
ON THE COHOMOLOGY OF p-ADIC ANALYTIC SPACES, I: THE BASIC
COMPARISON THEOREM.

PIERRE COLMEZ AND WIESŁAWA NIZIOŁ

Abstract. The purpose of this paper is to prove a basic p-adic comparison theorem for smooth rigid
analytic and dagger varieties over the algebraic closure C of a p-adic field: p-adic pro-étale cohomology,
in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over B+

dR).
The key computation is the passage from absolute crystalline cohomology to Hyodo-Kato cohomology
and the construction of the related Hyodo-Kato isomorphism. We also “geometrize” our comparison
theorem by turning p-adic pro-étale and syntomic cohomologies into sheaves on the category PerfC of
perfectoid spaces over C and the period morphisms into maps between such sheaves (this geometrization
will be crucial in our study of the Cst-conjecture in the sequel to this paper and in the formulation of
duality for geometric p-adic pro-étale cohomology).
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1. Introduction

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field k of characteristic p. Let K be an algebraic closure of K, let C be its p-adic completion, and
let OK denote the integral closure of OK in K. Let W (k) be the ring of Witt vectors of k with fraction
field F (i.e, W (k) = OF ) and let ϕ be the absolute Frobenius on W (k). Set GK = Gal(K/K).

In a joint work with Gabriel Dospinescu [16], [17] we have computed the p-adic (pro-)étale cohomology
of certain p-adic symmetric spaces. A key ingredient of these computations was a one-way (de Rham-
to-étale) comparison theorem for rigid analytic Stein varieties over K with a semistable formal model
over OK . This theorem had two parts: first, it related (pro-)étale cohomology to rigid analytic syntomic
cohomology and, then, it expressed rigid analytic syntomic cohomology as a filtered Frobenius eigenspace
associated to de Rham cohomology (tensored with B+

dR). From these two parts it is the second one that
had much harder proof.

The current paper is the second one in a series extending such comparison theorems to smooth rigid
analytic varieties over K or C (without any assumption on the existence of a nice integral model). While
in the first paper [20] we have focused on the arithmetic case, here we focus on the geometric case.
Moreover, in comparison with [16] and [20], we significantly simplify the passage from rigid analytic
syntomic cohomology to a filtered Frobenius eigenspace associated to B+

dR-cohomology1. This requires
a foundational work on Hyodo-Kato cohomology and Hyodo-Kato morphism, which occupies a good
portion of this paper.

In [21], the third paper in the series, we will use the results of this paper to prove the Cst-conjecture
for classes of smooth (dagger) varieties over C including quasi-compact varieties and some classes of
holomorphically convex varieties (hopefully, this conjecture should hold for general smooth partially
proper varieties). This includes a description of the B+

dR-cohomology (with its extra-structures, namely
Frobenius and monodromy) in terms of the p-adic pro-étale cohomology and, conversely, a description
of the p-adic pro-étale cohomology in terms of differential forms (the B+

dR-cohomology and the de Rham
complex). To this end, the comparison isomorphisms proved here are "geometrized", i.e., we view them as
C-points of isomorphisms between Vector Spaces. This geometrization is also essential in the formulation
of duality for geometric p-adic pro-étale cohomology [18].

1.1. Main results.

1.1.1. The basic comparison theorem for rigid analytic varieties. We start the survey of our main results
with the following comparison theorem:

1If the variety is defined over K, its B+
dR-cohomology is just de Rham cohomology tensored with B+

dR.
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Theorem 1.1. (Basic comparison theorem) Let X be a smooth rigid analytic variety over C. Let r ≥ 0.
There is a natural strict quasi-isomorphism2 (period isomorphism):

(1.2) τ≤rRΓproét(X,Qp(r)) ' τ≤r
[
[RΓHK(X)⊗̂FnrB+

st]
N=0,ϕ=pr ιHK−−→RΓdR(X/B+

dR)/F r
]
,

where the brackets [...] denote the fiber.

Most of the paper is devoted to the definition of the objects appearing in (1.2) as well as the period
morphism itself. This can be summed up in the following theorem-construction from which Theorem 1.1
follows immediately. As before in [17], [20], there are two steps: passage from pro-étale cohomology to
syntomic cohomology (easier) and a passage from syntomic cohomology to Frobenius eigenspaces of de
Rham cohomology over B+

dR (more difficult).

Theorem 1.3. To any smooth rigid analytic variety X over C there are naturally associated:
(1) A (rigid analytic) syntomic cohomology RΓsyn(X,Qp(r)), r ∈ N, with a natural period morphism

(1.4) αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r)),

which is a strict quasi-isomorphism after truncation τ≤r.
(2) A Hyodo-Kato cohomology RΓHK(X). This is a dg F nr-algebra equipped with a Frobenius ϕ and

a monodromy operator N . We have natural Hyodo-Kato strict quasi-isomorphisms

ιHK : RΓHK(X)⊗̂R

FnrC
∼→ RΓdR(X), ιHK : RΓHK(X)⊗̂R

FnrB+
dR
∼→ RΓdR(X/B+

dR).

(3) A distinguished triangle

(1.5) RΓsyn(X,Qp(r))−−→ [RΓHK(X)⊗̂FnrB+
st]
N=0,ϕ=pr ιHK−−→RΓdR(X/B+

dR)/F r

that can be lifted to the derived category of Vector Spaces.

1.1.2. Dagger varieties. Set

HKi
r(X) := Hi[RΓHK(X)⊗̂FnrB+

st]
N=0,ϕ=pr , DRi

r(X) := Hi(RΓdR(X/B+
dR)/F r).

The distinguished triangle (1.5) yields a long exact sequence of cohomology groups

(1.6) · · · → DRi−1
r (X)→ Hi

syn(X,Qp(r))−−→HKi
r(X)

ιHK−−→DRi
r(X)→ · · · ,

which, together with the period isomorphism

Hi
syn(X,Qp(r))

∼→ Hi
proét(X,Qp(r)), i ≤ r,

obtained from (1.4), is a starting point for our work on generalizations of the Cst-conjecture to rigid
analytic varieties (see the sequel to this paper [21]). This sequence is, however, difficult to use since,
locally, the rigid analytic de Rham cohomology and Hyodo-Kato cohomology are, in general, very ugly:
infinite dimensional and not Hausdorff. But we are mainly interested in partially proper rigid analytic
varieties and these varieties have a canonical overconvergent (or dagger) structure3. Moreover, a dagger
affinoid has de Rham cohomology that is a finite rank vector space with its natural Hausdorff topology.

Hence we are led to study dagger varieties. We prove an analog of Theorem 1.3 for smooth dagger
varieties. The dagger version of (1.6) is the long exact sequence:

· · · → DRi−1
r (X)→ Hi

syn(X,Qp(r))−−→ (Hi
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr ιHK−−→DRi

r(X)→ · · ·

But now, if X is a dagger affinoid, both cohomologies Hi
HK(X) and Hi

dR(X/B+
dR) are (free) of finite

rank. If X is a dagger variety the overconvergent constructions are compatible with the rigid analytic

2All cohomology complexes live in the bounded below derived ∞-category of locally convex topological vector spaces
over Qp. Quasi-isomorphisms in this category we call strict quasi-isomorphisms. See Section 1.2.1 for details.

3Recall that a dagger variety is a rigid analytic variety equipped with an overconvergent structure sheaf. See [27] for
the basic definitions and properties.
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constructions for X̂, the completion of X. If X is partially proper the two sets of constructions are
strictly quasi-isomorphic.

1.1.3. Geometrization. We show in [21] that the above long exact sequence (1.6), in a stable range, splits
into short exact sequences if X is proper or, more generally, dagger quasi-compact or "small", or if X
is Stein. In order to do so, we need to put some extra-structure on the terms of the exact sequence.
In [19], we treated the proper case (with a semi-stable model) by using the fact that the terms in the
exact sequence outside of the Hi

syn(X,Qp(r))’s were naturally C-points of Banach-Colmez spaces (called
BC’s in what follows). That this is also the case of the Hi

syn(X,Qp(r))’s, for i ≤ r, follows from the
comparison with pro-étale cohomology and Scholze’s theorem [44] which states that these cohomology
groups are in fact finite dimensional over Qp and independent of the field C: hence they are the C points
of quite trivial BC’s. Then the basic theory of BC’s [14, 15] could be used to show that the long exact
sequence splits in a stable range. (Actually, putting a BC structure on syntomic cohomology can be done
directly [42], but to prove the splitting of (1.6), one still needs Scholze’s finiteness theorem, if one is to
stick to the methods of [19]).

In our present situation, the Hi
proét(X,Qp(r))’s are very much not finite dimensional over Qp and

depend on the field C. Hence they are not obviously C-points of anything sensible. But one can turn
them into C points of sheaves on PerfC , and this is a category of geometric objects (the category of
Vector Spaces, VS’s for short) that contains naturally the category of BC’s as was advocated in Le Bras’
thesis [35].

One turns the p-adic pro-étale cohomology into a sheaf on PerfC by taking the sheaf associated to the
presheaf S 7→ RΓproét(XS ,Qp(r)), for perfectoid algebras S over C. Likewise, one geometrizes syntomic
cohomology by geometrizing the period rings; for example, Bcr becomes the functor S 7→ Bcris(S). We
extend the proof of Theorem 1.3 to this geometrized context to obtain:

Theorem 1.7. The quasi-isomorphisms from Theorem 1.1 and (1) of Theorem 1.3 are the evaluations
on Spa(C,OC) of quasi-isomorphisms of Vector Spaces.

This promotes the exact sequence (1.6) to a sequence of VS’s which can be analyzed using the geometric
point of view on BC’s developed in [35] (this analysis is quite involved and is postponed to [21]).

1.2. Proof of Theorems 1.1 and 1.3. We will now sketch how Theorem 1.1 and Theorem 1.3 are
proved.

(i) Rigid-analytic varieties. Recall that [20, Sec. 2], using the rigid analytic étale local alterations of
Hartl and Temkin [33], [46], one can equip the étale topology of X with a (Beilinson) base4 consisting
of semistable formal schemes (always assumed to be of finite type) over OC . This allows us to define
sheaves by specifying them on such integral models and then sheafifying for the η-étale topology5. For
example, in (1) the syntomic cohomology RΓsyn(X,Qp(r)) of a rigid analytic variety X is defined by
η-étale descent from the crystalline syntomic cohomology of Fontaine-Messing. Recall that the latter is
defined as the fiber (X is a semistable formal scheme over OC equipped with its canonical log-structure)

RΓsyn(X ,Qp(r)) := [F rRΓcr(X )
ϕ−pr−−→RΓcr(X )],

where the (logarithmic) crystalline cohomology is absolute (i.e., over Zp). By definition, it fits into the
distinguished triangle

(1.8) RΓsyn(X,Qp(r))→ [RΓcr(X)]ϕ=pr → RΓcr(X)/F r,

4This should be distinguished from a Verdier base; in a Beilinson base the condition on fullness of the base morphisms
is dropped. See [20, 2.1].

5Here η-étale means topology induced from the étale topology of the rigid analytic generic fiber.
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which looks different than the triangle (1.5) that we want in (3). However, we easily find6 that RΓcr(X)/F r '
RΓdR(X/B+

dR)/F r. Here RΓdR(X/B+
dR) is the B+

dR-cohomology as defined by Bhatt-Morrow-Scholze in
[10], which we have redefined in the paper as η-étale descent of Hodge-completed rational absolute crys-
talline cohomology of semistable schemes. But the construction of an isomorphism between the middle
terms in (1.8) and (1.5) requires a refined version of the Hyodo-Kato morphism.

The period map in (1), is defined by η-étale descent of Fontaine-Messing period map

αr : RΓsyn(X ,Qp(r))→ RΓét(XC ,Qp(r)),

for a semistable formal scheme X over OC . The fact that it is a strict quasi-isomorphism in a stable
range follows from the computations of p-adic nearby cycles via syntomic complexes done by Tsuji in [47].
However, to lift it to the derived category of Vector Spaces we use its reinterpretation via (ϕ,Γ)-modules
by Colmez-Nizioł and Gilles in [19], [26]. This new interpretation of the period morphism is then lifted
from C to perfectoid spaces over C to prove Theorem 1.7.

The construction of the Hyodo-Kato morphism in (2) is quite involved; in fact, a detailed study of
Hyodo-Kato cohomology and its relation to B+

dR- and de Rham cohomologies occupies a large portion of
this paper. The original Hyodo-Kato morphism [34] works for semistable (formal) schemes. It can not be
transferred to rigid analytic varieties because, a priori, it is dependent on the choice of the uniformizer
of the base field (which varies for local semistable models). Moreover, a key map in the construction7 is
defined as an element of the classsical derived category. A more careful data keeping allowed Beilinson
[3] to make the Hyodo-Kato morphism independent of choices in the case of proper schemes. We adapt
here his technique to formal schemes and along the way lift the morphism to derived ∞-category. As a
byproduct we get the identification

[RΓcr(X)]ϕ=pr ' [RΓHK(X)⊗̂FnrB+
st]
N=0,ϕ=pr

and an identification of (1.8) with (1.5), as wanted.
(ii) Dagger varieties. The pro-étale cohomology in (1) is defined in the most naive way: if X is a

smooth dagger affinoid with a presentation {Xh}h∈N by a pro-affinoid rigid analytic variety, we set

RΓproét(X,Qp(r)) := colimh RΓproét(Xh,Qp(r));

then, we globalize. From this description it is clear that we have a natural map

RΓproét(X,Qp(r))→ RΓproét(X̂,Qp(r)),

where X̂ is the completion of X (a rigid analytic variety). It is easy to see that in the case X is partially
proper, this morphism is a strict quasi-isomorphism (see [20, Prop. 3.17]).

The other overconvergent cohomologies (Hyodo-Kato, de Rham, B+
dR-, syntomic) and morphisms

between them can be defined in an analogous way without difficulties. In some cases though, they do
however already have independent definitions: Hyodo-Kato and de Rham cohomologies were defined by
Grosse-Klönne in [29] and we define syntomic cohomology as the fiber giving the following distinguished
triangle

(1.9) RΓsyn(X,Qp(r))−−→ [RΓHK(X)⊗̂FnrB+
st]
N=0,ϕ=pr ιHK−−→RΓdR(X/B+

dR)/F r.

In these cases, we prove that the two sets of definitions yield strictly quasi-isomorphic objects. As an
illustration of the power of the new definitions of overconvergent cohomologies, let us look at the simple
proof of the following fact, whose arithmetic analog was the main technical result of [20]:

6The easiest way to see it is by interpreting, locally, both sides as derived de Rham cohomology.
7For experts: the section of the projection T 7→ 0.
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Proposition 1.10. Let r ≥ 0. Let X be a smooth dagger variety over K. There is a natural morphism

RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r)).

It is a strict quasi-isomorphism if X is partially proper.

This proposition is proved by representing, using distinguished triangles (1.5) and (1.9), both sides of
the morphism by means of the rigid analytic and the overconvergent Hyodo-Kato cohomology, respec-
tively, then passing through the rigid analytic and the overconvergent Hyodo-Kato quasi-isomorphisms
(that are compatible by construction) to the de Rham cohomology, where the result is known.

Remark 1.11. The approach we have taken here to deal with dagger varieties is very different from the
one in [17] or [20] (these two approaches also differing between themselves). That is, we do not use
Grosse-Klönne’s overconvergent Hyodo-Kato cohomology nor the related Hyodo-Kato morphism (which
is difficult to work with and is also very different from the rigid analytic version making checking the
overconvergent-rigid analytic compatibility a bit of a nightmare). Instead, we induce all the overcon-
vergent cohomologies from their rigid analytic analogs; hence, by definition, the two constructions are
compatible. This was only possible because we have constructed a functorial, ∞-category version of the
Hyodo-Kato morphism.

Structure of the paper. Sections 2 and 4 are devoted to a definition of a functorial, ∞-categorical Hyodo-
Kato quasi-isomorphism. In Section 3 we present our definition of B+

dR-cohomology. Section 5 puts the
above things together and introduces overconvergent geometric syntomic cohomology. In Section 6 we
define comparison morphisms and in Section 7 we put a geometric structure on them.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, and the Isaac Newton Institute, Cambridge,
for hospitality during Spring 2019 and Spring 2020 semesters, respectively, when parts of this paper were
written. We would like to thank Piotr Achinger, Guido Bosco, Gabriel Dospinescu, Ofer Gabber, Sally
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to the content of this paper and Shane Kelly for patiently explaining to us ∞-categorical constructions
described in Section 3.1.2.

Special thanks go to the referee for a very careful reading of the manuscript and many suggestions
that have improved the presentation of the material.

Notation and conventions. Let OK be a complete discrete valuation ring with fraction field K of char-
acteristic 0 and with perfect residue field k of characteristic p. Let K be an algebraic closure of K and
let OK denote the integral closure of OK in K. Let C = K̂ be the p-adic completion of K. Let W (k)

be the ring of Witt vectors of k with fraction field F (i.e., W (k) = OF ); let e = eK be the ramification
index of K over F . Set GK = Gal(K/K) and let ϕ be the absolute Frobenius on W (k). We will denote
by Acr,Bcr,Bst,BdR the crystalline, semistable, and de Rham period rings of Fontaine [24].

We will denote by OK , O×K , and O0
K , depending on the context, the scheme Spec(OK) or the formal

scheme Spf(OK) with the trivial, the canonical (i.e., associated to the closed point), and the induced by
N→ OK , 1 7→ 0, log-structure, respectively. Unless otherwise stated all formal schemes are p-adic, locally
of finite type, and equidimensional. For a (p-adic formal) scheme X over OK , let X0 denote the special
fiber of X; let Xn denote its reduction modulo pn. For an OK-module M , we set Mn := M ⊗L

OK
OK/pn.

All rigid analytic spaces considered will be over K or C. We assume that they are separated, taut,
and countable at infinity. If L = K,C, we let SmL (resp. Sm†L) be the category of smooth rigid analytic
(resp. dagger) varieties over L, and we denote by PerfC the category of perfectoid spaces over C.

Unless otherwise stated, we work in the derived (stable) ∞-category D(A) of left-bounded complexes
of a quasi-abelian category A (the latter will be clear from the context). Many of our constructions
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will involve (pre)sheaves of objects from D(A). We will use a shorthand for certain homotopy limits: if
f : C → C ′ is a map in the derived ∞-category of a quasi-abelian category, we set

[ C
f // C ′ ] := lim(C → C ′ ← 0).

We also set 
C1

��

f // C2

��
C3

g // C4

 := [[C1
f→ C2]→ [C3

g→ C4]],

where the diagram in the brackets is a commutative diagram in the same ∞-category. For an operator
F acting on C, we will use the brackets [C]F to denote the derived eigenspaces and, if C is a concrete
complex and F an operator acting on C, the brackets (C)F or simply CF , to denote the non-derived
ones.

Our cohomology groups will be equipped with a canonical topology. To talk about it in a systematic
way, we will work rationally in the category of locally convexK-vector spaces and integrally in the category
of pro-discrete OK-modules. For details the reader may consult [17, Sec. 2.1, 2.2]. To summarize quickly:

(1) CK is the category of convex K-vector spaces; it is a quasi-abelian category. We will denote the
left-bounded derived ∞-category of CK by D(CK). A morphism of complexes that is a quasi-
isomorphism in D(CK), i.e., its cone is strictly exact, will be called a strict quasi-isomorphism.
The associated cohomology objects are denoted by8 H̃n(E) ∈ LH(CK); they are called classical
if the natural map H̃n(E)→ Hn(E) is an isomorphism9.

(2) We will often work in a slightly more general setting. Let AK := LH(CK). It is an abelian
category and we have D(CK)

∼→ D(AK). Let B ∈ CK be a topological algebra over K. We will
denote by AB the abelian subcategory of AK of B-modules. We set D(CB) := D(AB).

(3) For the default tensor product (over K) in CK we have chosen the projective tensor product
(which commutes with projective limits). It is left exact.

(4) Objects in the category PDK of pro-discrete OK-modules are topological OK-modules that are
countable inverse limits, as topological OK-modules, of discrete OK-modules M i, i ∈ N. It is
a quasi-abelian category. Inside PDK we distinguish the category PCK of pseudocompact OK-
modules, i.e., pro-discrete modules M ' limiMi such that each Mi is of finite length (we note
that if K is a finite extension of Qp this is equivalent to M being profinite). It is an abelian
category.

(5) There is a tensor product functor from the category of pro-discrete OK-modules to convex K-
vector spaces:

(−)⊗K : PDK → CK , M 7→M ⊗OK K.

Since CK admits filtered inductive limits, the functor (−)⊗K extends to a functor (−)⊗K :

Ind(PDK) → CK . The functor (−)⊗K is right exact but not, in general, left exact. We will
consider its (compatible) left derived functors

(−)⊗LK : D−(PDK)→ Pro(D−(CK)), (−)⊗LK : D−(Ind(PDK))→ Pro(D−(CK)).

If E is a complex of torsion free and p-complete (i.e., E ' limnE/p
n) modules from PDK then

the natural map
E⊗LK → E⊗K

is a strict quasi-isomorphism [17, Prop. 2.6].

8LH stands for “left heart”.
9In our situations this is usually equivalent to Hn(E) being separated.
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Finally, we will use freely the notation and results from [20].

2. Hyodo-Kato rigidity revisited

The original Hyodo-Kato morphism [34] works for semistable (formal) schemes. It can not be trans-
ferred to rigid analytic varieties because, a priori, it is dependent on the choice of the uniformizer of the
base field (which varies for local semistable models). A more careful data keeping allowed Beilinson [3] to
make it independent of choices in the case of proper schemes. We adapt here his technique to semistable
formal schemes and add some extra functoriality by lifting the morphism to the derived ∞-category.

This gives us local Hyodo-Kato morphisms for rigid analytic varieties; the extra functoriality will be
crucial for the globalization of these maps for rigid analytic and dagger varieties discussed in Chapter 4
(it makes it possible to glue local maps from an hypercover by semistable formal schemes).

2.1. Preliminaries. We gather in this section basic properties of period rings, isogenies, and ϕ-modules
that we will need in the paper.

2.1.1. Period rings. We will review first the definitions of the rings of periods that we will need. We
follow here Beilinson [3, 1.14, 1.19], where the reader can find more details. Beilinson’s definitions are a
slight modification of the classical ones; they stress the dependence on choices in a better way.

(i) Arithmetic setting. Let S = SK := Spf O×K , S0 := Spf O0
F . We denote the corresponding log-

structures by L = LK and L 0
K , respectively. Note that the second log-structure can be conveniently

described by the pre-log structure OK \ {0} → OF , a 7→ [a], where a := a mod mK and [−] denotes the
Teichmüller lift.

Consider the algebra OF [T ] with the log-structure associated to T . We denote by rPD
F the associated p-

adic divided powers polynomial algebra. In a more natural inK way, we can write rPD
F as rPD,0

K – the p-adic
completion of OF < ta >, the divided powers polynomial algebra generated by ta, a ∈ (mK/m

2
K)\{0}, with

ta′ = [a′/a]ta. We denote by rPD
K the p-adic completion of the subalgebra of the PD algebra OF < ta >

generated by ta and tnea /n!, n ≥ 1. The log-structure is induced by the ta’s, Frobenius action by ta 7→ tpa,
and monodromy by the derivation sending ta 7→ ta. Set E = EK := Spf rPD

K , E0 = E0
K := Spf rPD,0

K . We
have canonical exact embeddings i0 : S0 ↪→ E, i∗0(ta) = [a] ∈ L 0

K , i00 : S0 ↪→ E0, i0,∗0 (ta) = [a] ∈ L 0
K .

We have an exact closed embedding S0
1 ↪→ S1. Retractions πl are given by maps π∗l : L 0

1 → L1, a 7→ la,

with la′ = [a′/a]la. Every retraction πl : S1 → S0
1 yields a k0-structure on S1, hence an exact closed

embedding il : S1 ↪→ E1, i∗l (ta) = la.
(ii) Geometric setting. Let S := Spf O×C . We denote its log-structure by L . We normalize the valuation

on C by v(p) = 1. Let L
0
be the log-structure on S

0
:= Spf W (k) generated by the pre-log structure

OC \ {0} → W (k), a 7→ [a], a := a mod mK . Then L
0
has a natural Frobenius action compatible with

the Frobenius: ϕ([a]) = [ap]. There is an exact embedding S
0

1 ↪→ S1.
We will denote by A×cr the period ring Acr equipped with the unique log-structure Lcr extending

the one on O×C,1. Let Jcr be the PD-ideal, Acr/Jcr ' OC,1. Set Ecr := Spf A×cr. The exact embedding
Spec O×C,1 ↪→ Ecr,n given by the Fontaine map θ : Acr → OC is a PD-thickening in the crystalline site of
OF,1.

Recall the definition of the period ring B+
st. Let log : A∗cr/k

∗ → B+
cr be the logarithm: the unique

homomorphism which extends the logarithm on (1 + Jcr)
∗, where Jcr = (p,Ker θ). Then B+

st is defined
as the universal B+

cr-algebra equipped with a homomorphism of monoids log : Lcr/k
∗ → B+

st extending
the above log on A∗cr. Since v : Lcr/A

∗
cr
∼→ Q≥0, it is clear that, for any λ ∈ Lcr/k

∗
with v(λ) 6= 0,

the element log(λ) freely generates B+
st over B+

cr, i.e., B+
cr[log(λ)]

∼→ B+
st. The Frobenius action extends

to B+
st via universality. The monodromy N is the B+

cr-derivation on B+
st such that N(log(λ)) = −v(λ).

We have Nϕ = pϕN . Moreover, any λ as above yields a retraction s∗λ : B+
st → B+

cr, s
∗
λ(log(λ)) = 0. If

λ ∈ Lϕ := {λ ∈ Lcr : ϕ(λ) = λp} then s∗λ is compatible with Frobenius action.
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Now, recall the definition of the period ring B̂+
l,st. Let r ∈ Q>0. Denote by A(r)

W (k)
, the log affine space,

i.e., the formal scheme Spf W (k){ta}, a ∈ τr, with ta′ = [a′/a]ta. Here τr := {a ∈ L
0

1 : v(a) = r}. The
log-structure is generated by the ta’s. The map ir : S

0

1 → A(r)

W (k)
, i∗r(ta) = a, can be extended to a map

il : S1 → A(r)

W (k)
by choosing la := i∗l (ta) ∈ L 1 that lifts a.

We have the commutative diagram

A(r)

W (k)
×W (k) Ecr,n

��
S1
� � //
+ �

(il,θ)
99

Ecr,n

Let il,st : S1 ↪→ El,st,n be the PD-envelope of (il, θ) over Ecr,n. We write El,st,n = Spec Âl,st,n and set

Âl,st := limn Âl,st,n, B̂+
l,st := Âl,st[

1
p ], El,st := Spf Âl,st.

We note that B̂+
l,st is a Banach space over F (which makes it easier to handle topologically than B+

st).
Frobenius action is given by ta 7→ tpa and the monodromy operator by Nl := ta∂ta . We have the exact
sequence

(2.1) 0→ Acr,n → Âl,st,n
Nl→ Âl,st,n → 0.

Every lifting of l to λ ∈ Lϕ yields a map s∗λ : Âl,st,n → Acr,n, s
∗
λ(ta) := λa, which is compatible with

Frobenius action, and an identification Âl,st,n
∼→ Acr,n < taλ

−1
a − 1 >.

Let ÂNl-nilp
l,st be the Acr-subalgebra of Âl,st formed by the elements killed by a power of ta∂ta . It is the

divided powers polynomial algebra Acr < log(taλ
−1
a ) >. There is a B+

cr-linear isomorphism

κl : B+
st
∼→ ÂNl-nilp

l,st,Qp

which sends a generator log(λ) of B+
st, where λ lifts l, to − log(taλ

−1
a ) ∈ ÂNl-nilp

l,st . It is compatible with
the action of GK , Frobenius, and it identifies N on B+

st with the action of rta∂ta .
Finally we have maps to B+

dR. We will normalize them for the rest of the paper at p. That is, we fix
a lift [p̃] ∈ Lϕ of p and define the maps:

ι = ιp : B̂+
p,st → B+

dR, ι = ιp := ιpκp : B+
st → B+

dR.

The first map is obtained by sending tp to p; the second map, by sending log([p̃]) to− log(p/[p̃]). Otherwise
saying, we can set

B̂+
st := B̂+

p,st := Acr < tp[p̃]
−1 − 1 >̂ [ 1

p ], B+
st := B+

p,st := B+
cr[log([p̃])],

κ : B+
st → B̂+

st, log([p̃]) 7→ − log(tp[p̃]
−1), ι : B+

st → B+
dR, log([p̃]) 7→ − log(p[p̃]−1),

ι : B̂+
st → B+

dR, tp[p̃]
−1 7→ p[p̃]−1.

2.1.2. Tensoring with period rings. (1) Let M be a bounded complex of Banach spaces, which are topo-
logical B+

cr-modules. We define the topological tensor product M ⊗B+
cr
C as the algebraic tensor product

equipped with the quotient topology induced fromM via the map θ. This product tends to be compatible
with strict quasi-isomorphisms:

Lemma 2.2. Let M,M ′ be bounded complexes of Banach spaces, which are flat B+
cr-modules. Let α :

M →M ′ be a strict quasi-isomorphism. Then the induced morphism

α⊗ Id : M ⊗B+
cr
C →M ′ ⊗B+

cr
C

is a strict quasi-isomorphism as well.
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Proof. Let C(α) denote the mapping fiber of α. It is a bounded complex of Banach spaces. We claim
that the complex

C(α⊗ Id) = [M ⊗B+
cr
C
α⊗Id−−→M ′ ⊗B+

cr
C] ' C(α)⊗B+

cr
C

is strictly acyclic. Indeed, since M,M ′ are bounded and built from flat B+
cr-modules, this is so al-

gebraically. Now the terms of C(α ⊗ Id) are Banach spaces as quotients of Banach spaces by closed
subspaces and the Open Mapping Theorem implies that a complex of Banach spaces is strictly acyclic if
and only if it is acyclic (apply the OMT to the isomorphism Im(di)→ Ker(di+1) which are both Banach
spaces since di and di+1 are continuous). �

(2) Similarly, for a bounded complex M of Banach spaces, which are topological B+
cr-modules, we

define the topological tensor product M ⊗B+
cr

(B+
cr/F

i), i ≥ 0, as the algebraic tensor product equipped
with the quotient topology induced from M . We have analog of the Lemma 2.2 in this setting.

We will denote this tensor product by

M⊗̂L
B+

cr
(B+

cr/F
i), i ≥ 0.

(3) For a bounded complex M of Banach spaces, which are topological B+
cr-modules, we define

M⊗̂R

B+
cr
B+

dR := R limi(M⊗̂
L

B+
cr

(B+
cr/F

i)).

We have analog of the Lemma 2.2 in this setting as well.

2.1.3. Isogenies. We recall now some terminology from [6, Sec. 1.1] (see also [1, Sec. 2.3]).
Let C be an additive category (or ∞-category). A map f : P → Q is an isogeny if there exists

g : Q → P and an integer N > 0 such that gf = N IdP and fg = N IdQ (in the homotopy category.)
An object X ∈ C is bounded torsion if it is killed by some N , i.e., if N IdX = 0 (also in the homotopy
category). If C is an additive category, we denote by C ⊗Q the category with the same objects as C ,
with a functor C → C ⊗Q, X 7→ XQ, and with Hom(XQ, YQ) = Hom(X,Y ) ⊗Q. Then C ⊗Q is the
localization of C with respect to isogenies; for X ∈ C , we have XQ = 0, i.e., X is isogenous to 0, if and
only if X is a bounded torsion object. If C is abelian then C ⊗Q is abelian as well and it equal to the
quotient CQ of C modulo the Serre subcategory of bounded torsion objects.

Let C be a stable ∞-category equipped with a t-structure. If a map is an isogeny then it induces
isogenies on all cohomology groups Hn, n ∈ Z, in the heart C♥. For maps between bounded object the
opposite is true as well: the map f : P → Q of bounded objects is an isogeny, if, for each n, the map
HnP → HnQ is an isogeny. In particular, X ∈ C is isogeneous to 0 if each Hn(X) is a bounded torsion
group.

Remark 2.3. Consider the tensor product functor in the top row of the diagram:

D(PDK)
(−)⊗L

K //

can

��

D(CK)

D(PDK)Q

(−)K

88

It factors naturally through the isogeny category; we will denote so obtained functor from D(PDK)Q to
D(CK) by (−)K .

2.1.4. ϕ-modules. A Frobenius on an OF -module is a ϕF -linear endomorphism. Let R be an OF -algebra
equipped with a Frobenius ϕR. For an R-module M , a Frobenius on M compatible with the R-module
structure is an R-linear map ϕM : ϕ∗RM → M . Pairs (M,ϕM ) form an abelian tensor Zp-category
Rϕ-Mod. Let Dϕ(R) be its bounded derived ∞-category.
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Remark 2.4. By [37, Rem. 7.1.1.16], we may (and often will) identify the ∞-category Dϕ(R) with the
∞-category of left modules from D(R) over the E1-ring R{ϕ} defined as the abelian group R[ϕ] with
multiplication rules ϕa = ϕ(a)ϕ, for a ∈ R. We will do the same for other categories of left modules over
associative rings that appear in this paper. This sometimes may entail unbounding the derived category
to the left but this will not cause problems.

Consider the bounded derived ∞-categories Dϕ(R),Dϕ(R)Q of bounded complexes of ϕ-modules over
R. Then Dϕ(R)Q is the quotient of Dϕ(R) modulo the full subcategory of complexes with bounded
torsion cohomology.

We need to discuss projective resolutions. For an R-module M , set Mϕ := ⊕n≥0ϕ
n∗
R M and equip it

with the evident Frobenius. The functor R-Mod → Rϕ-Mod, M 7→ Mϕ, is left adjoint to the forgetful
functor Rϕ-Mod→ R-Mod, (M,ϕM ) 7→M . If follows that, for a projective R-module M , the ϕ-module
Mϕ is a projective object of Rϕ-Mod.

For every M = (M,ϕM ) ∈ Rϕ-Mod, there is a natural short exact sequence

0→ (ϕ∗RM)ϕ
δ−−→Mϕ

ε−−→M → 0

in Rϕ-Mod. The maps ε and δ are induced, respectively, by adjunction from IdM and the map ϕ∗RM →
Mϕ that sends r ⊗ m to ϕM (r ⊗ m) − r ⊗ m ∈ M ⊕ ϕ∗RM ⊂ Mϕ. Set M̃ := Cone(δ), so we have a
resolution ε : M̃ →M . If M is a projective R-module, this is a projective resolution in Rϕ-Mod.

We will need a version of the above constructions for derived p-complete modules. Recall [11, 4.1]
that, for a ring R over Zp, M ∈ D(R) is called p-completely flat if M ⊗L

R R/p ∈ D(R/p) is concentrated
in degree 0, where it is a flat R/p-module. If R has bounded p∞-torsion and an R-module M is derived
p-complete and p-completely flat then M is a classically p-complete R-module concentrated in degree 0,
with bounded p∞-torsion, such thatM/pnM is flat over R/pnR, for all n ≥ 1 (see [11, Lemma 4.7]). And,
conversely, if M is a classically p-complete R-module concentrated in degree 0, with bounded p∞-torsion,
such that M/pnM is flat over R/pnR, for all n ≥ 1, then M is p-completely flat.

Now we specialize to R = W (k). Then, a W (k)-module M is derived p-complete and p-completely flat
if and only if M is a classically p-complete W (k)-module concentrated in degree 0, such that M/pnM

is flat over Wn(k), for all n ≥ 1 (equivalently M is p-torsion-free and classically p-complete over W (k)).
We note that such a module M can always be written as the p-adic completion of a free W (k)-module
M0 hence it is a projective object in the category of derived p-complete modules10.

It follows that the above algebraic construction goes through once we derived p-adically complete the
objects. That is, if we denote by D̂(W (k)) the full ∞-subcategory of D(W (k)) spanned by complexes
built from derived p-complete modules11 and, similarly, if we denote by D̂ϕ(W (k)) the full∞-subcategory
of Dϕ(W (k)) spanned by complexes built from derived p-complete ϕ-modules then, for a ϕ-modules
M = M [0] ∈ D̂ϕ(W (k)), which is p-completely flat, the p-adic completion M̂ϕ ∈ D̂ϕ(W (k)) of Mϕ

is a projective derived p-complete ϕ-module and we have a projective resolution of derived p-complete
ϕ-modules

(2.5) 0→ ̂(ϕ∗RM)ϕ
δ−−→ M̂ϕ

ε−−→M → 0.

We set M̃ := Cone(δ). We note that, for a complexM• of p-completely flat, derived p-complete ϕ-modules
over W (k), the functor M• 7→ M̃• preserves quasi-isomorphisms (since so does the functor M• 7→ M̂ϕ

•

because M̂ϕ

•
is equal to M̂•

ϕ).
We will often use the fact that the canonical functor Dc

ϕ(W (k))→ D̂ϕ(W (k)), where Dc
ϕ(W (k)) is the

full subcategory of D̂ϕ(W (k)) spanned by complexes built from p-torsion free modules is an equivalence.

10We use here that, if a W (k)-module N is derived p-complete then HomW (k)(M,N)
∼→ HomW (k)(M0, N).

11By [45, Tag 09IU], this is the same as the full subcategory of D(W (k)) od derived p-complete complexes.
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Indeed, if M is a derived p-complete W (k)-module then we can find an exact sequence (see [45, Tag
09AT])

0→M1 →M0 →M → 0,

where M0,M1 are derived p-complete and torsion free. Moreover, if M is a ϕ-module, we can lift its
Frobenius to this exact sequence. This and the existence of the projective resolutions (2.5) yield the
desired equivalence of ∞-categories.

Let R := rPD
K . Let P = (P,ϕP ) ∈ D̂ϕ(R), Q = (Q,ϕQ) ∈ Dc

ϕ(W (k)). We assume that the complex P

is built from p-completely flat modules. Denote by P the cofiber of P → P ⊗̂L
RW (k) viewed as an object

of Dc
ϕ(W (k)).

Lemma 2.6. If the Frobenius on QQ is invertible12 then

RHom(Q,P )Q = RHom(QQ, PQ) = 0,

where the RHom is taken in Dc
ϕ(W (k))Q.

Proof. We claim that we have the short exact sequence of complexes of ϕ-modules over W (k) (p-torsion-
free and p-complete)

(2.7) 0→ IP → P → P ⊗̂L

RW (k)→ 0,

where I ⊂ R is the kernel of the projection R → W (k) and we set IP := I⊗̂L

RP
∼→ I⊗̂RP . Indeed,

because Pn is a complex of flat Rn-modules we have a compatible family of exact sequences

0→ Pn ⊗R In → P ⊗R Rn → Pn ⊗RWn(k)→ 0

Passing to the limit we get the short exact sequence

0→ limn(Pn ⊗R In)→ limn(P ⊗R Rn)→ limn(Pn ⊗RWn(k))→ 0

Since P is derived p-complete and its terms are p-completely flat modules, the natural morphism P →
limn(P ⊗R Rn) is a quasi-isomorphism (in fact, an isomorphism) [45, Tag 091Z] and the above exact
sequence yields the exact sequence (2.7).

From the exact sequence (2.7) we get a distinguished triangle

RHom(Q, IP )→ RHom(Q,P )→ RHom(Q,P ⊗̂L

RW (k)),

where RHom is computed in Dc
ϕ(W (k)). To prove the lemma, it suffices to show that RHom(Q, IP )Q = 0.

Assume, for a moment, that Q is concentrated in degree 0. For any derived p-complete ϕ-module M
over W (k), we can compute RHom(Q,M) using the projective resolution Q̃ of Q from (2.5). We get a
two-term complex C(Q,M) with

C0(Q,M) = Hom(Q̂ϕ,M) ' HomW (k)ϕ(Qϕ,M) ' HomW (k)(Q,M),

C1(Q,M) = Hom(ϕ̂∗(Q)ϕ,M) ' HomW (k)ϕ(ϕ∗(Q)ϕ,M) ' HomW (k)(ϕ
∗(Q),M),

and the differential d = d1 − d2 : C0(Q,M) → C1(Q,M), where d1(A) = AϕQ, d2(A) = ϕMϕ
∗(A).

Let C∗(Q,M) be the complex with the same terms as C(Q,M) but the differential simply d1. Since we
assumed that the Frobenius action on QQ is invertible, the complex C∗(Q,M)Q is acyclic.

We go back now to general Q. To show that RHom(Q, IP )Q = 0 we we may assume that P is
concentrated in degree 0. Indeed, since P is bounded, we can detach one term of the complex after
another using the fact that IP = I⊗̂L

RP . We will denote by C(Q,M), for M as above, the total
complex of the double complex obtained by applying C(−,M) to all the terms of Q. We will prove that
C(Q, IP )Q is acyclic by defining a finite filtration on IP , by derived p-complete W (k)-submodules, such

12This means that Frobenius map ϕQQ
: ϕ∗

W (k)
QQ → QQ is a quasi-isomorphism in D(W (k))Q.
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that C(Q, grj IP ) ' C∗(Q, grj IP ). (Note that then the gradings gri IP are also derived p-complete and,
since Q is built from projective modules, the functor C(Q,−) is exact.) The latter complex is acyclic by
the argument presented above.

Let I [j], j ≥ 1, be the ideal of R formed by series
∑
ait

[i] with a0 = . . . = aj−1 = 0. We have I = I [1].
We set

I [j]P := I [j]⊗̂L
RP

∼→ I [j]⊗̂RP.

Since R/I [j] 'W (k)⊕j−1, I [j]P ↪→ P (argue as in the proof of (2.7) above), and it is a derived p-complete
module. Since ϕ(I [j]) ⊂ I [pj], one has C(Q, I [j]P/I [j+1]P ) = C∗(Q, I

[j]P/I [j+1]P ). It remains to show
that C(Q, I [n]P ) is quasi-isomorphic to C∗(Q, I [n]P ) for n sufficiently large (then the soughed-after finite
filtration is I [j]P , j ≤ n.)

By assumption, for m sufficiently large, there is ψ : Q → ϕ∗Q such that ϕQψ = pm IdQ, ψϕQ =

pm Idϕ∗(Q). For n sufficiently large, we have ϕ(I [n]) ⊂ pm+1I [pn]. Hence d2 on C(Q, I [n]P ) is divisible by
pm+1. Set f := ψτ (p−m−1d2) ∈ End(C0(Q, I [n]P )); then d2 = pd1f , i.e., d = d1(1 − pf). We used here
that, since Q is built from projective modules and I [n]P is derived p-complete, we have

C0(Q, I [n]P ) = HomW (k)(Q, I
[n]P ) ' RHomW (k)(Q, I

[n]P ),

C1(Q, I [n]P ) = HomW (k)(ϕ
∗(Q), I [n]P ) ' RHomW (k)(ϕ

∗(Q), I [n]P ).

Moreover, since RHomW (k)(Q, I
[n]P ) is derived p-complete [45, Tag 0A6E], it follows that (1 − pf) is a

quasi-isomorphism (use derived Nakayama Lemma [45, Tag 0G1U]). This yields the quasi-isomorphism
C(Q, I [n]P )

∼→ C∗(Q, I
[n]P ), as wanted. �

2.2. Hyodo-Kato rigidity. Now we pass to the main constructions.

2.2.1. The Hyodo-Kato section. In this section we will prove the existence of the Hyodo-Kato section
in the derived ∞-category. We follow faithfully the arguments of Beilinson from [3, Sec. 1.14] with the
following modifications:

(1) Beilinson works in the setting of proper log-smooth log-schemes hence all of his cohomology
complexes are perfect; we replace them with a weaker condition of derived p-complete and p-
completely flat,

(2) to prove that the Hyodo-Kato section (when linearized) is a quasi-isomorphism Beilinson uses
finiteness of Hyodo-Kato cohomology; we replace his argument with the original one due to
Hyodo-Kato [34].

Since the argument of Beilinson can only be found in a preliminary version of a published paper, for the
benefit of the reader and the authors, we supply all the details.

Let f : X1 → S1 be a log-smooth map with Cartier type reduction, with X1 fine. Let f0 : X0
1 → S0

1 be
its pullback to S0

1 . Let R := rPD
K . Recall the definition and basic properties of the arithmetic Hyodo-Kato

cohomology and the associated rPD cohomology (in the terminology13 from [20, 4.2]):

RΓcr(X1/R)l,n := RΓcr(X1/(S1, En)), il : S1 ↪→ E1, in Dϕ(Rn);(2.8)

RΓHK(X0
1 )n := RΓcr(X

0
1/(S

0
1 , S

0
n)), in Dϕ(Wn(k));

RΓcr(X1/R)l := lim
n

RΓcr(X1/R)l,n, in D̂ϕ(R);

RΓHK(X0
1 ) := lim

n
RΓHK(X0

1 )n, in Dc
ϕ(W (k)).

13The notation we use here is a bit different than the one we used in [20]. This is because we have adopted here
Beilinson’s approach to the Hyodo-Kato morphism and with it his notation. The advantage of Beilinson’s notation is that
it keeps better track of the underlying data.
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The embedding i : X0
1 ↪→ X1 over il,n : (S0

1 , S
0
n) ↪→ (S1, En) yields compatible morphisms i∗l,n :

RΓcr(X1/R)l,n → RΓHK(X0
1 )n, i∗l : RΓcr(X1/R)l → RΓHK(X0

1 ) in Dϕ(Wn(k)) and Dc
ϕ(W (k)), respec-

tively. These constructions are functorial in X1: this is standard (see [3, 1.6] and use the functorial
PD-envelopes from [3, 1.4]).

Moreover,
(1) RΓHK(X0

1 ) is a complex of derived p-complete, p-completely flat modules over W (k) and

(2.9) RΓHK(X0
1 )n ' RΓHK(X0

1 )⊗̂L
W (k)Wn(k), in Dϕ(Wn(k));

(2) RΓcr(X1/R)l is a complex of derived p-complete, p-completely flat modules over R and

(2.10) RΓcr(X1/R)l,n ' RΓcr(X1/R)l⊗̂
L

RRn, in Dϕ(Rn);

(3) we have a quasi-isomorphism

(2.11) i∗l : RΓcr(X1/R)l⊗̂
L
RW (k)

∼→ RΓHK(X0
1 ), in Dc

ϕ(W (k)).

Now we present the key construction in the Hyodo-Kato theory.

Theorem 2.12. (1) The Frobenius action on RΓHK(X0
1 )Q is invertible in Dc(W (k))Q.

(2) The map i∗l : RΓcr(X1/R)l,Q → RΓHK(X0
1 )Q admits a unique natural W (k)-linear section ιl in

Dc
ϕ(W (k))Q. Its R-linear extension is a quasi-isomorphism in D̂ϕ(R)Q:

ιl : (R⊗̂L

W (k)RΓHK(X0
1 ))Q

∼→ RΓcr(X1/R)l,Q.

Proof. Claim (1) is proved in [34, 2.24]. In fact, Hyodo-Kato prove more: they show that there exists a
pd-inverse of Frobenius, where d = dimX0

1 .
For the existence part of claim (2), recall that Beilinson [3, 1.14] proved it in the case X1 is proper.

We will adapt his argument to our (general) local situation.
Take P = RΓcr(X1/R)l in Lemma 2.6. By claim (1) the Frobenius action on (P ⊗̂RW (k))Q is invertible.

Moreover, P is derived p-complete and a complex of completely p-adically flat R-modules. Lemma 2.6
implies that the morphism PQ → (P ⊗̂L

RW (k))Q in Dc
ϕ(W (k))Q admits a unique right inverse ιl, as

wanted. We will now show the functoriality of ιl with respect to the maps f : X1 → S1, il : S1 → E.
Consider a commutative diagram of such maps

X ′1

πX

��

f ′ // S′1

πS

��

� � il′ // E′

πE

��
X1

f // S1
� � il // E

It yields the commutative diagram in Dc
ϕ(W (k))

RΓcr(X
′
1/R)l′

i∗
l′ // RΓHK(X ′,01 )

RΓcr(X1/R)l

π∗cr

OO

i∗l // RΓHK(X0
1 )

π∗HK

OO

and the induced diagram in Dc
ϕ(W (k))Q

RΓcr(X
′
1/R)l′,Q RΓHK(X ′,01 )Q

ι∗
l′oo

RΓcr(X1/R)l,Q

π∗cr

OO

RΓHK(X0
1 )Q,

π∗HK

OO

ι∗loo

fl′

jj

fl

bb
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where fl = π∗crι
∗
l and fl′ = ι∗l π

∗
HK. Hence the left and right corner triangles in the last diagram commute.

It suffice thus to show that fl = fl′ . But we have

i∗l′fl = i∗l′π
∗
crι
∗
l = π∗HKi

∗
l ι
∗
l = π∗HK,

i∗l′fl′ = i∗l′ι
∗
l′π
∗
HK = π∗HK.

Hence, if P denotes the cofiber of the map i∗l′ is suffices to show that RHomW (k)ϕ(RΓHK(X0
1 ), P )Q = 0.

But this can be done by the same arguments as in the proof of Lemma 2.6.
Consider its R-linearization

ιl : (R⊗̂L

W (k)P ⊗̂
L

RW (k))Q → PQ.

We need to show that this is a quasi-isomorphism. But this was done by Hyodo-Kato [34, Lemma 4.16,
Prop. 4.8] using the explicit de Rham-Witt presentation of the Hyodo-Kato complex. We are done. �

2.2.2. The Hyodo-Kato morphism. Now, as usual, the Hyodo-Kato morphism can be obtained from the
section constructed in Theorem 2.12. Let X be a fine logarithmic formal scheme log-smooth over S.
Assume that X1 has Cartier type reduction over S1. Let $ be a uniformizing parameter of OK .

Corollary 2.13. There is a natural quasi-isomorphism in Dc(OK)Q

i$ : (RΓHK(X0
1 )⊗̂L

W (k)OK)Q
∼→ RΓdR(X)Q.

Proof. Take E with l := $ mod pmK . This yields an embedding iπ : S ↪→ E, i∗$(ta) = $, a := $

mod m2
K . We start with the quasi-isomorphism from Theorem 2.12

ιl : (RΓHK(X0
1 )⊗̂L

W (k)R)Q → RΓcr(X1/R)l,Q.

Tensoring it with OK (over R) we obtain the quasi-isomorphisms

(RΓHK(X0
1 )⊗̂L

W (k)OK)Q
∼→ (RΓcr(X1/R)l⊗̂

L

ROK)Q ' RΓcr(X1/O
×
K)Q ' RΓdR(X)Q.

This is the Hyodo-Kato quasi-isomorphism i$ we wanted. �

2.2.3. Monodromy action revisited. A (ϕ,N)-module over W (k) is a triple (M,ϕ,N) with (M,ϕ) – a
ϕ-module over W (k) and N : M →M – a W (k)-linear endomorphism, called monodromy operator, such
that Nϕ = pϕN . The category of (ϕ,N)-modules over W (k) is abelian. We will denote by Dϕ,N (W (k))

the corresponding derived ∞-category. Using Remark 2.4, we will identify this ∞-category with the
∞-category of left modules from D(W (k)) over the associative ring W (k){ϕ,N} defined as the abelian
group W (k)[ϕ,N ] with multiplication rules ϕa = ϕ(a)ϕ,Na = aN,Nϕ = pϕN , for a ∈ W (k). We
denote by Dc

ϕ,N (W (k)) the full ∞-subcategory of Dϕ,N (W (k)) spanned by complexes of p-torsion-free
and p-complete modules. We have similar structures over Wn(k).

The constructions in (2.8) live in respective Dc
ϕ,N (−) ∞-categories and are functorial in X1. The

subsequent base changes (2.9), (2.10), (2.11) also lift to the ∞-categories Dc
ϕ,N (−). One way to see this

is to use the description of the monodromy action in the paragraphs that follow.
The purpose of this section is to prove the following:

Proposition 2.14. The section

ιl : RΓHK(X0
1 )Q → RΓcr(X1/R)l,Q

from Theorem 2.12 commutes with monodromy, i.e., it can be lifted to a section in Dc
ϕ,N (W (k))Q.

Recall that the monodromy on RΓcr(X1/R)l is defined as the Gauss-Manin connection and the one on
RΓHK(X0

1 ) as its residue at t = 0. However, to prove Proposition 2.14 we will work with the "integration"
of the monodromy action. The argument follows that of Beilinson in [3, Sec. 1.16] with the modifications
mentioned earlier.
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(i) Equivariant structures. Let A∗ be a cosimplicial algebra. An A∗-complex is a complex M∗ of
cosimplicial A∗-modules such that, for every cosimplicial structure map Ma → M b, its Ab-linearization
Ab ⊗L

Aa M
a → M b is a quasi-isomorphism. Denote by D(A∗) the derived ∞-category of bounded below

A∗-complexes. We think of an element of D(A∗) as an A∗-complex with values in D(Aa) in degree a. For
an endomorphism T of A∗, DT (A∗) will denote the derived ∞-category of bounded below A∗-complexes
equipped with a T -action. We think of an element of DT (A∗) as an A∗-complex with values in DTa(Aa)

in degree a (the derived ∞-category of Aa{T a}-modules).
Fix an affine scheme S as a base. Let G be an affine group scheme acting on X = SpecA. Let [X/G] :=

EG×G X = SpecA∗G be the simplicial quotient. We have [X/G]m = X ×Gm. Set DG(A) := D(A∗G).
Let g∨ = me/m

2
e be the Lie coalgebra of G. Let [X/g] := SpecA∗g be the closed subscheme of

[X/G] defined by the simplicial ideal generated by K 2, where K is the ideal of [X/G]0 ⊂ [X/G]1, i.e.,
K = me ⊗ A ⊂ O(G ×X). We set Dg(A) := D(A∗g), etc. There is a canonical conservative restriction
functor

Lie : DG(A)→ Dg(A).

Moreover:
(1) Compatible endomorphisms TG and TX of G and X yield an endomorphism of [X/G]. We have

DT,G(A) := DT (A∗G), DT,g(A) := DT (A∗g).

(2) For a group scheme G, we denote by G\ its PD-completion at the unit [3, Sec. 1.2]; this is a
group PD-scheme, i.e., a scheme equipped with a PD-ideal. For example, we have G\m((U, T )) =

Γ(T, (1 + JT )∗). If G is a group PD-scheme with PD-ideal me, then, in the above, we can also
consider the Lie coalgebra in PD-sense g∨ := me/m

[2]
e .

Objects of DT,G(A), DT,g(A) are called G-, resp. g-equivariant A-complexes. For an A-complex M , a
G-equivariant structure on it is an object M∗G ∈ DG(A) together with a quasi-isomorphism M0

G
∼→M .

(ii) Equivariant structures on crystalline cohomology. Let us go back to the setting of Proposition
2.14. We note that the objects (S1, En) ∈ (S1/Wn(k))cr and (S0

1 , S
0
n) ∈ (S0

1/Wn(k))cr have natural
G\m-actions: (S1, En) is a coordinate thickening (with coordinate ta), G\m acts on it by homotheties, and
we equip S0

n ⊂ (S1, En) with the induced action. To see the latter action explicitly, we note that, for
(U, T ) ∈ (S0

1/Wn)cr, a map f : (U, T )→ (S0
1 , S

0
n) amounts to a lifting f([a]) of a ∈ (mK/m

2
K) \ {0} ⊂ L 0

1

to L 0
T ; these liftings form a G\m((U, T ))-torsor yielding our action. This G\m-action is compatible with

the Frobenius action (ϕ acts on G\m as ϕ∗(t) := tp).
We will now show that the crystalline cohomology complexes RΓcr(X1/R)l,n, RΓHK(X0

1 )n are naturally
equipped with G\m-equivariant structures. Take the simplicial objects (S1, En∗) and (S0

1 , S
0
n∗). Here, for

(U, T ) ∈ (Z/S)cr, we wrote (U, T∗) := Č((U, T )/Z) for the Čech nerve of the crystalline open (U, T ) ∈
(Z/S)cr; it is a simplicial object of (Z/S)cr with terms (U, Ta) := (U, T )a+1 (we use the crystalline site
product). It is easy to see [3, Exercise 1.7] that (S1, En∗) = [(S1, En)/G\m] and (S0

1 , S
0
n∗) = [(S0

1 , S
0
n)/G\m].

Consider the objects Rfcr(OX1/Wn(k)) and Rf0
cr(OX0

1/Wn(k)). They are equipped with a Frobenius action.
Restricting them to our simplicial objects, we get:

RΓcr(X1/R)∗l,n := Rfcr ∗(OX1/Wn(k))(S1,En∗) ∈ D̂ϕ,G\m
(Rn),(2.15)

RΓHK(X0
1 )∗n := Rf0

cr ∗(OX0
1/Wn(k))(S0

1 ,S
0
n∗)
∈ Dc

ϕ,G\m
(Wn(k′)).

Since (Rfcr ∗(OX1/Wn(k))(S1,En∗))
0 ' RΓcr(X1/R)l,n and (Rf0

cr ∗(OX0
1/Wn(k))(S0

1 ,S
0
n∗)

)0 ' RΓHK(X0
1 )n,

these are the G\m-equivariant structures we wanted.
We are actually interested in n-action that comes from the above G\m-action, where n is the Lie

algebra of G\m in PD-sense (it is a line). The objects from (2.15) form projective systems with respect
to n. Applying R limn, we get natural n-structures on RΓHK(Z0

1 ) and RΓcr(Z1/R)l. Set N = e−1t∂t,
e = [K ′ : F ′]; it is a generator of n ⊗ Q. An nQ-equivariant structure on W (k′)Q-complex amounts
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to an endomorphism N . The equality Nϕ = pϕN comes from the compatibility of the G\m-action with
Frobenius.

Proof. (of Proposition 2.14) We proceed as in the proof of Theorem 2.12 but work in the G\m-equivariant
setting. Namely, we start with the natural map i∗l : RΓcr(X1/R)∗l,Q → RΓHK(X0

1 )∗Q, that lifts the map
i∗l : RΓcr(X1/R)l,Q → RΓHK(X0

1 )Q, and we look for its G\m-equivariant section (this will be a G\m-
equivariant lift of the section in our proposition). This is supplied by Lemma 2.16 below. The induced
map Lie(ιl) yields a section between the corresponding nQ-equivariant structures. Since it lifts the original
section ιl we get the wanted compatibility of the latter with monodromy. �

The following lemma was used in the above proof:

Lemma 2.16. (1) The Frobenius action on RΓHK(X0
1 )∗Q is invertible in Dc

G\m
(W (k′))Q.

(2) The map i∗l : RΓcr(X1/R)∗l,Q → RΓHK(X0
1 )∗Q admits a naturalW (k′)-linear section ιl in Dc

ϕ,G\m
(W (k′))Q

(2.17) ι∗l : RΓHK(X0
1 )∗Q→RΓcr(X1/R)∗l,Q.

Proof. In claim (1) we need to proof the invertibility, up to a controlled denominator, of the Hyodo-Kato
Frobenius. Since, by (2.15),

(2.18) RΓHK(X0
1 )∗a = Rf0

cr ∗(OX0
1/W (k))(S0

1 ,S
0
a) ' RΓcr(X

0
1/S

0
a),

where (S0
1 , S

0
a) is the crystalline product (S0

1 , S
0)a+1, we can use again [34, 2.24]. And, recall that,

Hyodo-Kato prove more: they show that there exists a pd-inverse of Frobenius, where d = dimX0
1 .

To prove claim (2), take P = RΓcr(X1/R)∗l and Q = RΓHK(X0
1 )∗. We have

Qa ' RΓcr(X
0
1/S

0
a),

Pa = RΓcr(X1/R)∗l,a = Rfcr ∗(OX1/W (k))(S1,Ea) ' RΓcr(X1/Ea)l,

where (S1, Ea) is the crystalline product (S1, E)a+1. More explicitly,

S0
a = Spf W (k) < u1 − 1, . . . , ua − 1 >,

Ea = Spf W (k) < t, u1 − 1, . . . , ua − 1 >; ib,0 : S0
b ↪→ Ea, ts 7→ [s], ui 7→ ui,

and the log-structure is induced by ts (and its reduction). In particular, the Frobenius on the ideal of
the embedding ia,0 is highly topologically nilpotent. This implies, by an argument identical to the one
used in the proof of Theorem 2.12, that we have a unique section in Dc

ϕ(W (k′))Q

ιl,a : Qa,Q → Pa,Q

of the canonical projection
Pa,Q → Qa,Q

and that this section is functorial with respect to all the cosimplicial maps. Hence it yields the section ι∗l
from (2.17). Functoriality of this section follows from the functoriality of the individual sections ιl,a. �

2.3. Geometric absolute crystalline cohomology and Hyodo-Kato cohomology. We are now
ready to prove the existence of geometric Hyodo-Kato quasi-isomorphisms.

2.3.1. The comparison theorem. Let now f : X1 → S1 be a map of log-schemes with X1 integral and
quasi-coherent. Assume that f is the base change of a log-scheme f : Z1 → S1, which is log-smooth and
with Cartier type reduction. Choose l, hence (S1, E), as in Section 2.1.1. Choose a Frobenius compatible
map θλ : (S1,Ecr) → (S1, E) of PD-thickenings that extends the map θ1, where θ is the canonical map
θ : S → S. This amounts to a choice of λa := θλ(ta) ∈ Lϕ that lifts la ∈ L1 ⊂ L 1.

The following well-known corollary of Theorem 2.12 describes geometric absolute crystalline cohomol-
ogy RΓcr(X1) := RΓcr(X1/W (k)) via Hyodo-Kato cohomology (but losing the Galois action).
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Corollary 2.19. (1) There is a functorial system of compatible quasi-isomorphisms in Dϕ(Acr,n)

εRλ,n : RΓcr(Z1/R)l,n ⊗L
Rn Acr,n

∼→ RΓcr(X1)n.

Here the tensor product is taken with respect to the map θ∗λ,n : Rn → Acr,n.
(2) There is a natural quasi-isomorphism in Dϕ(Acr)

εRλ : RΓcr(Z1/R)l⊗̂
L

RAcr
∼→ RΓcr(X1).

(3) There is a natural strict quasi-isomorphism in Dϕ(CB+
cr

)

εHK
λ : (RΓHK(Z0

1 )⊗̂L

W (k)Acr)Q
∼→ RΓcr(X1)Q.

Remark 2.20. (1) The functor (−)Q : Dc(Zp) → D(CQp) in (3) is induced from the functor (−)Q
from Remark 2.3 via the map Dc(Zp)→ D(PDQp

).
(2) We set Dϕ(CB+

cr
) := LModB+

cr{ϕ}D(CB+
cr

).

Proof. Since Z1 is log-smooth, claim (1) follows from the log-smooth base change14 (recall that RΓcr(X1)n '
RΓcr(X1/Acr,n)). Claim (2) follows from claim (1) by taking limits. Claim (3) follows from claim (2)
and Theorem 2.12. �

Let f
0

: X0
1 → S

0

1 be the pullback of f to S
0

1. We have the completed geometric Hyodo-Kato cohomology

RΓHK(X0
1 ) := RΓcr(X

0
1/S

0
).

It is a W (k)-module. It compares with the arithmetic Hyodo-Kato cohomology via the log-smooth base
change quasi-isomorphism in Dϕ(W (k))

(2.21) β : RΓHK(Z0
1 )⊗̂L

W (kL)W (k)
∼→ RΓHK(X0

1 ).

Theorem 2.22. There is a natural strict quasi-isomorphism in Dϕ,N (CB+
st

)

εHK
st : RΓHK(X0

1 )Qp
⊗̂F̆ ,ιB

+
st
∼→ RΓcr(X1)Qp

⊗̂B+
cr,ι

B+
st

such that εHK
λ = s∗λε

HK
st β.

Remark 2.23. (1) Here, for M = RΓHK(X0
1 ),RΓcr(X1), we have defined15

(2.24) MQp
⊗̂F̆ ,ιB

+
st := L colimr(MQp

⊗̂R

F̆B
≤r
st ), MQp

⊗̂B+
cr,ι

B+
st := L colimr(MQp

⊗̂R
B+

cr
B≤rst ),

respectively, where B≤rst := ⊕ri=0B
+
cru

i
λ, uλ = log(λ), for fixed λ.

(2) We set Dϕ,N (CB+
st

) := LModB+
st{ϕ,N}

D(CB+
st

), where the ring B+
st{ϕ,N} is defined as the abelian

group B+
st[ϕ,N ] with multiplication rules ϕa = ϕ(a)ϕ,Na−aN = N(a), Nϕ = pϕN , for a ∈ B+

st.

Proof. The proof of the theorem runs over sections 2.3.2 (construction on the map) and 2.3.3 (compati-
bility with all structures). �

14The proof of which is almost identical to the proof of smooth base change in the case without log-structures, see [9,
2.3.5] or [8, V.3.5.1].

15This is the only context in the paper where we use inductive tensor products.
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2.3.2. Construction of the quasi-isomophism.
• The index sets. Recall that we have assumed that one can find a finite extension L/K such that f is the
base change of a fine log-scheme fL : Z1 → Spec(OL,1)×, log-smooth and of Cartier type, by the natural
map θ : S1 → Spec(OL,1)×. That is, we have a map θL : X1 → Z1 such that the square (f, fL, θ, θL) is
Cartesian. Such data Σ := {(L, fL, θL)} clearly form a filtered set16.

We have similar data Σ0 := {(θ0, f0, θ0
L)}:

(1) θ0 : S
0 → S′,0 is a map of log-schemes over S0

K with S′,0 = Spf W (k′), where k′ ⊂ k is finite over
k and the log-structure of S′,0 is generated by one element; the Frobenius on the log-scheme S′,0

is induced, via the map θ0, from the Frobenius on S
0
;

(2) f0 : Z0
1 → S′,01 is log-smooth, fine and integral, of Cartier type;

(3) θ0
X : X0

1 → Z0
1 is such that the square (f

0
, f0, θ0

1, θ
0
X) is Cartesian.

Such data again form a filtered set. There is a map of filtered sets Σ→ Σ0, Z1/SL 7→ Z0
1/S

0
L; it is cofinal.

These filtered sets are clearly functorial with respect to the maps f .

• Construction of εHK
st . Let us first construct εHK

st . For ξ0 = Z0
1/S

′,0
1 ∈ Σ0, S′ = Spf OK′ , let Ψξ0 be the

set of triples17 π = (π, πS , nπ), where nπ ∈ N and π, πS are maps such that the diagram

(2.25) X0
1
� � //

θ0
X��

X1
//

π
��

S1

πS
��

Z0
1

Frnπ // Z0
1

// S′,01

commutes. Here we denoted by Fr he absolute Frobenius. The set Ψξ0 is ordered: π1 ≤ π2 means
m = nπ2/nπ1 ∈ Z and π2 = Frmπ1. We claim that the set Ψξ0 is filtered. For that it suffices to show
that, for n ≥ eK′ , any two triples π1 = (π1, πS,1, n) and π2 = (π2, πS,2, n) are in fact equal, that is,
π1 = π2 and πS,1 = πS,2. But, for n as above, we have the diagram (π = π1, π2)

X0
1
� u

((
θ0
X

��

X1

f

aa

Frn
//

π

��

X1
//

π

��

S1

πS
��

Z0
1

Frn // Z0
1

// S′,01

in which the two small squares, the square with corner X0
1 , and the top triangle commute. This implies

that Frnπ = Frnθ0
Xf . Since there are no nilpotents in OX0

1
, we get π = θ0

Xf , hence π1 = π2, as wanted.
Similarly, we have the diagram

(2.26) S1

πS

��

Frn

((

fS

!!
S

0

1
� � //

θ0

��

S1

πS

��
S′,01

Frn // S′,01

16In [20, 4.3.1], in the case of a semistable formal scheme X over OC , we have used a different index set Σ, call it Σold.
It is easy to see that we obtain the same theory with both choices of the index set: if X is affine then the canonical map
Σold → Σ makes Σold cofinal in Σ.

17We like to call them Frobenius-twisted descent data.
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where the square with vertex S1 and the top triangle commute. The small square commutes as well: map
the commutative diagram

X0
1
� � //

θ0
X��

X1

π
��

Z0
1

Frn // Z0
1

to it using the canonical maps and use the fact that S
0

1 is a field. Diagram (2.26) now implies that
FrnπS = Frnθ0fS . Since S

′,0
1 is a field we get πS = θ0fS , hence πS,1 = πS,2, as wanted.

Let now e be the ramification index of OK′ . Denote by A(1/e)
W (k′) the formal scheme Spf W (k′){ta},

where a ∈ τ1/e is such that [a] lies in the image of the embedding θ0,∗ : L ′,0 ↪→ L
0
, with ta′ = [a′/a]ta.

The log-structure is generated by ta. We have an embedding i : S′,0 ↪→ A(1/e)
W (k′), i

∗(ta) = [a]. Let

R′,0 := rPD,0
K′ , E0 := Spf R′,0. We have the PD-thickenings i00 : (S′,01 , E0

n), i0,∗0 (ta) = a ∈ L ′,01 . The map
πl := iπS : S1 → A(1/e)

W (k′) induces a map il : S1 → A(r)

W (k)
, for r = pnπ/e, which corresponds (see Section

2.1.1) to a class lπ ∈ Λ such that v(lπ) = r. The map πS extends canonically to a map of PD-thickenings
πst : (S1,Elπ,st,n)→ (S′,01 , E0

n), i.e., we have the following commutative diagram

S1
� � il //

πS
��

Elπ,st,n

πE
��

S′,01
� � i00 // E0

n,

where the map πE sends ta 7→ tapnπ .
We have the maps

RΓHK(Z0
1 )n

i∗← RΓcr(Z
0
1/(S

′,0
1 , E0

n))
(π∗,π∗st)−−−−→RΓcr(X1/(S1,Elπ,st,n))

∼← RΓcr(X1)n ⊗L
Acr,n

Âlπ,st,n.(2.27)

By applying R limn to these complexes we can remove n. Now, i∗Q has a section ι (use Theorem 2.12 for
E = E0). Composing it with the rest of the maps from (2.27) we get a map in Dc

ϕ,N (W (k))Q

εξ0,π : RΓHK(Z0
1 )Q → (RΓcr(X1)⊗̂L

Acr
Âlπ,st)Q.

Before proceeding let us make the following remark.

Remark 2.28. Let M be a complex equipped with an N -action. Let MN-nilp := [M →M [N−1]], where

M [N−1] := L colim(M
N−−→M

N−−→ · · · ).

For M = RΓHK(X0
1 ), we have strict quasi-isomorphisms in Dϕ,N (CB+

st
)

(2.29) MQp
⊗̂F̆ ,ιB

+
st
∼← (MQp

⊗̂F̆ ,ιB
+
st)

N-nilp ∼→ (MQp
⊗̂R
F̆ B̂

+
l,st)

N-nilp ' (M⊗̂L
W (k)Âl,st)

N-nilp
Qp

.

The last quasi-isomorphism in (2.29) holds because M is built from torsion-free and p-complete modules.
The previous two quasi-isomorphisms are clear algebraically because we can assume that N is globally
nilpotent on M (see [40, 0.1]); it is also clear topologically because MQp is built from Banach spaces and
B̂+
l,st is a Banach space (so the derived tensor product is given by the tensor product itself).
Similarly, for M = RΓcr(X1) (note that now the action of N on M is trivial), we have strict quasi-

isomorphisms in Dϕ,N (CB+
st

)

MQp⊗̂B+
cr,ι

B+
st
∼← (MQp⊗̂B+

cr,ι
B+

st)
N-nilp ∼→ (M⊗̂L

Acr
Âl,st)

N-nilp
Qp

.
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Extending the map εξ0,π by Âlπ,st-linearity and using the quasi-isomorphism (2.21) we get a map in
Dϕ,N (CF̆ )

ε̂st,ξ0,π : (RΓHK(X0
1 )⊗̂L

W (k)Âlπ,st)Q → (RΓcr(X1)⊗̂L
Acr

Âlπ,st)Q.

Now, we define the map in Dϕ,N (CB+
st

)

εst,ξ0,π := (ε̂st,ξ0,π)Nlπ -nilp : (RΓHK(X0
1 )⊗̂L

W (k)Âlπ,st)
Nlπ -nilp
Qp

→ (RΓcr(X1)⊗̂AcrÂlπ,st)
Nlπ -nilp
Qp

.

We can use the quasi-isomorphisms from Remark 2.28 and get the map

εst,ξ0,π : RΓHK(X0
1 )Qp

⊗̂F̆ ,ιB
+
st → RΓcr(X1)Qp

⊗̂B+
cr,ι

B+
st.

Finally, since the Frobenius is invertible on the Hyodo-Kato cohomology, we can take the map in
Dϕ,N (CF̆ )

ε̃HK
st,ξ0,π := ϕnπεst,ξ0,πϕ

−nπ : RΓHK(X0
1 )Qp

→ RΓcr(X1)⊗̂B+
cr,ι

B+
st.

Its B+
st-linearization in Dϕ,N (CB+

st
)

(2.30) εHK
st,ξ0,π : RΓHK(X0

1 )Qp⊗̂F̆ ,ιB
+
st → RΓcr(X1)Qp⊗̂B+

cr,ι
B+

st

is the map we want.

• Independence of the choice of π and ξ0. Fix ξ0. To show that the map εHK
st,ξ0,π is independent of Frobenius

twists, that is of the choice18 of π ∈ Ψξ0 , we note that, for m ∈ Z>0, there are natural compatible
with Frobenius transition maps µm : Elπ,st → Elmπ ,st, µ

∗
m(tam) = tma . Moreover, µm1µm2 = µm1m2 and

µ∗mκlm = κl. Then the transition map from εHK
st,ξ0,π1

to εHK
st,ξ0,π2

, for π2 ≥ π1, is given by (ϕn)∗ acting
on RΓcr(Z

0
1/(S

′,0
1 , E0

n)) and µ∗n, for n = nπ2
− nπ1

. This suffices since the set Ψξ0 is filtered. We set
εHK

st,ξ0 := εHK
st,ξ0,π, for any π ∈ Ψξ0 .

To show that εHK
st,ξ0 does not depend on the choice of ξ0 ∈ Σ0, we use the above maps µ to identify

εHK
st,ξ0

1
and εHK

st,ξ0
1
, for ξ0

1 ≤ ξ0
2 . This suffices because the set Σ0 is filtered. We set εHK

st := εHK
st,ξ0 , for any

ξ0 ∈ Σ0. This map is clearly functorial with respect to X1.
2.3.3. Compatibility of the arithmetic and geometric maps εHK. It remains to prove that the map εHK

st is
a quasi-isomorphism and that the last claim of our corollary holds. For that, assume that ξ0 comes from
ξ = Z1/K

′ ∈ Σ. Choose l ∈ L1/k
′,∗ ⊂ L 1/k

∗
. We get a map of PD-thickenings (S1,El,st,n)→ (S1, En)

that identifies the ta’s. This yields the base change quasi-isomorphisms in Dϕ,N (Wn(k)))

RΓcr(Z1/R)l⊗L
RÂl,st,n

∼→ RΓcr(X1/(S1,El,st,n))
∼← RΓcr(X1)⊗L

W (k)
Âl,st,n.

By applying R limn we remove n. Composing with the Âl,st-linear extension of ιl from Theorem 2.12 we
get the strict quasi-isomorphism in Dϕ,N (CF̆ )

ε̂st,l : (RΓHK(X0
1 )⊗̂L

W (k)Âl,st)Q
∼→ (RΓcr(X1)⊗̂L

W (k)Âl,st)Q

Denote by

εHK
st,l := κ−1

l (ε̂st,l)
N-nilpκl : RΓHK(X0

1 )Qp
⊗̂F̆ ,ιB

+
st → RΓcr(X1)Qp

⊗̂B+
cr,ι

B+
st

the associated map in Dϕ,N (CB+
st

). It is a strict quasi-isomorphism. Now, choose m large enough so that
the action of Frm on Z1 factors as Z1

Fm−−→Z0
1 ↪→ Z1. Take π := (FmθX , FS,mθ1,m) ∈ Ψξ0 . It is easy to

see, using the uniqueness statement from Theorem 2.12, that the associated map εHK
st,ξ0,π equals εHK

st,l . In
particular, the map εHK

st is a strict quasi-isomorphism, as wanted.
The final claim of the theorem follows since εHK

st,λ = s∗λε
HK
st,l .

18Up to a contractible set of choices, of course.
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2.3.4. Comparison between Hyodo-Kato and de Rham cohomologies. Theorem 2.22 implies the following
Hyodo-Kato-to-de Rham quasi-isomorphisms:

Corollary 2.31. We have natural strict quasi-isomorphisms

εHK
dR : RΓHK(X0

1 )Qp⊗̂
R

F̆C
∼→ RΓcr(X1/S)Qp in D(CC),(2.32)

εHK
B+

dR

: RΓHK(X0
1 )Qp⊗̂

R

F̆B
+
dR
∼→ RΓcr(X1)Qp⊗̂

R

B+
cr
B+

dR in D(CB+
dR

).

They are compatible via the maps θ : B+
dR → C and RΓcr(X1)→ RΓcr(X1/S).

Proof. From Theorem 2.22 we have a natural strict quasi-isomorphism in Dϕ,N (CF̆ )

(2.33) εHK
st : RΓHK(X0

1 )Qp
⊗̂F̆ ,ιB

+
st
∼→ RΓcr(X1)Qp

⊗̂B+
cr,ι

B+
st.

Take the map B+
st → B+

cr given by sending log(λp) 7→ 0. It is not Galois equivariant but this will not
be a problem for us. Applying it to the quasi-isomorphism (2.33), which is B+

st-linear, we get a strict
quasi-isomorphism in D(CB+

cr
)

(2.34) εHK
cr : RΓHK(X0

1 )Qp
⊗̂R

F̆B
+
cr
∼→ RΓcr(X1)Qp

.

We tensor it now over B+
cr with C. By Lemma 2.2, we obtain the strict quasi-isomorphism in D(CC)

(2.35) ε̃HK
dR : RΓHK(X0

1 )Qp
⊗̂R

F̆C
∼→ RΓcr(X1)Qp

⊗̂L

B+
cr
C

and, composing with the strict quasi-isomorphism in D(CC)

RΓcr(X1)Qp
⊗̂L

B+
cr
C
∼→ RΓcr(X1/S)Qp

,

the quasi-isomorphism εHK
dR from our corollary. We note that εHK

dR is compatible with the Galois action
because σ(log(λp))− log(λp) ∈ Ker θ.

Proceeding as above we get the strict quasi-isomorphism in D(CB+
cr

)

(2.36) ε̃HK
dR : RΓHK(X0

1 )Qp
⊗̂R
F̆ (B+

cr/F
i)
∼→ RΓcr(X1)Qp

⊗̂L

B+
cr

(B+
cr/F

i), i ≥ 0.

Taking R limi of both sides gives us now the second strict quasi-isomorphism of the theorem. �

3. B+
dR-cohomology

This section is devoted to the definitions of rigid analytic and overconvergent B+
dR-cohomologies

RΓdR(X/B+
dR), for X ∈ SmC or X ∈ Sm†C , and to the study of their basic properties. These co-

homologies are replacements for RΓdR(X)⊗̂R

CB
+
dR which does not exist since there is no continuous

ring morphism C → B+
dR although K is naturally a subring of B+

dR: if X is defined over K, then
RΓdR(X/B+

dR) ' RΓdR(X)⊗̂R

KB+
dR. In general, we have the relation RΓdR(X/B+

dR)⊗̂R

B+
dR
C ' RΓdR(X)

(see Proposition 3.13 and Proposition 3.29 for this comparison and analogous results concerning filtra-
tions).

In the next chapter, using the Hyodo-Kato map, we will prove that, if X ∈ SmC is partially proper,
then the rigid analytic and overconvergent B+

dR-cohomologies give the same result: if X† is the asso-
ciated dagger variety, the natural map RΓdR(X†/B+

dR) → RΓdR(X/B+
dR) is a strict quasi-isomorphism

(Corollary 4.32).
Our rigid analytic B+

dR-cohomology is defined by, locally, Hodge-completing absolute crystalline co-
homology, but it gives the same object (see Proposition 3.27) as the constructions of Bhatt-Morrow-
Scholze [10] and Guo [30] via the infinitesimal site.

3.1. CliffsNotes. For a quick reference, we will recall now some results from [20] and add few comple-
ments.
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3.1.1. Review. We start with a review of [20].

Proposition 3.1. (Colmez-Nizioł, [20, Th. 1.1])

(1) Dagger varieties: To any smooth dagger variety X over L = K,C there are naturally associated:
(a) A pro-étale cohomology RΓproét(X,Qp(r)) ∈ D(CQp

), r ∈ Z.
(b) For L = C, a K-valued rigid cohomology RΓrig,K(X) ∈ D(CK) and a natural strict quasi-

isomorphism19 in D(CK)

RΓrig,K(X)⊗̂R

KC ' RΓdR(X).

This defines a natural K-structure on the de Rham cohomology20.
(c) A Hyodo-Kato cohomology21 RΓGK

HK(X) ∈ Dϕ,N (CFL), where FL = F if L = K and FL =

F nrif L=C. For L = C, we have natural Hyodo-Kato strict quasi-isomorphisms22 in, resp.,
D(CK),D(CC)

ιHK : RΓGK
HK(X)⊗̂FnrK

∼→ RΓrig,K(X), ιHK : RΓGK
HK(X)⊗̂R

FnrC
∼→ RΓdR(X).

(d) For L = K, a syntomic cohomology RΓGK
syn(X,Qp(r)) ∈ D(CQp

), r ∈ N, that fits into a
distinguished triangle

RΓGK
syn(X,Qp(r))−−→ [RΓGK

HK(X)]N=0,ϕ=pr ιHK−−→RΓdR(X)/F r,

and a natural period map in D(CQp
)

αr : RΓGK
syn(X,Qp(r))→ RΓproét(X,Qp(r)).

It is a strict quasi-isomorphism after truncation τ≤r.
(e) (Local-global compatibility) In the case X has a semistable weak formal model the above

constructions are compatible with their analogs defined using the model.
(2) Rigid analytic varieties: To any smooth rigid analytic variety X over L = K,C there are

naturally associated:
(a) For L = C, a K-valued convergent cohomology RΓconv,K(X) ∈ D(CK) and a natural strict

quasi-isomorphism in D(CC)

RΓconv,K(X)⊗̂R

KC ' RΓdR(X).

This defines a natural K-structure on the de Rham cohomology.
(b) A Hyodo-Kato cohomology RΓHK(X) ∈ Dϕ,N (CFL). For L = C, we have natural Hyodo-

Kato strict quasi-isomorphisms in, resp., D(CK),D(CC)

ιHK : RΓHK(X)⊗̂FnrK
∼→ RΓconv,K(X), ιHK : RΓHK(X)⊗̂R

FnrC
∼→ RΓdR(X).

(c) For L = K,C, a natural period map in D(CQp
)

αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r)).

It is a strict quasi-isomorphism after truncation τ≤r.

19See [20, Prop. 5.20] for the definition of the tensor product.
20By the same procedure one can define a Fnr-valued rigid cohomology RΓrig,Fnr (X) and a natural strict quasi-

isomorphism RΓrig,Fnr (X)⊗̂R
FnrC ' RΓdR(X).

21To distinguish this overconvergent Hyodo-Kato cohomology – which was defined by Grosse-Klönne – from the Hyodo-
Kato cohomology defined later in this paper we will add the subscript GK to the former. Similarly, we will distinguished
the induced overconvergent syntomic cohomology.

22See [20, Sec. 5.3.3] for the definition of tensor products.
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(d) (Local-global compatibility) In the case X has a semistable formal model the constructions
in (a), (b) are compatible with their analogs defined using the model. This is also the case
in (c), for L = K.

(3) Compatibility: For L = K,C, let X be a smooth dagger variety over L and let X̂ denote its
completion. Then:
(a) There exists a natural map [20, Sec. 3.2.4] in D(CQp

)

ιproét : RΓproét(X,Qp(r))→ RΓproét(X̂,Qp(r)) r ∈ Z.

It is a strict quasi-isomorphism if X is partially proper.
(b) There exists natural maps in, resp., Dϕ,N (CFL), DF (CFL)

RΓGK
HK(X)→ RΓHK(X̂), RΓdR(X)→ RΓdR(X̂).

Here DF (CFL) is the filtered ∞-category of D(CFL)23. If X is partially proper, the second
map is a strict quasi-isomorphism; the first map is a quasi-isomorphism if L = K or if X
comes from a dagger variety defined over a finite extension of K.

(c) For L = K, there is a natural map in D(CQp)

ιGK : RΓGK
syn(X,Qp(r))→ RΓsyn(X̂,Qp(r))

and the following diagram commutes

RΓGK
syn(X,Qp(r))

αr //

ιGK

��

RΓproét(X,Qp(r))

ιproét
��

RΓsyn(X̂,Qp(r))
αr // RΓproét(X̂,Qp(r))

Remark 3.2. (i) Below, in Section 6.2.2, we will define the overconvergent period map in 1d over C
and, in Proposition 6.8, we will remove the condition L = K in 3c. To do this we could not use the
constructions from [17] and [20]: the first one was not functorial enough, the second one, using a “killing
nilpotents” trick, just did not transfer to the geometric setting. This depressing state of affairs made us
take a break of more than a year from the project before coming back to it with an approach that adapts
to the analytic setting an early construction by Beilinson of the Hyodo-Kato quasi-isomorphism.

(ii) The local-global compatibility for rigid analytic geometric syntomic cohomology also holds. This
will be proved in Proposition 5.3 using local-global compatibility for Hyodo-Kato and B+

dR-cohomologies.

3.1.2. Complements. Now we pass to complementary results.
(1) η-étale descent. The following proposition should have been included in [20].

Proposition 3.3. Let (B, F ) be a Beilinson base24 of an essentially small site V . Then:

(1) The functor F : B → V is continuous.
(2) F induces an equivalence of topoi

Sh(B)
∼→ Sh(V ).

(3) Let D be a presentable ∞-category. Then F induces an equivalence of ∞-categories

Shhyp(B,D)
∼→ Shhyp(V ,D)

of hypersheaves.

23Recall that, for a stable ∞-category C having sequential limits, the filtered ∞-category DF (C ) was defined in [32,
Thm. 2.5]. It is a stable ∞-category.

24Such a base was introduced by Beilinson in [2, 2.1]; it is a slightly more general notion than that of a Verdier base
which is commonly used.
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Proof. Claims (1) and (2) were shown in the proof of [20, Prop. 2.2]. For claim (3), recall that, for a site
C , the ∞-category of hypersheaves is defined as

Shhyp(C ,D) := Shhyp(C ,Ani)⊗D ,

where Ani is the ∞-category of anima and ⊗ denotes the tensor product of ∞-categories [37, Sec. 4.8.1].
Hence it suffices to prove claim (3) for the∞-category of anima and in that case it follows easily from (2)
and the fact that the Brown-Joyal-Jardine model structure on simplicial presheaves presents the∞-topos
of hypercomplete sheaves (see [36, Prop. 6.5.2.14]). �

Remark 3.4. To lighten up the terminology, in the rest of the paper we will call "hypersheaves" "sheaves"
and a "hypersheafification" a "sheafification".

Remark 3.5. The example most relevant for this paper is the following: V = SmC,ét, the site of smooth
rigid analytic varieties over C equipped with the étale topology. V has a Beilinson base (M , Fη), where
M is the category of basic semistable formal models M ss,b

C or semistable formal models M ss
C and Fη is

the forgetful functor X → Xη from formal schemes to their rigid analytic generic fibers (see [20, Prop.
2.8]). We have similar constructions for the site V = Sm†C,ét of smooth dagger varieties over C with the
corresponding categories M †,ss,b

C and M †,ss
C of basic semistable and semistable weak formal models.

If F ∈ D , for a presentable ∞-category D , is a presheaf on a Beilinson base B, then the presheaf on
V defined by

U 7→ (F a(U) := L colim F (V•)),

where the colimit is taken over hypercoverings25 V• → U from B, defines a hypersheaf on V . In the
context of the above example of a Beilinson base we call it η-étale descent of F .

(2) The following corollary removes the condition L = K in 3b of Proposition 3.1 and could have been
included in [20].

Corollary 3.6. Let X be a smooth partially proper dagger variety over C and let X̂ denote its completion.
Let W be a Fréchet space over F̆ . Then the natural map26 in D(CF̆ )

RΓGK
HK(X)⊗̂R

FnrW → RΓHK(X̂)⊗̂R

FnrW

is a strict quasi-isomorphism.

Proof. Find an admissible covering of X by dagger affinoids and then look at the set of their naive
interiors (a naive interior of a smooth dagger affinoid is a Stein subvariety whose complement is open
and quasi-compact27). By the definition of partially proper dagger varieties this is an admissible covering
of X as well. The individual varieties in the covering are partially proper and, moreover, are defined over
a finite extension of K. The latter fact is true because the corresponding rigid affinoids are defined over
a finite extension of K by Elkik’s theorem [22, Th. 7, Rem. 2] (the finite presentation condition there
is satisfied in our case by the finiteness theorems of Grauert-Remmert-Gruson and Gruson-Raynaud [38,
Th. 3.1.17, Th. 3.2.1]). Same can be said about the intersections of a finite number of them.

Now, taking the associated Čech cover and evaluating on it the morphism from the corollary we get a
strict quasi-isomorphism by point 3b of Proposition 3.1. We conclude by rigid analytic descent. �

(3) We will recall now a result from [20] together with a new proof (since the proof supplied in loc.
cit. is a bit sketchy). This proof will serve us as a template for proofs of analogous claims.

25Here and below, to simplify notation, we write F (V•) for lim F (V•).
26See the point (4) below for the reminder on the definition of the tensor products used.
27We have an analogous definition of a naive interior of a rigid analytic affinoid.
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Proposition 3.7. (Local-global compatibility, [20, Prop. 4.23]) Let X ∈ M ss,b
C . The natural map in

D(CK)

RΓconv,K(X1)→ RΓconv,K(XC)

is a strict quasi-isomorphism.

Proof. It suffices to show that, for any η-étale hypercovering U• of X from M ss,b
C , the natural map in

D(CK)

RΓconv,K(X1)→ RΓconv,K(U•,1)

is a strict quasi-isomorphism (modulo taking a refinement of U•). We may assume that in every degree of
the hypercovering we have a finite number of formal models. Passing to cohomology (H̃(−)-cohomology)
and then to a truncated hypercovering we can assume that all the formal schemes mod p and maps
between them that are involved are defined over a common field L (we will denote them with subscript
OL), a finite extension of K. We may leave that way the category of semistable models but we will still
be in the category of log-smooth models (with Cartier type reduction). We are reduced to showing that
the map

(3.8) α : RΓconv(XOL,1/SL)→ RΓconv(U•,OL,1/SL)

is a strict quasi-isomorphism.
Tensoring both sides of (3.8) with C over L we obtain a commutative diagram

RΓconv(XOL,1/SL)⊗̂R

LC

o
��

αC // RΓconv(U•,OL,1/SL)⊗̂R

LC

o
��

RΓdR(XC)
∼ // RΓdR(U•,C).

Since the bottom map is a strict quasi-isomorphism (by étale descent) so is the top map αC . We claim
that this, in turn, implies that the map α itself is a strict-quasi-isomorphism. Indeed, passing to fibers
of the horizontal arrows in the commutative diagram

RΓconv(XOL,1/SL)

��

α // RΓconv(U•,OL,1/SL)

��

RΓconv(XOL,1/SL)⊗̂R
LC

αC // RΓconv(U•,OL,1/SL)⊗̂R
LC,

we see that it suffices to prove the following claim:

if A ∈ D(CL) is a complex such that A⊗̂R

LC is strictly acyclic then A is strictly acyclic as well.

To show this, write C ' L⊕W , for a Banach space W ∈ CL, and conclude. �

(4) Let X be a smooth rigid analytic variety. In [20], we have considered a number of nonstandard
tensor products. For example, we have defined (see [20, 4.21]) in, resp., D(CK), D(CC):

RΓHK(X)⊗̂FnrK := L colim((RΓHK⊗FnrK)(U•,1)),

RΓHK(X)⊗̂R
FnrC := L colim((RΓHK⊗̂

R

FnrC)(U•,1)),

where the homotopy colimit is taken over affinoid η-étale hypercoverings U• from M ss,b
C . These tensor

products satisfy local-global compatibility. A fact that can be proved as in the following example:
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Proposition 3.9. (Local-global compatibility for tensor products) Let X ∈M ss,b
C . The canonical maps

in, resp., D(CK), D(CC)

RΓHK(X1)⊗̂FnrK → RΓHK(X)⊗̂FnrK,

RΓHK(X1)⊗̂R
FnrC → RΓHK(X)⊗̂R

FnrC

are strict quasi-isomorphisms.

Proof. For the second morphism, proceeding as in the proof of Proposition 3.7 and using its notation, we
reduce to showing that the canonical map in D(CC)

RΓHK(XOL,1)⊗̂R

FLC → RΓHK(U•,OL,1)⊗̂R

FLC

is a strict quasi-isomorphism. But this is clear since, via the Hyodo-Kato morphism, this map is strictly
quasi-isomorphic to the map in D(CC)

RΓdR(XC)→ RΓdR(U•,C),

which is a strict quasi-isomorphism.
For the first morphism, we proceed in the same way ending up with the strict quasi-isomorphism in

D(L)

RΓdR(XL)→ RΓdR(U•,L).

Passing to homotopy colimit over finite extensions of L in K, we finish the argument. �

Remark 3.10. (1) The local-global compatibility of nonstandard tensor products (see [20, 5.16]) also holds
for the dagger varieties and the Grosse-Klönne Hyodo-Kato cohomology. The proof of this fact is a simple
analog of the proof of Proposition 3.9.

(2) In Proposition 3.9 we can replace C with any Fréchet space B over F̆ . This requires just a slight
modification of the proof: pass from RΓHK(−)⊗̂R

FLB to (RΓGK
HK(−)⊗̂R

FLC)⊗̂R

FLB, use the Hyodo-Kato
morphism to pass to de Rham cohomology RΓdR((−)C)⊗̂R

FLB, use étale descent for de Rham cohomology,
and go back to RΓHK(−)⊗̂R

FLB via C ' FL ⊕W .

3.2. Geometric crystalline cohomology. Our rigid analytic B+
dR-cohomology will be defined locally

as a completion of the absolute crystalline cohomology. We will start then by recalling the definition of
the latter.

3.2.1. Relative crystalline cohomology. Let f : X1 → S1 be a map of log-schemes, with integral quasi-
coherent source. Suppose that f is the base change of a fine log-smooth log-scheme fL : Z1 → SL,1, by
the natural map θ : S1 → SL,1, for a finite extension L/K. That is, we have a map θL : X1 → Z1 such
that the square (f, fL, θ, θL) is Cartesian. Such data Σ1 := {(L, fL, θL)} form a filtered set.

(a) C-version. Let A rel
cr be the η-étale sheafification of the presheaf X 7→ RΓcr(X /S)Qp on M ss,b

C .
Note that RΓcr(X /S)Qp ∈ DF (CC). For X ∈ SmC , we set28 in DF (CC)

RΓrel
cr (X) := RΓét(X,A

rel
cr ).

It is a filtered dg C-algebra equipped with a continuous action of GK if X is defined over K. It is equipped
with the topology induced from the topology of the RΓcr(X /S)’s. Since the models X are log-smooth
over S, we have natural (strict) quasi-isomorphisms (the first one in the category of sheaves with values
in DF (CC), the second one – in DF (CC)).

(3.11) A rel
cr ' AdR, RΓrel

cr (X) ' RΓdR(X).

28Here we think of X as an η-étale sheaf on M ss,b
C .
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(b) K-version. Let Acr,K be the η-étale sheafification of the presheaf X 7→ RΓcr,K(X ) on M ss,b
C ,

where we set in D(CK)

RΓcr,K(X ) := L colimΣ1 RΓcr(Z1/SL)Qp .

For X ∈ SmC , we set RΓcr,K(X) := RΓét(X,Acr,K) in D(CK). It is a dg K-algebra equipped with
a continuous action of GK if X is defined over K (this action is smooth if X is quasi-compact). It is
equipped with the topology induced from the topology of the RΓcr(Z1/SL)’s. There are natural continuous
morphisms (the first one in the category of sheaves with values in D(CK), the second one – in D(CK))

Acr,K → A rel
cr , RΓcr,K(X)→ RΓrel

cr (X).

Lemma 3.12. (1) (Local-global compatibility) Let X ∈M ss,b
C . The natural map in D(CK)

RΓcr,K(X )
∼→ RΓcr,K(XC)

is a strict quasi-isomorphism.
(2) (Product formula) For X ∈ SmK , the natural map in D(CK)

RΓdR(X)⊗̂KK → RΓcr,K(XC)

is a strict quasi-isomorphism.

Proof. Since, for Y ∈M ss,b
C , the natural map in D(CK)

RΓconv,K(Y )→ RΓcr,K(Y )

is a strict quasi-isomorphism, it induces a strict quasi-isomorphism in D(CK)

RΓconv,K(X)
∼→ RΓcr,K(X), X ∈ SmC .

Hence our lemma follows from analogous claims for convergent K-cohomology which are known (see [20,
the proof of Prop. 4.23] or Proposition 3.7). �

3.2.2. Absolute crystalline cohomology. Let X ∈M ss
C . Recall that we have the absolute crystalline coho-

mology RΓcr(X )Qp ∈ DFϕ(CB+
cr

) equipped with the Hodge filtration F rRΓcr(X )Qp := RΓcr(X ,J [r])Qp ,
for r ≥ 0. Let Acr and F rAcr, r ≥ 0, be the η-étale sheafifications of the presheaves X 7→ RΓcr(X )Qp

and X 7→ RΓcr(X ,J [r])Qp , respectively, on M ss
C . For X ∈ SmC , we set in DFϕ(CB+

cr
)

RΓcr(X) := RΓét(X,Acr), F rRΓcr(X) := RΓét(X,F
rAcr), r ≥ 0.

It is a dg filtered B+
cr-algebra equipped with a continuous action of GK if X is defined over K. It is

equipped with the topology induced from the topology of the RΓcr(X ,J [r])Qp
’s.

The local-global comparison requires the Hyodo-Kato quasi-isomorphism and will be proven in Lemma
5.2 below (just the nonfiltered case).

3.3. Rigid analytic B+
dR-cohomology. We will define now rigid analytic B+

dR-cohomology, list its basic
properties, and compare it with already existing definitions.

3.3.1. Definition of rigid analytic B+
dR-cohomology. Let X ∈ M ss

C . To define rigid analytic B+
dR-

cohomology, we start with the absolute crystalline cohomology RΓcr(X )Qp and complete it with respect
to the Hodge filtration F rRΓcr(X )Qp , r ≥ 0:

RΓcr(X )Q̂p
:= R limr(RΓcr(X )Qp

/F r), RΓcr(X ,J [r])Q̂p
:= R limj≥r(RΓcr(X ,J [r])Qp

/F j).

This is a dg filtered B+
dR-algebra, hence a complex in DF (CB+

dR
). The corresponding η-étale sheafi-

fications on M ss
C we will denote by F rAĉr , r ≥ 0. We have canonical maps κ : F rAcr → F rAĉr ,

r ≥ 0. Moreover, the canonical map ϑ : F rRΓcr(X )Qp → F rRΓcr(X /S)Qp , compatible with the map
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θ : B+
cr → C, extends to a map ϑ : F rRΓcr(X )Q̂p

→ F rRΓcr(X /S)Qp , which, in turn, globalizes to a

map ϑ : F rAĉr → F rA rel
cr .

For X ∈ SmC , define the B+
dR-cohomology in DF (CB+

dR
):

RΓdR(X/B+
dR) := RΓét(X,Aĉr ), F rRΓdR(X/B+

dR) := RΓét(X,F
rAĉr ), r ≥ 0.

This is a dg filtered B+
dR-algebra, equipped with a continuous action of GK if X is defined over K. It is

equipped with the topology induced from the topology of the RΓcr(X ,J [r])Q̂p
’s.

The local-global comparison requires product formula and will be proven in Lemma 3.23 below.
We have canonical maps (the first one in DF (CB+

dR
), the second one – in D(CB+

dR
))

κ : RΓcr(X)→ RΓdR(X/B+
dR),

ϑ : F rRΓdR(X/B+
dR)→ F rRΓdR(X), r ≥ 0.

It is immediate from the definitions that the first map yields a strict quasi-isomorphism in DF (CB+
dR

)

κ : RΓcr(X)̂ ∼→ RΓdR(X/B+
dR),

where we set RΓcr(X)̂ := R limr(RΓcr(X)/F r) in DF (CB+
dR

).

3.3.2. Comparison results. (1) We start with a comparison of B+
dR- and de Rham cohomologies.

(i) Projection from B+
dR-cohomology to de Rham cohomology.

Proposition 3.13. Let X ∈ SmC .

(1) We have a natural strict quasi-isomorphism in DF (CC)

ϑ : RΓdR(X/B+
dR)⊗̂R

B+
dR
C
∼→ RΓdR(X).

(2) More generally, for r ≥ 0, we have a natural distinguished triangle in D(CB+
dR

)

(3.14) F r−1RΓdR(X/B+
dR)

t−−→F rRΓdR(X/B+
dR)

ϑ−−→F rRΓdR(X)

(3) For r ≥ 0, we have a natural distinguished triangle in D(CB+
dR

)

(3.15) F r+1RΓdR(X/B+
dR)→ F rRΓdR(X/B+

dR)
βX→
⊕
i≤r

RΓ(X,ΩiX)(r − i)[−i]

Proof. In the first claim, the tensor product is simply defined as the cofiber of the map in D(CB+
dR

)

RΓdR(X/B+
dR)

t−−→RΓdR(X/B+
dR).

Hence it suffices to show that we have the distinguished triangle in D(CB+
dR

)

RΓcr(X/B
+
dR)

t−−→RΓcr(X/B
+
dR)

ϑ−−→RΓdR(X).

Étale locally this translates into the triangle in D(CB+
dR

)

RΓcr(X )Q̂p

t−−→RΓcr(X )Q̂p

ϑ−−→RΓcr(X /S)Qp
,

where X = XL,C , for a semistable affine model XOL over a finite extension L of K.
This triangle fits into a commutative diagram:

(3.16) RΓcr(X )Q̂p

t // RΓcr(X )Q̂p

ϑ // RΓcr(X /S)Qp

RΓdR(XL)⊗̂R

LB
+
dR

1⊗t //

o ι̂BK

OO

RΓdR(XL)⊗̂R
LB

+
dR

1⊗θ //

o ι̂BK

OO

RΓdR(XL)⊗̂R
LC.

o
OO
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Here the vertical maps ι̂BK := R limr ιBK,r, with ιBK,r defined as the composition

ιBK,r : (RΓdR(XL)⊗̂R
LB

+
dR)/F r

∼→ (RΓcr(XOL/SL)Qp
⊗̂R
LRΓcr(S/SL)Qp

)/F r(3.17)
∪−→
∼

RΓcr(X /SL)Qp
/F r

∼← RΓcr(X )Qp
/F r,

where we set

(3.18) F r(RΓdR(XL)⊗̂R
LB

+
dR) := R lim(O(XL)⊗̂R

LF
rB+

dR → Ω1(XL)⊗̂R
LF

r−1B+
dR → · · · ).

The first quasi-isomorphism in (3.17) follows from the fact that XOL is log-smooth over OL and that,
more generally, derived de Rham complex computes crystalline cohomology for log-syntomic schemes
(both Hodge completed) by [4, 1.9.2]. The second quasi-isomorphism is just log-smooth base change
for crystalline cohomology (more explicitly, one can proceed as in [47, Prop. 4.5.4]). And the third
quasi-isomorphism is a formal scheme version of [41, Cor. 2.4] (the proof in loc. cit. goes through in our
setting).

The bottom row in diagram (3.16) is a distinguished triangle. It follows that the top row in our
diagram is a distinguished triangle as well, as wanted.

The second claim, étale locally, reduces to showing that the triangle

F r−1RΓcr(X )Q̂p

t−−→F rRΓcr(X )Q̂p

ϑ−−→F rRΓcr(X /S)Qp
,

where X = XL,C , for a semistable affine model XOL over a finite extension L of K, is distinguished.
This triangle fits into a commutative diagram:

F r−1RΓcr(X )Q̂p

t // F rRΓcr(X )Q̂p

ϑ // F rRΓcr(X /S)Qp

F r−1(RΓdR(XL)⊗̂R

LB
+
dR)

1⊗t //

o ι̂BK

OO

F r(RΓdR(XL)⊗̂R

LB
+
dR)

1⊗θ //

o ι̂BK

OO

F r(RΓdR(XL)⊗̂R

LC).

o
OO

The bottom row is a distinguished triangle: use the expression (3.18) to reduce to showing that, for
r − 1 ≥ i ≥ 0, we have a strict quasi-isomorphism

t : Ωi(XL)⊗̂R

LF
r−1−iB+

dR
∼→ Ωi(XL)⊗̂R

LF
r−iB+

dR

and the triangle

Ωr(XL)⊗̂R

LB
+
dR

t−−→Ωr(XL)⊗̂R

LB
+
dR → Ωr(XL)⊗̂R

LC

is distinguished. But the first claim is clear and the second claim was just proved in (1).
The third claim, étale locally, reduces to identifying the graded term in the distinguished triangle

F r+1RΓcr(X )Q̂p
→ F rRΓcr(X )Q̂p

→ grr RΓcr(X /S)Qp
,

where X = XL,C , for a semistable affine model XOL over a finite extension L of K. That is, we want
to show that

grr RΓcr(X /S)Qp
'
⊕
i≤r

Ωi(XL)⊗̂R
Lt
r−iC[−i].

The above triangle fits into a commutative diagram:

F r+1RΓcr(X )Q̂p

// F rRΓcr(X )Q̂p

// grr RΓcr(X /S)Qp

F r+1(RΓdR(XL)⊗̂R

LB
+
dR) //

o ι̂BK

OO

F r(RΓdR(XL)⊗̂R
LB

+
dR) //

o ι̂BK

OO

grr(RΓdR(XL)⊗̂R
LB

+
dR).

o fX

OO
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Using expression (3.18) we get

grr(RΓdR(XL)⊗̂R

LB
+
dR)

gX−−→
∼

R lim(O(XL)⊗̂R

Lt
rC

0→ Ω1(XL)⊗̂R

Lt
r−1C

0→ · · · 0→ Ωr(XL)⊗̂R

Lt
0C)

'
⊕
i≤r

Ωi(XL)⊗̂R
Lt
r−iC[−i],

as wanted. The global map βX is defined by globalizing the local maps βX := gX f−1
X . �

Remark 3.19. (1) The above proof shows that we have a distinguished triangle

Aĉr
t−−→Aĉr

ϑ−−→A rel
cr .

(2) The maps ι̂BK above can be defined in a more general set-up, where XOL is assumed to be just
log-syntomic over SL. It is again a strict quasi-isomorphism and the proof of this claim is not much
different than in the log-smooth case: The fact that the second map in the definition of ιBK,r in (3.17)
is a strict quasi-isomorphism can be seen by unwinding both sides of the cup product map: one finds a
Künneth morphism for certain de Rham complexes. It is an integral quasi-isomorphism because these
complexes are "flat enough" which follows from the fact that the maps OC,n → OL,n and XOL,n → OL,n,
for n ≥ 0, are log-syntomic (see the proof of [47, Prop. 4.5.4] for a similar argument). The third map in
(3.17) is a strict quasi-isomorphism (integrally, a quasi-isomorphism up to a constant dependent on L)
by an argument analogous to the one given in the proof of [41, Cor. 2.4].

(ii) Product formula. Let X ∈ SmK . The morphisms ι̂BK from Remark 3.19 induce a morphism29 in
DF (CB+

dR
)

ιBK : RΓdR(X)⊗̂R

KB+
dR → RΓdR(XC/B

+
dR).

Lemma 3.20. The morphism ιBK is a strict quasi-isomorphism in DF (CB+
dR

).

Remark 3.21. The filtration on RΓdR(X)⊗̂R

KB+
dR is defined by the formula

F r(RΓdR(X)⊗̂R

KB+
dR) := L colim(F r(RΓdR⊗̂

R

KB+
dR)(U•)),

where the homotopy colimit is taken over étale affinoid hypercoverings U• of X and, for an affinoid U ,

F r(RΓdR(U)⊗̂R

KB+
dR) := R lim(O(U)⊗̂R

KF
rB+

dR → Ω1(U)⊗̂R

KF
r−1B+

dR → · · · ).

Since RΓdR(X) satisfies filtered étale descent30, it is easy to see that so does RΓdR(X)⊗̂R

KB+
dR.

Proof. We may argue étale locally and assume that X = XL, for a semistable affine model XOL , for a
finite extension L of K. Then XC = XL ×K L. We need to show that the map

ιBK : RΓdR(XL)⊗̂R
KB+

dR → (RΓcr(XOL/SK)Qp
⊗̂R
KB+

dR)̂ ι̂BK−−→
∼

RΓcr(XOL ×OK OC)Q̂p

is a filtered strict quasi-isomorphism. For that, since the base change map

RΓcr(XOL/SK)Q̂p
→ RΓcr(XOL/SL)Q̂p

is a filtered strict quasi-isomorphism, it suffices to show that so is the canonical map

(3.22) RΓcr(XOL/SL)Qp⊗̂
R

KB+
dR→R limr(RΓcr(XOL/SL)Qp⊗̂

R

KB+
dR)/F r.

But we can write (the differentials are over L):

F j(RΓcr(XOL/SL)Qp
⊗̂R
KB+

dR) = R lim(O(XL)⊗̂R

KF
jB+

dR → Ω1(XL)⊗̂R

KF
j−1B+

dR → · · · )

F j(RΓcr(XOL/SL)Qp
⊗̂R

KB+
dR)/F r = R lim(O(XL)⊗̂R

K(F jB+
dR/F

r)→ Ω1(XL)⊗̂R
K(F j−1B+

dR/F
r−1)→ · · · ).

29See the proof of Lemma 3.20 for details.
30Use that the varieties are smooth and we have étale descent for the structure sheaf.
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And now we can argue degreewise. But then, for s ≥ 0, we have

R limr(Ω
i(XL)⊗̂R

K(F sB+
dR/F

r)) ' Ωi(XL)⊗̂R

KR limr(F
sB+

dR/F
r) ' Ωi(XL)⊗̂R

KF
sB+

dR.

The second quasi-isomorphism follows from the fact that we have F sB+
dR/F

r ' Cr−s as topological
K-vector spaces and the maps F sB+

dR/F
r+i → F sB+

dR/F
r, i ≥ 0, are surjective. This finishes the proof.

�

(2) Now we pass to comparisons between B+
dR-cohomology and crystalline cohomology.

Lemma 3.23. (Local-global compatibility) Let X ∈ M ss,b
C and let r ≥ 0. The canonical map in

D(CB+
dR

)

κ : F rRΓcr(X )Q̂p
→F rRΓdR(XC/B

+
dR)

is a strict quasi-isomorphism.

Proof. We may argue étale locally on X . Assume thus that X 'XOL,OC , for a semistable affine model
XOL over SL, [L : K] <∞. From the product quasi-isomorphisms from Lemma 3.20 and its proof (where
we took L = K) we get the commutative diagram

F rRΓcr(X )Q̂p

κ // F rRΓdR(XC/B
+
dR)

F r(RΓcr(XOL)Qp
⊗̂R

LB
+
dR)

∼ //

oιBK

OO

F r(RΓdR(XL)⊗̂R

LB
+
dR)

oιBK

OO

and the two vertical strict quasi-isomorphisms. The bottom horizontal strict quasi-isomorphism follows
from the local-global property of F r(RΓdR(XL)⊗̂R

LB
+
dR) (see Remark 3.21). �

Lemma 3.24. The canonical map in D(CB+
dR

)

κ⊗ 1 : RΓcr(X)⊗̂R

B+
cr
B+

dR
∼→ RΓdR(X/B+

dR), r ≥ 0,

is a strict quasi-isomorphism.

Here, we set

RΓcr(X)⊗̂R

B+
cr
B+

dR := L colim((RΓcr⊗̂
R

B+
cr
B+

dR)(U•)),

where the homotopy colimit is taken over η-étale quasi-compact hypercoverings U• from M ss,b
C (that is,

hypercoverings U• such that every Un, n ≥ 0, is quasi-compact).

Proof. It suffices to show that, for an affine X ∈M ss,b
C , the canonical map

R limr(RΓcr(X )Qp⊗̂
R

B+
cr

(B+
cr/F

r))→R limr(RΓcr(X )Qp/F
r)

is a strict quasi-isomorphism. Take a log-smooth lifting Y of X over Spf(Acr). We have

(RΓcr(X )Qp
⊗̂R

B+
cr

(B+
cr/F

r) ' (O(Y )Qp
⊗̂R

B+
cr

(B+
cr/F

r)→ Ω1
Y /Acr,Qp

⊗̂R
B+

cr
(B+

cr/F
r)→ · · · ),(3.25)

RΓcr(X )Qp/F
r ' (O(Y )Qp⊗̂

R

B+
cr

(B+
cr/F

r)→ Ω1
Y /Acr,Qp

⊗̂R

B+
cr

(B+
cr/F

r−1)→ · · · )

The claim in the lemma is now clear. �
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3.3.3. History. Let X ∈ SmC .
(i) Recall that Bhatt-Morrow-Scholze in [10, Sec. 13] introduced B+

dR-cohomology of X, which they
call31 crystalline cohomology of X over B+

dR. We will denote it by RΓBMS
dR (X/B+

dR) and see as a complex
in D(CB+

dR
). As they mention [10, Rem. 13.2], morally speaking, it is the infinitesimal cohomology of X

over the embedding given by the map θ : B+
dR → C. It is defined though in such a way that it is easy to

compare it with Ainf -cohomology. Similarly here, we have defined RΓdR(X/B+
dR) in such a way that it

is easy to compare it with crystalline cohomology over Acr.
(ii) The infinitesimal site definition of RΓBMS

dR (X/B+
dR) was carried out by Guo in [30, Sec. 7.2] (see also

[31]). We will denote this version ofB+
dR-chomology by RΓGuo

dR (X/B+
dR) ∈ DF (CB+

dR
) (RΓGuo

dR (X/B+
dR) :=

RΓinf(X/B
+
dR)). It comes equipped with a Hodge filtration (which was ignored in [10]). Moreover, Guo

constructed a natural quasi-isomorphism (see [30, Cor. 1.2.9., Th. 1.2.7])

(3.26) RΓGuo
dR (X/B+

dR) ' RΓBMS
dR (X/B+

dR).

(iii) Our construction of B+
dR-cohomology is compatible with the above constructions:

Proposition 3.27. Let X ∈ SmC .

(1) There is a natural quasi-isomorphism in D(CB+
dR

)

RΓdR(X/B+
dR) ' RΓBMS

dR (X/B+
dR).

(2) There is a natural quasi-isomorphism in DF (CB+
dR

)

RΓdR(X/B+
dR) ' RΓGuo

dR (X/B+
dR).

Proof. Claim (1) follows from claim (2) and the quasi-isomorphism (3.26).
To prove claim (2), recall that RΓdR(X/B+

dR) is defined by taking, étale locally, the Hodge completed
absolute crystalline cohomology and then globalizing. More specifically, let X ∈M ss

C . We have

RΓdR(XC/B
+
dR) ' RΓcr(X )Q̂p

:= R limr(RΓcr(X )Qp
/F r),

F rRΓdR(XC/B
+
dR) ' RΓcr(X ,J [r])Q̂p

:= R limj≥r(RΓcr(X ,J [r])Qp
/F j).

On the other hand RΓGuo
dR (X/B+

dR) is defined as the infinitesimal cohomology RΓinf(X/B
+
dR) equipped

with its natural Hodge filtration. It satifies étale descent.
This means that, if X is affine and (exactly and) closely embedded in an affine formal log-scheme Y ,

log-smooth over Acr, then in DF (CB+
dR

)

RΓdR(XC/B
+
dR)/F r ' R lim((DX (Y )/F r)Qp

→ ((DX (Y )/F r−1)⊗̂O(Y )Ω
1
Y /Acr

)Qp
→ · · · ),

where DX (Y ) is the PD-envelope of X in Y and the tensor product is p-adic. On the other hand, we
have in DF (CB+

dR
)

RΓinf(XC/B
+
dR)/F r ' R lim(DXC

(YC)/F r → (DXC
(YC)/F r−1)⊗̂O(YC)Ω

1
YC/B

+
dR

→ · · · ),

where DXC
(YB) is the inf-envelope of XC in YB := YB+

dR
. Since Acr,Qp/F

i ' B+
dR/F

i, we have a natural
map in DF (CB+

dR
)

RΓdR(XC/B
+
dR)/F r → RΓinf(XC/B

+
dR)/F r.

This can be globalized to a map in DF (CB+
dR

)

RΓdR(X/B+
dR)/F r → RΓGuo

dR (X/B+
dR)/F r.

31We take here the étale version studied in [13, Sec. 6.2] and not the original analytic version. The two versions are
quasi-isomorphic by [13, Sec. 6.2].
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We claim that it is a strict quasi-isomorphism. Indeed, it suffices to show this locally so we may assume
that we have the data of integral models X ,Y as above and, moreover, Y is a lifting of X . Then

RΓdR(XC/B
+
dR)/F r ' R lim(O(YB)/F r → ((O(Y )/F r−1)⊗̂O(Y )Ω

1
Y /Acr

)Qp → · · · ),

RΓGuo
dR (XC/B

+
dR)/F r ' R lim(O(YB)/F r → (O(YB)/F r−1)⊗̂O(YB)Ω

1
YB/B

+
dR

→ · · · ).

But we have the topological isomorphisms

((O(Y )/F i)⊗̂O(Y )Ω
j
Y /Acr

)Qp
' (O(YB)/F i)⊗̂O(YB)Ω

j
YB,i/Acr,Qp,i

(O(YB)/F i)⊗̂O(YB)Ω
j

YB/B
+
dR

' (O(YB)/F i)⊗̂O(YB)Ω
j

YB,i/B
+
dR,i

,

where (−)i denotes moding out by F i. Hence the strict quasi-isomorphism

RΓdR(XC/B
+
dR)/F r

∼→ RΓGuo
dR (XC/B

+
dR)/F r,

as wanted.
Having the strict quasi-isomorphism

RΓdR(X/B+
dR)/F r

∼→ RΓGuo
dR (X/B+

dR)/F r,

we may take R limr of both sides to obtain the strict quasi-isomorphism

RΓdR(X/B+
dR)

∼→ RΓGuo
dR (X/B+

dR).

This is because we have

RΓdR(X/B+
dR)

∼→ R limr(RΓdR(X/B+
dR)/F r), RΓGuo

dR (X/B+
dR)

∼→ R limr(RΓGuo
dR (X/B+

dR)/F r)

as can be easily seen by a computation similar to the one used in the proof of Lemma 3.20. Finally, to
obtain the strict quasi-isomorphism

F rRΓdR(X/B+
dR)

∼→ F rRΓGuo
dR (X/B+

dR), r ≥ 0,

we use the distinguished triangles

F rRΓdR → RΓdR → RΓdR/F
r

for both cohomologies. �

3.4. Overconvergent B+
dR-cohomology. We define overconvergent B+

dR-cohomology via presentations
of dagger structures.

3.4.1. Definition of overconvergent B+
dR-cohomology. Let X be a smooth dagger affinoid over C. Let

pres(X) = {Xh} be a presentation of X (see [20, Sec. 3.2.1] for relevant definitions). Define in DF (CB+
dR

)

F rRΓ†dR(X/B+
dR) := L colimh F

rRΓdR(Xh/B
+
dR), r ≥ 0.

For r ≥ 0, the étale sheafification32 of F rRΓ†dR(X/B+
dR) on Sm†C gives us a sheaf F rAĉr . The filtered

B+
dR-cohomology in DF (CB+

dR
) of a smooth dagger variety X over C is defined as

F rRΓdR(X/B+
dR) := RΓét(X,F

rAĉr ), r ≥ 0.

Remark 3.28. If X is a smooth dagger affinoid over C the above two definitions of B+
dR-cohomology

RΓ†dR(X/B+
dR) and RΓdR(X/B+

dR) agree. This will be shown in Corollary 4.28 below by reduction to
Hyodo-Kato cohomology via the Hyodo-Kato quasi-isomorphism.

32See [48, Def. 2.1] for the definition of étale topology of dagger varieties.
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3.4.2. Properties of overconvergent B+
dR-cohomology. We will now prove properties of overconvergent

B+
dR-cohomology that do not require Hyodo-Kato cohomology.
We have canonical maps in, resp., D(CB+

dR
) and DF (CK)

ϑ : F rRΓdR(X/B+
dR)→ F rRΓdR(X), X ∈ Sm†C , r ≥ 0,

ιBK : RΓdR(X)→ RΓdR(XC/B
+
dR), X ∈ Sm†K ,

induced by their rigid analytic analogs.

Proposition 3.29. (1) (Projection) Let X ∈ Sm†C .
(a) The map ϑ defined above yields a natural strict quasi-isomorphism in DF (CC)

ϑ : RΓdR(X/B+
dR)⊗̂R

B+
dR
C
∼→ RΓdR(X).

(b) More generally, for r ≥ 0, we have a natural distinguished triangle in D(CB+
dR

)

(3.30) F r−1RΓdR(X/B+
dR)

t−−→F rRΓdR(X/B+
dR)

ϑ−−→F rRΓdR(X)

(c) For r ≥ 0, we have a natural distinguished triangle in D(CB+
dR

)

(3.31) F r+1RΓdR(X/B+
dR)→ F rRΓdR(X/B+

dR)→
⊕
i≤r

RΓ(X,ΩiX)(r − i)[−i]

(2) (Product formula) Let X ∈ Sm†K . The map ιBK defined above yields a natural quasi-isomorphism
in DF (CB+

dR
)

ιBK : RΓdR(X)⊗̂R

KB+
dR → RΓdR(XC/B

+
dR).

See Remark 3.32 below for the definition of the tensor product.
(3) (t-completeness) The canonical map in DF (CB+

dR
)

RΓdR(X/B+
dR)→ R limr(RΓdR(X/B+

dR)⊗̂R

B+
dR

(B+
dR/F

r))

is a strict quasi-isomorphism.

Remark 3.32. In Proposition 3.29 (2), the filtration on RΓdR(X)⊗̂R

KB+
dR is defined by the formula

F r(RΓdR(X)⊗̂R

KB+
dR) := L colim(F r(RΓdR⊗̂

R

KB+
dR)(U•)),

where the homotopy colimit is taken over étale dagger affinoid hypercoverings U• of X and, for a smooth
dagger affinoid U ,

F r(RΓdR(U)⊗̂R
KB+

dR) := R lim(O(U)⊗̂R
KF

rB+
dR → Ω1(U)⊗̂R

KF
r−1B+

dR → · · · ).

In particular, if r = 0, RΓdR(U)⊗̂R

KB+
dR is just the usual projective tensor product.

Proof. To prove the first projection formula in (1) it suffices to argue locally for the dagger cohomologies.
So we may assume that X is a smooth dagger affinoid with the presentation {Xh}. We need to show
that the projection

ϑ : RΓ†dR(X/B+
dR)⊗̂R

B+
dR
C
∼→ RΓ†dR(X)

is a strict quasi-isomorphism. We can write this projection more explicitly as the composition

RΓ†dR(X/B+
dR)⊗̂R

B+
dR
C ' (L colimh RΓdR(Xh/B

+
dR))⊗̂R

B+
dR
C
∼← L colimh RΓdR(Xh/B

+
dR)⊗̂R

B+
dR
C

L colimh ϑ−−−−−−→L colimh RΓdR(Xh) ' RΓ†dR(X).

The second map is a strict quasi-isomorphism because the tensor product is defined as the cone of
multiplication by t; the third map is a strict quasi-isomorphism by Proposition 3.13.
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To prove the second formula in (1), we argue locally as well. We need to show that, for r ≥ 0, we have
a distinguished triangle

(3.33) F r−1RΓ†dR(X/B+
dR)

t−−→F rRΓ†dR(X/B+
dR)

ϑ−−→F rRΓ†dR(X),

where X is a smooth dagger affinoid with the presentation {Xh}. But this triangle can be written as:

L colimh F
r−1RΓdR(Xh/B

+
dR)

L colimh t−−−−→L colimh F
rRΓdR(Xh/B

+
dR)

L colimh ϑ−−−−→ L colimh F
rRΓdR(Xh)

and then it is clear that it is distinguished by Proposition 3.13.
To prove the third formula in (1), we again argue locally. We need to show that, for r ≥ 0, we have a

distinguished triangle

(3.34) F r+1RΓ†dR(X/B+
dR)

can→ F rRΓ†dR(X/B+
dR)

βX→
⊕
i≤r

RΓ(X,ΩiX)(r − i)[−i],

where X is a smooth dagger affinoid with the presentation {Xh}. But we can define this triangle as:

L colimh F
r+1RΓdR(Xh/B

+
dR)

L colimh can

&&
L colimh

⊕
i≤r RΓ(Xh,Ω

i
Xh

)(r − i)[−i]

[ 1 ]
55

L colimh F
rRΓdR(Xh/B

+
dR)

L colimh βXh

oo

and then it is clear that it is distinguished by Proposition 3.13.
In the product formula (2), the map ιBK is defined by globalizing maps ι†BK for dagger affinoids. To

define the latter, assume that X is a smooth dagger affinoid with the presentation {Xh} and set

ι†BK : RΓ†dR(X)⊗̂R

KB+
dR ' (L colimh RΓdR(Xh))⊗̂R

KB+
dR
∼← L colimh RΓdR(Xh)⊗̂R

KB+
dR(3.35)

L colimh ιBK−−−−−−→L colimh RΓdR(Xh,C/B
+
dR) ' RΓ†dR(XC/B

+
dR).

The third map is a filtered quasi-isomorphism by Lemma 3.20. It remains to show that so is the second
map, i.e., that the map

(3.36) L colimh RΓdR(Xh)⊗̂R

KB+
dR

// RΓ†dR(X)⊗̂R

KB+
dR,

is a filtered strict quasi-isomorphism. Indeed, look at the cohomology of both sides. On the right hand
side, arguing as in [17, Sec. 3.2.2], we get

H̃i(RΓ†dR(X)⊗̂R

KB+
dR) ' Hi

dR(X)⊗̂KB+
dR.

For the left hand side, we compute

H̃i(L colimh RΓdR(Xh)⊗̂R

KB+
dR)

∼→ H̃i(L colimh RΓdR(X◦h)⊗̂R

KB+
dR) ' colimh(Hi

dR(X◦h)⊗̂R

KB+
dR)

∼→ Hi
dR(X)⊗̂KB+

dR.

Remark 3.37. Here, for a pair of affinoids Xh b Xh+1 as above, we define, slightly abusively, the (naive)
interiorX◦h+1 as the connected component of Int(Xh+1) containingXh. See [48, Appendix] for a discussion
of (relative) interiors. By [7, Prop. 2.5.8], this definition is functorial in the pair Xh b Xh+1. Moreover,
X◦h+1 is Stein and its complement in Xh+1 is open and quasi-compact.

The second and the third isomorphisms above follow from:

(1) the fact that the cohomology Hi
dR(X◦h) is a finite rank vector space over K with its canonical

topology (by [28, Th. 3.1]);
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(2) point (1) implies the quasi-isomorphism

H̃i(RΓdR(X◦h)⊗̂R
KB+

dR) ' Hi
dR(X◦h)⊗̂KB+

dR

proved as in [17, Sec. 3.2.2];
(3) the system {Hi

dR(X◦h)}h is essentially constant and isomorphic to Hi
dR(X);

(4) point (3) implies that the system {Hi
dR(X◦h)⊗̂KB+

dR}h is essentially constant and isomorphic to
Hi

dR(X)⊗̂KB+
dR.

This proves that the map (3.36) is a strict quasi-isomorphism.
We shall need to argue more that it is a filtered strict quasi-isomorphism as well. We argue by induction

on r ≥ 0; the base case of r = 0 being proved above. For the inductive step (r − 1 ⇒ r) consider the
following commutative diagram

L colimh F
r−1(RΓdR(Xh)⊗̂R

KB+
dR)

t��

∼ // F r−1(RΓ†dR(X)⊗̂R
KB+

dR)

t��

L colimh F
r(RΓdR(Xh)⊗̂R

KB+
dR) //

��

F r(RΓ†dR(X)⊗̂R

KB+
dR)

��

L colimh F
r(RΓdR(Xh)⊗̂R

KC)
∼ // F r(RΓ†dR(X)⊗̂R

KC)

The left and the right vertical triangles are distinguished by (3.14) and (3.30), respectively. The bottom
map is clearly a strict quasi-isomorphism; the top map is a strict quasi-isomorphism by the inductive
assumption. It follows that so is the middle horizontal map, as wanted.

We finish the proof of the second claim of our proposition by noting that the map R limh ιBK in (3.35)
is a strict quasi-isomorphism by Lemma 3.20.

For the third claim of the proposition, it suffices to argue locally for the dagger cohomologies. Hence
we can assume that X ' YC for a smooth dagger affinoid Y defined over K. And then the wanted t-
completeness follows from the second claim of the proposition and the fact that, since our tensor products
are projective and the Mittag-Leffler condition is satisfied, the canonical map

RΓ†dR(Y )⊗̂R

KB+
dR → R limr(RΓ†dR(Y )⊗̂R

K(B+
dR/F

r))

is a filtered strict quasi-isomorphism. �

4. Geometric Hyodo-Kato morphisms

This section is devoted to the definition of compatible rigid analytic (for X ∈ SmC) and overconvergent
(for X ∈ Sm†C) Hyodo-Kato cohomologies RΓHK,F̆ (X). For a general rigid analytic variety, the Hyodo-
Kato cohomology is in general quite ugly (not separated and, locally, infinite dimensional), but for dagger
varieties the Hyodo-Kato cohomology has nice properties (separated and, locally, finite dimensional). On
the other hand (Lemma 4.17), if X ∈ SmC is partially proper, then the rigid analytic and overconvergent
Hyodo-Kato cohomologies give the same result: if X† is the associated dagger variety, the natural map
RΓHK,F̆ (X†)→ RΓHK,F̆ (X) is a strict quasi-isomorphism (Corollary 4.32).

We define RΓHK,F̆ (X) for dagger varieties by, locally, going to the limit over a presentation in the
Hyodo-Kato cohomology for rigid analytic varieties, and globalizing. This definition is much more flexible
than Grosse-Klönne’s [29], and we show (Lemma 4.14) that the two definitions give rise to the same
cohomology.

The rigid analytic and overconvergent Hyodo-Kato cohomologies are related (Theorem 4.6 and Theo-
rem 4.27) to the rigid analytic and overconvergent de Rham and B+

dR-cohomologies by the Hyodo-Kato
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quasi-isomorphisms in, resp., D(CC) and D(CB+
dR

):

ιHK : RΓHK,F̆ (X)⊗̂R

F̆C
∼→ RΓdR(X), ιHK : RΓHK,F̆ (X)⊗̂R

F̆B
+
dR
∼→ RΓdR(X/B+

dR)

4.1. Rigid analytic setting. We start our definitions of Hyodo-Kato morphisms with rigid-analytic
varieties.

4.1.1. Completed Hyodo-Kato cohomology. The completed Hyodo-Kato cohomology RΓHK(X0
1 ) that ap-

peared in the proof of Theorem 2.22 has better topological properties than the classical Hyodo-Kato
cohomology RΓHK(X1) (being over p-complete field F̆ instead of F nr). Because of this we will often use
it.

Let X ∈ SmC . Let A c
HK (c stands for "completion") be the η-étale sheafification of the presheaf

X → RΓHK(X 0
1 )Qp on M ss,b

C . We set in Dϕ,N (CF̆ )

RΓHK,F̆ (X) := RΓét(X,A
c

HK).

It is a dg F̆ -algebra equipped with a Frobenius, monodromy action, and a continuous action of GK , if X
is defined over K. It is equipped with the topology induced from the topology of the RΓHK(X 0

1 )Qp ’s.
Unwinding the definitions, using the base change quasi-isomorphism (2.21), and globalizing we obtain

that the canonical morphism in Dϕ,N (CF̆ )

(4.1) β : RΓHK(X)⊗̂R

Fnr F̆ → RΓHK,F̆ (X)

is a strict quasi-isomorphism. It implies:

Lemma 4.2. (Local-global compatibility) For X ∈M ss
C , the canonical morphism in Dϕ,N (CF̆ )

(4.3) RΓHK(X 0
1 )Qp

→ RΓHK,F̆ (XC)

is a strict quasi-isomorphism.

Proof. We can pass from K to K̆ := KF̆ (which amounts to passing from F to F̆ for the absolutely
unramified subfields) without changing the cohomologies in (4.3). And then we can simply use local-
global compatibility for (F̆ )nr = F̆ -cohomology (see [20, Prop. 4.23]). �

4.1.2. Geometric rigid analytic Hyodo-Kato quasi-isomorphisms. We will now use Theorem 2.22 to de-
fine, both local and global, geometric Hyodo-Kato quasi-isomorphisms.

(i) Local setting. We will define two types of Hyodo-Kato morphisms: Hyodo-Kato-to-de Rham and
Hyodo-Kato-to-B+

dR.
Let X ∈M ss,b

C . The Hyodo-Kato-to-de Rham morphism is defined by the composition in D(CC):

ιHK : RΓHK(X 0
1 )Qp

⊗̂R
F̆C

εHK
dR−−→
∼

RΓcr(X1/S)Qp ' RΓdR(XC).(4.4)

It is a natural strict quasi-isomorphism.
For the Hyodo-Kato-to-B+

dR morphism we have:

Corollary 4.5. Let X ∈M ss,b
C . There exists a natural strict quasi-isomorphism in D(CB+

dR
)

ιHK : RΓHK(X 0
1 )Qp

⊗̂R
F̆B

+
dR
∼→ RΓdR(XC/B

+
dR).
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Moreover, we have the commutative diagram in D(CB+
dR

)

RΓHK(X 0
1 )Qp⊗̂

R

F̆B
+
dR

1⊗θ��

ιHK

∼
// RΓdR(XC/B

+
dR)

ϑ
��

RΓHK(X 0
1 )Qp

⊗̂R
F̆C

ιHK

∼
// RΓdR(XC).

Proof. To define ιHK, we use the natural strict quasi-isomorphism in D(CB+
dR

)

εHK
B+

dR

: RΓHK(X 0
1 )Qp

⊗̂R

F̆B
+
dR
∼→ RΓcr(X1)Qp

⊗̂R
B+

cr
B+

dR

from Lemma 2.31 and compose it with the strict quasi-isomorphism in D(CB+
dR

)

κ : RΓcr(X1)Qp⊗̂
R
B+

cr
B+

dR
∼→ RΓcr(X )Q̂p

from the proof of Lemma 3.24.
Commutativity of the diagram follows from Lemma 2.31. �

(ii) Global setting. We can now state the main theorem of this chapter:

Theorem 4.6. (Geometric Hyodo-Kato isomorphisms) Let X ∈ SmC . We have the natural Hyodo-Kato
strict quasi-isomorphisms in, resp., D(CC) and D(CB+

dR
)

ιHK : RΓHK,F̆ (X)⊗̂R

F̆C
∼→ RΓdR(X), ιHK : RΓHK,F̆ (X)⊗̂R

F̆B
+
dR
∼→ RΓdR(X/B+

dR)(4.7)

that are compatible via the maps θ and ϑ.

Proof. Globalize the local strict quasi-isomorphisms from Corollary 2.31 and Corollary 4.5. �

(iii) Complements. In a similar fashion, the local strict quasi-isomorphism εHK
st from Theorem 2.22

induces the natural strict quasi-isomorphism in Dϕ,N (CB+
st

)

(4.8) εHK
st : RΓHK,F̆ (X)⊗̂F̆B

+
st
∼→ RΓcr(X)⊗̂B+

cr
B+

st,

where we set in Dϕ,N (CB+
st

)

RΓHK,F̆ (X)⊗̂F̆B
+
st := L colim((RΓHK,F̆ ⊗̂F̆ ,ιB

+
st)(U•,1)),(4.9)

RΓHK,F̆ (X)⊗̂B+
cr
B+

st := L colim((RΓHK,F̆ ⊗̂B+
cr,ι

B+
st)(U•,1)),

with the homotopy colimit is taken over η-étale quasi-compact hypercoverings U• from M ss,b
C . Applying

the map B+
st → B+

cr given by sending log(λp) 7→ 0 to the morphism (4.8) we obtain the strict quasi-
isomorphism in Dϕ(CB+

cr
)

(4.10) εHK
cr : RΓHK,F̆ (X)⊗̂F̆B

+
cr
∼→ RΓcr(X).

4.2. The overconvergent setting. We are now ready to define the overconvergent geometric Hyodo-
Kato morphism. We do it locally by using, via presentations, the rigid-analytic geometric Hyodo-Kato
morphism constructed in the previous section and then we glue. The advantage of this approach is
that, by construction, the overconvergent and the rigid analytic geometric Hyodo-Kato morphisms are
compatible. This is in contrast to [17], [20], where a lot of effort was devoted to proving compatibility
between the overconvergent construction due to Grosse-Klönne, and the rigid-analytic construction due
to Hyodo-Kato33.

33Recently, Ertl-Yamada in [23] have introduced a particularly simple definition of overconvergent Hyodo-Kato cohomol-
ogy for weak-formal semistable schemes and equally simple definition of the relevant Hyodo-Kato map. Their construction
is compatible with the crystalline Hyodo-Kato analog when the scheme is proper. It is likely that their construction can be
extended to the set-up needed in this paper.
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4.2.1. Overconvergent Hyodo-Kato cohomology via presentations of dagger structures. In this section we
introduce a definition of overconvergent Hyodo-Kato cohomology using presentations of dagger structures
(see [48, Appendix], [20, Sec. 6.3]). We show that the so defined Hyodo-Kato cohomology, a priori different
from the one defined by Grosse-Klönne, is, in fact, strictly quasi-isomorphic to it.

(i) Local definition. Let X be a dagger affinoid over L = K,C. Let pres(X) := {Xh}h∈N be a
presentation of dagger structures. Define in Dϕ,N (CF̆ ):

RΓ†HK(X) := L colimh RΓHK(Xh)

and equip it with the induced Frobenius and monodromy. We have a natural map

(4.11) α†HK : RΓ†HK(X)→ RΓGK
HK(X)

defined as the composition

RΓ†HK(X) = L colimh RΓHK(Xh)
∼→ L colimh RΓHK(X◦h)(4.12)

∼← L colimh RΓGK
HK(X◦,†h )→ RΓGK

HK(X).

The third map is a strict quasi-isomorphism by Corollary 3.6: this is because the interior X◦h is Stein.
Note that the proof of the cited corollary relies on a nontrivial comparison result between the rigid
analytic and Grosse-Klönne’s overconvergent Hyodo-Kato morphisms. The map α†HK is functorial (see
Remark 3.37).

(ii) Globalization. For a general smooth dagger variety X over L, using the natural equivalence of
analytic topoi

(4.13) Sh(SmAff†L,ét)
∼→ Sh(Sm†L,ét)

we define the sheaf A †HK on Xét as the sheaf associated to the presheaf defined by U 7→ RΓ†HK(U), U ∈
SmAff†L, U → X an étale map. We define in Dϕ,N (CFL)

RΓHK(X) := RΓét(X,A
†

HK).

If L = K, it is a dg F -algebra. If L = C, it is a dg F nr-algebra equipped with a Frobenius, monodromy
action, and a continuous action of GK if X is defined over K. Its topology is induced from the topology
of the RΓ†HK(X)’s.

Globalizing the map α†HK from (4.11) we obtain a natural map in Dϕ,N (CFL)

αHK : RΓHK(X)→ RΓGK
HK(X).

Lemma 4.14. Let L = K,C.
(1) The above map αHK is a strict quasi-isomorphism.
(2) (Local-global compatibility) If X is a smooth dagger affinoid the natural map in Dϕ,N (CFL)

RΓ†HK(X)→ RΓHK(X)

is a strict quasi-isomorphism.

Proof. For the first claim, by étale descent, we may assume that X comes from a smooth dagger affinoid.
Looking at the composition (4.12) defining the map α†HK we see that it suffices to show that the natural
map

(4.15) L colimh RΓGK
HK(X◦,†h )→ RΓGK

HK(X)

is a strict quasi-isomorphism. But this was shown in the proof of Proposition 6.17 in [20]. We note that
that proof uses the Hyodo-Kato quasi-isomorphism of Grosse-Klönne to pass to the de Rham cohomology
where the analog of (4.15) is obvious.
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For the second claim, consider the commutative local-global diagram in Dϕ,N (CFL)

RΓ†HK(X) //

α†HK

��

RΓHK(X)

∼
αHKxx

RΓGK
HK(X)

The slanted arrow is a strict quasi-isomorphism by the first claim of the lemma. It suffices to show that
the left vertical arrow is a strict quasi-isomorphism as well. For that, it suffices to show that the map

L colimh RΓGK
HK(X◦,†h )→ RΓGK

HK(X)

appearing in the definition (4.12) of the map α†HK is a strict quasi-isomorphism but this was just shown
above. �

(iii) Completed overconvergent Hyodo-Kato cohomology. We can define the completed overconvergent
Hyodo-Kato cohomology by a similar procedure to the one used above. It will have better topological
properties than its classical version. Let X be a smooth dagger affinoid over C. Let pres(X) = {Xh}h∈N.
Define in Dϕ,N (CF̆ )

RΓ†
HK,F̆

(X) := L colimh RΓHK,F̆ (Xh).

For a general smooth dagger variety over C, we can globalize the above definition and obtain the sheaf
A c

HK for the η-étale topology on M †,ss
C and cohomology

RΓHK,F̆ (X) := RΓét(X,A
c

HK) ∈ Dϕ,N (CF̆ ).

It is a dg F̆ -algebra equipped with a Frobenius, monodromy action, and a continuous action of GK , if X
is defined over K. It is equipped with the topology induced from the topology of the RΓ†

HK,F̆
(X)’s.

We have the local-global compatibility by Lemma 4.14 (replace, without loss of information, F by F̆ ).

(iv) Completed overconvergent Hyodo-Kato cohomology ala Grosse-Klönne. But we can also de-
fine the completed overconvergent Hyodo-Kato cohomology as in the rigid analytic case, by modify-
ing the definition of the overconvergent Hyodo-Kato cohomology of Grosse-Klönne. That is, we can
set RΓGK

HK,F̆
(X1) := RΓHK(X0), for X ∈ M †,ss

C , where X0 := Xk, and globalize. We will denote by

RΓGK
HK,F̆

(X), X ∈ Sm†C , the so obtained cohomology in Dϕ,N (CF̆ ).
We easily check that we have strict quasi-isomorphisms in Dϕ,N (CF̆ ):

RΓGK
HK,F̆

(X1)
∼← RΓGK

HK(X1)⊗̂R
Fnr F̆ , X ∈M †,ss,(4.16)

RΓGK
HK,F̆

(X)
∼← RΓGK

HK(X)⊗̂R
Fnr F̆ , X ∈ Sm†C .

We also have local-global compatibility: pass from F to F̆ as in the proof of Lemma 4.2. This reduces
the problem to the local-global compatibility for the usual Hyodo-Kato cohomology of Grosse-Klönne
and this we know is true.

The two definitions of completed overconvergent Hyodo-Kato cohomology give the same objects:

Lemma 4.17. Let X ∈ Sm†C . There exists a natural strict quasi-isomorphism in Dϕ,N (CF̆ )

αHK,F̆ : RΓHK,F̆ (X)
∼→ RΓGK

HK,F̆
(X).

Proof. Pass from F to F̆ and use Lemma 4.14. �

(v) Tensor products. The following lemma will allow us to pass between tensor products involving the
two definitions of overconvergent Hyodo-Kato cohomology.
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Lemma 4.18. Let W be a Banach space34 over F̆ .

(1) (Local-global compatibility) Let X be a smooth dagger affinoid over C. The canonical map in
D(CF̆ )

RΓ†HK(X)⊗̂R
FnrW → RΓHK(X)⊗̂R

FnrW

is a strict quasi-isomorphism.
(2) Let X ∈ Sm†C . There exists a following commutative diagram in D(CF̆ )

RΓHK,F̆ (X)⊗̂R

F̆W
αHK,F̆ (W )

∼
// RΓGK

HK,F̆
(X)⊗̂R

F̆W

RΓHK(X)⊗̂R
FnrW

o
OO

αHK(W )

∼
// RΓGK

HK(X)⊗̂R
FnrW.

o
OO

Remark 4.19. (1) The tensor product RΓ†HK(X)⊗̂R
FnrW is defined in D(CF̆ ) as

RΓ†HK(X)⊗̂R

FnrW := L colimh(RΓHK(Xh)⊗̂R

FnrW ),

where {Xh} is the presentation of X.
(2) Warning: One has to be careful with tensor products as in (1) (because we chose projective tensor

products hence we lost the commutation with general inductive limits). For example, when F nr = F̆ , the
tensor product RΓ†HK(X)⊗̂R

F̆W is already defined. Luckily, in this case, the two definitions give the same
tensor product. To see this, note that we have RΓ†HK(X)⊗̂R

F̆W = (L colimh RΓHK(Xh))⊗̂R

F̆W . Hence the
canonical map

L colimh RΓHK(Xh)⊗̂R

FnrW → RΓ†HK(X)⊗̂R

F̆W

induces a map RΓ†HK(X)⊗̂R

FnrW → RΓ†HK(X)⊗̂R

F̆W. In the proof of Lemma 4.18 below we will show that
this is a strict quasi-isomorphism.

(3) For any smooth dagger variety X, the tensor product RΓHK(X)⊗̂R

FnrW is defined by globalizing
the tensor product from (1).

Proof. For (1), we start with the case W = F̆ . Consider the commutative diagram

(4.20) RΓ†HK(X)⊗̂R

Fnr F̆ //

o
��

RΓHK(X)⊗̂R

Fnr F̆

o
��

RΓ†
HK,F̆

(X)
∼ // RΓHK,F̆ (X).

The bottom map is a strict quasi-isomorphism by Lemma 4.14 (replace F by F̆ ). The left vertical map
is a strict quasi-isomorphism by definition and (4.1); the right vertical map is the globalization of the
left vertical map hence a strict quasi-isomorphism as well. It follows that the top map is also a strict
quasi-isomorphism, as wanted.

Now, for a general W , we take the top map in the diagram (4.20) and tensor it with W over F̆ to
obtain the strict quasi-isomorphism in the top of the commutative diagram

(RΓ†HK(X)⊗̂R
Fnr F̆ )⊗̂R

F̆W
∼ // (RΓHK(X)⊗̂R

Fnr F̆ )⊗̂R

F̆W

RΓ†HK(X)⊗̂R
FnrW //

OO

RΓHK(X)⊗̂R
FnrW

OO

34In applications, W will be most often a period rings.
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It remains to show that the left vertical map in the diagram is a strict quasi-isomorphism because then
so is the right vertical map (being the globalization of the left vertical map) and then the bottom map
as well, as wanted.

Remark 4.21. The tensor product in the top row is the usual projective tensor product. Hence the vertical
maps are not identities and the statement that they are strict quasi-isomorphisms is not trivial even for
F̆ .

It is clear that the left vertical map is a strict quasi-isomorphism if we drop the dagger and replace X
with Xh for the presentation {Xh} of X. It suffices thus to show that the map

(4.22) L colimh(RΓHK(Xh)⊗̂R
Fnr F̆ ⊗̂R

F̆W )→ (L colimh RΓHK(Xh)⊗̂R
Fnr F̆ )⊗̂R

F̆W

is a strict quasi-isomorphism. Applying the Hyodo-Kato morphism we pass to the canonical map

L colimh RΓdR(Xh)⊗̂R
F̆W → (L colimh RΓdR(Xh))⊗̂R

F̆W,

which is a strict quasi-isomorphism by [17, 2.1.2]. Now we go back to the map (4.22) by a projection
C → F̆ .

We pass now to the second claim of the lemma. Assume first that X is a smooth dagger affinoid. Then
we define the map

αHK(W ) : RΓ†HK(X)⊗̂R

FnrW → RΓGK
HK(X)⊗̂R

FnrW

as the composition

RΓ†HK(X)⊗̂R

FnrW = L colimh RΓHK(Xh)⊗̂R

FnrW
∼→ L colimh RΓHK(X◦h)⊗̂R

FnrW(4.23)
∼← L colimh RΓGK

HK(X◦,†h )⊗̂R

FnrW → RΓGK
HK(X)⊗̂R

FnrW.

The third map is a strict quasi-isomorphism by Corollary 3.6: this is because the interior Xo
h is partially

proper.
For a general X, we obtain the map αHK(W ) by globalizing the above definition. Changing F into F̆

in the definition of αHK(W ), we get the map αHK,F̆ (W ) compatible with the map αHK(W ). This gives
us the commutative diagram we wanted. Moreover, it is clear from the definitions that the right vertical
map in the diagram is a strict quasi-isomorphism. The top map is a strict quasi-isomorphism by Lemma
4.17. The left vertical map is a strict quasi-isomorphism because we can check it locally where claim (1)
reduces us to the dagger cohomology of an affinoid and there this is clear from the definitions. It follows
then that the bottom map is a strict quasi-isomorphism as well, as wanted. �

(vi) Properties of overconvergent Hyodo-Kato cohomology. Let X be a smooth dagger variety over C.
Recall that (see [20, Prop. 4.38]) the Hyodo-Kato cohomology H̃∗HK(X) is classical. If X is quasi-compact
it is a finite dimensional F nr-vector space with its natural topology. For a general X, it is a limit in CF
of finite dimensional F nr-vector spaces. The endomorphism ϕ on H∗HK(X) is a homeomorphism.

We will need the following computation later on:

Proposition 4.24. Let X be a smooth dagger variety over C. LetW be a Banach space with an F̆ -module
structure.

(1) If X is quasi-compact then the cohomology of the complex RΓHK(X)⊗̂R

FnrW is classical and we
have an F̆ -linear topological isomorphism

H̃i(RΓHK(X)⊗̂R

FnrW ) ' Hi
HK(X)⊗̂FnrW, i ≥ 0.

(2) Take an increasing admissible covering {Un}n∈N of X by quasi-compact dagger varieties Un.
Then we have a natural strict quasi-isomorphism in D(CF̆ )

RΓHK(X)⊗̂R

FnrW
∼→ R limn(RΓHK(Un,C)⊗̂R

FnrW ).
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The cohomology of RΓHK(X)⊗̂R

FnrW is classical and we have, for i ≥ 0, an F̆ -linear topological
isomorphism

H̃i(RΓHK(X)⊗̂R
FnrW ) ' Hi

HK(X)⊗̂R
FnrW := limn(Hi

HK(Un)⊗FnrW ).

In particular, it is a Fréchet space35.

Proof. By Lemma 4.18, we may replace RΓHK(−) with Grosse-Klönne’s version RΓGK
HK(−). Let X be

quasi-compact. Consider an étale hypercovering U• of X built from quasi-compact models from M †,ss,b
C .

By [17, Ex. 3.16], claim (1) is true for every Ui,C . Hence we have the spectral sequence

Ei,j2 = HGK,i
HK (Uj,C)⊗FnrW ⇒ H̃i+j(RΓGK

HK(X)⊗̂R

FnrW ).

The terms of the spectral sequence are Banach spaces and the differentials in the spectral sequence are
W -linear. Since the Hyodo-Kato cohomology groups HGK,i

HK (Uj,C) are of finite rank, claim (1) follows.
Having (1), claim (2) follows just as in the proof of [17, 3.26] (note that the system {Hi

HK(Un)⊗FnrW}n∈N
satisfies the Mittag-Leffler condition). �

4.2.2. Overconvergent geometric Hyodo-Kato morphism via presentations of dagger structures. In this
section we introduce a definition of overconvergent geometric Hyodo-Kato morphism using presentations
of dagger structures.

(i) Local definition. Let X be a dagger affinoid over C. Let pres(X) = {Xh}.
Define natural Hyodo-Kato morphisms in D(CF̆ )

ι†HK : RΓ†
HK,F̆

(X)→ RΓ†dR(X), ι†HK : RΓ†
HK,F̆

(X)→ RΓ†dR(X/B+
dR)(4.25)

as the compositions

RΓ†
HK,F̆

(X) = L colimh RΓHK,F̆ (Xh)
L colimh(ιHK)−−−−−−→ L colimh RΓdR(Xh) = RΓ†dR(X),

RΓ†
HK,F̆

(X) = L colimh RΓHK,F̆ (Xh)
L colimh(ιHK)−−−−−−→ L colimh RΓdR(Xh/B

+
dR) = RΓ†dR(X/B+

dR).

They are compatible via the map θ : B+
dR → C.

Proposition 4.26. The linearizations of the Hyodo-Kato morphisms in (4.25) yield compatible natural
strict Hyodo-Kato quasi-isomorphisms in, resp., D(CF̆ ) and D(CB+

dR
)

ι†HK : RΓ†
HK,F̆

(X)⊗̂R

F̆C
∼→ RΓ†dR(X), ι†HK : RΓ†

HK,F̆
(X)⊗̂R

F̆B
+
dR
∼→ RΓ†dR(X/B+

dR).

Proof. For the first map, we need to show that the map

(L colimh RΓHK,F̆ (Xh))⊗̂R
F̆C

L colimh(ιHK)−−−−−−→ L colimh RΓdR(Xh)

is a strict quasi-isomorphism. But this map fits into a commutative diagram

L colimh RΓHK,F̆ (Xh)⊗̂R
F̆C //

L colimh(ιHK)o
��

(L colimh RΓHK,F̆ (Xh))⊗̂R
F̆C

L colimh(ιHK)tt
L colimh RΓdR(Xh)

The bottom term is just the overconvergent de Rham cohomology and its cohomology is classical and a
finite rank vector space over C with its canonical topology. Via the vertical strict quasi-isomorphism the
same is true of the upper left term. The upper right term is strictly quasi-isomorphic to RΓHK,F̆ (X)⊗̂R

F̆C,
which, by Lemma 4.18 and Proposition 4.24, also has classical cohomology that is finite rank over C.
Hence, looking at the above diagram one cohomology degree at a time, we obtain a commutative diagram

35We note that Hi
HK(Un) is a finite rank vector space over Fnr equipped with the canonical topology.
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of finite rank vector spaces over C. These ranks are, in fact, equal: this is clear for the bottom and the
upper left term; for the upper right term consider the maps:

RΓHK,F̆ (X)⊗̂R
F̆C ' RΓGK

HK(X)⊗̂R
FnrC

ιGK
HK−−−−→RΓdR(X).

The first map is a strict quasi-isomorphism by Lemma 4.18. The second map is the Grosse-Klönne
Hyodo-Kato morphism and it is a strict quasi-isomorphism by [20, 5.15]. Hence the rank in question is
the same as that of the corresponding de Rham cohomology, as wanted.

For the second map in our proposition, we argue in a similar fashion. We need to show that the map

(L colimh RΓHK,F̆ (Xh))⊗̂R

F̆B
+
dR

L colimh(ιHK)−−−−−−→ L colimh RΓdR(Xh/B
+
dR)

is a strict quasi-isomorphism. But this map fits into a commutative diagram

L colimh RΓHK,F̆ (Xh)⊗̂R
F̆B

+
dR

//

L colimh(ιHK)o
��

(L colimh RΓHK,F̆ (Xh))⊗̂R
F̆B

+
dR

L colimh(ιHK)ss
L colimh RΓdR(Xh/B

+
dR)

The vertical map is a strict quasi-isomorphism by (4.7). The horizontal map can be shown to be a strict
quasi-isomorphism by an argument analogous to the one used in the proof of Proposition 3.29. It follows
that so is the slanted map, as wanted. �

(ii) Globalization. For a general smooth dagger variety X over C, globalizing the maps ι†HK from (4.25),
we obtain compatible natural maps in D(CF̆ )

ιHK : RΓHK,F̆ (X)→ RΓdR(X), ιHK : RΓHK,F̆ (X)→ RΓdR(X/B+
dR).

Theorem 4.27. (Overconvergent Hyodo-Kato isomorphisms) The linearizations of the above Hyodo-Kato
morphisms yields compatible natural strict quasi-isomorphisms in, resp., D(CC) and D(CB+

dR
)

ιHK : RΓHK,F̆ (X)⊗̂R

F̆C
∼→ RΓdR(X),

ιHK : RΓHK,F̆ (X)⊗̂R

F̆B
+
dR
∼→ RΓdR(X/B+

dR).

Proof. Looking at η-étale hypercoverings and using that our tensor products commute with products, we
may assume X to be a dagger affinoid and then the result is known by Proposition 4.26. �

(iii) Application. As an immediate application of the overconvergent Hyodo-Kato quasi-isomorphisms
we get the local-global compatibility for B+

dR-cohomology: .

Corollary 4.28. (Local-global compatibility) Let X be a smooth dagger affinoid over C. The canonical
morphism in DF (CB+

dR
)

RΓ†dR(X/B+
dR)→ RΓdR(X/B+

dR)(4.29)

is a strict quasi-isomorphism.

Proof. Consider the following commutative diagram

RΓ†
HK,F̆

(X)⊗̂R

F̆B
+
dR

ι†HK
o
��

∼ // RΓHK,F̆ (X)⊗̂R
F̆B

+
dR

ιHKo
��

RΓ†dR(X/B+
dR) // RΓdR(X/B+

dR)

The vertical arrows are strict quasi-isomorphisms by Proposition 4.26 and Theorem 4.27. The top arrow
is a strict quasi-isomorphism by the local-global compatibility for completed overconvergent Hyodo-Kato
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cohomology. It follows that so is the bottom horizontal arrow, proving that the map (4.29) is a strict
quasi-isomorphism.

To show that this map is a filtered strict quasi-isomorphism, we will argue by induction on r ≥ 0. The
inductive step uses the following commutative diagram

F r−1RΓ†dR(X/B+
dR)

t //

o��

F rRΓ†dR(X/B+
dR)

��

ϑ // F rRΓ†dR(X),

o
��

F r−1RΓdR(X/B+
dR)

t // F rRΓdR(X/B+
dR)

ϑ // F rRΓdR(X),

in which the rows are distinguished triangles by Proposition 3.29 and its proof. The first and the third
vertical maps are strict quasi-isomorphism by the inductive hypothesis and by the local-global property
for filtered de Rham cohomology (see [20, Sec. 5.1]), respectively. It follows that the middle vertical map
is a strict quasi-isomorphism as well, as wanted. �

4.2.3. Comparison with the rigid analytic constructions. LetX be a smooth dagger variety over L = K,C.
Let X̂ be its completion.

Lemma 4.30. (1) There is a natural morphism in Dϕ,N (CFnr)

(4.31) RΓHK(X)→ RΓHK(X̂).

(2) Let L = C. There are compatible natural morphisms in, resp., Dϕ,N (CF̆ ) and DF (CB+
dR

)

RΓHK,F̆ (X)→ RΓHK,F̆ (X̂), RΓdR(X/B+
dR)→ RΓdR(X̂/B+

dR).

They are compatible with the map (4.31).
(3) The morphism in (2) are compatible with the Hyodo-Kato morphisms, i.e., we have the commu-

tative diagrams in D(CF̆ )

RΓHK,F̆ (X) //

ιHK

��

RΓHK,F̆ (X̂)

ιHK
��

RΓdR(X) // RΓdR(X̂),

RΓHK,F̆ (X) //

ιHK

��

RΓHK,F̆ (X̂)

ιHK
��

RΓdR(X/B+
dR) // RΓdR(X̂/B+

dR)

Proof. Let X be a smooth dagger affinoid over L with the presentation {Xh}. Using the compatible
maps X̂ → Xh, we define the map

RΓ†HK(X) = L colimh RΓHK(Xh)→ L colimh RΓHK(X̂) = RΓHK(X̂).

It globalizes to give the map in (4.31).
We proceed in a similar way for the other two cohomologies. The stated compatibilities follow easily

from the definitions. �

The Hyodo-Kato quasi-isomorphisms imply the following:

Corollary 4.32. Let X ∈ Sm†C . If X is partially proper, then the canonical morphisms in, resp.,
Dϕ,N (CF̆ ) and DF (CB+

dR
)

(4.33) RΓHK,F̆ (X)→ RΓHK,F̆ (X̂), RΓdR(X/B+
dR)→ RΓdR(X̂/B+

dR)

are strict quasi-isomorphisms.
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Proof. For the first map, consider the commutative diagram

RΓHK,F̆ (X)⊗̂R
F̆C //

ιHKo
��

RΓHK,F̆ (X̂)⊗̂R
F̆C

ιHKo
��

RΓdR(X)
∼ // RΓdR(X̂)

It implies that the top arrow is a strict quasi-isomorphism. Splitting off F̆ from C we obtain the claim
of the corollary.

For the second map, in the unfiltered case, consider the commutative diagram

RΓHK,F̆ (X)⊗̂R
F̆B

+
dR

∼ //

ιHKo
��

RΓHK,F̆ (X̂)⊗̂R
F̆B

+
dR

ιHKo
��

RΓdR(X/B+
dR) // RΓdR(X̂/B+

dR)

The top arrow is a strict quasi-isomorphism by what was just proved. It implies that the bottom arrow
is a strict quasi-isomorphism, as wanted.

To treat filtrations, we proceed by induction on the filtration level r (the base case of r = 0 just
proved). The inductive step (r − 1⇒ r) uses the commutative diagram

F r−1RΓdR(X/B+
dR)

t //

o��

F rRΓdR(X/B+
dR)

��

ϑ // F rRΓdR(X),

o��
F r−1RΓdR(X̂/B+

dR)
t // F rRΓdR(X̂/B+

dR)
ϑ // F rRΓdR(X̂),

in which the rows are distinguished triangles by Proposition 3.29 and Proposition 3.13. The first vertical
map is a strict quasi-isomorphism by the inductive hypothesis. It follows that the middle vertical map is
a strict quasi-isomorphism as well, as wanted. �

5. Overconvergent geometric syntomic cohomology

In this section we will define overconvergent geometric syntomic cohomology and prove a comparison
theorem for smooth dagger affinoids and Stein varieties over C.

5.1. Local-global compatibility for rigid analytic geometric syntomic cohomology. Recall that
in [20, Sec. 4.1] the syntomic cohomology RΓsyn(X,Qp(r)) ∈ D(CQp

) of a rigid analytic variety X is
defined by η-étale descent from the crystalline syntomic cohomology of Fontaine-Messing. The latter is
defined as the fiber (X is a semistable formal scheme over OC equipped with its canonical log-structure)

RΓsyn(X ,Qp(r)) := [F rRΓcr(X )
ϕ−pr−−→RΓcr(X )],

where the (logarithmic) crystalline cohomology is absolute (i.e., over Zp). By definition, it fits into the
distinguished triangle in D(CQp

)

(5.1) RΓsyn(X,Qp(1))→ [RΓcr(X)]ϕ=pr → RΓcr(X)/F r

We were not able to prove the local-global compatibility for this syntomic cohomology in [20]: the
usual technique is to pass from the second term of (5.1) to Hyodo-Kato cohomology and from the third
term – to filtered de Rham cohomology; then one passes, via the Hyodo-Kato quasi-isomorphism, from
Hyodo-Kato cohomology to de Rham cohomology and we do have local-global compatibility for filtered
de Rham cohomology. The problem was: we did not have then the Hyodo-Kato morphism. But we have
it now thanks to Theorem 4.6, so in this section we will prove the local-global compatibility for rigid
analytic geometric syntomic cohomology that we will need.

We start with stating such a compatibility for absolute crystalline cohomology.
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Lemma 5.2. (Crystalline local-global compatibility) Let X ∈M ss,b
C . The canonical map in Dϕ(CB+

cr
)

RΓcr(X )Qp → RΓcr(XC)

is a strict quasi-isomorphism.

Proof. We have the commutative diagram in Dϕ(CB+
cr

)

RΓcr(X )Qp
// RΓcr(XC)

RΓHK,F̆ (X 0
1 )Qp

⊗̂R
F̆B

+
cr

o εHK
cr

OO

β⊗Id // RΓHK,F̆ (XC)⊗̂R
F̆B

+
cr

o εHK
cr

OO

The bottom map is a strict quasi-isomorphism by Lemma 4.2. Hence so is the top map, as wanted. �

Proposition 5.3. (Syntomic local-global compatibility) Let X ∈M ss,b
C . Let r ≥ 0. The canonical map

in D(CQp)

RΓsyn(X ,Zp(r))Qp
→ RΓsyn(XC ,Qp(r))

is a strict quasi-isomorphism. Here RΓsyn(X ,Zp(r)) is the syntomic cohomology of Fontaine-Messing
[25] (see also [4]).

Proof. Set X := XC . First, we define a natural strict quasi-isomorphism in D(CQp):

ι2 :
[
[RΓHK(X)⊗̂FnrB+

st]
N=0,ϕ=pr ιHK⊗ι−−→RΓdR(X/B+

dR)/F r
]

→ [[RΓcr(X)]ϕ=pr can−−→RΓcr(X)/F r] = RΓsyn(X,Qp(r)),

where we set

[RΓHK(X)⊗̂FnrB+
st]
N=0,ϕ=pr :=


RΓHK(X)⊗̂FnrB+

st

N

��

1−ϕr // RΓHK(X)⊗̂FnrB+
st

N

��
RΓHK(X)⊗̂FnrB+

st

1−ϕr−1 // RΓHK(X)⊗̂FnrB+
st


For that, it suffices to define the maps ι1BK and ι2BK in the following diagram, with the first map being
Frobenius equivariant, and to show that this diagram commutes in D(CQp):

(5.4) [RΓHK(X)⊗̂FnrB+
st]
N=0

εHK
sto
��

oι1BK

**

ιHK⊗ι // RΓcr(X/B
+
dR)/F r

ι2BKo

tt

[RΓcr(X)⊗̂B+
cr
B+

st]
N=0

κ

55

RΓcr(X)

o β

OO

can // RΓcr(X)/F r.

κ o

OO

Here the map εHK
st is the one from (4.8). It is Frobenius equivariant. We set: ι1BK := β−1εHK

st and
ι2BK := κ−1. Since the map β is Frobenius equivariant so is the map ι1BK. By definition, all the pieces of
the diagram commute and the maps ι1BK, ι

2
BK are strict quasi-isomorphisms.

The morphism ι2 has a compatible local version. Now, the wanted local-global compatibility, via
the strict quasi-isomorphisms ι2, follows from local-global compatibility for Hyodo-Kato cohomology and
filtered B+

dR-cohomology, proved in Proposition 3.1 and Lemma 3.23, respectively. �

The proof of Proposition 5.3 actually shows the following:
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Corollary 5.5. Let X ∈ SmC and r ≥ 0. There exist a natural strict quasi-isomorphism in D(CQp
)

(5.6) RΓsyn(X,Qp(r)) '
[
[RΓHK(X)⊗̂FnrB+

st]
N=0,ϕ=pr ιHK⊗ι−−→RΓdR(X/B+

dR)/F r
]
.

We like to call the expression on the right the Bloch-Kato syntomic cohomology because it resembles
the definition of Bloch-Kato Selmer groups in [12].

5.2. Twisted Hyodo-Kato cohomology. Let X be a smooth dagger variety over C. In this section
we will study the twisted Hyodo-Kato cohomology in D(CQp

)

(5.7) HK(X, r) := [RΓHK(X)⊗̂R
FnrB̂+

st]
N=0,ϕ=pr , r ≥ 0,

where RΓHK(X) is the geometric Hyodo-Kato cohomology defined in [20, Sec. 4.3.1] and we set in
Dϕ,N (CB̂+

st
)

RΓHK(X)⊗̂R
FnrB̂+

st := L colim((RΓHK⊗̂
R

FnrB̂+
st)(U•)),

where the homotopy colimit is taken over étale affinoid hypercoverings U• from Sm†C . We wrote [RΓHK(X)⊗̂R

FnrB̂+
st]
N=0,ϕ=pr

for the homotopy limit of the commutative diagram in D(CQp
)

RΓHK(X)⊗̂R

FnrB̂+
st

ϕ−pr //

N��

RΓHK(X)⊗̂R

FnrB̂+
st

N��

RΓHK(X)⊗̂R

FnrB̂+
st

pϕ−pr // RΓHK(X)⊗̂R

FnrB̂+
st.

The following proposition generalizes the computations from [17, Sec. 3.2.2] done in the case when X
has a semistable integral model over a finite extension of K.

Proposition 5.8. Let X be a smooth dagger variety over C. Let r ≥ 0.

(1) If X is quasi-compact then the cohomology of the complex RΓHK(X)⊗̂R

FnrB̂+
st is classical and we

have an isomorphism of (ϕ,N)-modules over F nr

H̃i(RΓHK(X)⊗̂R

FnrB̂+
st) ' Hi

HK(X)⊗̂FnrB̂+
st, i ≥ 0.

(2) If X is quasi-compact there is a natural isomorphism

H̃i(HK(X, r)) ' (Hi
HK(X)⊗̂FnrB̂+

st)
N=0,ϕ=pr , i ≥ 0,

of Banach spaces. In particular, H̃i(HK(X, r)) is classical.
(3) Take an increasing admissible covering {Un}n∈N of X by quasi-compact dagger varieties Un.

Then we have a natural strict quasi-isomorphism in D(CB̂+
st

)

RΓHK(X)⊗̂R
FnrB̂+

st
∼→ R limn(RΓHK(Un,C)⊗̂R

FnrB̂+
st).

The cohomology of RΓHK(X)⊗̂R
FnrB̂+

st is classical and we have, for i ≥ 0, an isomorphism of
(ϕ,N)-modules over B̂+

st

H̃i(RΓHK(X)⊗̂R
FnrB̂+

st) ' Hi
HK(X)⊗̂R

FnrB̂+
st := limn(Hi

HK(Un)⊗FnrB̂+
st).

In particular, it is a Fréchet space36.

36We note that Hi
HK(Un) is a finite rank vector space over Fnr equipped with the canonical topology.
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(4) The cohomology H̃i([RΓHK(X)⊗̂R

FnrB̂+
st]
N=0,ϕ=pr ), i ≥ 0, is classical and we have natural iso-

morphisms in D(CQp
)

Hi([RΓHK(X)⊗̂R
FnrB̂+

st]
N=0,ϕ=pr ) ' (Hi

HK(X)⊗̂R
FnrB̂+

st)
N=0,ϕ=pr , i ≥ 0.

In particular, the space Hi([RΓHK(X)⊗̂R
FnrB̂+

st]
N=0,ϕ=pr ) is Fréchet. Moreover,

Hi([RΓHK(X)⊗̂R
FnrB̂+

st]
N=0) ' (Hi

HK(X)⊗̂R
FnrB̂+

st)
N=0 ' Hi

HK(X)⊗̂R
FnrB+

cr,

where the last isomorphism is not, in general, Galois equivariant (in the case X comes from XK

over K).

Proof. Since B̂+
st is a Banach space over F̆ , claims (1) and (3) are a special case of Proposition 4.24.

Claim (2) follows from (1) just as in the proof of [17, Lemma 3.20]. Finally, claim (4) follows from (3) is
proved as in [17, Lemma 3.28]. �

5.2.1. A variant of the twisted Hyodo-Kato cohomology. There is a variant of the twisted Hyodo-Kato
cohomology in D(CQp)

H̃K(X, r) := [RΓHK(X)⊗̂R

FnrB+
st]
N=0,ϕ=pr , r ≥ 0,

that we will often use. Here we set in Dϕ,N (CB+
st

)

RΓHK(X)⊗̂R

FnrB+
st := L colim((RΓHK⊗̂Fnr,ιB

+
st)(U•)),

where the homotopy colimit is taken over étale affinoid hypercoverings U• from Sm†C . We have in
Dϕ,N (CB+

st
)

RΓHK(X)⊗̂Fnr,ιB
+
st ' L colimh(RΓHK(Xh)⊗̂R

Fnr,ιB
+
st),

where {Xh} is the presentation of X. It is easy to check that this tensor product satisfies local-global
compatibility.

Lemma 5.9. Let X ∈ Sm†C . The canonical morphism in Dϕ,N (CFnr)

H̃K(X, r)→ HK(X, r), r ≥ 0.

is a strict quasi-isomorphism.

Proof. It suffices to show that the canonical morphism

[RΓHK(X)⊗̂R

FnrB+
st]
N=0 → [RΓHK(X)⊗̂R

FnrB̂+
st]
N=0

is a strict quasi-isomorphism. For that, from the definitions of both sides, we can assume that X is a
dagger affinoid. Then this map can be rewritten as

[RΓHK(X)⊗̂Fnr,ιB
+
st]
N=0 → [RΓHK(X)⊗̂FnrB̂+

st]
N=0,

which, by Lemma 4.18, can be written as

L colimh([RΓHK(Xh)⊗̂Fnr,ιB
+
st]
N=0)→ L colimh([RΓHK(Xh)⊗̂FnrB̃+

st]
N=0),

for the presentation {Xh} of X. But this map is a strict quasi-isomorphism because so is the canonical
map

[RΓHK(Xh)⊗̂Fnr,ιB
+
st]
N=0 → [RΓHK(Xh)⊗̂FnrB̃+

st]
N=0,

by the same argument as the one used to show (2.29). �
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5.3. B+
dR-cohomology. Let X be a smooth dagger variety over C. In this section we will study the

filtered B+
dR-cohomology RΓdR(X/B+

dR) and its quotients

DR(X, r) := RΓdR(X/B+
dR)/F r, r ≥ 0.

We note that, immediately from the distinguished triangle (3.30), we obtain

Lemma 5.10. Let X be a smooth dagger variety over C. Let r ≥ 0. We have a distinguished triangle in
DF (CB+

dR
)

DR(X, r − 1)
t−−→DR(X, r)

ϑ−−→RΓdR(X)/F r

By Theorem 4.27, we have the strict quasi-isomorphism in DF (CB+
dR

)

(5.11) ιHK : RΓHK,F̆ (X)⊗̂R

F̆B
+
dR
∼→ RΓdR(X/B+

dR).

It yields the following computation:

Proposition 5.12. Let X be a smooth dagger variety over C.

(1) If X is quasi-compact then the cohomology of the complex RΓdR(X/B+
dR) is classical and we have

H̃i(RΓdR(X/B+
dR)) ' Hi

HK,F̆
(X)⊗̂F̆B

+
dR, i ≥ 0.

(2) Take an increasing admissible covering {Un}n∈N of X by quasi-compact dagger varieties Un.
Then we have a natural strict quasi-isomorphism in DF (CB+

dR
)

RΓdR(X/B+
dR)

∼→ R limn RΓdR(Un/B
+
dR).

The cohomology of RΓdR(X/B+
dR) is classical and we have, for i ≥ 0,

H̃i(RΓdR(X/B+
dR)) ' Hi

HK,F̆
(X)⊗̂R

F̆B
+
dR ' limn(Hi

HK,F̆
(Un)⊗F̆B

+
dR).

In particular, it is a Fréchet space37.

Proof. Using the Hyodo-Kato morphism (5.11), we may pass to the computation of the cohomology of
the complex RΓHK,F̆ (X)⊗̂R

F̆B
+
dR. Since B+

dR '
∏
k≥0 Ct

k in CF̆ , we have

RΓHK,F̆ (X)⊗̂R
F̆B

+
dR '

∏
k≥0

(RΓHK,F̆ (X)⊗̂R

F̆Ct
k)

and we can use Lemma 4.18 to pass to RΓGK
HK,F̆

(X)⊗̂R

F̆B
+
dR. Then the proof of Proposition 4.24 goes

through. �

5.3.1. Varieties over K. Before studying filtrations on B+
dR-cohomology we will look more carefully at

the example of varieties defined over K.
Recall that (see [20, Sec. 5.1]), for a smooth dagger variety X over L, L = K,C, the de Rham

cohomology H̃i
dR(X) is classical. If X is quasi-compact it is a finite dimensional L-vector space with its

natural topology. For a general X, it is a limit in CQp of finite dimensional L-vector spaces (hence a
Fréchet space).

Let X ∈ Sm†K . By Proposition 3.29, we have the strict quasi-isomorphisms in DF (CB+
dR

)

ιBK : RΓdR(X)⊗̂R
KB+

dR
∼→ RΓdR(XC/B

+
dR),

DR(XC , r) ' (RΓdR(X)⊗̂R
KB+

dR)/F r.

37Recall that Hi
HK,F̆

(Un) is a finite rank vector space over F̆ equipped with the canonical topology.
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(i) Example: Stein varieties over K. Assume that X is Stein. We easily see that in D(CK)

F r(RΓdR(X)⊗̂R
KB+

dR) ' F r(Ω•(X)⊗̂KB+
dR)(5.13)

= (O(X)⊗̂KF rB+
dR → Ω1(X)⊗̂KF r−1B+

dR → · · · )

DR(XC , r) = (RΓdR(X)⊗̂R
KB+

dR)/F r ' (Ω•(X)⊗̂KB+
dR)/F r

= (O(X)⊗̂K(B+
dR/F

r)→ Ω1(X)⊗̂K(B+
dR/F

r−1)→ · · · → Ωr−1(X)⊗̂K(B+
dR/F

1)).

In low degrees we have

DR(XC , 0) = 0, DR(XC , 1) ' O(X)⊗̂KC,

DR(XC , 2) ' (O(X)⊗̂K(B+
dR/F

2)→ Ω1(X)⊗̂KC).

Recall that, because X is Stein, the de Rham complex is built from Fréchet spaces and it has strict
differentials. Arguing just as in [17, Ex. 3.30] it follows that:

(1) the complexes F r(RΓdR(X)⊗̂R

KB+
dR) and DR(XC , r) are built from Fréchet spaces;

(2) their differentials are strict;
(3) and the cohomologies H̃iF r(RΓdR(X)⊗̂R

KB+
dR) and H̃iDR(XC , r) are classical and Fréchet.

(ii) Example: Affinoids over K. Assume now that X is an affinoid. Then the computation is a bit more
complicated because the spaces Ωi(X) and B+

dR (an LB-space and a Fréchet space, respectively) do not
work together well with tensor products. However, if we use the fact that B+

dR '
∏
k≥0 Ct

k in D(CK),
we get the strict quasi-isomorphisms

Ωi(X)⊗̂KB+
dR
∼→ Ωi(X)⊗̂R

KB+
dR,

which implies the strict quasi-isomorphisms from (5.13).
Then, arguing just as in [17, Ex. 3.30], one shows that the cohomology H̃iDR(XC , r) is classical and

that it is an LB-space. Also, we easily see that the differentials in the complex F r(RΓdR(X)⊗̂R

KB+
dR) are

strict; hence the cohomology H̃iF r(RΓdR(X)⊗̂R

KB+
dR) is classical.

(iii) General varieties over K. The following computation can be done in the same way as the com-
putation in Proposition 5.12.

Proposition 5.14. Let X be a smooth dagger variety over K.

(1) If X is quasi-compact then the cohomology of the complex RΓdR(X)⊗̂R

KB+
dR is classical and we

have

(5.15) H̃i(RΓdR(X)⊗̂R
KB+

dR) ' Hi
dR(X)⊗̂KB+

dR, i ≥ 0.

(2) Take an increasing admissible covering {Un}n∈N of X by quasi-compact dagger varieties Un.
Then we have a natural strict quasi-isomorphism in DF (CB+

dR
)

RΓdR(X)⊗̂R
KB+

dR
∼→ R limn(RΓdR(Un)⊗̂R

KB+
dR).

The cohomology of RΓdR(X)⊗̂R
KB+

dR is classical and we have, for i ≥ 0,

H̃i(RΓdR(X)⊗̂R
KB+

dR) ' Hi
dR(X)⊗̂R

KB+
dR ' limn(Hi

dR(Un)⊗KB+
dR).

In particular, it is a Fréchet space38.

38We note that Hi
dR(Un) is a finite rank vector space over K equipped with the canonical topology.
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5.3.2. Stein varieties and affinoid over C. If X is a smooth dagger affinoid over C then it is defined over
a finite field extension of K and its de Rham type cohomologies have properties listed in Section 5.3.1.

In the case of Stein varieties we need to argue a bit more.

Proposition 5.16. Let X ∈ Sm†C be Stein and r ≥ 0. Then
(1) concerning the complex DR(X, r), we have:

(a) the cohomology H̃iDR(X, r) is classical and Fréchet.
(b) we have a strictly exact sequence

0→ Ωi(X)/ Im d→ HiDR(X, r)→ Hi
dR(X/B+

dR)/tr−i−1 → 0

(2) the cohomology H̃iF rRΓdR(X/B+
dR) is classical and Fréchet.

Proof. Concerning claim (1), cover X with a Stein covering by affinoids {Un}, n ∈ N. Since every affinoid
Un is defined over a finite extension of K, we have the strict exact sequences from [17, Ex. 3.30]

0→ Ωi(Un)/ Im d→ HiDR(Un, r)→ Hi
dR(Un/B

+
dR)/tr−i−1 → 0

All the terms are classical and Hausdorff. We claim that, taking their limn, we obtain

0→ lim
n

(Ωi(Un)/ Im d)→ lim
n
HiDR(Un, r)→ lim

n
(Hi

dR(Un/B
+
dR)/tr−i−1)→ 0(5.17)

R1 lim
n
HiDR(Un, r) ' R1 lim

n
Hi

dR(Un/B
+
dR)/tr−i−1 = 0

Indeed, the sequence is strictly exact since R1 limn Ωi(Un) = 0. For the same reason we have the isomor-
phism between R1 lim’s. Since we have Hyodo-Kato isomorphisms Hi

dR(Un/B
+
dR) ' Hi

HK,F̆
(Un)⊗̂F̆B

+
dR

and the Hyodo-Kato cohomology Hi
HK,F̆

(Un) is of finite rank, these R1 limn vanish. From (5.17) we
obtain the strictly exact sequence

0→ Ωi(X)/ Im d→ H̃iDR(X, r)→ Hi
dR(X/B+

dR)/tr−i−1 → 0

Hence, H̃iDR(X, r) is classical (as an extension of two classical objects). It is also an extension of two
Fréchet spaces; which implies that it is, in particular, Hausdorff. It is also a quotient of two Fréchet
spaces by construction, which implies that it is a Fréchet space itself, as wanted.

For claim (2), since we have the Hyodo-Kato strict quasi-isomorphism (from Theorem 4.27)

ιHK : RΓHK,F̆ (X)⊗̂R
F̆B

+
dR
∼→ RΓdR(X/B+

dR)

and the cohomology
H̃i(RΓHK,F̆ (X)⊗̂R

F̆B
+
dR) ' Hi

HK,F̆
(X)⊗̂F̆B

+
dR

is classical, we get that the cohomology H̃i
dR(X/B+

dR) is also classical and Fréchet. For i > r, we have an
isomorphism H̃i(F rRΓdR(X/B+

dR))
∼→ H̃i

dR(X/B+
dR) (take an exhaustive affinoid covering and use the

fact that affinoids are defined over a finite extension of K); hence this cohomology is also classical and
Fréchet.

For i ≤ r, we argue by induction on r, the base case of r = 0 being shown above. For the inductive
step (r − 1⇒ r), take the distinguished triangle (3.30) and consider the induced long exact sequence

0→ Hi(F r−1RΓdR(X/B+
dR))

t−−→ H̃i(F rRΓdR(X/B+
dR))

ϑ−−→Hi(F rRΓdR(X))
∂−−→Hi+1(F r−1RΓdR(X/B+

dR))

The injection on the left follows from the fact that Hi−1(F rRΓdR(X)) = 0; the terms involving F r−1

filtration are classical by the inductive hypothesis.
• If i < r, then this yields an isomorphism

Hi(F r−1RΓdR(X/B+
dR))

t−→
∼
H̃i(F rRΓdR(X/B+

dR)),

showing that H̃i(F rRΓdR(X/B+
dR)) is classical and Fréchet.
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• For i = r, we get a short exact sequence

0→ Hi(F r−1RΓdR(X/B+
dR))

t−−→ H̃i(F rRΓdR(X/B+
dR))

ϑ−−→ ker ∂ → 0

Hence, H̃i(F rRΓdR(X/B+
dR)) is classical and a Fréchet space by the argument we have used in the case

of H̃iDR(X, r) in the proof of claim (1). �

5.4. Overconvergent geometric syntomic cohomology. We are now ready to define overconvergent
geometric syntomic cohomology and prove a comparison theorem for smooth dagger affinoids and Stein
varieties.

Let X be a smooth dagger variety over C. Take r ≥ 0. We define the geometric syntomic cohomology
of X as the following mapping fiber (taken in D(CQp))

RΓsyn(X,Qp(r)) := [[RΓHK(X)⊗̂R
FnrB̂+

st]
N=0,ϕ=pr ιHK⊗ι−−−−→RΓcr(X/B

+
dR)/F r](5.18)

= [HK(X, r)
ιHK⊗ι−−−−→DR(X, r)].

This is a generalization of the geometric syntomic cohomology introduced in [17, Sec. 3.2.2] in the case X
comes from a semistable model over OK . We will define below in Section 6.2.1 overconvergent geometric
syntomic cohomology via presentations of dagger structures from rigid-analytic geometric syntomic coho-
mology and show in Proposition 6.6 that the two definitions give strictly quasi-isomorphic cohomologies.

The following proposition generalizes [17, Prop. 3.36].

Remark 5.19. We will often use an equivalent definition of overconvergent geometric syntomic cohomol-
ogy:

RΓsyn(X,Qp(r)) := [[RΓHK(X)⊗̂R

FnrB+
st]
N=0,ϕ=pr ιHK⊗ι−−−−→RΓcr(X/B

+
dR)/F r].

See Lemma 5.9 for why the two definitions give the same object (up to a canonical strict quasi-isomorphism).

Proposition 5.20. Let X be a smooth dagger affinoid or a smooth dagger Stein variety over C. Let
r ≥ 0. There is a natural map of strictly exact sequences

0 // Ωr−1(X)/Ker d
∂ // Hr

syn(X,Qp(r))

β
��

// (Hr
HK(X)⊗̂R

FnrB̂+
st)

N=0,ϕ=pr //

ιHK⊗θ
��

0

0 // Ωr−1(X)/Ker d
d // Ωr(X)d=0 // Hr

dR(X) // 0

Moreover, Ker(ιHK ⊗ θ) ' (Hr
HK(X)⊗̂R

FnrB̂+
st)

N=0,ϕ=pr−1

, Hr
syn(X,Qp(r)) is LB or Fréchet, respectively,

and the maps β, ιHK ⊗ θ are strict and have closed images.

Proof. The diagram in the proposition arises from the commutative diagram:

RΓsyn(X,Qp(1)) //

β

((

β̃

��

[RΓHK(X)⊗̂R
FnrB̂+

st]
ϕ=p,N=0

ιHK⊗ι
��

ιHK⊗ι // RΓdR(X/B+
dR)/F r

F r(RΓdR(X/B+
dR) //

ϑ

��

RΓdR(X/B+
dR)

ϑ

��

// RΓdR(X/B+
dR)/F r

ϑ

��
Ω≥r(X) // Ω•(X) // Ω≤r−1(X)

The map β̃ is the map on mapping fibers induced by the commutative right square. We set β := ϑβ̃.
The map Ωr−1(X)→ Ωr(X) induced from the bottom row of the above diagram is easily checked to be
equal to d.
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Applying cohomology to the above diagram we obtain a commutative diagram

(Hr−1
HK (X)⊗̂R

FnrB̂+
st)

ϕ=p,N=0 //

ιHK⊗ι
��

Ωr−1(X)/ Im d
∂ // H̃r

syn(X,Qp(1)) //

β
��

(Hr
HK(X)⊗̂R

FnrB̂+
st)

ϕ=p,N=0

ιHK⊗ι
��

0→ Hr−1
dR (X) // Ωr−1(X)/ Im d

d // Ωr(X)d=0 // Hr
dR(X)

We have used here Proposition 5.8 and Proposition 5.16. We can now use the proof of Proposition 3.36
in [17] as soon as we know that, for a quasi-compact smooth dagger variety Y over C, the slopes of
Frobenius on Hi

HK(Y ) are ≤ i. But this is true when Y = YK,C for a semistable model over OK (by
the weight spectral sequence) and it follows for a general Y by taking étale hypercoverings built from
semistable basic models, quasi-compact in every degree. �

6. Two comparison morphisms

In this section we define two comparison morphisms: from geometric syntomic cohomology of a smooth
dagger variety to geometric syntomic cohomology of its completion and between geometric syntomic
cohomology of a smooth dagger variety and its pro-étale cohomology. We also prove that the first
morphism is a quasi-isomorphism for partially proper varieties (Theorem 6.2) and the second morphism
is a quasi-isomorphism in a stable range (Theorem 6.9).

6.1. From overconvergent to rigid analytic geometric syntomic cohomology. We start with
a morphism from geometric syntomic cohomology of a smooth dagger variety to geometric syntomic
cohomology of its completion.

6.1.1. Construction of the comparison morphism. Let X be a smooth dagger variety over C. We will
construct a natural map in D(CQp

)

(6.1) ι : RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r))

from the syntomic cohomology of X to the syntomic cohomology of its completion X̂.
(i) The map ι1. First, we note that we have a canonical natural morphism in D(CQp

)

ι1 : RΓsyn(X,Qp(r)) =
[
[RΓHK(X)⊗̂R

FnrB̂+
st]
N=0,ϕ=pr ιHK⊗ι−−−−→RΓdR(X/B+

dR)/F r
]

→
[
[RΓHK(X̂)⊗̂R

FnrB̂+
st]
N=0,ϕ=pr ιHK⊗ι−−−−→RΓdR(X̂/B+

dR)/F r
]

∼←−
[
[RΓHK(X̂)⊗̂FnrB+

st]
N=0,ϕ=pr ιHK⊗ι−−→RΓdR(X̂/B+

dR)/F r
]
.

Indeed, for that it suffices to show that the canonical map

[RΓHK(X̂)⊗̂FnrB+
st]
N=0 → [RΓHK(X̂)⊗̂R

FnrB̂+
st]
N=0

is a strict quasi-isomorphism. We may assume that X has a semistable weak formal model X defined
over OK′ . Then the above map is equal to the map

[RΓHK(X 0
1 )⊗̂K′,ιB+

st]
N=0 → [RΓHK(X 1

0 )⊗̂R
K′B̂

+
st]
N=0.

But this is a special case of the strict quasi-isomorphism in (2.29).
(ii) The map ι2. Next, we use the strict quasi-isomorphism in D(CQp)

ι2 :
[
[RΓHK(X̂)F ⊗̂FnrB+

st]
N=0,ϕ=pr ιHK⊗ι−−→RΓdR(X̂/B+

dR)/F r
]

→ [[RΓcr(X̂)]ϕ=pr can−−→RΓcr(X̂)/F r] = RΓsyn(X̂,Qp(r))

from the proof of Proposition 5.3.
(iii) Finally, we define the map in D(CQp)

ι : RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r))
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as ι := ι2ι1.

6.1.2. A comparison theorem. We are now ready to prove our comparison theorem:

Theorem 6.2. Let X be a partially proper smooth dagger variety over C. The map in D(CQp
)

ι : RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r))

is a strict quasi-isomorphism.

Proof. We have ι = ι2ι1 by definition and as we have seen the map ι2 is a strict quasi-isomorphism.
Hence it remains to show that so is the map ι1. For that, it suffices to show that the following canonical
maps

(6.3) RΓHK(X)⊗̂R
FnrB̂+

st → RΓHK(X̂)⊗̂R
FnrB̂+

st, RΓdR(X/B+
dR)/F r → RΓdR(X̂/B+

dR)/F r

are strict quasi-isomorphisms. For the second map this follows from Corollary 4.32. For the first map,
by Lemma 4.18, it suffices to show that the canonical map

RΓHK,F̆ (X)⊗̂R

F̆ B̂
+
st → RΓHK,F̆ (X̂)⊗̂R

F̆ B̂
+
st

is a strict quasi-isomorphism. But this holds because, by Corollary 4.32, the canonical map RΓHK,F̆ (X)→
RΓHK,F̆ (X̂) is a strict quasi-isomorphism. �

6.2. From overconvergent syntomic cohomology to pro-étale cohomology. We will construct
now a comparison morphism between geometric syntomic cohomology of a smooth dagger variety and its
pro-étale cohomology. We will prove that it is a strict quasi-isomorphism in a stable range.

6.2.1. Overconvergent geometric syntomic cohomology via presentations of dagger structures. We start
with showing that the overconvergent geometric syntomic cohomology defined as in [20, Sec. 6.3] using
presentations of dagger structures, a priori different from the overconvergent geometric syntomic coho-
mology defined as in [20, Sec. 5.4], is strictly quasi-isomorphic to it. This was shown in [20, Prop. 6.17] in
the arithmetic case, where the key ingredient of the proof is the comparison theorem between arithmetic
overconvergent and rigid analytic syntomic cohomology of partially proper dagger spaces. We had to
wait for the geometric version of the later comparison theorem (our Theorem 6.2) to state the geometric
analog of [20, Prop. 6.17].

(i) Local definition. Let X be a dagger affinoid over C. Let pres(X) = {Xh}. Recall that we have
defined the syntomic cohomology

RΓ†syn(X,Qp(r)) := L colimh RΓsyn(Xh,Qp(r)), r ∈ N.

We have a natural map in D(CQp)

(6.4) ι†syn : RΓ†syn(X,Qp(r))→ RΓsyn(X,Qp(r))

defined as the composition

RΓ†syn(X,Qp(r)) = L colimh RΓsyn(Xh,Qp(r))
∼→ L colimh RΓsyn(X◦h,Qp(r))(6.5)

∼← L colimh RΓsyn(X◦,†h ,Qp(r))→ RΓsyn(X,Qp(r)).

The third quasi-isomorphism holds by Theorem 6.2 because X◦h is partially proper.
(ii) Globalization. For a general smooth dagger variety X over C, using the natural equivalence of

analytic topoi
Sh(SmAff†C,ét)

∼→ Sh(Sm†C,ét),
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we define the sheaf A †syn(r), r ∈ N, on Xét as the sheaf associated to the presheaf defined by: U 7→
RΓ†syn(U,Qp(r)), U ∈ SmAff†C , U → X an étale map. We define39 in D(CQp

)

RΓ†syn(X,Qp(r)) := RΓét(X,A
†

syn(r)), r ∈ N.

Globalizing the map ι†syn from (6.4) we obtain a natural map

ι†syn : RΓ†syn(X,Qp(r))→ RΓsyn(X,Qp(r)).

(iii) A comparison quasi-isomorphism.

Proposition 6.6. The above map ι†syn is a strict quasi-isomorphism.

Proof. By étale descent, we may assume that X is a smooth dagger affinoid. Looking at the composition
(6.5) defining the map ι†syn we see that it suffices to show that the natural map

L colimh RΓsyn(Xo,†
h ,Qp(r))→ RΓsyn(X,Qp(r))

is a strict quasi-isomorphism. Or, from the definitions of both sides, that we have strict quasi-isomorphisms
in, resp., Dϕ,N (CB̂+

st
) and DF (CB+

dR
)

RΓHK(X)⊗̂FnrB̂+
st
∼← L colimh(RΓHK(Xo,†

h )⊗̂FnrB̂+
st),

RΓdR(X/B+
dR)

∼← L colimh RΓdR(Xo,†
h /B+

dR).

We may assume that X is defined over a finite field extension L of K, i.e., there exists XL such that
X ' XL,C Then the above maps factor as

L colimh(RΓHK(Xo,†
h )⊗̂FnrB̂+

st)
∼→ (L colimh(RΓHK(Xh))⊗̂FnrB̂+

st)
∼→ RΓ†HK(X)⊗̂FnrB̂+

st
∼→ RΓHK(X)⊗̂FnrB̂+

st,

L colimh(RΓdR(Xo,†
L,h)⊗̂R

LB
+
dR)

∼→ (L colimh RΓdR(XL,h))⊗̂R

LB
+
dR
∼→ RΓ†dR(X/B+

dR)
∼→ RΓdR(X/B+

dR).

In the Hyodo-Kato case, the first map is a strict quasi-isomorphism by definition of the dagger tensor
product. In the de Rham case, the first map is a strict filtered quasi-isomorphism by the computation
(3.35).

�

6.2.2. The geometric overconvergent period map and a comparison result. We are now ready to define
and study the overconvergent period map. Let X ∈ Sm†C , r ≥ 0. Define the period map in D(CQp

)

(6.7) αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

as the composition

RΓsyn(X,Qp(r))
∼← RΓ†syn(X,Qp(r))

α†r−−→RΓproét(X,Qp(r)),

where the first map is the map ι†syn from Proposition 6.6 and the second map is defined by globalizing
the following map defined for a dagger affinoid X with the presentation {Xh}:

RΓ†syn(X,Qp(r)) = L colimh RΓsyn(Xh,Qp(r))
αr−−→L colimh RΓproét(Xh,Qp(r)) ' RΓproét(X,Qp(r)).

Here αr is the rigid analytic period map (see Proposition 3.1).
We have the following compatibility with the rigid analytic period map:

Proposition 6.8. (Dagger-rigid analytic compatibility) Let X ∈ Sm†C and r ≥ 0.

39We will show below (see Proposition 6.6) that this definition of RΓ†syn(X,Qp(r)), for a smooth dagger affinoid X,
gives an object naturally strictly quasi-isomorphic to the one defined above.
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(1) The following diagram

RΓsyn(X,Qp(r))
αr //

ι
��

RΓproét(X,Qp(r))

ιproét
��

RΓsyn(X̂,Qp(r))
α̂r // RΓproét(X̂,Qp(r))

commutes.
(2) If X is partially proper then the maps ι and ιproét in the above diagram are strict quasi-isomorphisms.

Here, the period map αr is the one defined above. We put hat above its rigid analytic analog to
distinguish it from the dagger period map.

Proof. For the first claim, it suffices to show that this diagram naturally commutes étale locally. So we
may assume that X is a smooth dagger affinoid. Then checking commutativity is straightforward from
the definitions.

For the second claim, note that the map ι is a strict quasi-isomorphism by Theorem 6.2 and the map
ιproét is a strict quasi-isomorphism by Proposition 3.1, point 3a. �

The following comparison result follows almost immediately from its rigid analytic analog (see Propo-
sition 3.1, point 2c):

Theorem 6.9. For X ∈ Sm†C and r ≥ 0, the period map in D(CQp
)

(6.10) αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

is a strict quasi-isomorphism after truncation τ≤r.

Proof. We may localize and assume that X is a dagger affinoid. Proposition 3.1 yields immediately the
strict quasi-isomorphism after truncation τ≤r−1 (since Li colim vanishes for i > 1). It remains to show
that the map αr induces an isomorphism on cohomology in degree r. For that, consider the following
commutative diagram

H̃r
syn(X,Qp(r))

αr //

ot

��

H̃r
proét(X,Qp(r))

oζ

��
H̃r

syn(X,Qp(r + 1))
αr+1

∼
// H̃r

proét(X,Qp(r + 1)).

The right vertical arrow is a multiplication by p-adic root of unity. The bottom arrow is an isomorphism
by the above argument. The left vertical arrow is an isomorphism by the diagram in Proposition 5.20
and a chase of the diagram in [17, Rem. 4.5] (we note here that we do not need comparison with pro-étale
cohomology for this chase). It follows that the top horizontal map is an isomorphism, as wanted. �

The above theorem it implies the following result (which will be the starting point of our study of
Cst-conjecture for smooth analytic varieties in [21]):

Corollary 6.11. For X ∈ Sm†C , r ≥ 0, and i ≤ r, we have the long exact sequence

· · · → H̃i−1(RΓdR(X/B+
dR)/F r)→ H̃i

proét(X,Qp(r))→ (Hi
HK(X)⊗̂FnrB+

st)
N=0,ϕ=pr ιHK⊗ι−−→ H̃i(RΓdR(X/B+

dR)/F r)

Here we set
Hi

HK(X)⊗̂FnrB+
st := lim

n
(Hi

HK(Un)⊗̂FnrB+
st),

for an increasing covering {Un}n of X by quasi-compact open (note that the groups Hi
HK(Un) are of finite

rank).

Proof. Use Theorem 6.9 and the obvious fact that the canonical map [Hi
HK(Un)⊗̂FnrB+

st]
N=0 → [Hi

HK(Un)⊗̂FnrB̂+
st]
N=0

is an isomorphism. �
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7. Geometrization of period morphisms

The purpose of this section is to geometrize syntomic cohomology (and the related Hyodo-Kato and de
Rham cohomologies), pro-étale cohomology, and the associated period morphisms both in the rigid ana-
lytic and the overconvergent set-ups. By "geometrization" we mean putting a topological VS-structure.
The key computation is the one showing that the rigid analytic version of Fontaine-Messing period
morphism is a shadow of a VS-morphism. Both sides of the period morphism, crystalline syntomic coho-
mology and pro-étale cohomology, have natural VS structures. However it it not immediately clear that
the period map navigates well between these two VS-structures. To show that, in fact, it does so we use
the presentation of the period map via (ϕ,Γ)-modules introduced in [19], [26].

7.1. Geometrization. In this section we explain how to geometrize the cohomologies and the period
morphism (th. 7.3). In the next sections we prove Theorem 7.3, first in the lifted case, then in the general
case.

7.1.1. Vector Spaces. A VS, resp. a VS+, is a functor from perfectoid affinoids (Λ,Λ+) over (C,OC)

(denoted by Λ = (Λ,Λ+) in what follows) to Qp-modules, resp. Zp-modules. If W is a VS+, then
Qp ⊗Zp W is a VS. VS’s form an abelian category. Trivial examples of VS’s are:
• finite dimensional Qp-vector spaces V , with associated functor Λ 7→ V for all Λ,
• Vd, for d ∈ N, with Vd(Λ) = Λd, for all Λ.

More interesting examples are provided by Fontaine’s rings [24, 14]:
• B+

cr, B
+
st, B

+
dR, Bcr, Bst, BdR are naturally VS’s (and even Rings).

• If m ≥ 1, then Bm := B+
dR/t

mB+
dR is a VS (and also a Ring).

• Let h ≥ 1 and d ∈ Z. Then Uh,d = (B+
cr)

ϕh=pd if d ≥ 0, and Uh,d = Bd/Qph if d < 0, are VS’s.
Exemples of VS+’s include Ainf , Acr, or A[u,v] if 0 < u ≤ v; the last example being the functor sending Λ

to the p-adic completion of Ainf(Λ)[ p[α] ,
[β]
p ], where α, β ∈ O[

C with v(α) = 1
v and v(β) = 1

u . By [26, Prop.
3.2], we have Acr(Λ) ⊂ A[u,v](Λ), for u ≥ 1

p−1 . If v ≥ 1, we have A[u,v](Λ) ⊂ B+
dR(Λ) and this inclusion

induces a filtration on A[u,v](Λ).
• The semistable period rings can be also lifted to VS’s. We set

B̂+
st := B̂+

p,st := (Acr < tp[p̃]
−1 − 1 >)̂ [ 1

p ], B+
st := B+

p,st := B+
cr[log([p̃])],

κ : B+
st → B̂+

st, log([p̃]) 7→ − log(tp[p̃]
−1), ι : B+

st → B+
dR, log([p̃]) 7→ − log(p[p̃]−1),

ι : B̂+
st → B+

dR, tp[p̃]
−1 7→ p[p̃]−1.

If W is one of the above Rings, we denote by W the ring W(C): for example A[u,v] = A[u,v](C) (for
the other Rings Ainf , Acr, B+

cr, B
+
dR, etc., one gets back the rings already defined).

Remark 7.1. The above definition gives presheaves on PerfC . Passing to the associated sheaves gives a
natural viewpoint on VS’s and VS+’s; this was put to use by Le Bras in his thesis [35].

7.1.2. Pro-étale cohomology. Let X be a smooth rigid analytic variety over C. If Λ is a perfectoid C-
Banach algebra, let XΛ be the scalar extension X ×C Λ. The functor Λ 7→ Hi

proét(XΛ,Qp) defines a VS.
That is, there exists a VS Hiproét(X,Qp) such that Hiproét(X,Qp)(Λ) = Hi

proét(XΛ,Qp), for all perfectoid
C-Banach algebras. In particular, Hi

proét(X,Qp) is the space of C-points of Hiproét(X,Qp); we have put
in this way a geometric structure on Hi

proét(X,Qp).
We will use a bit more general40 VS’s:
(1) the cohomology complex: the functor

Rproét(XΛ,Qp) : Λ 7→ RΓproét(XΛ,Qp)

40That is, presheaves on PerfC with values in different categories than that of Qp-modules.
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defines a VS with values in D(CQp
);

(2) its cohomology groups H̃proét(XΛ,Qp) form a VS with values in LH(CQp
);

(3) its algebraic cohomology groups Hproét(XΛ,Qp) form the VS described above. We have a natural
map H̃proét(XΛ,Qp)→ Hproét(XΛ,Qp).

7.1.3. Crystalline syntomic cohomology. To geometrize (filtered) absolute crystalline cohomology, we de-
fine the functor

(7.2) FrRcr(X) : Λ 7→ F rRΓcr(X)⊗̂RB+
cr
B+

cr(Λ), r ≥ 0,

that lifts the absolute crystalline cohomology RΓcr(X) from Section 3.2.2. The tensor product used in
(7.2) needs to be defined. We do it in the following way. We set

F rRΓcr(X)⊗̂RB+
cr
B+

cr(Λ) := RΓét(X,F
rAcr,Λ),

where F rAcr,Λ is the η-étale sheafification41 on M ss
C of the presheaf X 7→ (F rRΓcr(X /Acr)⊗̂

L

Acr
Acr(Λ))Qp

.
We proceed similarly for rigid B+

dR-cohomology (from Section 3.3.1): we define the functor

FrRdR(X/B+
dR) : Λ 7→ F rRΓdR(X/B+

dR)⊗̂R

B+
dR
B+

dR(Λ), r ≥ 0,

that lifts the filtered B+
dR-cohomology F rRΓdR(X/B+

dR). Here

F rRΓdR(X/B+
dR)⊗̂R

B+
dR
B+

dR(Λ) := RΓét(X,F
rAĉr,Λ),

where F rAĉr,Λ is the η-étale sheafification on M ss
C of the presheaf

X 7→ R limi≥r((RΓcr(X ,J [r])/F i)⊗̂L

(Acr/F i)(Acr(Λ)/F i))Qp .

Finally, we lift crystalline syntomic cohomology by setting

Rsyn(X,Qp(r)) : Λ 7→ [FrRcr(X)(Λ)Qp

ϕ−pr−−→RdR(X/B+
dR)(Λ)/F r].

7.1.4. Rigid analytic varieties, period morphism. We move now to the geometrization of rigid analytic
period morphisms. We will prove the following theorem.

Theorem 7.3. For X ∈ SmC and r ≥ 0, the functorial period map in D(CQp
)

αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

lifts to a functorial map of VS’s (with values in D(CQp)):

�r : Rsyn(X,Qp(r))→ Rproét(X,Qp(r)),

which is a strict quasi-isomorphism after truncation τ≤r.

The next two sections are devoted to the proof of this theorem.

7.2. Local period morphism, lifted case. We start by defining �r(Λ) locally, in the simplest of cases.

41We do not discuss local-global compatibilities. As far as we can tell this does not cause problems.
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7.2.1. Coordinates. Consider a frame

(7.4) R+
2 := OC{X, 1

X0...Xa
, $
Xa+1...Xd

}, R2 = R+
2 [ 1

p ],

where X = (X0, . . . , Xd) and $ ∈ OC \ O∗C , and a formal scheme X = Spf R+, for an algebra R+,
which is the p-adic completion of an étale algebra over R+

2 . We equip Spf(R+
2) and Spf(R+) with the

logarithmic structure42 induced by the special fiber.
For m ≥ 0, define

Rm,+2 := OC{X1/pm , 1
(X0...Xa)1/pm ,

$1/pm

(Xa+1...Xd)1/pm }, Rm2 = Rm,+2 [ 1
p ],

and set R∞,+2 equal to the p-adic completion of colimmR
m,+
2 . Let

Rm,+ := Rm,+2 ⊗̂R+
2
R+, R∞,+ := R∞,+2 ⊗̂R+

2
R+, Rm = Rm,+[ 1

p ], R := R0, R∞ = R∞,+[ 1
p ],

so that R∞ is a perfectoid Banach algebra. Define ΓR := Gal(R∞/R). We have ΓR ' Zdp.
Choose $[ ∈ O[

C with θ([$[]) = $. We define

R+
inf,2 := Ainf{X, 1

X0...Xa
, [$[]
Xa+1...Xd

}

and lift the map R+
2 → R+ to an étale map R+

inf,2 → R+
inf . Set

R+
cr := R+

inf⊗̂Ainf
Acr, R[u,v] := R+

inf⊗̂Ainf
A[u,v].

Endow everything with the log-structure coming from Acr and Spf(R+). This gives us the commutative
diagram (with cartesian squares)

Spf(R+)
� � //

��

Spf(R+
cr)

��
Spf(R+

2)
� � //

��

Spf(R+
cr,2)

��
Spf(OC) �

� // Spf(Acr)

We equip Spf(R+
cr) with the (unique) lift ϕ of the canonical Frobenius on Spf(R+

cr,2) (induced by ϕ on
Acr and by Xi 7→ Xp

i , 0 ≤ i ≤ d).
We define the filtrations F •R+

cr on R+
cr and F •R[u,v] on R[u,v] by inducing them from Acr and A[u,v].

We have the corresponding filtered de Rham complex

F rΩ•
R+

cr/Acr
:= F rR+

cr → F r−1R+
cr⊗̂R+

cr
Ω1
R+

cr/Acr
→ F r−2R+

cr⊗̂R+
cr

Ω2
R+

cr/Acr
· · ·

The crystalline syntomic cohomology RΓsyn(X ,Qp(r)) is computed by the complex Syn(R+, r)Qp
, where

Syn(R+, r) := [F rΩ•
R+

cr/Acr

pr−ϕ−−→Ω•
R+

cr/Acr
].

This follows from the fact that the (filtered) absolute crystalline cohomology F iRΓcr(X ) ' F iRΓcr(X /Acr).

7.2.2. Period rings. Let R
+

be the maximal extension of R+ that is étale in characteristic 0, i.e., R
+

is
the integral closure of R+ in a maximal ind-étale extension R of R[ 1

p ] inside a fixed algebraic closure of

FracR. We have R = R
+

[ 1
p ]. Set GR := Gal(R/R). For 0 ≤ i ≤ d, choose X[

i = (Xi, X
1/p
i , · · · ) in R

[

and define an embedding of R+
inf,2 in Ainf(R) by sending Xi 7→ [X[

i ]. This extends, for 0 < u ≤ v and
v ≥ 1, to embeddings43:

(7.5) R+
inf ↪→ Ainf(R), R+

cr ↪→ Acr(R), ε : R[u,v] ↪→ A
[u,v]
R∞ ⊂ A

[u,v]

R
.

42Note that we do not allow horizontal divisors at ∞.
43In what follows, all these objects will depend on a variable perfectoid algebra Λ; to distinguish what depends on Λ

from what does not, we often allow ourself to write WRdeco instead of W(Rdeco) to indicate that Rdeco does not depend
on Λ.
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7.2.3. Local period morphism αR
+

r,n .

(•) Over C. Consider the following commutative diagram:

(7.6) Spf(EPD
R

)

))
Spf(R

+
)

) 	
77

��

� � // Spf(Acr(R)⊗̂Acr
R+

cr)

��
Spf(R+)

��

� � // Spf(R+
cr)

π
��

Spf(OC)
� � // Spf(Acr)

Here EPD
R

is the PD-envelope of the closed embedding Spf(R
+

) ↪→ Spf(Acr(R)⊗̂Acr
R+

cr).

Remark 7.7. (a) We take partial divided powers of level s, i.e., x[k] = xk

bk/psc ! , where s = 0 for p 6= 2 and
s = 1 for p = 2.

(b) We induce the filtration on EPD
R

from the filtration on R+
cr and Acr(R). See [19, Sec. 2.6.1] for

details.

Set Ωi
EPD
R

:= EPD
R
⊗̂R+

cr
Ωi
R+

cr/Acr
. For r ∈ N, we filter the de Rham complex Ω•

EPD
R

by subcomplexes

F rΩ•EPD
R

:= F rEPD
R
→ F r−1EPD

R
⊗̂R+

cr
Ω1
R+

cr/Acr
→ F r−2EPD

R
⊗̂R+

cr
Ω2
R+

cr/Acr
→ · · ·

For a continuous GR-module M , let C(GR,M) denote the complex of continuous cochains of GR with
values in M . The Fontaine-Messing period map44

(7.8) αR
+

r,n : Syn(R+, r)n → C(GR,Z/p
n(r)′),

where Z/pn(r)′ := 1
pa(r)Z/p

n(r), for r = (p− 1)a(r) + b(r), 0 ≤ b(r) ≤ p− 1, is defined as the composition

(7.9) Syn(R+, r)n = [F rΩ•
R+

cr,n/Acr,n

ϕ−pr−−−−→Ω•
R+

cr,n/Acr,n
]

∼,τ≤rω
��

C(GR, [F
rΩ•

EPD
R,n

ϕ−pr−−−−→Ω•
EPD
R,n

])

C(GR, [F
rAcr(R)n

ϕ−pr−−−−→Acr(R)n])

o
OO

C(GR,Z/p
n(r)′)

o
OO

It is a pcr-quasi-isomorphism45, for a universal constant c, after truncation τ≤r. The second quasi-
isomorphism above follows from the filtered Poincaré Lemma, i.e., from the p-quasi-isomorphism

(7.10) F rAcr(R)n
∼→ F rΩ•EPD

R,n

, r ≥ 0,

proved in [26, Prop. 7.3], [19, Lemma 2.37]. The third quasi-isomorphism follows from the fundamental
pr-exact sequence

0→ Z/pn(r)′ → F rAcr(R)n
ϕ−pr−−→Acr(R)n → 0.

The first truncated quasi-isomorphism is a theorem of Tsuji [47].

44We note that Spa(R) is a K(π, 1)-space hence C(GR,Z/p
n(r)′) ' RΓproét(Spa(R),Z/pn(r)′).

45We call a morphism f : A→ B in a derived category a N -quasi-isomorphism if the induced morphism on cohomology
has kernel and cokernel annihilated by N .



64 PIERRE COLMEZ AND WIESŁAWA NIZIOŁ

(•) Over a perfectoid C-algebra. Let Λ = (Λ,Λ+) be a perfectoid affinoid over (C,OC). We refer the
reader for a study of the basic properties of Ainf(Λ) to [24] or [10, Sec. 3]. The following lemma is proved
by the same argument as [26, Lemma5.3]:

Lemma 7.11. Let 0 < u ≤ v and v
p < 1 < v. Multiplication by tr induces p3r-isomorphisms46

A[u,v](Λ)
∼→ F rA[u,v](Λ), A[u,v/p](Λ)

∼→ A[u,v/p](Λ).

We set
(RΛ, R

+
Λ ) := (R,R+)⊗̂(C,OC)(Λ,Λ

+)

(by [43, Prop. 6.18] this is a perfectoid algebra). Let R
+

Λ be the completion of the maximal extension of
RΛ étale in characteristic 0 and

RΛ := R
+

Λ [ 1
p ], GRΛ

= Aut(RΛ/RΛ)

For 0 < u ≤ v and v ≥ 1, set
R

[u,v]
Λ := R+

inf⊗̂Ainf
A[u,v](Λ)

equipped with the filtration induced from the one on A[u,v](Λ).
The Fontaine-Messing morphism αR

+

r,n from (7.8) lifts to Λ. To show this we will use the commutative
diagram:

(7.12) Spf(EPD
RΛ

)

))
Spf(R

+

Λ)

* 

77

��

� � // Spf(Acr(RΛ)⊗̂AcrR
+
cr)

��
Spf(R+)

��

� � // Spf(R+
cr)

π
��

Spf(OC) �
� // Spf(Acr)

Here Spf(EPD
RΛ

) is the PD-envelope of the closed embedding Spf(R
+

Λ) ↪→ Spf(Acr(RΛ)⊗̂AcrR
+
cr). The

period morphism47

αR
+

r,n (Λ) : Syn(R+, r)n(Λ)→ C(GRΛ ,Z/p
n(r)′)

is defined as the composition

Syn(R+, r)n(Λ) [F rΩ•
R+

cr,n/Acr,n
⊗Acr,nAcr(Λ)n

ϕ−pr−−−−→Ω•
R+

cr,n/Acr,n
⊗̂Acr,n

Acr(Λ)n]

ω
��

C(GRΛ
, [F rΩ•

EPD
RΛ

,n

ϕ−pr−−−−→Ω•
EPD
RΛ

,n
])

C(GRΛ , [F
rAcr(RΛ)n

ϕ−pr−−−−→Acr(RΛ)n])

o
OO

C(GRΛ
,Z/pn(r)′)

o
OO

Here, the second p-quasi-isomorphism follows from the filtered Poincaré Lemma

(7.13) F rAcr(RΛ)n
∼→ F rΩ•EPD

RΛ
,n,

46A morphism of abelian groups f : S → T is called an N-isomorphism if its kernel and cokernel are annihilated by N .
47We note that Spa(RΛ) is a K(π, 1)-space hence C(GRΛ

,Z/pn(r)′) ' RΓproét(Spa(R),Z/pn(r)′).
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which can be proved by arguments analogous to the ones used in the proof of [26, Prop. 7.3]. The third
quasi-isomorphism follows from the fundamental pr-exact sequence

0→ Z/pn(r)′ → F rAcr(RΛ)n
ϕ−pr−−→Acr(RΛ)n → 0

7.2.4. Proof that αR
+

r,n (Λ) is a quasi-isomorphism.

Proposition 7.14. The period morphism

αR
+

r,n (Λ) : Syn(R+, r)n(Λ)→ C(GRΛ
,Z/pn(r)′)

is a pcr-quasi-isomorphism, for a universal constant48 c, after truncation τ≤r.

Proof. It suffices to show that the morphism

[F rΩ•
R+

cr,n/Acr,n
⊗̂Acr,n

Acr(Λ)n
ϕ−pr−−−−→Ω•

R+
cr,n/Acr,n

⊗̂Acr,n
Acr(Λ)n]

ω
��

C(GRΛ
, [F rΩ•

EPD
RΛ

,n

ϕ−pr−−−−→Ω•
EPD
RΛ

,n
])

is a pcr-quasi-isomorphism. We will do it by writing the Fontaine-Messing period morphism as a sequence
of morphisms inspired by the theory of (ϕ,Γ)-modules as in [19, Th. 4.16], [26, Th. 7.5] and then showing
that all these morphisms are pcr-quasi-isomorphisms after truncation τ≤r. This is done by commutative
diagram (7.16) below, where we denoted by ω the map that we want to show to be a pcr-quasi-isomorphism
(after truncation τ≤r, which we indicate on the diagram but will often skip in the discussion to lighten up
the notation). The key ingredient to turn the complex coming from the fundamental exact sequence (i.e.,
CG(Kϕ(F rAcr(RΛ))) in the upper right corner) into something which behaves like a complex of VS’s, as
a functor in Λ (Λ 7→ RΛ is not functorial enough), is the almost étale descent (map µH).

We set u = (p− 1)/p, v = p− 1 if p ≥ 3, and u = 3/4, v = 3/2 if p = 2.

(•) Over C. We will first treat the case Λ = C. The following commutative diagram is a simplified
version49 of the diagram in [26, proof of Th. 7.5]; the diagram in loc. cit. is glued from several diagrams
commuting on the nose yielding the commuting homotopy for diagram (7.15). The top row represents
the Fontaine-Messing period morphism. The diagram shows that the truncation τ≤r of the map ω is a
pcr-quasi-isomorphism.

(7.15) K∂,ϕ(F rR+
cr)

oτ≤r
��

ω // CG(K∂,ϕ(F rEPD
R

)) CG(Kϕ(F rAcr(R)))

o��

∼
PLoo

K∂,ϕ(F rR[u,v])

ot•,τ≤r ��

CG(Kϕ(F rA
[u,v]

R
))

KLie Γ,ϕ(F rR[u,v]) CΓ(Kϕ(F rA
[u,v]
R∞ ))

oµH

OO

KΓ,ϕ(F rR[u,v])
∼ //

oL az

OO

CΓ(Kϕ(F rR[u,v]))

∼
ε

44

Here, all the quasi-morphisms are pcr-quasi-isomorphisms (after truncation τ≤r). Moreover:
• G and Γ are GR and ΓR;
• CG, CΓ denote the complexes of continuous cochains on the groups G,Γ, respectively;
• K denotes a complex of Koszul type:

48In particular, independent of R,Λ, n, and r.
49To see that note that the zig-zag in the left-bottom corner of that diagram is homotopic (via an explicit Poincaré

Lemma homotopy) to the identity map.
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— the indices indicate the operators involved in the complex:
� ∂ is a shorthand for

(
X1

∂
∂X1

, . . . , Xd
∂

∂Xd

)
,

� Γ is a shorthand for (γ1 − 1, . . . , γd − 1), where the γi’s are our chosen topological
generators of Γ,

� Lie Γ is a shorthand for
(
∇1, . . . ,∇d), where ∇i = log γi, so that the ∇i’s are a basis

of Lie Γ over Zp,
� ϕ is a shorthand for ϕ− pr.

— only the first term of the complex is indicated: the rest is implicit and obtained from the
first term so that the maps involved make sense: ϕ does not respect filtration or annulus of
convergence, and ∂ decrease the degrees of filtration by 1.

For example, choosing a basis of ΩR+
cr/Acr

transforms complexes involving differentials into com-
plexes of Koszul type: K∂,ϕ(F rS) if S = R+

cr or S = R[u,v].
Let us now turn our attention to the maps between rows:
• Going from the first row to the second row just uses the injections R+

cr ⊂ R[u,v], etc.
• Going from the third row to the second row: the map µH is the inflation map from ΓR to GRΛ

,
using the injection R∞ ⊂ R (we use almost étale descent – i.e., Faltings’ almost purity theorem
or its extension by Scholze or Kedlaya-Liu – to prove that it is a quasi-isomorphism); the other
map is a "change of Lie algebra map" t• appearing in the proof of [26, Lemma 5.7] (multiplication
by suitable powers of t).

• Going from the fourth row to the third row: uses the injection of R[u,v] ↪→ A
[u,v]
R∞ from (7.5); the

map Laz is defined as in [26, Lemma 5.8].
Let us now describe the maps between columns:
• The bottom map from the first column to the second one is the map connecting continuous

cohomology of ΓR to Koszul complex.
• The PL-map from the third column to the second is also induced by the canonical injection of

rings; it is a pcr-quasi-isomorphisms by [26, Prop. 7.3 ].
(•) Over a perfectoid C-algebra. Let Λ be a perfectoid C-algebra. The relevant commutative diagram

now takes the following form. Again, it shows that the truncation τ≤r of the map ω is a pcr-quasi-
isomorphism.

(7.16)

K∂,ϕ(F rR+
cr⊗̂Acr(Λ))

oτ≤rβ ��

ω // CG(K∂,ϕ(F rEPD
RΛ

)) CG(Kϕ(F rAcr(RΛ)))

o
��

∼
PLoo

K∂,ϕ(F rR[u,v]⊗̂A[u,v](Λ))

o t•,τ≤r��

CG(Kϕ(F rA[u,v](RΛ)))

KLie Γ,ϕ(F rR[u,v]⊗̂A[u,v](Λ)) CΓ(Kϕ(F rA[u,v](R∞Λ )))

oµH

OO

KΓ,ϕ(F rR[u,v]⊗̂A[u,v](Λ))
∼ //

o L az

OO

CΓ(Kϕ(F rR[u,v]⊗̂A[u,v](Λ)))
∼
ε
// CΓ(Kϕ(F rA

[u,v]
R∞ ⊗̂A[u,v](Λ)))

δ o
OO

Here, all the quasi-morphisms are pcr-quasi-isomorphisms (after truncation τ≤r). The arrow is plain if
it is very similar to the one appearing in diagram (7.15) and dotted if it requires additional arguments.
Moreover (we indicate only differences with diagram (7.15)):

• tensor products with Acr(Λ) (resp A[u,v](Λ)) are over Acr (resp. A[u,v]);
• (R∞Λ , R

∞,+
Λ ) = (R∞, R∞,+)⊗̂(C,OC)(Λ,Λ

+); it is a perfectoid affinoid by [43, Prop. 6.18];
• G and Γ are GRΛ

and ΓR;
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Let us now turn our attention to the maps between rows:

• The plain arrows are induced by the analogous maps in diagram (7.15) They are pcr-quasi-
isomorphisms by the same argument as in loc. cit. since tensoring with A[u,v](Λ) can be done
outside the quasi-isomorphic complexes. We note that the tensor products ⊗̂A[u,v]A[u,v](Λ) are
completed but not, a priori, derived. This does not cause problems because the Ainf -module
Ainf(Λ) is flat: O[

C is a valuation ring hence the O[
C-module Λ+,[, being torsion free, is flat.

• Going from the third row to the second row: the map µH is the inflation map from ΓR to GRΛ
,

using the injection R∞Λ ⊂ RΛ. We use almost étale descent (i.e., Faltings’ almost purity theorem
or its extension by Scholze or Kedlaya-Liu) to prove that it is a quasi-isomorphism. The map t•

is the multiplication by suitable powers of t (we use here Lemma 7.11).

Finally, the maps β, δ in the diagram are treated by Lemma 7.17 below. �

Lemma 7.17. (1) The canonical morphism

τ≤rβ : τ≤rK∂,ϕ(F rR+
cr⊗̂AcrAcr(Λ))n→τ≤rK∂,ϕ(F rR[u,v]⊗̂A[u,v]A[u,v](Λ))n

is a pcr-quasi-isomorphism.
(2) The canonical morphisms

δ : F rA
[u,v]
R∞ ⊗̂A[u,v]A[u,v](Λ)→ F rA[u,v](R∞Λ )

are isomorphisms.

Proof. For the first claim, set R+
cr,Λ := R+

cr⊗̂Acr
Acr(Λ). This ring has the same form as R+

cr (see Section
7.2) but with Acr replaced by Acr(Λ). The above morphism can be written as

τ≤rK∂,ϕ(F rR+
cr,Λ)n→τ≤rK∂,ϕ(F rR+

cr,Λ⊗̂Acr
A[u,v])n.

Now, the proof in [26, Sec. 4.1] goes through verbatim by changing Acr to Acr(Λ).
For the second claim of the lemma, by Lemma 7.11, we can replace the filtration by the one given by

powers of t. Hence, it is enough to show that the canonical map

(7.18) Ainf(R
∞)⊗̂Ainf

Ainf(Λ)→ Ainf(R
∞
Λ )

is an isomorphism (the passage to [u, v]-version is obtained by taking the completed tensor product of
(7.18) with A[u,v]) . Or, since both sides are p-adically derived complete, that so is its reduction modulo p:

R∞,+,[⊗̂O[C
Λ+,[ → R∞,+,[Λ .

But this can be checked modulo p[. That is, we want the canonical map

(R∞,+,[/p[)⊗O[C/p
[ (Λ+,[/p[)→ R∞,+,[Λ /p[

to be an isomorphism.
Now, this map identifies with the canonical map

(R∞,+/p)⊗OC/p (Λ+/p)→ R∞,+Λ /p.

It suffices thus to show that the canonical map

R∞,+⊗̂OCΛ+ → R∞,+Λ

is an isomorphism. But this is clear since both sides are isomorphic to the completion of the same étale
extension of the tower

Λ+{X1/p∞ , 1
(X1...Xa)1/p∞ ,

$1/p∞

(Xa+1...Xd)1/p∞ }.

�
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7.2.5. Modification of the period morphism αR
+

r,n (Λ). The Fontaine-Messing period morphism

αR
+

r,n (Λ) : Syn(R+, r)n(Λ)→ C(GRΛ
,Z/pn(r)′)

constructed above is neither functorial in R+ nor in Λ+. By diagram (7.16), we can replace it by the map
that traces that diagram down-bottom right-up and replaces CG(Kϕ(F rAcr(RΛ)) with RΓproét(Spa(RΛ),Kϕ(F rAcr)):

AR
+

r,n (Λ) : Syn(R+, r)n(Λ) ' K∂,ϕ(F rR+
cr⊗̂Acr(Λ))n

τ≤rβ−−−→
∼

K∂,ϕ(F rR[u,v]⊗̂A[u,v](Λ))n

t•,τ≤r−−−−→
∼

KLie Γ,ϕ(F rR[u,v]⊗̂A[u,v](Λ))n
L az←−−−
∼

KΓ,ϕ(F rR[u,v]⊗̂A[u,v](Λ))n

−→
∼
CΓ(Kϕ(F rR[u,v]⊗̂A[u,v](Λ))n)

ε−→
∼
CΓ(Kϕ(F rA

[u,v]
R∞ ⊗̂A

[u,v](Λ))n)

δ−→
∼
CΓ(Kϕ(F rA[u,v](R∞Λ ))n)

ν−→
∼

RΓproét(Spa(RΛ),Kϕ(F rAcr)n)

FES←−−−
∼

RΓproét(Spa(RΛ),Z/pn(r)′).

Here FES stands for "fundamental exact sequence". This map is functorial in Λ and is a pcr-quasi-
isomorphism, for a universal constant c, after truncation τ≤r (by Proposition 7.14). In the next section
we will modify it to make it functorial in R+ as well.

7.3. Local period morphism, general case.

7.3.1. Over C. Consider now the same local situation as above: a formal scheme X = Spf R+, for an
algebra R+, which is the p-adic completion of an étale algebra over a ring R+

2 from (7.4). We equip
Spf(R+

2) and Spf(R+) with the logarithmic structure induced by the special fiber. But now we will
allow larger coordinate rings, i.e., we assume that we have the following commutative diagram, a relaxed
version of diagram (7.6):

(7.19) Spf(EPD
R,κ

)

��

))
Spf(R

+
)

* 

77

��

� � κ // Spf(Acr(R)⊗̂Acr
R+

cr)

��

D+
cr

**
Spf(R+)

��

) 	

66

� � ι // Spf(R+
cr)

π
��

Spf(OC) �
� // Spf(Acr)

The map π is log-smooth and the map ι is a closed immersion (and the bottom square is not necessarily
cartesian as it was in diagram (7.6)). This extra degree of freedom will allow us to globalize the period
map (the added variables disappear thanks to pro-étale techniques, see Lemma 7.32). We assume that
Spf(R+

cr) is equipped with a lift ϕ of the Frobenius on Spf(Acr). D+
cr and Spf(EPD

R,κ
) are the (log)-PD-

envelopes of ι and κ, respectively. Let r ∈ N. We define the filtered de Rham complex Ω•
EPD
R

as in the

case of lifted coordinates. Let

F rΩ•
D+

cr/Acr
:= F rD+

cr → F r−1D+
cr ⊗R+

cr
Ω1
R+

cr/Acr
→ F r−2D+

cr ⊗R+
cr

Ω2
R+

cr/Acr
→ · · ·

The crystalline syntomic cohomology RΓsyn(X , r) is computed by the complex

Syn(R+
cr, r) := [F rΩ•

D+
cr/Acr

ϕ−pr−−→Ω•
D+

cr/Acr
]
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The Fontaine-Messing period map

(7.20) α
R+

cr
r,n : Syn(R+

cr, r)n → C(GR,Z/p
n(r)′)

is computed by the composition

(7.21) Syn(R+
cr, r)n [F rΩ•

D+
cr,n/Acr,n

ϕ−pr−−−−→Ω•
D+

cr,n/Acr,n
]

ω
��

C(GR, [F
rΩ•

EPD
R,κ,n

ϕ−pr−−−−→Ω•
EPD
R,κ,n

])

C(GR, [F
rAcr(R)n

ϕ−pr−−−−→Acr(R)n])

OO

C(GR,Z/p
n(r)′).

o
OO

Lemma 7.22. The period map (7.20) is a pcr-quasi-isomorphism, for a universal constant c, after
truncation τ≤r.

Proof. It suffices to show that the first and the second map in the composition (7.21) are pcr-quasi-
isomorphisms, for universal constants c, after truncation τ≤r. Consider the product Spf(R+

cr⊗̂AcrR̃
+
cr)

(we put ˜ to distinguish diagram (7.6) from diagram (7.19)) and the canonical closed immersion ι1 :

Spf(R+) ↪→ Spf(R+
cr⊗̂Acr

R̃+
cr). Let D+ be the PD-envelope of ι1 and let EPD

R
be as in diagram (7.19) for

ι1 in place of ι. Consider the compatible maps

p1 : Spf(D+)→ Spf(D+
cr), p2 : Spf(D+)→ Spf(R̃+

cr),(7.23)

p1 : Spf(EPD
R

)→ Spf(EPD
R,κ

), p2 : Spf(EPD
R

)→ Spf(ẼPD
R

)

induced by the two projections from Spf(R+
cr⊗̂Acr

R̃+
cr) to Spf(R+

cr) and Spf(R̃+
cr), respectively. These maps

are also compatible with the other maps in diagrams (7.19) and (7.6). They induce compatible maps

p∗2 : F rΩ•
R̃+

cr,n/Acr,n

∼→ F rΩ•
D+
n /Acr,n

, p∗2 : F rΩ•
ẼPD
R,n

∼→ F rΩ•EPD
R,n

,(7.24)

p∗1 : F rΩ•
D+

cr,n/Acr,n

∼→ F rΩ•
D+
n /Acr,n

, p∗1 : F rΩ•EPD
R,κ,n

∼→ F rΩ•EPD
R,n

.

Moreover, the E–maps are also compatible with the canonical maps from F rAcr(R)n .
The maps in (7.24) are quasi-isomorphisms since both terms in the left maps compute absolute crys-

talline cohomology of Spf(R+) and both terms in the right map – crystalline cohomology of Spf(R
+

)

over Acr(R).
Now, since the maps in (7.23) are compatible with Frobenius, the maps from (7.24) allow us to replace

the maps in the composition (7.21) for D+
cr , first, with the ones for D+ and, then, with the ones for R̃+

cr,
which we know to be pcr-quasi-isomorphisms, for a universal constant c, after truncation τ≤r �
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7.3.2. Over a perfectoid C-algebra. Let Λ be a perfectoid affinoid over C. To show that the Fontaine-
Messing period map, lifted to Λ, can be globalized we will use the following commutative diagram:

(7.25) Spf(EPD
RΛ,κ

)

��

**
Spf(R

+

Λ)

) 	
77

��

� � κ // Spf(Acr(RΛ)⊗̂Acr
R+

cr)

��

D+
cr

**
Spf(R+)

��

) 	

66

� � ι // Spf(R+
cr)

π
��

Spf(OC) �
� // Spf(Acr)

The Fontaine-Messing period map

(7.26) α
R+

cr
r,n (Λ) : Syn(R+

cr, r)n(Λ)→ C(GRΛ ,Z/p
n(r)′)

can be defined by the composition

(7.27) Syn(R+
cr, r)n(Λ) [F rΩ•

D+
cr,n/Acr,n

⊗̂Acr,n
Acr(Λ)n

ϕ−pr−−−−→Ω•
D+

cr,n/Acr,n
⊗̂Acr,n

Acr(Λ)n]

ω
��

C(GRΛ
, [F rΩ•

EPD
RΛ,κ,n

ϕ−pr−−−−→Ω•
EPD
RΛ,κ,n

])

C(GRΛ , [F
rAcr(RΛ)n

ϕ−pr−−−−→Acr(RΛ)n])

o
OO

C(GRΛ
,Z/pn(r)′)

o
OO

Lemma 7.28. The period map (7.26) is a pcr-quasi-isomorphism, for a universal constant c, after
truncation τ≤r.

Proof. It suffices to show that the first and second maps in the composition (7.27) are pcr-quasi-isomorphisms,
for a universal constant c, after truncation τ≤r. But since the map π̃ in diagram (7.12) is log-smooth
(we put ˜ to distinguish diagram (7.12) from diagram (7.25)) and D+

cr in diagram (7.25) is I-adically
complete, for the defining PD-ideal I, we have maps from f : Spf(D+

cr) to Spf(R̃+
cr) and from Spf(EPD

RΛ,κ
)

to Spf(ẼPD
RΛ

) that are also compatible with with other maps in diagrams (7.19) and (7.12). These maps
induces two compatible maps

F rΩ•
R̃+

cr,n/Acr,n
⊗̂Acr,n

Acr(Λ)n → F rΩ•
D+

cr,n/Acr,n
⊗̂Acr,n

Acr(Λ)n,

F rΩ•
ẼPD
RΛ,n

→ F rΩ•EPD
RΛ,κ,n

.

These maps are quasi-isomorphisms: the first one by the first quasi-isomorphism from (7.24) and flatness
of Acr(Λ) over Acr; the second one, via the filtered Poincaré Lemma (note that both the domain and the
target compute crystalline cohomology of R

+

Λ,n over Acr(RΛ)n), can be identified with the identity map

Id : F rAcr(RΛ)n → F rAcr(RΛ)n.

Assume now that the map f is compatible with Frobenius. Then in our lemma we may take R+
cr = R̃+

cr

in which case we can use Proposition 7.14. In general, map f will not be compatible with Frobenius and
then we have to argue via a zig-zag of such maps as in the proof of Lemma 7.22. �
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7.3.3. Modification of the period morphism α
R+

cr
r,n (Λ). As in Section 7.2, we can replace the Fontaine-

Messing period morphism

α
R+

cr
r,n (Λ) : Syn(R+

cr, r)n(Λ)→ C(GRΛ ,Z/p
n(r)′)

constructed above (which is neither functorial in R+
cr nor in Λ+) by a better behaved morphism. But

before doing this we need to make a special choice for our coordinate system (a simpler variant of the
one used50 in [13, Sec. 5.17]).

Assume that each pair of irreducible components of the special fiber of X has nontrivial intersection
(in particular, X is connected) and that we have a closed immersion

(7.29) ι∆ : X = Spf(R+) ↪→
∏
δ∈∆

Spf R2
δ ,

such that

(1) R2
δ := OC{X±1

δ,0 , . . . , X
±1
δ,aδ

, Xδ,aδ+1, . . . , Xdδ}/(Xδ,aδ+1 · · ·Xdδ − pbδ), where δ ∈ ∆, for a finite
set ∆, and bδ ∈ Q≥0;

(2) There exists a δ0 ∈ ∆ such that the morphism Spf(R+)→ Spf(R2
δ0

) is étale.

We set

Spf(R2
∆) :=

∏
δ∈∆

Spf R2
δ .

The formal schemes Spf R2
δ s and Spf(R2

∆) are endowed with the log-structures coming from the special
fiber.

Let R2,∞
δ be the p-adic completion of the ring

colimn OC{X
± 1
pn

δ,0 · · ·X±
1
pn

δ,aδ
, X

1
pn

δ,aδ+1, . . . , X
1
pn

dδ
}/(X

1
pn

δ,aδ+1 · · ·X
1
pn

dδ
− p

bδ
pn ).

We denote by R2,∞
∆ the completed tensor product of the above rings and set R+,∞

∆ := R2,∞
∆ ⊗̂R2

∆
R+,

R∞∆ := R+,∞
∆ [1/p]. We consider the groups

Γδ := Gal(R2,∞
δ [ 1

p ]/R2
δ [ 1
p ]) ' Z⊕dδp , Γ∆ :=

∏
δ∈∆

Γδ.

If (γδ,i)0≤i<dδ are the topological generators of Γδ, the action of Γδ on R2
δ is given by:

γδ,i(Xδ,i) = [ε]Xδ,i and γδ,i(Xδ,j) = Xδ,j for i 6= j; i, j ≤ aδ;

γδ,i(Xδ,i) = [ε]Xδ,i and γδ,i(Xδ,j) = Xδ,j , γδ,i(Xδ,dδ) = [ε]−1Xδ,dδ for i 6= j, aδ < j < dδ.

We get the induced action of Γ∆ on RPD
∆ (the divided power envelope of the closed immersion (7.29)). We

note that Spa(R2,∞
δ [ 1

p ]) is an affinoid perfectoid pro-étale Γδ-cover51 of Spa(R2
δ [ 1
p ]); similarly, Spa(R2,∞

∆ [ 1
p ])

is an affinoid perfectoid pro-étale Γ∆-cover of Spa(R2
∆[ 1

p ]). Its base change Spa(R∞∆ ) is an affinoid per-
fectoid pro-étale Γ∆-cover of Spa(R) (by almost purity since Spa(R∞∆ ) contains Spa(R∞δ0 ) as a subcover).

Set

Acr(R
2
δ ) := Acr{X±1

δ,0 , . . . , X
±1
δ,aδ

, Xδ,aδ+1, . . . , Xdδ}/(Xδ,aδ+1 · · ·Xdδ − [(p[)bδ ]),

Acr(R
2
δ ) := ⊗̂δ∈∆Acr(R

2
δ ).

50There are notable differences: we did not separate the torus data and we allowed coordinates R2
δ which do not satisfy

point (2) below.
51We skip the +-structure from the notation to lighten up the writing.
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The diagram (7.25) takes now the following shape (R+
cr changed to A(R2

∆)):

(7.30) Spf(EPD
R,κ

)

��

**
Spf(R

+

Λ )

* 

77

��

� � κ // Spf(Acr(RΛ)⊗̂Acr
Acr(R

2
∆))

��

RPD
∆

**
Spf(R+)

��

) 	

66

� � ι // Spf(Acr(R
2
∆))

π
��

Spf(OC) �
� // Spf(Acr)

The Frobenius ϕ on Spf(Acr(R
2
∆)) is induced by the Frobenius on Spf(Acr) and by raising to p’th power

the coordinates. And, we have in this setting the following analog of diagram (7.16):
(7.31)

K∂,ϕ(F rRPD
∆ ⊗̂Acr(Λ))

oτ≤rβ ��

τ≤rω

∼
// CG(K∂,ϕ(F rEPD

RΛ,κ
)) CG(Kϕ(F rAcr(RΛ)))

o
��

∼
PLoo

K∂,ϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ))

t•,τ≤r ��

CG(Kϕ(F rA[u,v](RΛ)))

KLie Γ∆,ϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ)) CΓ∆

(Kϕ(F rA[u,v](R∞∆,Λ)))

oµH

OO

KΓ∆,ϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ)) ∼

//

oL az

OO

CΓ∆(Kϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ)))

ε

∼
// CΓ∆(Kϕ(F rA

[u,v]
R∞∆
⊗̂A[u,v](Λ)))

δ o
OO

Here, everything is taken modulo pn and all the quasi-isomorphisms are pcr-quasi-isomorphisms (after
truncation τ≤r). Indeed, for the map ω this follows by comparison with the diagram (7.16); for the map
β – by the same argument as the one used in the proof of Lemma 7.17. The map ε is induced by the
maps

ε0 : R2
∆ → Acr(R

∞), ε1 : RPD
∆ → Acr(R

∞),

where the first map is defined by choosing p-towers of coordinates as in (7.5) and the second map is the
unique extension of the first one (by the universal property of logarithmic divided power envelopes). We
treat it and the map δ with the following lemma:

Lemma 7.32. The maps

ε : CΓ∆(Kϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ)))→ CΓ∆(Kϕ(F rA

[u,v]
R∞∆
⊗̂A[u,v](Λ))),

δ : CΓ∆(Kϕ(F rA
[u,v]
R∞∆
⊗̂A[u,v](Λ)))→ CΓ∆(Kϕ(F rA[u,v](R∞∆,Λ)))

are pcr-quasi-isomorphisms after truncation τ≤r.

Proof. We will pass to the frame R2
δ0
, where the statement of the lemma is known. For the first map,

arguing as in the proof of Lemma 7.28, we find a map f : Spf(RPD
∆ ) → Spf(R̃cr) compatible with the

diagram (7.30) and the analog of the diagram (7.12) for the frame R2
δ0
. If this map is compatible with
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Frobenius then it induces the vertical arrows in the commutative diagram:

CΓ∆
(Kϕ(F rR

[u,v]
∆ ⊗̂A[u,v](Λ)))

ε // CΓ∆
(Kϕ(F rA

[u,v]
R∞∆
⊗̂A[u,v](Λ)))

CΓδ0
(Kϕ(F rR̃

[u,v]
δ0
⊗̂A[u,v](Λ)))

εδ0

∼
//

τ≤r o

OO

CΓδ0
(Kϕ(F rA

[u,v]
R∞δ0
⊗̂A[u,v](Λ))).

OO

The map εδ0 is a pcr-quasi-isomorphism by diagram (7.16), the left vertical map is a pcr-quasi-isomorphism
(after truncation τ≤r) because both the domain and the target compute Syn(R+, r)n(Λ), and the right
vertical map is an almost quasi-isomorphism by almost étale descent. It follows that the map ε from
our lemma is a pcr-quasi-isomorphism after truncation τ≥r, as wanted. In general, the map f is not
compatible with Frobenius and we have to proceed by a zig-zag as in the proof of Lemma 7.22.

For the map δ, consider the commutative diagram

CΓ∆
(Kϕ(F rA

[u,v]
R∞∆
⊗̂A[u,v](Λ)))

µHδ // CG(Kϕ(F rA[u,v](RΛ)))

CΓδ0
(Kϕ(F rA

[u,v]
R∞δ0
⊗̂A[u,v](Λ)))

o

OO
µHδ

∼

44

The diagonal map is a pcr-quasi-isomorphism by the diagram (7.16). It follows that so is the horizontal
map and then the map δ, as wanted. �

Remark 7.33. The reader will probably notice that for what follows we did not need to prove Lemma
7.32: it will suffice to know that the composition µHδε is a, truncated at r, pcr-quasi-isomorphism
and this we know since the diagram (7.31) commutes and the top horizontal maps are truncated at r
pcr-quasi-isomorphisms.

Diagram (7.31) allows us to replace αR
+
cr

r,n (Λ) with the map �R
2
∆

r,n (Λ) that traces that diagram down-
bottom right-up and replaces CG(Kϕ(F rAcr(RΛ)) with RΓproét(Spa(RΛ),Kϕ(F rAcr)):

�R
2
∆

r,n (Λ) : Syn(R2
∆, r)n(Λ)→ RΓproét(Spa(RΛ),Z/pn(r)′).

�R
2
∆

r,n (Λ) : Syn(R2
∆, r)n(Λ) ' K∂,ϕ(F rRPD

∆ ⊗̂Acr(Λ))n
τ≤rβ−−−→
∼

K∂,ϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ))n

t•,τ≤r−−−−→
∼

KLie Γ∆,ϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ))n

Laz←−−−
∼

KΓ∆,ϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ))n

−→
∼
CΓ∆

(Kϕ(F rR
[u,v]
∆ ⊗̂A[u,v](Λ))n)

ε−→
∼
CΓ∆

(Kϕ(F rA
[u,v]
R∞∆
⊗̂A[u,v](Λ))n)

δ−→
∼
CΓ∆

(Kϕ(F rA[u,v](R∞∆,Λ))n)
ν−→
∼

RΓproét(Spa(RΛ),Kϕ(F rAcr)n)

FES←−−−
∼

RΓproét(Spa(RΛ),Z/pn(r)′).

Here FES stands for "fundamental exact sequence". This map is functorial in Λ and is a pcr-quasi-
isomorphism, for a universal constant c, after truncation τ≤r (by the discussion below diagram 7.31).
Hence its rational version

�R
2
∆

r (Λ) : Syn(R2
∆, r)Qp

(Λ)→ RΓproét(Spa(RΛ),Qp(r))

is functorial in Λ and a strict quasi-isomorphism after truncation τ≤r.
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The map �R
2
∆

r (Λ) is functorial in the triples (R+, R2
∆, ι∆) and taking the colimit over the filtered system

of such embeddings with fixed R+ we get a map in D(CQp
)

(7.34) �R
+

r (Λ) : RΓsyn(Spf(R+), r)Qp
(Λ)→ RΓproét(Spa(RΛ),Qp(r)),

which is functorial with respect to R+ and Λ and a strict quasi-isomorphism after truncation τ≤n.

7.3.4. Proof of Theorem 7.3. Let now X ∈ SmC . The definition (7.34) of the period map globalizes using
η-étale sheafification to a period map in D(CQp

)

�r(Λ) : Rsyn(X,Qp(r))(Λ)→ Rproét(X,Qp(r))(Λ), r ≥ 0,

which for Λ = C recovers the period map of Fontaine-Messing. This is a strict quasi-isomorphism after
truncation τ≤r. Now, varying Λ we get the map we wanted:

�r : Rsyn(X,Qp(r))→ Rproét(X,Qp(r)), r ≥ 0.

7.4. Dagger varieties. We will now geometrize cohomologies and period morphisms associated to dag-
ger varieties.

7.4.1. Cohomologies. Let X be a dagger affinoid over C, and {Xh} be a presentation. Define the VS:

R†proét(X,Qp) := L colimn Rproét(Xh,Qp).

For a smooth dagger variety X over C, this globalizes, via étale sheafification, to the VS Rproét(X,Qp).

We set

H̃iproét(X,Qp),H
i
proét(X,Qp) : Λ 7→ H̃i(Rproét(X,Qp)(Λ)), Hi(Rproét(X,Qp)(Λ)).

We define similarly the Hyodo-Kato cohomology, the B+
dR-cohomology, and the syntomic cohomology:

RHK(X), H̃iHK(X); RdR(X/B+
dR), H̃idR(X/B+

dR); R†syn(X,Qp(r)), H̃†,isyn(X,Qp(r));

Rsyn(X,Qp(r)), H̃isyn(X,Qp(r)).

We note that the Hyodo-Kato cohomology is the constant functor equal to RΓHK(X), H̃i
HK(X).

7.4.2. Period maps. Let X be a dagger affinoid over C, and {Xh} be a presentation. Let r ≥ 0. The
local period morphisms of VS’s (with values in D(CQp))

�†r : R†syn(X,Qp(r))→ R†proét(X,Qp(r))

are defined as

R†syn(X,Qp(r)) = L colimh Rsyn(Xh,Qp(r))
L colimh �r,h−−−−→ L colimh Rproét(Xh,Qp(r)) = R†proét(X,Qp(r)).

For a smooth dagger variety X, this globalizes to period morphisms

�†r : R†syn(X,Qp(r))→ Rproét(X,Qp(r)).

These are strict quasi-isomorphisms after truncation τ≤r because so are the rigid analytic period mor-
phisms �r,h by Theorem 7.3.

Recall now that, for X ∈ Sm†C , the period morphisms in D(CQp
)

αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

are defined as the compositions

RΓsyn(X,Qp(r))
ι†syn←−−
∼

RΓ†syn(X,Qp(r))
α†r→ RΓproét(X,Qp(r)).

These morphisms lift to VS. Indeed, it remains to show that we can lift the map ι†syn to a map

�†syn : R†syn(X,Qp(r))→ Rsyn(X,Qp(r)),
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and that this map is a strict quasi-isomorphism. We define the map �†syn by étale sheafifying the following
composition (X is a smooth dagger affinoid over C),

R†syn(X,Qp(r)) = L colimh Rsyn(Xh,Qp(r))
∼ // L colimh Rsyn(Xo

h,Qp(r))

Rsyn(X,Qp(r)) L colimh Rsyn(Xo,†
h ,Qp(r))

∼oo

�o
OO

Here, the morphism � needs to be defined and both it and the bottom morphism need to be shown to be
strict quasi-isomorphisms.

Proposition 7.35. (Definition of the map �) Let X ∈ Sm†C . We have a natural map of VS’s (with values
in D(CQp))

� : Rsyn(X,Qp(r))→ Rsyn(X̂,Qp(r))

It is a strict quasi-isomorphism for X partially proper.

Proof. We will set � := �2�1, with the maps �1, �2 defined as follows.
(i) The map �1. The map �1 is defined as the following composition:

Rsyn(X,Qp(r))
[
[RHK(X)⊗̂R

Fnr B̂+
st]
N=0,ϕ=pr ιHK⊗ι−−−−→RdR(X/B+

dR)/F r
]

��[
[RHK(X̂)⊗̂Fnr B̂+

st]
N=0,ϕ=pr ιHK⊗ι−−−−→RdR(X̂/B+

dR)/F r)
]

[
[RHK(X̂)F ⊗̂FnrB+

st]
N=0,ϕ=pr ιHK⊗ι−−−−→RdR(X̂/B+

dR)/F r)
]o

OO

It is a strict quasi-isomorphism. Indeed, for that it suffices to show that the canonical map

[RHK(X̂)⊗̂FnrB+
st]
N=0 → [RHK(X̂)⊗̂R

Fnr B̂+
st]
N=0

is a strict quasi-isomorphism. But this can be shown exactly as in Section 6.1.1.
(ii) The map �2. Now, we define a natural strict quasi-isomorphism �2 by[

[RHK(X̂)F ⊗̂FnrB+
st]
N=0,ϕ=pr ιHK⊗ι−−−−→RdR(X̂/B+

dR)/F r
]

��
[[Rcr(X̂)]ϕ=pr can−−−−→Rcr(X̂)/F r] Rsyn(X̂,Qp(r)).

For that, it suffices to define the maps ι1BK and ι2BK in the following diagram and to show that this
diagram commutes:

(7.36) [RHK(X̂)⊗̂FnrB+
st]
N=0

εHK
st ⊗Ido
��

oι1BK

))

ιHK⊗ι // (RdR(X̂/B+
dR)⊗̂R

B+
dR
B+

dR)/F r

ι2BKo

uu

[Rcr(X̂)⊗̂B+
cr
B+

st]
N=0

κ⊗ι
44

Rcr(X̂)⊗̂B+
cr
B+

cr

o

OO

can // (Rcr(X̂)⊗̂B+
cr
B+

cr)/F
r.

κ⊗can o

OO

We define the maps ι1BK and ι2BK to make the left and the right triangles in the diagram commute. They
are strict quasi-isomorphisms. The remaining pieces of the diagram commute by definition. �
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Let X ∈ Sm†C . We define the global period morphism of VS’s (with values in D(CQp
))

�r : Rsyn(X,Qp(r))→ Rproét(X,Qp(r))

as the composition �†r(�
†
syn)−1. From what we have shown above, it follows that:

Corollary 7.37. The natural map of VS’s (with values in D(CQp
))

τ≤r�r : τ≤rRsyn(X,Qp(r))→ τ≤rRproét(X,Qp(r))

is a strict quasi-isomorphism.
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