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An Archimedean comparison theorem

X /Q — algebraic variety, smooth, projective. Classical de Rham
theorem: there exists a nondegenerate pairing

Hir(Xc) x Ha(X(C),C) = C, (w,v) /w.
¥
Hn(X(C),C) — singular homology, de Rham cohomology:
Hir(Xc) :== H"(Xc, Ox. — Q}Q/C — Qic/c )

C contains periods for all varieties ! Example of periods:

/dZ=27Ti orwzz +OOL
v £ ’ F(3/4) 1 Vx3 = x
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An Archimedean comparison theorem

X /Q — algebraic variety, smooth, projective. Classical de Rham
theorem: there exists a nondegenerate pairing

Hir(Xc) x Ha(X(C),C) = C, (w,v) /w.

Hn(X(C),C) — singular homology, de Rham cohomology:
Hir(Xc) :== H"(Xc, Ox. — Q}Q/c — Qic/c )
C contains periods for all varieties ! Example of periods:

/dz:2 , r(1/4)r(1/2):2 T dx

i, or —_—
z r(3/4) 1 Vx3 —x

Note, Archimedean completion:
Q— 6 ~R—C~R

But, we also have non-Archimedean completions:

Q»—>(A):Qp<—>6pf—>cp:6;
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History of p-adic Hodge Theory

1. Algebraic varieties:
1.1 1958-65: Grothendieck defines étale cohomology (as an analog
of singular cohomology), algebraic de Rham cohomology, and
its refinement: crystalline cohomology.
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1.1 1958-65: Grothendieck defines étale cohomology (as an analog
of singular cohomology), algebraic de Rham cohomology, and
its refinement: crystalline cohomology.

1.2 1967-70: Tate and Grothendieck discover that, for an elliptic
curve over Qp, its de Rham cohomology and its p-adic étale
cohomology, are determined by each other.
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1.4 1979-87: Fontaine constructs complicated period rings and
formulates precise conjectures, which are now theorems.
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analytic varieties.
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its refinement: crystalline cohomology.
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cohomology, are determined by each other.

1.3 1970: Grothendieck asks whether there exists an abstract
"mysterious period functor” relating p-adic étale cohomology
and de Rham cohomology.

1.4 1979-87: Fontaine constructs complicated period rings and
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2.1 1967: Tate asked whether there is Hodge Theory for p-adic
analytic varieties.

2.2 2010: Scholze, Colmez-Dospinescu-Niziot, many other ...:
p-adic Hodge Theory for analytic varieties.
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History of p-adic Hodge Theory

1. Algebraic varieties:

1.1 1958-65: Grothendieck defines étale cohomology (as an analog
of singular cohomology), algebraic de Rham cohomology, and
its refinement: crystalline cohomology.

1.2 1967-70: Tate and Grothendieck discover that, for an elliptic
curve over Qp, its de Rham cohomology and its p-adic étale
cohomology, are determined by each other.

1.3 1970: Grothendieck asks whether there exists an abstract
"mysterious period functor” relating p-adic étale cohomology
and de Rham cohomology.

1.4 1979-87: Fontaine constructs complicated period rings and
formulates precise conjectures, which are now theorems.

2. Analytic varieties

2.1 1967: Tate asked whether there is Hodge Theory for p-adic
analytic varieties.

2.2 2010: Scholze, Colmez-Dospinescu-Niziot, many other ...:
p-adic Hodge Theory for analytic varieties.
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Digression: non-Archimedean completion

(i) p-prime number, |o| = |o|, = p-adic norm on Q, normalized
with || = p . Have |xy| = [x|ly| and |x + y| < max(|x], |y])



Algebraic varieties Rigid analytic varieties
00e0000000000 000

Digression: non-Archimedean completion

(i) p-prime number, |o| = |o|, = p-adic norm on Q, normalized
with || = p . Have |xy| = [x|ly| and |x + y| < max(|x], |y])
(if) Qp — completion of Q for the p-adic norm ||,

Zp = {X € QpHX‘ S 1}, Zp ~ |I<TmZ/pn,

ZP” = ”{0717"'7p_ 1}[[p]]7
QP:ZP[l/p]7 XEQP,X:anpn,XnE{O,...,p—l}-

n>ng
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(i) Qp — algebraic closure of Qp, |+| extends uniquely to Qp,
Gq, = Gal(Q,/Qp) acts via isometries. Q is not complete for |[|:
Q, is infinite dimensional (x" — p is irreducible in Q,[x]).
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Digression: non-Archimedean completion

(i) p-prime number, |o| = |o|, = p-adic norm on Q, normalized
with || = p . Have |xy| = [x|ly| and |x + y| < max(|x], |y])
(if) Qp — completion of Q for the p-adic norm ||,

Zp = {X € QPHX‘ S 1}, Zp ~ |I<TmZ/pn,

ZP” = ”{07 17 s P 1}[[p]]7
QP:ZP[l/p]7 XEQP,X:anpn,XnE{O,...,p—l}-

n>ng

(i) Qp — algebraic closure of Qp, |+| extends uniquely to Qp,

Gq, = Gal(Q,/Qp) acts via isometries. Q is not complete for |[|:
Q, is infinite dimensional (x" — p is irreducible in Qp[x]).

(iv) Let C, be the completion of Q,. Gq, = Autcont(Cp).

dimq, C;, is not countable. C, ~ C as an abstract field.
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Etale cohomology
Back to the nondegenerate pairing:

HIL(Xc) X Ha(X(C),C) = C, (w,7) — /w.

Dually:
Hir(X) @k €~ Hg(X(C),Q) ©q C
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Etale cohomology
Back to the nondegenerate pairing:

HIL(Xc) X Ha(X(C),C) = C, (w,7) — /w.

Dually:
Hir(X) ®k €~ Hp(X(C),Q) ®q C
Fix prime p. For p-adic coefficients, we have

HB(X(C), Q) ©q Qp ~ HA(Xg, Q)
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Etale cohomology
Back to the nondegenerate pairing:

HiR(Xe) X Ha(X(€).C) > €, (win) s [ w
¥
Dually:
Hir(X) ®k €~ Hp(X(C),Q) ®q C
Fix prime p. For p-adic coefficients, we have
Hg(X(C), Q) ®q Q, ~ H&(Xg, . Qp)

Properties:
1. locally: Hgt(Xap,Qp) ~ H"(W(Xap),QP), w(Xap) — algebraic
fundamental group=profinite completion of the classical one,
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Etale cohomology
Back to the nondegenerate pairing:

HiR(Xe) X Ha(X(€).C) > €, (win) s [ w
¥
Dually:
Hir(X) ®k €~ Hp(X(C),Q) ®q C
Fix prime p. For p-adic coefficients, we have
Hg(X(C), Q) ®q Q, ~ H&(Xg, . Qp)

Properties:
1. locally: Hgt(Xap,Qp) ~ H"(W(Xap),QP), w(Xap) — algebraic
fundamental group=profinite completion of the classical one,
2. finite rank over Qp,
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Etale cohomology

Back to the nondegenerate pairing:

HIL(Xc) X Ha(X(C),C) = C, (w,7) — /w.

Dually:
Hir(X) @k €~ Hg(X(C),Q) ©q C

Fix prime p. For p-adic coefficients, we have
Hg(X(C), Q) ®q Q, ~ H&(Xg, . Qp)
Properties:
. n i ~ n . __ —_ 1
" ondamental oup it conleion o e s oo

2. finite rank over Qp,
3. continuous action of Gq,; it carries information about:

3.1 finite extensions of Qp,
3.2 the arithmetic of X, for example its rational points X(Q).
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Examples of Galois representations on He?t(Xap, Q,)

(1) Tate twists: Cyclotomic character

2mi 2mi

X:Gq, > Zy:0(er")= X

If i € Z, Qp(i) is Qp with action of Gg, via x'.
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Examples of Galois representations on He?t(XGP, Q,)

(1) Tate twists: Cyclotomic character

2mi 27rl

X:6q, > Z,:0(er )= X
If i € Z, Qp(i) is Qp with action of Gg, via x'.

Qx(1) =Qp ®Zp n Gm(Qp)pr, Qp(1) =~ Hgt(Plapva)*-
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Examples of Galois representations on Hg(Xg , Qp)

(1) Tate twists: Cyclotomic character
. * Z _ x(0)E
X:6q, > Z,:0(er")=e""e".
If i € Z, Qp(i) is Qp with action of Gg, via x'.

Qp(1) = Q, ®z, L'g." Gm(Qp)pr,  Qp(1) Hézt(Plapa Q)"

(2) E- elliptic curve, Tate module:
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Examples of Galois representations on Hg(Xg , Qp)

(1) Tate twists: Cyclotomic character

2mi 2mi

X:Gq, > Zy:0(er")= X
If i € Z, Qp(i) is Qp with action of Gg, via x'.

Qp(1) = Qp @2, ImGim(Qp)pr,  Qp(1) = He (P, Qp)"
(2) E- elliptic curve, Tate module:
ToE = imE(@p)pr.  V,E = Q, ®z, THE.

Have
VoE =~ H(Eg,, Qp)*,  dimq, V,E =2.
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Main question
Does there exist a period ring B (that contains periods of all
varieties over Q) and a pairing (w,v) — fyw € B such that
1. Hi(X) @q, B~ HI(Xg, Qp) ®a, B
2. we can recover the Galois representation Hgt(X6p7 Q,) from
Hir(X).
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1. Hi(X) @q, B~ HI(Xg, Qp) ®a, B
2. we can recover the Galois representation Hgt(X6p7 Q,) from
Hir(X).

Remark B can not be C,, Tate ('66): C, does not contain a
p-adic analog of 27i:
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1. we have log er = 0, where log(x) = >_, -, (_1,)1%1()( —-1)",

0= pipe — B(1,17) % C, — 0
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Main question
Does there exist a period ring B (that contains periods of all
varieties over Q) and a pairing (w,v) — fyw € B such that
1. Hi(X) @q, B~ HI(Xg, Qp) ®a, B
2. we can recover the Galois representation Hgt(X6p7 Q,) from
Hir(X).

Remark B can not be C,, Tate ('66): C, does not contain a
p-adic analog of 2mi:

1. we have log er = 0, where log(x) = >_, -, (_1,)1%1()( —-1)",

0= pipe — B(1,17) % C, — 0

2. 2mi period of P! and Hgt(]P’lap,Qp)* >~ Q,(1), so need
o(2ri) = x(0)2mi, Vo € Gq,. But Tate:
{xeCy|a(x)=x(o)x,Vo € Gq,} =0
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Period ring Byr

Fontaine ('80) constructed a ring

Bjr, 2mi=te€ B, o(t)=x(0)t,0 € Gy,
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Fontaine ('80) constructed a ring

Bjr, 2mi=te€ B, o(t)=x(0)t,0 € Gy,

Properties of By
1. Bjg ~ C,[[t]] but not in any reasonable way,

0— tBj, = Bl 5 C,—0

Rigid analytic varieties
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Fontaine ('80) constructed a ring

Bjr, 2mi=te€ B, o(t)=x(0)t,0 € Gy,

Properties of By
1. Bjg ~ C,[[t]] but not in any reasonable way,

0— tBj, = Bl 5 C,—0

2. Bjg D F"BJ; := (t"), gr} Bz ~ Cp(n).
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Period ring Byr

Fontaine ('80) constructed a ring
Bjr, 2mi=te€ B, o(t)=x(0)t,0 € Gy,

Properties of By
1. Bjg ~ C,[[t]] but not in any reasonable way,

0— tBj, = Bl 5 C,—0

2. Bjg D F"BJ; := (t"), gr} Bz ~ Cp(n).

3. Colmez: B;}'R o~ 6p, a completion involving “higher
derivatives”.
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Example to illustrate (3)

Define the norm
x € Qp,  [x|p1 = sup(|x|p, ‘%’p)‘

It is submultiplicative: |xy|p1 < [x|p1|y|p1
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Example to illustrate (3)

Define the norm
x € Qp,  [x|p1 = sup(|x]p, ‘%’p)‘

It is submultiplicative: |xy|p1 < [x|p1|y|p1

Fact: B/t?B is the completion of Q,, for |+, 1 (s0 Qp is dense
in Bjz/t?BJg). Hence BJ/t?BJy is not a C-vector space.
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Example to illustrate (3)

Define the norm
_ . d
X € Qp7 ‘X|P71 = SUP(|X’P7 ‘(T;’P)

It is submultiplicative: |xy|p1 < [x|p1|y|p1

Fact: B/t?B is the completion of Q,, for |+, 1 (s0 Qp is dense
in Bjz/t?BJz). Hence BJ/t?BJy is not a Cp-vector space. But

00— tB;rR/tZB:IFR — B:IFR/tszR — B;IFR/tB:IrR —0

3 3

Co Co

So B /t?B looks like a Cp-vector space of dimension 2 (more
generally, Bj /t"BJ ~ CP).
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p-adic comparison theorems
Define Bgr := Bg[1/1].
Theorem (De Rham comparison, Faltings '89) X — proper,
smooth over K, [K : Qp] < 00. There exists a period isomorphism
OdR : HJR(X) QK Byr = Hgt(X?, Qp) ®QP Bdr (1.2)
compatible with Galois action and filtration, where

FIHGR(X) == Tm(H"(X, Q%)) = HIR(X)).



Algebraic varieties
0000000080000

p-adic comparison theorems
Define Bgr := Bg[1/1].

Theorem (De Rham comparison, Faltings '89) X — proper,
smooth over K, [K : Qp] < 00. There exists a period isomorphism

OdR : H(?R(X) QK Byr = Hgt(X?, Qp) ®QP Bdr (1.2)
compatible with Galois action and filtration, where
FIHGR(X) := Im(H"(X, Q%)) = HER(X).
Corollary
1. We have a Hodge-Tate decomposition (take grZ of (1.2)):

Hé (Xz: Qp) ®q, Cp ~ EB H™ (X, QS(/K) ®k Cp(—1)
i>0
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p-adic comparison theorems
Define Bgr := Bg[1/1].

Theorem (De Rham comparison, Faltings '89) X — proper,
smooth over K, [K : Qp] < 00. There exists a period isomorphism
OdR : H(?R(X) QK Byr = Hgt(X?, Qp) ®QP Bdr (1.2)
compatible with Galois action and filtration, where
FngR(X) = Im(H"(X, Q2 ) = Hir(X)).
Corollary
1. We have a Hodge-Tate decomposition (take grZ of (1.2)):

Hé (Xz: Qp) ®q, Cp ~ EB H™ (X, QS(/K) ®k Cp(—1)
i>0

X/K

2. take Gg-fixed points of (1.2):
Hir(X) =~ (Hg (XK7 Q,) ®Q, BdR) K, 4+ Fil.
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Can not go the other way !
Need more refined period rings (Fontaine):

BC" - BSt - BdR? (BCH 2 GK)? (BSt7 © N7 GK)a Bé\{zo = Bcr
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Can not go the other way !
Need more refined period rings (Fontaine):
BC" - BSt - BdR’ (BCH 2 GK)? (BSt7 © N7 GK)a Bé\{zo = Bcr
Theorem X/K variety (sic !). There exists a period isomorphism
Qlst . HﬂK(X?) ®Knr BSt ~ Hgt(X?) Qp) ®Qp BSt

compatible with Frobenius, monodromy, Galois action and with the
de Rham period isomorphism agg, i.e., ast ® B4qr ~ agr. Here,
Hyodo-Kato cohomology:

HﬂK(X?) K Knr K~ HC?R(X?)7 +(30> N, GK)
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Can not go the other way !
Need more refined period rings (Fontaine):

BC" - BSt - BdR’ (BCH 2 GK)? (BSt7 © N7 GK)a Bé\{zo = Bcr
Theorem X/K variety (sic !). There exists a period isomorphism
Qlst . HﬂK(X?) ®Knr BSt ~ Hef't(X?? QP) ®Qp Bst

compatible with Frobenius, monodromy, Galois action and with the
de Rham period isomorphism agg, i.e., ast ® B4qr ~ agr. Here,
Hyodo-Kato cohomology:

HﬂK(X?) QK ? = HC?R(X?)v +(807 Na GK)
Ha (X, Qp) =~ (Hik (Xic) @kor Bst) N0 N FO(HSr (Xic) @3¢ Bar)
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Can not go the other way !
Need more refined period rings (Fontaine):
BC" - BSt - BdR’ (BCH 2 GK)? (BSt7 © N7 GK)a Bé\{zo = Bcr
Theorem X/K variety (sic !). There exists a period isomorphism
Qlst . HﬂK(X?) ®Knr BSt ~ Hgt(X?) Qp) ®Qp BSt

compatible with Frobenius, monodromy, Galois action and with the
de Rham period isomorphism agg, i.e., ast ® B4qr ~ agr. Here,
Hyodo-Kato cohomology:

HﬂK(X?) @ Kor K~ HC?R(X?)7 +(30> N> GK)
HE (X, Qp) = (Hik (Xz) @k Bot)N =071 N FO(Hi (Xg) @7 Ber)
Twisting by Qp(r),r > 0, we can write:
0 = Hi(Xg Qp(r)) = (Hik(Xg)@BHN=0=F" — (Hir(X)®BR)/F"
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Can not go the other way !
Need more refined period rings (Fontaine):

BCr C Bst C BdRa (Bcr, 2 GK)v (Bstv 2 N7 GK)a Bé\{zo = Bcr
Theorem X/K variety (sic !). There exists a period isomorphism
Qlst . HﬂK(X?) ®Knr BSt ~ He[]t(X?? QP) ®Qp Bst

compatible with Frobenius, monodromy, Galois action and with the
de Rham period isomorphism agg, i.e., ast ® B4qr ~ agr. Here,
Hyodo-Kato cohomology:

HﬂK(X?) @ Kor K~ HC?R(X?)7 +(30> N> GK)
HE (X, Qp) = (Hik (Xz) @k Bot)N =071 N FO(Hi (Xg) @7 Ber)
Twisting by Qp(r),r > 0, we can write:
0 = Hi(Xg Qp(r)) = (Hik(Xg)@BHN=0=F" — (Hir(X)®BR)/F"

History: Fontaine-Messing, Hyodo, Kato, Faltings, Tsuji, Niziot
('85-2005); Beilinson, Bhatt, Scholze (2010+).
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Digression: Banach-Colmez spaces

What structure does
(Hiik (Xg) @kor BE)N=09=1 o~ (HP\ (Xg) @k BE)#~L have ?



Algebraic varieties Rigid analytic varieties
0000000000800 [e]e]e}

Digression: Banach-Colmez spaces

What structure does
(Hiik (Xg) @kor BE)N=09=1 o~ (HP\ (Xg) @k BE)#~L have ?

Example
0— Qpt—BL*P -C,—0

So B&¥ P~ C, @ Q,.
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Digression: Banach-Colmez spaces

What structure does
(Hiik (Xg) @kor BE)N=09=1 o~ (HP\ (Xg) @k BE)#~L have ?
Example

0— Qpt—BL*P -C,—0

So Bg_r’w:p ~ C, ® Qp.More generally, we have
Fundamental exact sequence of p-adic Hodge Theory:

o=p" + +
0— Qpt™ — BL¥=P" — Bjz/t"Bjz — 0

So: B&¥=P" ~ C"® Q,. But In which category ?
p p
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Digression: Banach-Colmez spaces

What structure does
(Hiik (Xg) @kor BE)N=09=1 o~ (HP\ (Xg) @k BE)#~L have ?

Example
0— Qpt—BL*P -C,—0

So Bg_r’w:p ~ C, ® Qp.More generally, we have
Fundamental exact sequence of p-adic Hodge Theory:

0— Qpt™ — BL¥=P" — Bjz/t"Bjz — 0
So: B&¥=P" ~ C; ®Qp. But In which category ?

Remark The category of topological vector spaces is not good:
C,oQp~C,!
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Theorem (Colmez, Fontaine) There exists an abelian category of
Banach-Colmez vector spaces W which are finite dimensional
C,-vector spaces = finite dimensional Qp-vector spaces. We have

1. Dim(W) := (dimc, W, dimq, W)

2. Dim(W) is additive on short exact sequences.
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Theorem (Colmez, Fontaine) There exists an abelian category of
Banach-Colmez vector spaces W which are finite dimensional
C,-vector spaces = finite dimensional Qp-vector spaces. We have

1. Dim(W) := (dimc, W, dimq, W)

2. Dim(W) is additive on short exact sequences.
Example

1. Bjg/t™ is By with Dim(B,) = (m,0).

2. BE¥ is U, with Dim(U, ) = (b, a).

3. C,/Qp has Dim = (1,-1).
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Applications
(1) Categories of (abstract) Galois representations (Fontaine):
Rep(GK) ) RepHT(GK) ) Rede(GK) 2 Repgeometric(GK)

The last inclusion is implied by Theorem 1.2. This inclusion is
strict (we did not put restrictions on eigenvalues of Frobenius !).
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Applications

(1) Categories of (abstract) Galois representations (Fontaine):

Rep(GK) ) RepHT(GK) ) Rede(GK) 2 Repgeometric(GK)

The last inclusion is implied by Theorem 1.2. This inclusion is
strict (we did not put restrictions on eigenvalues of Frobenius !).
(2) Amazingly, globally this inclusion tends to be an equality,
de Rham =- geometric.

Conjecture (Fontaine-Mazur, '90) Suppose that

p: Gg — GL(V) is an irreducible p-adic representation which is

unramified at all but finitely many primes and p|Gq, is de Rham.
Then there is a smooth projective variety X/Q and integers i > 0
and j such that V is a subquotient of H'(X(C), Q,()))-
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Applications

(1) Categories of (abstract) Galois representations (Fontaine):

Rep(GK) ) RepHT(GK) ) Rede(GK) 2 Repgeometric(GK)

The last inclusion is implied by Theorem 1.2. This inclusion is
strict (we did not put restrictions on eigenvalues of Frobenius !).
(2) Amazingly, globally this inclusion tends to be an equality,
de Rham =- geometric.

Conjecture (Fontaine-Mazur, '90) Suppose that

p: Gg — GL(V) is an irreducible p-adic representation which is

unramified at all but finitely many primes and p|Gq, is de Rham.
Then there is a smooth projective variety X/Q and integers i > 0
and j such that V is a subquotient of H'(X(C), Q,()))-

Known: basically in dimension 2 by Emerton, Kisin, Lue Pan.
geometric = automorphic = related to harmonic analysis



Algebraic varieties Rigid analytic varieties
0000000000000 ©00

Rigid analytic varieties

Local behaviour very different from the algebraic case

Example

1. D open unit disk over C,. We have
(i) Hig(D) =0,  H&(D,Qr) =0, # p,
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Rigid analytic varieties

Local behaviour very different from the algebraic case

Example

1. D open unit disk over C,. We have
(i) Hip(D) =0, HZ(D,Qr) = 0,0 p,
(“) H;roét(]D)7 QP) = ﬁ(D)/CP
Note: y = xP — x defines an étale covering of A}:P
(dy/dx = —1).
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Rigid analytic varieties

Local behaviour very different from the algebraic case

Example

1. D open unit disk over C,. We have
() Hig(D) =0,  HE(D,Qr) =0, # p,
(“) H;roét(]D)7 QP) = ﬁ(D)/CP
Note: y = xP — x defines an étale covering of A}:P
(dy/dx = —1).
2. X open annulus over C,,.
(i) Hix(X) =~ Cp =~ C, < dz/z >, HL(X,Q) =~ Q¢ # p,
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Rigid analytic varieties

Local behaviour very different from the algebraic case

Example

1. D open unit disk over C,. We have
() Hig(D) =0,  HE(D,Qr) =0, # p,
(i1) Horose (D, Qp) = O(ID)/Cp.
Note: y = xP — x defines an étale covering of A}:P
(dy/dx = —1).
2. X open annulus over C,,.
(i) Hix(X) =~ Cp =~ C, < dz/z >, HL(X,Q) =~ Q¢ # p,
(ii)

0— O(X)/Cp — Hoar(X.Qp) = Qp < dz/z >— 0
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(1) Proper varieties. Scholze, Colmez-Niziot: theory similar to
the algebraic case, in particular HZ (X5, Qp) is finite rank.
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(1) Proper varieties. Scholze, Colmez-Niziot: theory similar to
the algebraic case, in particular HZ (X5, Qp) is finite rank.

(2) Stein varieties. Stein: coherent sheaves have no higher
cohomology, Colmez-Dospinescu-Niziot:
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(1) Proper varieties. Scholze, Colmez-Niziot: theory similar to
the algebraic case, in particular HZ (X5, Qp) is finite rank.

(2) Stein varieties. Stein: coherent sheaves have no higher
cohomology, Colmez-Dospinescu-Niziot:

Example

. . d .

(i) Affine space Af:

broct (AL, Qp(r)) = Q7 H(AL))/ ker d

not finite rank, Dim = (o0, 0).
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(1) Proper varieties. Scholze, Colmez-Niziot: theory similar to
the algebraic case, in particular HZ (X5, Qp) is finite rank.

(2) Stein varieties. Stein: coherent sheaves have no higher
cohomology, Colmez-Dospinescu-Niziot:

Example

(i) Affine space A%:

Hiroer(AL,, Qp(r)) = Q1 (AL))/ ker d

not finite rank, Dim = (o0, 0).
(i) Torus G%7K:

0— Q1 Gc,)/ kerd = Hi ot (G . Qp(r)) = /\ Q=0

N Qd Bj,<...<i, dlog zj, A --- Adlog z;, Qp, Dim = (o0, (d)).

r
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(iii) Drinfeld half plane Qk := Pk \ P(K):
0— 0(Qc,)/ kerd — H3oi:(Qc,. Qp(1)) — Sp(Qp)* — 0

Sp(Qp) = € (P(K),Qp)/Qp — (smooth) Steinberg representation
of GLy(K). Dim = (00, 00).
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(iii) Drinfeld half plane Qk := Pk \ P(K):
0— 0(Qc,)/ kerd — H3oi:(Qc,. Qp(1)) — Sp(Qp)* — 0

Sp(Qp) = € (P(K),Qp)/Qp — (smooth) Steinberg representation
of GLy(K). Dim = (00, 00).

Remark (e) Have a similar result for Q% — Drinfeld symmetric
space of any dimension d > 1.
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(iii) Drinfeld half plane Qk := Pk \ P(K):
0— 0(Qc,)/ kerd — H3oi:(Qc,. Qp(1)) — Sp(Qp)* — 0

Sp(Qp) = € (P(K),Qp)/Qp — (smooth) Steinberg representation
of GLy(K). Dim = (00, 00).

Remark (e) Have a similar result for Q% — Drinfeld symmetric
space of any dimension d > 1.

(e) Have results for étale coverings of Q, this yields a geometric
realization of a part of the p-adic local Langlands correspondence.
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(iii) Drinfeld half plane Qk := Pk \ P(K):
0— 0(Qc,)/ kerd — H3oi:(Qc,. Qp(1)) — Sp(Qp)* — 0

Sp(Qp) = € (P(K),Qp)/Qp — (smooth) Steinberg representation
of GLy(K). Dim = (00, 00).

Remark (e) Have a similar result for Q% — Drinfeld symmetric
space of any dimension d > 1.

(e) Have results for étale coverings of Q, this yields a geometric
realization of a part of the p-adic local Langlands correspondence.

Theorem (CDN)r >0, X - Stein analytic variety over K. There
exists a Gyk-equivariant exact sequence:

0 = Hiraas(Xe, Qplr)) = Q1 (Xe,)7~0 & (i (Xc, ) B BE) V07
— Hig(Xc,) = 0

Pro-étale cohomology can be recovered from de Rham data !
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