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An Archimedean comparison theorem
X/Q – algebraic variety, smooth, projective. Classical de Rham
theorem: there exists a nondegenerate pairing

Hn
dR(XC)× Hn(X (C),C)→ C, (ω, γ) 7→

∫
γ
ω.

Hn(X (C),C) – singular homology, de Rham cohomology:

Hn
dR(XC) := Hn(XC ,OXC

→ Ω1
XC/C → Ω2

XC/C → · · · )

C contains periods for all varieties ! Example of periods:∫
γ

dz

z
= 2πi , or

Γ(1/4)Γ(1/2)

Γ(3/4)
= 2

∫ +∞

1

dx√
x3 − x

Note, Archimedean completion:

Q 7→ Q̂ ' R ↪→ C ' R

But, we also have non-Archimedean completions:

Q 7→ Q̂ ' Qp ↪→ Qp ↪→ Cp = Q̂p
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History of p-adic Hodge Theory

1. Algebraic varieties:

1.1 1958-65: Grothendieck defines étale cohomology (as an analog
of singular cohomology), algebraic de Rham cohomology, and
its refinement: crystalline cohomology.

1.2 1967-70: Tate and Grothendieck discover that, for an elliptic
curve over Qp, its de Rham cohomology and its p-adic étale
cohomology, are determined by each other.

1.3 1970: Grothendieck asks whether there exists an abstract
”mysterious period functor” relating p-adic étale cohomology
and de Rham cohomology.

1.4 1979-87: Fontaine constructs complicated period rings and
formulates precise conjectures, which are now theorems.

2. Analytic varieties

2.1 1967: Tate asked whether there is Hodge Theory for p-adic
analytic varieties.

2.2 2010: Scholze, Colmez-Dospinescu-Nizio l, many other ...:
p-adic Hodge Theory for analytic varieties.
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Digression: non-Archimedean completion

(i) p-prime number, |•| = |•|p – p-adic norm on Q, normalized
with |p| = p−1. Have |xy | = |x ||y | and |x + y | ≤ max(|x |, |y |).

(ii) Qp – completion of Q for the p-adic norm |•|,

Zp := {x ∈ Qp||x | ≤ 1}, Zp ' lim←−n
Z/pn,

Zp” = ”{0, 1, . . . , p − 1}[[p]],

Qp = Zp[1/p], x ∈ Qp, x =
∑
n≥n0

xnp
n, xn ∈ {0, . . . , p − 1}.

(iii) Qp – algebraic closure of Qp, |•| extends uniquely to Qp,
GQp := Gal(Qp/Qp) acts via isometries. Qp is not complete for |•|:
Qp is infinite dimensional (xn − p is irreducible in Qp[x ]).
(iv) Let Cp be the completion of Qp. GQp = Autcont(Cp).
dimQp Cp is not countable. Cp ' C as an abstract field.
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Étale cohomology
Back to the nondegenerate pairing:

Hn
dR(XC)× Hn(X (C),C)→ C, (ω, γ) 7→

∫
γ
ω.

Dually:
Hn

dR(X )⊗K C ' Hn
B(X (C),Q)⊗Q C

Fix prime p. For p-adic coefficients, we have

Hn
B(X (C),Q)⊗Q Qp ' Hn

ét(XQp
,Qp)

Properties:

1. locally: Hn
ét(XQp

,Qp) ' Hn(π(XQp
),Qp), π(XQp

) – algebraic

fundamental group=profinite completion of the classical one,

2. finite rank over Qp,
3. continuous action of GQp ; it carries information about:

3.1 finite extensions of Qp,
3.2 the arithmetic of X , for example its rational points X (Q).

.
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Examples of Galois representations on Hn
ét(XQp

,Qp)

(1) Tate twists: Cyclotomic character

χ : GQp → Z∗p : σ(e
2πi
pn ) = eχ(σ) 2πi

pn .

If i ∈ Z, Qp(i) is Qp with action of GQp via χi .

Qp(1) = Qp ⊗Zp lim←−n
Gm(Qp)pn , Qp(1) ' H2

ét(P1
Qp
,Qp)∗.

(2) E– elliptic curve, Tate module:

TpE := lim←−n
E (Qp)pn , VpE := Qp ⊗Zp TpE .

Have
VpE ' H1

ét(EQp
,Qp)∗, dimQp VpE = 2.
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Main question
Does there exist a period ring B (that contains periods of all
varieties over Qp) and a pairing (ω, γ) 7→

∫
γ ω ∈ B such that

1. Hn
dR(X )⊗Qp B ' Hn

ét(XQp
,Qp)⊗Qp B

2. we can recover the Galois representation Hn
ét(XQp

,Qp) from

Hn
dR(X ).

Remark B can not be Cp, Tate (’66): Cp does not contain a
p-adic analog of 2πi :

1. we have log e
2πi
pn = 0, where log(x) =

∑
n≥1

(−1)n−1

n (x − 1)n,

0→ µp∞ → B(1, 1−)
log→ Cp → 0

2. 2πi period of P1 and H2
ét(P1

Qp
,Qp)∗ ∼= Qp(1), so need

σ(2πi) = χ(σ)2πi , ∀σ ∈ GQp . But Tate:

{x ∈ Cp | σ(x) = χ(σ)x ,∀σ ∈ GQp} = 0
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Period ring BdR

Fontaine (’80) constructed a ring

B+
dR, 2πi = t ∈ B+

dR, σ(t) = χ(σ)t, σ ∈ GQp .

Properties of B+
dR:

1. B+
dR ' Cp[[t]] but not in any reasonable way,

0→ tB+
dR → B+

dR
θ→ Cp → 0

2. B+
dR ⊃ F nB+

dR := (tn), grnF B+
dR ' Cp(n).

3. Colmez: B+
dR ' Q̂p, a completion involving “higher

derivatives”.
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Example to illustrate (3)

Define the norm

x ∈ Qp, |x |p,1 := sup(|x |p, |dxdp |p).

It is submultiplicative: |xy |p,1 ≤ |x |p,1|y |p,1

Fact: B+
dR/t

2B+
dR is the completion of Qp for |•|p,1 (so Qp is dense

in B+
dR/t

2B+
dR). Hence B+

dR/t
2B+

dR is not a Cp-vector space. But

0 // tB+
dR/t

2B+
dR

//

o
��

B+
dR/t

2B+
dR

// B+
dR/tB

+
dR

//

o
��

0

Cp Cp

So B+
dR/t

2B+
dR looks like a Cp-vector space of dimension 2 (more

generally, B+
dR/t

nB+
dR ∼ Cn

p).
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p-adic comparison theorems
Define BdR := B+

dR[1/t].

Theorem (De Rham comparison, Faltings ’89) X – proper,
smooth over K , [K : Qp] <∞. There exists a period isomorphism

αdR : Hn
dR(X )⊗K BdR ' Hn

ét(XK ,Qp)⊗Qp BdR (1.2)

compatible with Galois action and filtration, where
F iHn

dR(X ) := Im(Hn(X ,Ω≥iX/K )→ Hn
dR(X )).

Corollary
1. We have a Hodge-Tate decomposition (take gr0

F of (1.2)):

Hn
ét(XK ,Qp)⊗Qp Cp '

⊕
i≥0

Hn−i (X ,Ωi
X/K )⊗K Cp(−i)

2. take GK -fixed points of (1.2):

Hn
dR(X ) ' (Hn

ét(XK ,Qp)⊗Qp BdR)GK , + Fil.
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Can not go the other way !
Need more refined period rings (Fontaine):

Bcr ⊂ Bst ⊂ BdR, (Bcr, ϕ,GK ), (Bst, ϕ,N,GK ),BN=0
st = Bcr

Theorem X/K variety (sic !). There exists a period isomorphism

αst : Hn
HK(XK )⊗Knr Bst ' Hn

ét(XK ,Qp)⊗Qp Bst

compatible with Frobenius, monodromy, Galois action and with the
de Rham period isomorphism αdR, i.e., αst ⊗ BdR ' αdR. Here,
Hyodo-Kato cohomology:

Hn
HK(XK )⊗Knr K ' Hn

dR(XK ), +(ϕ,N,GK ).

Hn
ét(XK ,Qp) ' (Hn

HK(XK )⊗Knr Bst)
N=0,ϕ=1∩F 0(Hn

dR(XK )⊗K BdR)

Twisting by Qp(r), r ≥ 0, we can write:

0→ H r
ét(XK ,Qp(r))→ (H r

HK(XK )⊗B+
st)N=0,ϕ=pr → (H r

dR(X )⊗B+
dR)/F r

History: Fontaine-Messing, Hyodo, Kato, Faltings, Tsuji, Nizio l
(’85-2005); Beilinson, Bhatt, Scholze (2010+).
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Digression: Banach-Colmez spaces

What structure does
(Hn

HK(XK )⊗Knr B+
st)N=0,ϕ=1 ' (Hn

HK(XK )⊗Knr B+
cr)

ϕ=1 have ?

Example
0→ Qpt → B+,ϕ=p

cr → Cp → 0

So B+,ϕ=p
cr ∼ Cp ⊕Qp.More generally, we have

Fundamental exact sequence of p-adic Hodge Theory:

0→ Qpt
m → B+,ϕ=pm

cr → B+
dR/t

mB+
dR → 0

So: B+,ϕ=pm
cr ∼ Cm

p ⊕Qp. But In which category ?

Remark The category of topological vector spaces is not good:
Cp ⊕Qp ' Cp !
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Theorem (Colmez, Fontaine) There exists an abelian category of
Banach-Colmez vector spaces W which are finite dimensional
Cp-vector spaces ± finite dimensional Qp-vector spaces. We have

1. Dim(W) := (dimCp W, dimQp W)

2. Dim(W) is additive on short exact sequences.

Example

1. B+
dR/t

m is Bm with Dim(Bm) = (m, 0).

2. B+,ϕa=pb
cr is Ua,b with Dim(Ua,b) = (b, a).

3. Cp/Qp has Dim = (1,−1).
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Applications

(1) Categories of (abstract) Galois representations (Fontaine):

Rep(GK ) ⊃ RepHT(GK ) ⊃ RepdR(GK ) ! Repgeometric(GK )

The last inclusion is implied by Theorem 1.2. This inclusion is
strict (we did not put restrictions on eigenvalues of Frobenius !).

(2) Amazingly, globally this inclusion tends to be an equality,
de Rham ⇒ geometric.

Conjecture (Fontaine-Mazur, ’90) Suppose that
ρ : GQ → GL(V ) is an irreducible p-adic representation which is
unramified at all but finitely many primes and ρ|GQp is de Rham.
Then there is a smooth projective variety X/Q and integers i ≥ 0
and j such that V is a subquotient of H i (X (C),Qp(j)).

Known: basically in dimension 2 by Emerton, Kisin, Lue Pan.
geometric ⇒ automorphic ⇒ related to harmonic analysis
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Rigid analytic varieties

Local behaviour very different from the algebraic case

Example

1. D open unit disk over Cp. We have
(i) H1

dR(D) = 0, H1
ét(D,Q`) = 0, ` 6= p,

(ii) H1
proét(D,Qp) = O(D)/Cp.

Note: y = xp − x defines an étale covering of A1
Fp

(dy/dx = −1).

2. X open annulus over Cp.
(i) H1

dR(X ) ' Cp ' Cp < dz/z >, H1
ét(X ,Q`) ' Q`, ` 6= p,

(ii)

0→ O(X )/Cp → H1
proét(X ,Qp)→ Qp < dz/z >→ 0
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(1) Proper varieties. Scholze, Colmez-Nizio l: theory similar to
the algebraic case, in particular Hn

ét(XK ,Qp) is finite rank.

(2) Stein varieties. Stein: coherent sheaves have no higher
cohomology, Colmez-Dospinescu-Nizio l:
Example
(i) Affine space Ad

K :

H r
proét(Ad

Cp
,Qp(r)) ' Ωr−1(Ad

Cp
)/ ker d

not finite rank, Dim = (∞, 0).
(ii) Torus Gd

m,K :

0→ Ωr−1(Gd
m,Cp

)/ ker d → H r
proét(Gd

m,Cp
,Qp(r))→

r∧
Qd

p → 0∧r Qd
p = ⊕i1<···<ir dlog zi1 ∧ · · · ∧ dlog zir Qp, Dim = (∞,

(d
r

)
).
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(iii) Drinfeld half plane ΩK := PK K P(K ):

0→ O(ΩCp)/ ker d → H1
proét(ΩCp ,Qp(1))→ Sp(Qp)∗ → 0

Sp(Qp) = C∞(P(K ),Qp)/Qp – (smooth) Steinberg representation
of GL2(K ). Dim = (∞,∞).

Remark (•) Have a similar result for Ωd
K – Drinfeld symmetric

space of any dimension d > 1.
(•) Have results for étale coverings of ΩK , this yields a geometric
realization of a part of the p-adic local Langlands correspondence.

Theorem (CDN)r ≥ 0, X - Stein analytic variety over K . There
exists a GK -equivariant exact sequence:

0→ H r
proét(XCp ,Qp(r))→ Ωr (XCp)d=0 ⊕ (H r

HK(XCp)⊗̂Knr B+
st)N=0,ϕ=pr

→ H r
dR(XCp)→ 0

Pro-étale cohomology can be recovered from de Rham data !
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