this fact. Let Q : Ty (‘%1k[[h]]ei> — F; that sends e; to
Z;. One has I C KerQ) and we need to prove that KerQ2 C I. Let R be in

Tr(in] <ié}§1k[[h}]ei) be such that Q(R) = 0. Then, modulo h, we get Q(R) = 0.
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Hence there exist (uf ;) and (vf;) in Tj( EB ke;) such that

1=

R = Zu?,j ®(e; ®ej —ej @e; — e, e5]) ®U?7j

n

and R — ZUQ » (ei Rej—e; Qe — an(h) — h’lf?j(el, ., en, h)) ®U2j S

a=1

hKerQ. Hence there exist R1 € Ker{) be such that

R—Zu?7j®<ei®ej—ej®ei—an( —h™ (61,.‘.,en,h)>®v2j:h721.

5,J a=1

Reproducing the same reasoning, we find (u; ;) and (v} ;) in T < & kei) such that
’ : i=1

n
Rl—ZuZ{]@ (ei ®ej—e;®e; — an(h)ea — h—lfi,j(el, ey Em, h)) ®vi17j = hRo
4,7 a=1

and going on like this, we show that R is in I.

6.2. Deformation of the Koszul complex. Let a be a k-Lie algebra. There is
a well known resolution of the trivial U(a)-module, namely the Koszul resolution
K = (U(a) ® A®a, ) where

O(u® XA A Xp) =Z )X, @ Xy A AX A A X,

—~ —

S (-)Pue X, ] CAXG A AXGA A X,
i<J

‘We will now show that the Koszul resolution can be deformed.

Theorem 6.2.1. Let a be a Lie algebra and let (eq,...,e,) be a basis of a. Denote
y Cf; the structure constants of a with respect to the basis (e1,...,en) so that we

have [e;, e;] ZC’»‘?jea. Consider Up(a) a deformation of U(a) given under the
form
Liiny (i@lkﬁhﬂei>
Uh(a) ~

1

where I is the closure (in the h-adic topology) of the two sided ideal generated by
the relations

6i®€j 7€j®€i *ggj(ela-waenah)
where g; ; satisfies the following :

gij € k‘[Xl,...,Xn][[h]] and O0x(g;;) >1

n
gZ i (e1,... ZCffjea mod hTypn) < Gj )
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k[[h]] is an Up(a)-module (called the trivial Uy (a)-module) if we let the e;’s act triv-
ially. There exists a resolution of the trivial Uy (a)-module k[[h]], K, = (Up(a) @k A®a,0f),
such that GrKy, is the resolution of the trivial U(a)[h]-module k[h].

Remarks :

1) Any quantized universal enveloping algebra, Uy (a), has a presentation as in
the theorem because we might write it Uy (a) = (Up(a)')".

2) The proof of the theorem gives an algorithm to construct the resolution Kj,.

3) By theorem 6.2.1, we even get a filtered resolution of the FUy,(g)-module k[[h]].

Proof of the theorem 6.2.1:
We will prove by induction that on ¢ that one can construct 8¢, ..., mor-
phisms of Uy, (a)-modules such that :

ovr € [1,q],0" 0" = 0.

(1@ ep AveNep,) = Z(_l)i_lem ®ep A Nép, Ao Nep,
i=1
Y N (—D)EHCE 1@ ea ey, A A A Neg Aee Ny, + Oy,
k<l a

with ay, ., € hUn(a) ® A""1(a) so that GO? is the qth differential of the Koszul
complex of the trivial U(a)[h]-module k[h]. From proposition 3.0.2, this implies
that Kerd® ; = ImoP.

We take 9% : Up,(a) — k[[h]] to be the algebra morphism determined by 9% (e;) =
0.

We take 9% : Up(a) ® a — Up(a) to be the morphism of Uy, (a)-modules deter-
mined by OF (u ® e;) = ue;.

One writes

n n
J— a a
gijler,...,en h) = E Plieq + E Cy jea
a=1 a=1

where the P{;’s are in hUp(a).
We look for a morphism of Uy,(a)-modules, 8% : Up(a) @ A%a — Up(a) @4 a
under the form

83(1@@/\@):ei®ejfej®eifZC’Zj1®eafai,j
a

where «; ; is in hUp(a) @ a.
One has

8{7’ <ei ®ej—e; Qe — Zczjl ® ea> = ZP{fjea = 8{” (ZP{fj ® ea> .
a a=1 a=1
We might take

n n
83(1 Qe Nej)=e;Rej —ej Qe; — ZC{fjl R eq — ZPi‘fjl R eq.
a=1 a=1
We have 0 0 0% =0
Let ¢ > 2. Assume that 9,00, ... 8(? are constructed and let us construct 8,’; i
as required.
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We look for 9", (1@ ey, A--- Aey,,,) under the form

q+1
aq+1(1 R ARRRNA epq+1) = Z(_l)z_le;ﬂi @ep, N-- A e/Z)\L Ao Nepyiy
=1
Y D (—1)HCE 1@ eq Aoy, A Nep Ao N A Nep o+ Oy

r<s a

where ay, . p.., is in hUp(a) ® A(a). The term

q+1
82 <Z(_1)i_16m @ep, Ao A é; ARRERA qu+1> +

=1
Jrag (ZZ oo ( T+Sl®6a/\6m/\"’/\‘3/1;/\"'/\(3/;;:/\~-/\6pq+1>
r<s a

equals 0 modulo h. Hence it is in hUj(a) @ AY71(a).

As Oh 0l =0, it is in hKerdl' | = hImd!'. The existence of ap, ... p,,, follows.
Hence we have constructed 8(’;“ as required. The complex K} = (Uh(a) ® A%a, af)
is a resolution of the trivial Uy (a)-module k[[h]].O

6.3. Quantum duality and deformation of the Koszul complex. We may
construct resolutions of the trivial F},[g] and Fj,[g]Y-modules that respects the quan-
tum duality.

Fy,
Theorem 6.3.1. Let g be a Lie bialgebra, Fylg] a QFSHA such that N2 [[g]] is
|9

isomorphic to F|g] as a topological Poisson Hopf algebra and Fy[g]¥ = Uy (g*) the
quantization of U(g*) constructed from Fy|g] by the quantum duality principle. Let
T1,...,Tn be elements of Fg] such that Fg] ~ k[[Z1,...,Tn]]. Choose x1,...,z,
elements of Fplg] such that x; = T; mod h and ep(z;) = 0. Then Up(g*) ~
k&1, ..., &,][[h] with &; = b~ a;. Let (e1,...,€,) be a basis of g* and let Cf'; the
structural constants of g* with respect to this basis. We can construct a resolutzon
of the trivial Fy,[g]-module K!' = (F,[g] ® Ag*, 8;‘) of the form

q
a(};(]‘®6p1/\.../\6pq):Z(_l)iilxi®6p1/\'../\E/p\i/\.../\epq

i=1
Y N (C)TTRCE L 1@ €a Nep A AN A Nt A A,
r<s a
I Z hatl, ..... q 1®€t1 e Ner,

t1,.0y tg—1

such that a3t € I = e (hk[[B]]). Set

xt1,...,tq

& t1,..0tg—1

P @1,y Tn) = Q) o (x1,...,2Zn)-
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a?;;_:::%;l is in hk[Z1,...,@,][[h]]. Define the morphism of Uy(g*)-modules 53; :
Un(g*) ® N(g") — Un(g") ® A7 (g") by
Oy (1@ e A Nep,) :Z(_l)i_lfig’em NewsNep, N--- Ny,
i=1
A N (-1)FECE L 1@ €N A A A NG A Aep,

r<s a

vt17 tg—1
+ Z Qpy,py @€y N Neg,
t1yetg 1

Then K} = (Uh(g*) ® /\'9*75(’;) is a resolution of the trivial Uy (g*)-module.
Proof of the theorem :

n
One sets z;x; — z7; = Zh ;%o + hu i%a- We know that u‘jj isin I. We

take
3g = €p,
We set
Ml @eNe)) =2, @¢j —1; D€ — ZhC’i‘fj ® €4 — hZuﬁj ® €q.
We have 9 0 9% = 0 and we may choose o =l
Assume that 9}, 0%, .. 8" have been constructed such that

o Vrcl,q OF 18h =0
o Vre[l,q I m@f} = Kerd!_, and satisfying the required relation.
o appilp, €1
and let us show that we can construct 9" +1 satisfying these three conditions.
The computation below is in [Kn] p 173.

q+1
or (Z(—l)i‘lxm @ep, Aoos ANép, Ao A e,,W) +

i=1

r<s a
_Z 1)1+ (TpTp; — T, Tp) D€L Ao AN Ao A A Aep iy
7<i
Z Z Z(i r+s+6+2+1hcgﬁp p @ €a N €p, A (omit pr, ps,pi) Nep,

A r<srs;£7, a

53 eohCy 0 1 Comit ) A

+Z Z Z (—1)’"+‘S+i+5th7v)psmpi ® €q A €p, A (omit pr, ps,pi) A€y,

r<s a pi#prps
(=1t N (ke h20e  Ch L1 ®€q Ay Aer A (omit pr,prpryps) A €p,
r<s k<l;k,l#r,s a,b

+Z(_1)r+s Z Z(— YITThACy. pSC’b ® €y A €p, A (0mit pj, pr,ps) A€p,

r<s j#r,s a,b

i—1 N _1\r+s a . _
+Z(_1) xpihamw-,piy---,pqﬂ +ZZ( 1) thr,psho‘a,m’m,pr,...,ps,m,pqﬂ

i r<s a
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where

0 =1if r <i < sand § = 0 otherwise
o = 1 if exactly one of k and 1 is between r and s
T=1if r <j <s and 7 = 0 otherwise

The fifth term and the sixth term cancel. The second term and fourth term cancel
with each other so that we have

q+1
o (Zﬁpi(@em/\~~/\6/p\i/\~~~/\6pq+l>+

i=1

+a"; Zzhcgk,ml@)ea/\epl/\"'/\E/p;,/\"'/\ﬁ/p\,/\"'/\epq+l

k<l a
— —1)itI _ — a e AETAAETA -
= E (-1) Tp, Ty, — Tp, Tp, g hCy. b, xa> Qe N Nep, Ao Nép, N Nep,
7<i a
z : _1)i—1 . E _1\r+sp2va _ .
+ ( 1) hxpiap1;~'7pi7~~;pq+l + ( 1) h Cpmpsaaapl7--<7Pr7---7p17~--7pq+1‘
[ r<s

As 5‘5_185‘ = 0, the term

q+1
82 (Z(_l)i—lem ® ep, /\---/\e/,; /\"~/\€pq+1> +

i=1

+8§ ZZ(_I)kHCgk,ml @ €a N\ epy A ..'/\6/1;\1&' ARES /\ép\z /\"'/\epqﬂ)
k<l a

isin hKerdl | = hlmag. We can choose a5 in F, [g] so that the expression

q— P1;--sPg+1
5 h t1,..5tq
above equals —3; (hozpl,___,pq+1 .
t1,...,tq . . .
Let us now prove that ap,)/p.., is in I. It is easy to see that

—82 (haéll’,'_'f,’f,?qﬂ @€ N A etq> is element of I® ® A9g*. Note that 8,? sends
I" @ N1g* to I" Tt @ A9g*. Let us write

t1,--5lg — E t1,..0tq ) DAY in
apl,...,pq+1 - (O‘pl,...,pq_,_l)H,»--,lnxl sy

i1,0enin

with (af,ll’;,',',’,t,fq +1)i1,....in i k[[R]]. From the remarks we have just made, we see that

n t1et . . 13 tr,nt
g | h E (apy T pain )0, 060 N Ney, | isin IP@A9g*. Hence (ap, 5,41 )o,...00
t1>~~7tq
is in hKE[[A]].
, ho_ h , hoo_ h
As ImGOy,; = KerG9,, one has Imd,, ; = Kerd,'.
Set
<tienta1 (s S\ 1t
pll,...,pqq 1(1‘13 s ,In) - O‘pll,...,pqq 1(:1713 s ,In).
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do=¢

81(1@)62):

Do (1 ®ez/\e]) €6 —Tj @€ — ZC’fﬁj@ea—Zﬂﬁj@eu
q+1 a a

az]11+1 (1 @ €py A A 6Pq+1) = Z(_l)lilii @ €py Noo Nép, Aeee A €pg+1
i=1

YN ()OS 1@ e Ay, A Ay A AEp A Ay,

r<s a

t1,...,
+ Z Gy pq+1®et1 SN,

t1,etqg—1

If P is in F}, one has
0P ®ep, Ao - Nep,) =hI(P @ ey Ao Aep,).

The relation 9 8q+1 = 0 is obtained by multiplying the relation 3h8q 1 =0by h=2.
As Gag is the differential of the Koszul complex of the trivial U(g*)[h]-module, the
complex K§ = (Up(g*) ® A®g*, ") is a resolution of the trivial U,(g*)-module. O

6.4. A link between 0, and 0py.

Theorem 6.4.1.  One has 0, = hOpy

Proof of the theorem :

We keep the notation of the previous proposition and we will use the proof of
the theorem 5.0.7.

The complex (A®g* ® Fj,'0)}) computes the k[[h]]-modules Extl (k[[h]],F).
The cohomology class cl (1 ® €f A--- A€f) is a basis of Ext?[g” h] (k[h] Flg][h]) ~
GExtp (k[[b]],Fn). Hence there exists ¢ = 1+ hoy + --- € Ker'd} such that
[cl (0 ®e€f A--- Aey,)]is abasis of GExty (k[[h}] n). As the filtration on Extg (k[[h]], F
is Hausdorff, the cohomology class ¢l (o ® €] A - -+ A€;,) is a basis of Extg (k[[h ]], Fn).

Define ¢ by

F(&1, ..y Zn) =0(T1,...,Tp).

One has 0,, = hd,, and it is easy to check that & ® €} A--- A€’ is in Kertd? . If
we had

n
FRQEN-Ne, =t (Zm®efA~--Ae§A---Ae;>,
=1

then, reducing modulo h, we would get

FRE NN =100 <ZUZ®61 ~-Ae;§>.

This would implies that ¢/ (1®ef A---Aey) is 0 in Extyy .. (k, U(g")), which is
impossible because cl (1@ €] A---Aey) is a basis of Exty .. (k,U(g")). Thus
cd(F®ef A---N€:) is a non zero element of Ext‘[ij:zgg*) (k[[h]], Un(g*)). For all 4

n [1,n], one has the relation

0T, QN Ne =0p, (x)o @A Ae 1IN ()
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Let us write
=Y @ A Ae A Ael
7

with u; € Fylg]. We set fi;(&1,...,%n) = pi(z1,...,2,) and
=3 @A Ae A Neh.

Then we have
hod; @ €N ANel = 0p, (2,)6 @ €l A+ Ae + hLIl ().
This finishes the proof of the theorem 6.4.1. O

7. STUDY OF ON EXAMPLE

We will now study explicitely an example suggested by B. Enriquez. Chloup
([Chl]) introduced the triangular Lie bialgebra (g = kX1 @ kX2 @ kX3 ® kX, © kX5,
r = 4(X3 A X3)) where the non zero brackets are given by

(X1, Xo] = X3, [X1,X3] =Xy, [X1,X4]=X5
and the cobracket dq is the following :
VX €g, 0(X)=X-4(X2 A X3).

The dual Lie bialgebra of g will be denoted (a = key @ kea @ kes ® key @ kes, d).
The only non zero Lie bracket of a is [eq, e4] = 2e; and its cobracket ¢ is non zero
on the basis vectors es, ey, €5 :

(5(63) =e1 e —ea®e; = 2e1 Neo, (5(64) = 2e;1 Nes, (5(65) = 2eq1 N ey.

The invertible element of U(g)[[h)]@U(g)[[h]], R = exp (M( X2 ® X3 — X3 ® X>)),
satisfies the equations

RZ(A®1)(R) = R®(1® A)(R)

(e®id)(R) =1= (id®¢€)(R).
Thus, we may twist the trivial deformation of (U(g)[[R]], to, Do, Lo, €0, S0) by R
([C-P] p. 130). The topological Hopf algebra obtained has the same multiplication,
antipode , unit and counit but its coproduct is A" = R™'AgR. It is a quantization
of (g,7). We will denote it by Ux(g). The Hopf algebra Uy (g)* is a QFSHA and
(Un(g)*)" is a quantization of (a,d,). We will compute it explicitely.

Proposition 7.0.2. a) (U(g)*)" is isomorphic as a topological Hopf algebra to the
topological k[[hf[-algebra Ty (k[[h]ler © K[[R]]e2 © K[[h]]es @ k[[h]les @ K[[h]]es) /1
where I is the closure of the two-sided ideal generated by

es Reys—eyL e —2e;

2.9
e3@es —es ez — ~hep @e; ®ep

e4®e5—e5®e4—6h3€1®61®61®€1
62®65765®62+h61®61

e3®eq —eyg®es+ hey ® e

e ®ej —e; ®e; if {i,5} #{2,4}, {3,5}, {4,5}, {2,5}, {3,4}
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with the coproduct Ay, counit €, and antipode S defined as follows :

Ah(€1)261®1+1®€1

Aple) =ea®1+ 1R e9

Ah(€3)=€3®1+1®83—h62®€1
)

Ah(84

h2
:€4®1+1®€4_h€3®61+262®6%
h h3
Ah(e5):€5®1+1®€5—h64®61+?e3®6%—Eeg®e:{’.

b) (U(g)*)" is not isomorphic to the trivial deformation of Ul(a), U(a)[[h]], as
algebra.

Proof of the proposition
Let &; be the element of U(g)* defined by

< fi; Xf1X§2X§3XZ4Xg5 >= 5(11,0 C (5%,1 ce 5(1570.

The algebras U(g)* and k[[&1,...,&,]] are isomorphic. The topological Hopf
algebra (U (g)*,f Al = -1, o = Ap €0, 1o = €,," So) is a QFSHA. Remark that
U (g)* and k[[&1, . - ., &n, h]] are isomorphic as k[[h]]-modules. The elements &1, ...,&,
generate topologically the k[[h]]- algebra Up(g)* and satisfy e, (&;) = 0.

<E®E — & @&, ATXM L XE) ># 0 <= (a1,0a9,a3,a4,a5) = (1,0,0,0,0).
and < & ® & — &4 @ &, AT(X1) >=2h. Hence & - &4 — &4 n &2 = 2hE1.
< §3 ®€5 — 55 ®£3,AR(X111 .. .Xg5) >§l'é 0 <— (al,ag,ag,a4,a5) = (3,0,0,0,0)

2h2
and < {3 ® & — & ® €3, X7 >=4h. Hence &5 -5 &5 — &5 5 &3 = Tél néinr

< 54 X 55 — 55 X 54,AR(Xf1 .. .ng) >7’é 0 <— (al,ag,ag,a4,a5) = (4,0,0,0,0).
—h3
and < £,08—& @84, A(XT) >= —4h. Hence &4-1,&5—E5-n6s = Tfl'hfrhfrhfl.
<EH®E — & @&, AR (XD LX) >4 0 <= (a1,a2,a3,a4,a5) = (2,0,0,0,0).
and < & ® &5 — &5 © &, A(XT) >= —2h. Hence & 4 & — & -n &2 = —hé1 - &1
<&ERE &R &G ANXP LX) ># 0 <= (a1, a2, a3, a4, a5) = (2,0,0,0,0).
and < 53 ®€4 *54 ®£3,AR(X12) >= 72h. Hence 53 ‘h £4 7&4 ‘h fg = 7h€1 ‘h fl- In

the cases different from those mentionned above, &; -, & = &; - &
Let us now compute the coproduct Ay, of Uy, (g)*.
<AR(&), XPXPXPXPXE @ XV XPXPXPXE >4 0 <=
(a17 az,as, a4, as, b17 b27 b3; b4a b5) = (07 07 17 Oa Oa 07 07 07 Oa 0) or (07 07 07 Oa Oa 07 07 17 Oa O)
or (0,1,0,0,0,1,0,0,0,0)
and < Ap(&3), XoX; >= —1. Hence
Ap(6) =6®1+1086G - L @46,
<AR(E), X XPXPXPXEP @ XD XPXPXPXE >4 0 =
(ala az, as, ay, as, b17 b27 b3a b47 b5) = (07 07 07 17 Oa 07 07 07 07 0) or (07 07 07 07 Oa 07 07 07 ]-7 O)
or (0,0,1,0,0,1,0,0,0,0) or (0,1,0,0,0,2,0,0,0,0).
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Moreover
< Ah(£4),X3 ® X1 >=—-1 and < A}L(§4),X2 ®X12 >=1.

Hence

Ah(@;):§4®1+1®§4*§3®§1+%§2®§1'h§1~

<AR(Es), X XPXPXPXE @ XU XPXPXP XY >4 0 =
(a17a27a37a47a57b17b27b3ab47b5) = (07070707 150,O7Oa070) or (0707070a0a0,07070a 1)
or (0,0,0,1,0,1,0,0,0,0) or (0,0,1,0,0,2,0,0,0,0) or (0,1,0,0,0,3,0,0,0,0).

Moreover
< Ah(§5),X4®X1 >= -1, < Ah(€4),X3 ®X12 >=1, < Ah(§4),X2®Xf >= —1.

Hence
M) =6 @1 +106 - GO+ 3600 16~ HOa W& 16,

We set & = h™1&; and e; = & mod h (U(g)*)". Let x : (U(g)*)" — U(a)[[h]] be
the isomorphism of topologicall k[[h]]-modules defined by

X (Zpr(glvvén)hT> = ZPT(617~~~7en)hT'
relN

relN

From what we have reviewed in the first paragraph of this section, the first part of
this theorem is proved.
If w and v are in U(a), one sets

U v=uv+ Zhr/ir(u,v).

r=1
one has

pi(es,es) =0, pa(es,e3) =ei, pa(ez,e5) =0, piles,ez) =ei.

Let us show now that u; is a coboundary in the Hochschild cohomology. The
Hochschild cohomology HH* (U (a), U(a)) is computed by the complex (Hom (U(a)®,U(a)),b)
where : if f € Hom (U(a)®"**,U(a)), then

b(f)(ao,-..,an) =aof(ay,..., an)—i-Z(—l)if(ao, e Q10 G )+ (G0, - an—1)an(—1)™.
i=1
The Lie algebra cohomology of a with coefficients in U(a)*® (with the adjoint ac-

tion), H* (a,U(a)*?), is computed by the Chevalley-Eilenberg complex (Hom (A a,U(a)) , d)
where : if f € Hom (/\"+1 a, U(a))

n+1
d(f)(z1,. s 2n41) = Z(fl)iilzi'f(Zla---azi—lazi+17---azn+1)
=1
+ Z(_1)1+Jf([zlvzj]v . '1Zi*laZi+17zj7172j+17zn+1)~

1<j
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The map ([L] lemma 3.3.3) ¥* : (Hom (U(a)®,U(a)),b) — (Hom (A a,U(a)*?),d)
defined by antisymmetrization

U ()21, --y20) = ( Z €(0)20(1) @+ ® Za(n)>

U'ESn

is a morphism of complexes. One checks easily that

2

There exists a € Hom (U(a), U(a)) such that u; = b(a)). The map « is determined
by

1 1
\Il*(m) =d <—26162 ® e;’; — —e1e4 ® e;) .

1 * 1 *
Qg = —5e1e2 @ ez — ejeq ® ey
V(u,v) € U(a), p1(u,v) =ua(v) —aluw) + ua(v)

We set 3, = id — ha. Then one has ;' = Zhiai. If u and v are elements of
i=0
U(a), we put
w-p v =0, (Bu(u) -n Bu(v)).
Let’s compute e; -} e; —e; - €;. If i and j are different from 3 and 5, then e; -} e; =
€; "h ej

heie heie
erpes—ezper = fy! el'h(e3+ ;2)_(63+ ;2>.h61]
heje heje
e . 1€2 1€2
= fh €1 h B 9 h €1

Similarly, the following relations hold
!/ _ !/ i _ / ! _ ! !/ _ i
€1'p €5 = €5 €1, €2 €3 =E€3" €2, €2 €5 =E5"), €2, €3, €4 = €4 €3,

Let us now compute eg -}, e5 — es5 -}, e3. Easy computations lead to the following
equalities : one has
€162 p €5 — €5 €162 = €5
€3 'h €1€4 — €1€4 *p €3 = *651)’
€1z p €1€4 — €164 -, €169 = 2€7

One deduces easily from this that
’ ’ ]_ <
€3, €5 — €5}, €3 = éhze‘f.

Similarly, one has
—h2
/ ! _ 3
(¥} ‘h €5 — €5 ‘h €4 = Tel.
The topological algebras [U(a)[[h]], -»] and [U(a)[[R]], -},] are isomorphic, hence their

centers are isomorphic. Let us compute the center of [U(a)[[R]],},]. Let z be an ele-
ment of the center Z [U(a)[[R]],},]. One writes z under the form ZPT(el, €a,€3,€q4,€5)R"
n>0
(where the multiplications in P, (e1, e2, €3, €4, €5) are -3 ). One has
oP,
ey h 2 — 2 €9 = 2h"—=(eq, €9, €3, €4, €5).
2 hzreZ]N 8X4(1234")
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Hence the polynomials P, don’t depend on X4 and z can be written z = ZP,.(el, €2, €e3,¢e5)h".
n>0

1., P,
azmhea= 2o (V) (erveaneases).
relN 5

Hence the polynomials P, don’t depend on X5 and z can be written z = ZPr(el, ea,e3)h’.
n>0

OP,
/ / Id T

€4 2 — 2y €4 = g —2h" —(e1, €2, €3).
relN 0X2

Hence the polynomials P, don’t depend on X5 and z can be written z = ZPT(el, es)h”.
n>0

-1 0P,
€5 2 — 2 €5 = z:?h“'2 (X133X3) (e1,€3).

relN

Hence the polynomials P, don’t depend on X3 and z can be written z = ZPT(Q)M-
n>0
Hence

ZU(@)[[R]], 1] = {D_Pr(en)h” | Py € k[X1]}.

n>0

But, the center of the trivial deformation of U(a) is

zZ [U(a)[[h]],uo] = {ZP’!‘(€13637€5)I7‘T \ P, e k[X17X37X5]}'

n>0

The algebras [U(a)[[h]], %] and [U(a)[[R]], o] are not isomorphic as their center are
not isomorphic. O

Proposition 7.0.3. We consider the quantized enveloping algebra of the proposi-
tion 7.0.2 We write the relations defining the ideal I as follows

a
e;Qe; —e; Qe — E Ci,jea - P ;.
a

I . B
As all the P; ;’s are monomials in e1’s, the notation 1 makes sense. The complex
€1

0,

5 0% 4 08 0 oy
0= Up(a) @ A°a = Up(a) @ A*a = -+ = Up(a) @ a — Up(a) = k[[h]] — 0

where the morphisms of Uy (a), 0%, are described below is a resolution of the trivial
Uy, (a)-module k[[h]]. We set

n
O(l®@ep, No--Nep,) = Z(_l)i_lem ®ep A Nép, Ao Nep,
i=1
Y (D)8 1@ eq Mep, A N A Neg N Aey,
k<l a
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1
1@erAe;NejNeg) =04(1® e Ne; Aej Aeg)

Then
8(’} = €p,
3?(1@61-) =¢;
P, .
(93(1@61‘/\6]'):62(1@61'/\63‘)— 2y ® e;
“ P . P, P;
MA®eNejhep)=0s(1@e;AejAep) — —L@ey e+ —E@ep Aej — X @er N
: e €1 €1
(
(

P
I®esNesAesNes) =0si(1®exNesAegAes) + —2 @ep Aes Aey
€1
P. P, P,
*LA®€1/\62/\657ﬂ@el/\egAeg*ﬁ@el /\63/\64
€1 €1 €1
3?(1@61 /\62/\63/\64/\65) :85(1®61 /\62/\63/\64/\65).
The character defined by the right multiplication of Up(a) on Ext‘?]h(u) (k[[h]], Un(a))
is zero.

Proof of the proposition : The resolution of k[[h]] constructed in the proposition
is obtained by applying the proof of theorem 6.2.1. Moreover, one has

Os(1®@es Nes Nes Nej) =es@ef Aes Nes Ael Aek
Os(1@ef Nes ANej Net) = —ea@ef Ney Nel ANek Nek
Os(1@ef Nes ANes Net) =e3@ef Aes Nes Ael N ek
Os(1@ef ANes ANes ANet)=—es@e; Nej Nes Aej Aek
Os(1@es Nes ANes ANet) =e1 ®ef Aes ANel ANej Net.
These equalities show that the character defined by the right multiplication of Uy (a)
on Bxt};, o (k[[h]], Un(a)) is zero.

8. APPLICATIONS

8.1. Poincaré duality. Let M be an Aj’-module and N an Ap-module. The
right exact functor M ® — has a left derived functor. We set Tor’y (M,N) =
i ,

plag Y

Theorem 8.1.1. Let Aj, be a deformation algebra of Ag satisfying the hypothesis
of theorem 5.0.7. Assume moreover that the Ap-module K is of finite projective
dimension. Let M be an Ap-module. One has an isomorphism of K-modules

% Ay,
ExtAh, (K, M) = Tord:h_i (QAha M) .
Remark : Theorem 8.1.1 generalizes classical Poincaré duality ([Kn]).

Proof of the theorem
As the Ap-module K admits a finite length resolution by finitely generated pro-
jective Ap-modules, P®* — K, the canonical arrow

L
RHoma, (K,Ah)f‘@M — RHomy, (K, M)
h

is an isomorphism in D(ModA},). Indeed the canonical arrow

Homag, (P*, Ap) AX)M — Homy, (P*, M)
h
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is an isomorphism.
8.2. Duality property for induced representations of quantum groups.
From now on, we assume that Ay, is a topological Hopf algebra.

In this section, we keep the notation of theorem 5.0.8. Let V be a left Ap-
module, then, by transposition, V* = Homg(V, K) is naturally endowed with a
right Ap-module structure. Using the antipode, we can also see V* as a left module
structure. Thus, one has :

Yue ApVfeV™, u-f=f-Su).
We endow Q4, ® V* with the following right Aj-module structure :
Vu € ApVf e V¥ Yw € Qqu,,
(W@ f) u= lim Y O, ()o@ f Siuf,)
J

where A(u) = nEIJIrloo w, @,

Let Ay, be a topoloéical Hopf deformation of Ay and By, be a topological Hopf
deformation of By. We assume moreover that there exists a morphism of Hopf
algebras from By, to Ay, and that Aj, is a flat By”-module (by proposition 4.1.6 this
is verified if the induced Bp-module structure on Ag is flat). If V' is an Aj-module,
we can define the induced representation from V as follows :

Indgh (V) = Ay v
on which A acts by left multiplication.

Proposition 8.2.1. Let A, be a topological Hopf deformation of Ay and By,
be a topological deformation of By. We assume that there exists a morphism of
Hopf algebras from By, to Ay such that Ay, is a flat B;”-module. We also assume
that By, satisfies the hypothesis of theorem 5.0.7. Let V be an Bp-module which
is a free finite dimensional K-module. Then Dp, (Indﬁ’; (V)) is isomorphic to
(2B, ®V*) g An[—dp,] in D (ModB;").

By,

Corollary 8.2.2. Let A; be a topological Hopf deformation of Ag and By be a
topological deformation of By. We assume that there exists a morphism of Hopf
algebras from By, to Ay such that Ay is a flat sz—module. We also assume that
By, satisfies the condition of the theorem 5.0.7. Let 'V be a Bp-module which is a
free finite dimensional K-module. Then

a) Extih (Ah RV, Ah) is reduced to 0 if © is different from dp,, .
' Bh
b) The right Aj,-module Extiih (Ah ®V, Ah> is isomorphic to (Qp, @ V*) ® Ay,
) By, By,
Remarks :

Proposition 8.2.1 is already known in the case where g is a Lie algebra, § is a
Lie subalgebras of g, A and B are the corresponding enveloping algebras.
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In this case one has dp, = dimb and d¢, = dim€. More precisely : It was

proved by Brown and Levasseur ([B-L] p. 410) and [Ke] in the case where g is

a finite dimensional semi-simple Lie algebra and I ndgggg(V) is a Verma-module.

Proposition 8.2.3 is proved in full generality for Lie superalgebras in [C1].
Here are some examples of situations where we can apply the proposition 8.2.1:

Ezxzample 1 :

Let k be a field of characteristic 0. We set K = k[[h]]. Etingof and Kazhdan have
constructed a functor @ from the category LB(k) of Lie bialgebras over k to the
category HA(K) of topological Hopf algebras over K. If (g,0) is a Lie bialgebra,
its image by @ will be denoted Up(g).

Let g be a Lie bialgebra Let h be a Lie sub-bialgebra of g. The functoriality
of the quantization implies the existence of an embedding of Hopf algebras from
Unr(h) to Ur(g) which satisfies all our hypothesis.

Ezample 2 : If g is a Lie bialgebra, we will denote by F(g) the formal group
attached to it and Fj(g) its Etingof Kazhdan quantization. Let g and b be two
Lie algebras and assume that there exists a surjective morphism of Lie bialgebras
from g to h. Then F(g) is a flat F(h)-module and A, = Fy(g) and B, = Fr(h)
satisfies the hypothesis of the theorem.

Ezample 3 :

If G is an affine algebraic Poisson group, we will denote by F(G) the algebra
of regular functions on G and Fj(G) its Etingof Kazhdan quantization. Let G
and H be affine algebraic Poisson groups. Assume that there is a Poisson group
map G — H such that F(Q) is a flat F(H )°?-module. By functoriality of Etingof
Kazhdan quantization, A, = Fp(G) and By, = Fp,(H) satisfies the hypothesis of
the theorem.

Proof of the proposition 8.2.1 :
We proceed as in [C1]. Let L* — V be a resolution of V by finite free Bp-

modules. As Ay, is a flat By"-module, A, ® L* — A, ®V is a resolution of the
Bh Bh

Ap-module A, ® V' by finite free Ap-modules.
Bp,

We have the following sequence of isomorphisms in D (ModAy)
RHomAh (Ah®‘/,Ah) ~ HomAh (Ah®L.,Ah>
Bh Bh
HomBh (L., Bh)ég) Ap
h
(Qp, @V*) g@Ah[—ch].D
h

12

12

We now extend to Hopf algebras another duality property for induced represen-
tations of Lie algebras ([C1]).

Proposition 8.2.3. Let A; be a Hopf deformation of Ag, By, be a Hopf defor-
mation of By and Cy be a Hopf deformation of Cy. We assume that there exists a
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morphism of Hopf algebras from By, to Ay and a morphism of Hopf algebras from
Ch, to Ay such that Ay, is a flat By -module and a flat C}P-module. We also as-
sume that By, and C}, satisfies the hypothesis of theorem 5.0.7. Let V (respectively
W) be an Bp-module (respectively Cp-module) which is a free finite dimensional
K-module. Then, for all integer n, one has an isomorphism

Ea:tz—:ch (Ah RV, Ahéj@ W)
By, h
o <(ﬂch QW) ® Ap, (2, ® V") ®Ah)
Ch Ch

h

~ Fxt

Remarks :

Proposition 8.2.3 is already known in the case where g is a Lie algebra, h and
t are Lie subalgebras of g, A, B and C are the corresponding enveloping algebras.
In this case one has dp, = dimb and d¢, = dim€. More precisely :

Generalizing a result of G. Zuckerman ([B-C]), A. Gyoja ([G]) proved a part
of this theorem (namely the case where h = g and n = dimb = dim#t) under the
assumptions that g is split semi-simple and b is a parabolic subalgebra of g. D.H
Collingwood and B. Shelton ([C-S]) also proved a duality of this type (still under
the semi-simple hypothesis) but in a slighly different context.

M. Duflo [Du2] proved proposition 8.2.3 for a g general Lie algebra, h = ¢,
V = W™ being one dimensional representations.

Proposition 8.2.3 is proved in full generality in the context of Lie superalgebras
in [C1].

Proof of the proposition 8.2.3:
We will proceed as in [C2]. As Dyor 0 Dy, (Ahg@ V) = Ah§> V', we have the
h h
following isomorphism

HomD(Ah) (Ahgw Ahg%)LW>

~ HomD(Azp) l:DAh (Ah? W) ,Da, <Ahg® V):|
h h
the corollary follows now from proposition 8.2.1.

8.3. Hochschild cohomology. In this subsection, Ay is a topological Hopf alge-
bra. We set A = Ay, [Q[Z)]] AP and A§ = A, E@T]]AZP. If M is an A§-module, we
k([ Ek[[h

HHY (M) = Egmf42 (Ap, M)

set

HH (M) = Tor"" (A, M)

Proposition 8.3.1. Assume that A, satisfies the condition of the theorem 5.0.7.

Assume moreover that Ay ® AP is noetherian. Consider A, @ Ay, with the fol-
E[[h]]

lowing ;l\fl-module structure :
V(a,B,2,y) € Ap, a-(z®y)-B=azr®yps.
a) Hquh(Ah@Ah) is zero if i # da, .
K[[h]]
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b) The A?I-module HHith’ (A, ® Ap) is isomorphic to Qa, ® Aj, with the fol-
k[[R]]

lowing Zl\i—module structure :
Y(a, By2) € Apy, o (w@x) - =wha, (B) @ S(BNxS™ a)

where o = Za; ® of (to be taken in the topological sense)

7

This result was obtained in [D-E] for a deformation of the algebra of regular
functions on a smooth algebraic affine variey.

Proof of the theorem :
The proof is analogous to that of [C2] (theorem 3.3.2).

Using the antipode S}, of Ay, we have the following isomorphism in D (Mod;ﬁl),

RHom 3= (Ah,Ah@)Ah) ~ RHom

' An® Ay ((Ah)#’ (Ah®Ah)#) .

where the structures on (A,)# and (A,®A;)# are given by :

V(e B,u,v) € Ay,

(@ ®B) - u=auSy(B)

(a®p) (u®v)=oau®vSy(P)
(u®v) - a®f =ua® Sy(B)v.

Using the version of lemma 5.0.9 for right modules (see [C2] lemma 1;1), one sees
that (Ay,)? is isomophic to (4,®A;) ® K as an A,®@A,-module. we get
Ap

1

RHom;ﬁ1 (Ah,,Ah®Ah,) RHomAh®Ah <Ah®Ah1§;K, (Ah@)Ah)#)

RHoma, (K, (A,&A)%)
RHomAh ([f, Ah) XA, (Ah®Ah)#
@4, (An®AR)*

1R

The isomorphism id ® S,:l transforms (A,®A,)# into the natural (4,0A45) @
(Ap®Ap)°P-module (AR A)-module (A,&Ay )"0

V(a,ﬁ,u,v) € Ah
(0®f)- (1@ v) = aue o
(u®v) a®f=ua®vi.

Then, using the lemma 5.0.9, one sees that 2,®4, (Ah®Ah)”“t is isomorphic to
Q) ® Ay, endowed with the following (Ah<§>Ah)Op—module structure :

V(e B) € Ap, (u@v)-a®B =Y uba,(a}) @ S(a))vp.
This finishes the proof of the proposition. O

We are in the case where Egct%@(Ah7 A¢) is 0 unless when i = d4,, so we have

a duality between Hochschild homhology and Hochschild cohomology ([VdB]).
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Corollary 8.3.2. Let Ay, be a k-algebra satisfying the hypothesis of theorem 5.0.7.
Assume moreover that A§ = Ag ® A" is noetherian and that the A§-module Ay, is

finite projective dimension. Let M be an A%—module. One has

HH'(M)~ HHg, (U @ M).
h

Proof of the corollary : The proof of the corollary is similar to that of [vdB].

First case : M 1is a finite type A%—module. Let P* — Aj, — 0 be a finite length
finite type projective resolution of the Zli—module Ap and let Q®* — M — 0 be
a finite type projective resolution of the Zli—module M. As Q" and U Si)h Q' are

complete, one has the following sequence of isomorphisms :

12

HH (M) H (Hom;‘\i (P, M)) ~ H (Homgi (P*,AY) ® M)

1

e e e
A h Ah A}L

H? (U[—d]é ) ~ Hi=da, (U@@) ~ Hi—da, ((A;ng U)@Q‘))

12

Hi—da, (Ah ® (U®Q')> ~ HHg, —i(U®M).
A? Ah Ah

h

General case : We no longer assume that M is a finite type Z;i—module. We
have M = lim M’ where M’ runs over all finitely generated submodules of M.

Extl (Ay, M) = Extl (Ay, lim M') ~ lim Ext'_ (A, M’) ~ lim Tory? _ (A, U@ M)
h h — — h — h A;
o~ Tor:?jh _i(Ap, liin U@ M') ~ Tor(?jh _i(An, U M)

Ah Ah
where we used the fact that the functor lim is exact because the set of finitely

generated submodules of M is a directed set ([Ro] proposition 5.33)
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