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Abstract. We compute, in a stable range, the arithmetic p-adic étale cohomology of smooth rigid

analytic and dagger varieties (without any assumption on the existence of a nice integral model) in

terms of differential forms using syntomic methods. The main technical input is a construction of a
Hyodo-Kato cohomology and a Hyodo-Kato isomorphism with de Rham cohomology.
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1. Introduction

Let p be a prime. Let OK be a complete discrete valuation ring of mixed characteristic (0, p) with
perfect residue field k and fraction field K. Let F be the fraction field of the ring of Witt vectors
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OF = W (k) of k. Let K be an algebraic closure of K and let C = K̂ be its p-adic completion; let
GK = Gal(K/K). Let F nr be the maximal unramified extension of F in K.

In a joint work with Gabriel Dospinescu [8], [9] we have computed the p-adic (pro-)étale cohomology
of certain p-adic symmetric spaces. A key ingredient of these computations was a one-way (de Rham
to étale) comparison theorem for rigid analytic varieties over K with a semistable formal model over
OK that allowed us to pass from (pro-)étale cohomology to syntomic cohomology and then to a filtered
Frobenius eigenspace associated to de Rham cohomology.

The main goal of this paper is to define all the cohomologies that will be necessary for extending
such comparison quasi-isomorphisms to all smooth rigid analytic varieties over K or C (without any
assumption on the existence of a nice integral model). We will focus on the arithmetic case and leave the
geometric case for the sequel of this paper [12].

1.1. Main results. We are mainly interested in partially proper rigid analytic varieties. Since these
varieties have a canonical overconvergent (or dagger) structure we are led to study dagger varieties1.
This is advantageous: for example, a dagger affinoid has de Rham cohomology that is a finite rank vector
space with its natural Hausdorff topology while the de Rham cohomology of rigid analytic affinoids is, in
general, infinite dimensional and not Hausdorff.

Our first main result is the following theorem:

Theorem 1.1. To any smooth dagger variety X over L = K,C there are naturally associated2:

(1) A pro-étale cohomology RΓproét(X,Qp(r)), r ∈ Z. If X is partially proper this agrees with the
pro-étale cohomology of X considered as a rigid analytic variety.

(2) For L = C, a K-valued rigid cohomology RΓrig,K(X) and a natural strict quasi-isomorphism3

RΓrig,K(X)⊗̂RKC ' RΓdR(X).

This defines a natural K-structure on the de Rham cohomology4.
(3) A Hyodo-Kato cohomology RΓHK(X). This is a dg F -algebra if L = K, and a dg F nr-algebra if

L=C, equipped with a Frobenius ϕ and a monodromy operator N . For L = C, we have natural
Hyodo-Kato strict quasi-isomorphisms

ιHK : RΓHK(X)⊗̂FnrK
∼→ RΓrig,K(X), ιHK : RΓHK(X)⊗̂RFnrC

∼→ RΓdR(X).

(4) For L = K, a syntomic cohomology RΓsyn(X,Qp(r)), r ∈ N, that fits into a distinguished triangle

(1.2) RΓsyn(X,Qp(r))−−→[RΓHK(X)]N=0,ϕ=pr ιHK−−→RΓdR(X)/F r,

and a natural period morphism

αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

that is a strict quasi-isomorphism after truncation τ≤r.

We also prove an analogous theorem for smooth rigid analytic varieties.
The second main result of this paper is the following corollary of Theorem 1.1.

Theorem 1.3. Let X be a smooth dagger variety over K and let r ≥ 0.

(1) For 1 ≤ i ≤ r − 1, the boundary map induced by the distinguished triangle (1.2)

∂r : H̃i−1
dR (X)→ H̃i

proét(X,Qp(r))

1Recall that a dagger variety is a rigid analytic variety equipped with an overconvergent structure sheaf. See [20] for

the basic definitions and properties.
2All cohomology complexes live in the bounded below derived ∞-category of locally convex topological vector spaces

over Qp. Quasi-isomorphisms in this category we call strict quasi-isomorphisms.
3See Proposition 5.20 for the definition of the tensor product.
4By the same procedure one can define a Fnr-valued rigid cohomology RΓrig,Fnr (X) and a natural strict quasi-

isomorphism RΓrig,Fnr (X)⊗̂R
FnrC ' RΓdR(X).
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is an isomorphism. In particular, the cohomology H̃i
proét(X,Qp(r)) is classical and it has a natural

K-structure.
(2) We have long exact sequences

0→ H̃r−1(RΓdR(X)/F r)
∂r−−→H̃r

proét(X,Qp(r))→ H̃r([RΓHK(X)]N=0,ϕ=pr )
ιHK−−→H̃r(RΓdR(X)/F r)

0→ H̃r−1
HK (X)ϕ=pr−1

→ H̃r([RΓHK(X)]N=0,ϕ=pr )→ H̃r
HK(X)N=0,ϕ=pr → 0

Moreover, the cohomology H̃i
HK(X) is classical.

Here H̃ refers to cohomology taken in the derived category of locally convex topological vector spaces

over Qp and “classical” means that the cohomology H̃ is isomorphic to the algebraic cohomology H
equipped with its natural quotient topology (very often this is equivalent to the natural topology on H
being separated). If X is proper, we have the isomorphisms

Hr−1
dR (X)

∼→ H̃r−1(RΓdR(X)/F r), Hr
dR(X)/Ωr(X)

∼→ H̃r(RΓdR(X)/F r).

If X is Stein, we get the isomorphisms

H̃r−1(RΓdR(X)/F r) ' Ωr−1(X)/ im dr−1, H̃i(RΓdR(X)/F r) ' 0, i ≥ r.

Hence the cohomology H̃r−1(RΓdR(X)/F r) is classical.
We prove an analogous result in the case of smooth rigid analytic varieties over K and this generalizes

the computations [10, Cor. 3.16] done for smooth affinoids with semistable reduction.

Remark 1.4. For a smooth proper schemeX overK, the analog of the map ∂r : H̃i−1
dR (X)→ H̃i

proét(X,Qp(r))

is a geometric incarnation of the Bloch-Kato exponential. See [31, Remark 2.14], [13, Prop. 3.8], [32, Th.
3.1] for a detailed discussion.

1.2. Proof of Theorem 1.1. We will now sketch how Theorem 1.1 is proved. The pro-étale cohomology
in (1) is defined in the most naive way: if X is a smooth dagger affinoid with a presentation {Xh}h∈N
by a pro-affinoid rigid analytic variety5 we set RΓproét(X,Qp(r)) := hocolimh RΓproét(Xh,Qp(r)); then we

globalize. From this description it is clear that we have a natural map RΓproét(X,Qp(r))→ RΓproét(X̂,Qp(r)),

where X̂ is the completion of X (a rigid analytic variety).
For the rest of Theorem 1.1, first we show that, using the rigid analytic étale local alterations of Hartl

and Temkin [22], [39], the étale topology on XL has a base consisting of semistable weak formal schemes
(always assumed to be of finite type) over finite extensions of OK . This allows us to define sheaves by
specifying them on such integral models and then sheafifying for the η-étale topology6. For example, for
(2), we define RΓrig,K(X) := RΓét(X,Arig,K), for a sheaf Arig,K induced from a presheaf assigning to a

semistable model Y over OC coming by base change from a semistable model YOE over OE , [E : K] <∞,
the complex7 hocolim RΓrig(YOE ,0), YOE ,0 is the special fiber of YOE , where the homotopy colimit is
taken over such models YOE . In an analogous way we define, for (3), the Hyodo-Kato cohomology
using the overconvergent Hyodo-Kato cohomology of Grosse-Klönne that for a semistable model Y over
OK is defined as RΓHK(Y0) := RΓrig(Y0/O0

F ); the Hyodo-Kato quasi-isomorphism is induced from the

one defined by Grosse-Klönne ιHK : RΓrig(Y0/O0
F )

∼→ RΓrig(Y0/O
×
F ). Here O×K , O0

K denote the (weak
formal) scheme associated to OK with the canonical and the induced by N→ OK , 1 7→ 0, log-structure,
respectively.

We define the syntomic cohomology in (4) in two different, but (non obviously) equivalent, ways. One
definition is just as a homotopy fiber that yields the distinguished triangle (1.2). The other, for dag-
ger affinoids with a presentation {Xh}h∈N, sets RΓsyn(X,Qp(r)) := hocolimh RΓsyn(Xh,Qp(r)). Here
the syntomic cohomology RΓsyn(Xh,Qp(r)) of a rigid analytic variety Xh is defined by η-étale descent,

5See Section 3.2.1 for the definition of presentations.
6This construction mimics that of Beilinson in [2] done for algebraic varieties; here η-étale means topology induced from

the étale topology of the generic fiber.
7We give here a rough definition; see Section 5.3 for a precise definition.
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using the fact that semistable formal models form a base for the étale topology of X, from the crys-
talline syntomic cohomology of Fontaine-Messing. Recall that the latter is defined as the homotopy fiber
RΓsyn(X ,Qp(r) := [F rRΓcr(X )

ϕ−pr−−→RΓcr(X )], where the crystalline cohomology is absolute (i.e., over
Zp). The second definition works also for smooth dagger varieties over C.

It is quite nontrivial to show that these two definitions agree. Along the way, we prove the main
technical result of this paper:

Theorem 1.5. Let r ≥ 0. Let X be a smooth dagger variety over K. There is a natural morphism

RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r)).

It is a strict quasi-isomorphism if X is partially proper.

This theorem is proved by representing both sides of the morphism by means of the crystalline and
the overconvergent Hyodo-Kato cohomology, respectively, then passing via Galois descent to XC , and
finally passing through the crystalline and overconvergent Hyodo-Kato quasi-isomorphisms (that need to
be shown to be compatible) to the de Rham cohomology, where the result is known.

To define the period map in (4), for L = K,C, we first define it for rigid analytic varieties by the
η-étale descent of the Fontaine-Messing period map αr : RΓsyn(X ,Qp(r)) → RΓét(XL,Qp(r)), for a
semistable formal scheme X over OL. Then we use the second definition of syntomic cohomology and
the period maps αr : RΓsyn(Xh,Qp(r)) → RΓét(Xh,Qp(r)) to get the period map αr in Theorem 1.1.
The fact that it is a strict quasi-isomorphism in a stable range follows from the computations of p-adic
nearby cycles via syntomic complexes done in [40] in the geometric case and in [10] in the arithmetic
case.

Remark 1.6. For an algebraic varietyX over L = K,C, a well behaved syntomic cohomology RΓsyn(X,Qp(r)),
r ≥ 0, was defined in [31]. A more conceptual definition was given in [13] but the approach in [31] is more
concrete and this is the one we mimic in this paper. For L = K and smooth X, there exists a natural
map RΓsyn(X,Qp(r)) → RΓsyn(Xan,Qp(r)), where Xan denotes the analytification of X. This should
be a strict quasi-isomorphism if X is proper although we do not prove this in this paper.

Remark 1.7. Let X be a proper semistable scheme over OK (we allow a horizontal divisor at infinity).
Ertl-Yamada [15] have extended Grosse-Klönne’s definition of the Hyodo-Kato morphism to this setting
and defined the corresponding rigid syntomic cohomology by the defining property (1.2). See [43] for a
more conceptual definition in the case when there is no horizontal divisor at infinity.

Acknowledgments. W.N. would like to thank MSRI, Berkeley, for hospitality during Spring 2019 semester
when parts of this paper were written. We would like to thank Benjamin Antieau, Antoine Chambert-
Loir, Antoine Ducros, Veronika Ertl, and Luc Illusie for helpful discussions concerning the content of this
paper. We thank the referees for a careful reading of the paper and helpful comments.

1.2.1. Notation and conventions. All formal schemes are p-adic. For a (weak formal or formal) scheme
X over OK , we will denote by Xn its reduction modulo pn, n ≥ 1, and by X0 its special fiber.

We will denote by OK , O×K , and O0
K , depending on the context, the scheme Spec(OK) or the formal

scheme Spf(OK) with the trivial, the canonical (i.e., associated to the closed point), and the induced by
N→ OK , 1 7→ 0, log-structure, respectively.

Definition 1.8. Let N ∈ N. For a morphism f : M → M ′ of Zp-modules, we say that f is pN -
injective (resp. pN -surjective) if its kernel (resp. its cokernel) is annihilated by pN and we say that f
is a pN -isomorphism if it is pN -injective and pN -surjective. We define in the same way the notion of
pN -distinguished triangle or pN -acyclic complex (a complex whose cohomology groups are annihilated
by pN ) as well as the notion of pN -quasi-isomorphism (map in the derived category that induces a
pN -isomorphism on cohomology).

Unless otherwise stated, we work in the derived (stable) ∞-category D(A) of left-bounded complexes
of a quasi-abelian category A (the latter will be clear from the context). Many of our constructions will
involve (pre)sheaves of objects from D(A). The reader may consult the notes of Illusie [25] and Zheng [44]
for a brief introduction to how to work with such (pre)sheaves and [29], [30] for a thorough treatment.



ON p-ADIC COMPARISON THEOREMS FOR RIGID ANALYTIC VARIETIES, I 5

We will use a shorthand for certain homotopy limits. Namely, if f : C → C ′ is a map in the derived
∞-category of a quasi-abelian category, we set

[ C
f // C ′ ] := holim(C → C ′ ← 0).

And we set  C1

��

f // C2

��
C3

g // C4

 := [[C1
f→ C2]→ [C3

g→ C4]],

for a commutative diagram (the one inside the large bracket) in the derived∞-category of a quasi-abelian
category.

2. An equivalence of topoi

Let X be a smooth rigid analytic variety over K, resp. C. In this section, we will show that the étale
site of X has a base (in the sense of Verdier, see [41]) built from semistable formal schemes over finite
extensions of OK , resp. over OC . We will show the same for smooth dagger spaces over K and C.

2.1. A general criterium. In [1, 2.1] Beilinson generalized a well-known criterium of Verdier [41, 4.1]
stating conditions under which one can change sites while preserving their topoi. While Verdier assumed
the functor F below to be fully faithful, Beilinson allows it to be just faithful.

We will briefly summarize [1, 2.1]. Let V be an essentially small site and let Sh(V ) be the corresponding
topos. A base for V is a pair (B, F ), where B is an essentially small category and F : B → V is a
faithful functor, which satisfies the following property:

(?) For V ∈ V and a finite family of pairs (Bα, fα), Bα ∈ B, fα : V → F (Bα), there exists a set of objects
B′β ∈ B and a covering family {F (B′β) → V } such that each composition F (B′β) → V → F (Bα) lies in

Hom(B′β , Bα) ⊂ Hom(F (B′β), F (Bα)).

Remark 2.1. (1) For the empty set of (Bα, fα)’s the above means that every V ∈ V has a covering
by objects F (B), B ∈ B. If F is fully faithful, then (?) is equivalent to this assertion.

(2) If B admits finite products and F commutes with finite products, then it suffices to check (?)
for families (Bα, fα) having ≤ 1 elements.

(3) In the general case, it suffices to check (?) for families (Bα, fα) having ≤ 2 elements.

Let (B, F ) be a base for V . Define a covering sieve in B as a sieve whose F -image is a covering sieve
in V . The following proposition is proved by Beilinson [1, 2.1].

Proposition 2.2. (1) Covering sieves in B form a Grothendieck topology on B.
(2) The functor F : B → V is continuous.

(3) F induces an equivalence of topoi Sh(B)
∼→ Sh(V ).

We call the above topology on B the F -induced topology.

Remark 2.3. (1) If F is fully faithful, the above proposition is [41, 4.1].

(2) Let (F s, Fs) : Sh(B) // Sh(V )oo be the usual adjoint functors. For a presheaf F on V , we

have Fs(F a) = Fp(F )a, where Fp is the pushforward of presheaves and the subscript a means
“associated sheaf”.

(3) If (B, F ) is a base for V and (B′, F ′) is a base for the F -induced topology on B then (B′, FF ′)
is a base for V .

2.2. Categories of formal models. We will show now that the étale site of smooth rigid analytic
varieties over K, resp. over C, admits a base built from semistable formal schemes over finite extensions
of OK , resp. over OC .
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2.2.1. Models. Let L = K,C. A morphism of OL-schemes f : Y → X is called η-étale, an η-isomorphism,
etc., if its generic fiber fL is étale, an isomorphism, etc.. An OL-scheme is admissible if it is flat and of
finite type over OL. A formal OL-scheme X is admissible if it is flat and of finite type over Spf(OL). For
an admissible formal OL-scheme X , we denote by XL (or Xη) its rigid analytic generic fiber. We say
that a morphism Y →X between admissible formal OL-schemes is η-étale if its generic fiber fL (or fη)
is étale. Similarly, we define η-smooth morphisms8.

Let SmL be the category of smooth L-rigid varieties. We will consider categories M formed by
semistable formal models of such varieties.
(a) K-setting: A model over K (a K-model) is an admissible formal OK-scheme X . A formal scheme
over OK is called semistable if, locally for the Zariski topology, it admits an étale morphism to a formal
scheme of the form

Spf(OK{X1, . . . , Xl}/(X1 · · ·Xm −$)), 0 ≤ m ≤ l,
for a uniformizer $ of OK (we allow m = 0 just to get formal affine space – when the formal scheme is
smooth). A K-model X is called semistable if it is semistable over OE for a finite field extension E of
K. In that case, assume that XK is connected (which is equivalent to X being connected) and let KX

be the algebraic closure of K in Γ(XK ,OXK
) (note that E ⊂ KX ). Then OKX is the integral closure of

OK in Γ(X ,OX ) and X is semistable over OKX . We will say that X is split over KX .
Let MK denote the category of K-models (morphisms are morphisms of formal schemes over OK) and

let M ss
K be its full subcategory of semistable K-models.

(b) C-setting: A model over C (a C-model) is an admissible formal OC-scheme X . It is called
semistable, if locally for the Zariski topology, it admits an étale morphism to a formal scheme of the form

Spf(OC{X1, . . . , Xl}/(X1 · · ·Xm −$)), 0 ≤ m ≤ l,

for 0 6= $ ∈ OC . It is called basic semistable if there exists a semistable model X ′ over OE , E a finite
extension of K, and a C-point α : E → C such that X is isomorphic to the base change X ′

OC
. Let MC

denote the category of C-models and let M ss
C , M ss,b

C be its full subcategories of semistable and basic
semistable C-models, respectively.

We note that, if we equip the formal schemes in M ss
K , M ss,b

C , and M ss
C with the log-structure associated

to the special fiber over the ring over which they split, every map in these categories is a map of log-

schemes. Warning: the maps in the category M ss,b
C do not have to come from finite levels.

The K- and C-settings are connected by the base change functors

(2.4) M ss,b
C

// SmC

M ss
K

//

OO

SmK ,

OO

where the right vertical arrow is the base change (−)⊗̂KC and the left arrow assigns to a K-model U
semistable over OL, L a finite extension of K, the disjoint union of semistable models U ⊗̂OL,αOC over
C-points α : L→ C.

2.2.2. Semistable reduction. We say that an admissible formal OL-scheme X is algebraizable if it is
isomorphic to the p-adic completion of an admissible OL-scheme X. The well-known algebraization
theorem of Elkik [14] yields the following theorem.

Theorem 2.5. (Temkin, [39, Th. 3.1.3]) Any affine η-smooth admissible formal OL-scheme X is alge-

braizable. Moreover, we can find an affine η-smooth admissible OL-scheme X such that X ' X̂.

We quote two results of Temkin which generalize results of Hartl [22, Th. 1.4] (which works for
complete discretely-valued fields) and Faltings [17, III.2] (see [39, Th. 2.5.2] for an algebraic analog and
[4] for a refined algebraic analog).

8In a more traditional language we would call such morphisms “rig-étale”, etc. However, since it is becoming standard

to use η to denote the rigid generic fiber, we have elected to use η-étale in this paper.
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Theorem 2.6. (Temkin, [39, Th. 3.3.1]) Let X be an η-smooth admissible formal scheme over OL.
Then there exists a finite field extension E/L and a η-étale covering X ′ →X ⊗OL OE such that X ′ is
semistable over OE.

Corollary 2.7. (Temkin, [39, Cor. 3.3.2]) Let X a smooth qcqs rigid space over L. Then there exists a
finite extension E/L and an étale covering X ′ → X ⊗L E such that X ′ is affinoid and has a semistable
affine formal model.

Proof. Take an admissible formal model X of X (such a model exists by a theorem of Raynaud [5, Th.
4.1]). Take E/L and X ′ →X ⊗OL OE as in Theorem 2.6. We can refine X ′ to make it affine. Then its
generic fiber X ′

E is affinoid and has X ′ for a semistable model. �

2.2.3. An equivalence of topoi. Let M be any category from Section 2.2 and let Fη be the forgetful functor
X 7→Xη. The main result of this section is the following

Proposition 2.8. If M is the category MK or M ss
K then (M , Fη) is a base for SmK,ét. If M is MC ,

M ss,b
C , or M ss

C then (M , Fη) is a base for SmC,ét.

Proof. Consider first the K-setting. We need to show that MK satisfies condition (?) from Section 2.1.
For that, assume that X is a rigid analytic variety over K and take a finite family9 of K-models Uα

together with maps fα : X → Uα,K . We need to find an étale covering π : X ′ → X and a K-model X ′

of X ′ such that every map fαπ extends to a map X ′ → Uα.
Replacing X by an affinoid admissible covering, we may assume that X is a disjoint union of affinoids.

By a theorem of Raynaud [5, Th. 4.1], we can find a K-model of X. By [6, Lemma 5.6], this model can
be modified by an admissible blow-up to a K-model X of X such that there exists a dotted arrow that
makes the following diagram commute

X

��

X

∏
α fα

��

? _oo

∏
α Uα

∏
α Uα,K

? _oo

This is the model we wanted.
Now, to show that (M ss

K , Fη) is a base it suffices, by Remark 2.3, to show that (M ss
K , ι), for the natural

functor ι : M ss
K ↪→ MK , is a base of MK . Since ι is fully faithful, by Remark 2.1, it suffices to check

that, for every K-model U ∈ MK , there exists a map of K-models U ′ → U such that U ′K → UK is
étale and U ′ is semistable. But this follows from Theorem 2.6.

For the C-setting the argument is analogous in the case of MC and M ss
C . For M ss,b

C , since M ss,b
C ↪→M ss

C

is fully faithful, by Remark 2.1, it suffices to check that, for every C-model U ∈M ss
C , there exists a map

of C-models U ′ → U such that U ′C → UC is étale and U ′ is basic semistable. But this can be achieved
by taking for U ′ a log-blow-up of U (see [35, Lemma 1.11]). �

We call the topology induced by Fη on the categories M the η-étale topology. The functors in (2.4)
are continuous for the respective étale topologies. By Section 2.1 and Proposition 2.8, Fη identifies étale

sheaves on SmK , resp. SmC , with η-étale sheaves on MK , M ss
K , resp. MC , M ss,b

C , M ss
C . We obtain the

étale localization functors

Psh(M ?
K)→ Sh(SmK,ét), Psh(M ?

C)→ Sh(SmC,ét),

which assign to any presheaf F on models the corresponding étale sheaf F∼ viewed as an étale sheaf on
varieties.

Remark 2.9. For any presheaf on MK or MC , its η-étale sheafification is the same as the η-étale sheafi-

fication of its restriction to resp. M ss
K or M ss,b

C , M ss
C .

Remark 2.10. In this paper we will use over and over again the following procedure to define an étale
sheaf F on, say, SmK .

9By Remark 2.1, we may assume that this family consists of one element.
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(1) (Local definition): We define a functorial F (Y ), Y ∈M ss
K .

(2) (Globalization): We sheafify the so defined presheaf in η-étale topology. This yields an étale
sheaf F on SmK (this notation is slightly abusive but hopefully will not cause problems in
understanding).

(3) (Local-global compatibility): We will often need to know that we have η-étale descent, i.e., that,
for Y ∈M ss

K , the natural map F (Y )→ RΓét(YK ,F ) is a quasi-isomorphism.

2.3. Categories of weak formal models. In this section, we will show that the étale site of smooth
dagger varieties10 over K, resp. over C, admits a base built from semistable weak formal schemes over
finite extensions of OK , resp. over OC .

2.3.1. Models. Let L = K,C. A weak formal OL-scheme X is admissible if it is flat and of finite type
over OL. For an admissible weak formal OL-scheme X , we denote by XL (or Xη) its dagger generic
fiber. We say that a morphism f : Y → X between admissible weak formal OL-schemes is η-étale if its
generic fiber fL (or fη) is étale. Similarly, we define η-smooth morphisms.

Let Sm†L be the category of smooth L-dagger varieties. We define the categories M †
L,M

†,ss,b
C , and M †,ss

L

formed by weak formal models, basic semistable, and semistable weak formal models11, respectively, of
such varieties in a similar way as in the rigid analytic case above. If we equip the weak formal schemes

in M †,ss
L with the log-structure associated to the special fiber over the ring over which they split, every

map in these categories is a map of log-schemes. The functors M †,ss
L →M †

L, M †,ss,b
C →M †,ss

C are fully
faithful embeddings. The K- and C-settings are connected by the base change functors.

2.3.2. Semistable reduction. We say that an admissible weak formal OL-scheme X is algebraizable if it
is isomorphic to the weak completion of an admissible Spec(OL)-scheme X. The algebraization theorem,
Theorem 2.5, combined with the fact that, up to an isomorphism, there is a unique dagger structure on
every rigid analytic affinoid [18, Cor. 7.5.10], yields the following

Corollary 2.11. Any affine η-smooth admissible weak formal OL-scheme X is algebraizable. Moreover,
we can find an affine η-smooth admissible OL-scheme X such that X ' X†.

This corollary allows us to prove the following

Corollary 2.12. (1) Let X be a η-smooth admissible weak formal scheme over OL. Then there
exists a finite field extension E/L and a η-étale covering X ′ → X ⊗OL OE such that X ′ is
semistable over OE.

(2) Let X a smooth qcqs dagger space over L. Then there exists a finite extension E/L and an étale
covering X ′ → X ⊗LE such that X ′ is a dagger affinoid and has a semistable affine weak formal
model.

Proof. For (1), having Corollary 2.11, Temkin’s proof of Theorem 2.6 goes through. For (2), we modify
the proof of Corollary 2.7 using the algebraization result from Theorem 2.5. �

2.3.3. An equivalence of topoi. Let M † be any category from Section 2.3.1 and let Fη be the forgetful
functor X 7→XL. The main result of this section is the following

Proposition 2.13. If M † is the category M †
K or M †,ss

K then (M †, F ) is a base for Sm†K,ét. If M † is

M †
C , M †,ss,b

C , or M †,ss
C then (M †, Fη) is a base for Sm†C,ét.

Proof. Consider first the K-setting. Recall the following dagger version of Raynaud’s theory of formal
models of rigid analytic varieties:

Theorem 2.14. (Langer-Muralidharan, [27]) There is an equivalence of categories between

(1) the category of quasi-paracompact admissible weak formal schemes over OK localized by the class
of weak formal blow-ups,

10For basics on dagger (or overconvergent) varieties we refer the reader to [20].
11Semistable weak formal schemes are defined by the same formulas as semistable formal schemes with the ring of

convergent power series OL{X1, · · · , Xl} replaced by the ring of overconvergent power series OL[X1, · · · , Xl]
†.
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(2) the category of quasi-separated quasi-paracompact K-dagger spaces.

It is now easy to see that the proof of Proposition 2.8 goes through in our case with Raynaud’s theory
replaced by this dagger analog.

For the C-setting the argument is analogous to the one used in the proof of Proposition 2.8. �

We call the topology induced by Fη on the categories M † the η-étale topology. The base-change
functors are continuous for the respective étale topologies. By Section 2.3 and Proposition 2.13, Fη
identifies étale sheaves on Sm†K , resp. Sm†C , with η-étale sheaves on M †

K , M †,ss
K , resp. M †

C , M †,ss,b
C ,

M †,ss
C . We obtain the étale localization functors

Psh(M ?
K)→ Sh(Sm†K,ét), Psh(M ?

C)→ Sh(Sm†C,ét),

which assign to any presheaf F on weak formal models the corresponding étale sheaf F∼ viewed as an

étale sheaf on dagger varieties. Moreover, for any presheaf on M †
K or M †

C , its η-étale sheafification is the

same as the η-étale sheafification of its restriction to resp. M †,ss
K , M †,ss,b

C , or M †,ss
C .

3. Pro-étale cohomology of dagger varieties

Let the base field L be K or C. Fix a pseudo-uniformizer $ ∈ L, i.e., an invertible, topologically
nilpotent element. All the rigid analytic varieties considered are over L; we assume that they are separated
and taut12.

The purpose of this section is to define the pro-étale cohomology of dagger varieties. We will do it in
the most naive way: for a dagger affinoid we will use its presentation of the dagger structure to define
the pro-étale cohomology of the dagger affinoid as the homotopy colimit of pro-étale cohomologies of the
(rigid) affinoids in the presentation; for a general dagger variety we will globalize the construction for
dagger affinoids via Čech coverings.

3.1. Topology. Our cohomology groups will be equipped with a canonical topology. To talk about it in
a systematic way, we will work rationally in the category of locally convex K-vector spaces and integrally
in the category of pro-discrete OK-modules. We review here briefly the relevant basic definitions and
facts. For details and further reading and references the reader may consult [9, Sec. 2.1, 2.3].

3.1.1. Derived category of locally convex K-vector spaces. A topological K-vector space13 is called locally
convex (convex for short) if there exists a neighbourhood basis of the origin consisting of OK-modules. We
denote by CK the category of convex K-vector spaces. It is a quasi-abelian category. Kernels, cokernels,
images, and coimages are taken in the category of vector spaces and equipped with the induced topology.
A morphism f : E → F is strict if and only if it is relatively open, i.e., for any neighbourhood V of 0 in
E there is a neighbourhood V ′ of 0 in F such that f(V ) ⊃ V ′ ∩ f(E).

The category CK has a natural exact category structure: the admissible monomorphisms are embed-
dings, the admissible epimorphisms are open surjections. A complex E ∈ C(CK) is called strict if its
differentials are strict. There are truncation functors on C(CK):

τ≤nE := · · · → En−2 → En−1 → ker(dn)→ 0→ · · ·
τ≥nE := · · · → 0 · · · → coim(dn−1)→ En → En+1 → · · ·

with cohomology objects

H̃n(E) := τ≤nτ≥n(E) = (coim(dn−1)→ ker(dn)).

We note that here coim(dn−1) and ker(dn) are equipped naturally with the quotient and subspace topol-
ogy, respectively. The cohomology H∗(E) taken in the category of K-vector spaces we will call algebraic
and, if necessary, we will always equip it with the sub-quotient topology.

12See [23, Def. 5.6.6] for the definition of ”taut”.
13For us, a K-topological vector space is a K-vector space with a linear topology.
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We will denote the left-bounded derived∞-category of CK by D(CK). A morphism of complexes that
is a quasi-isomorphism in D(CK), i.e., its cone is strictly exact, will be called a strict quasi-isomorphism.
We will denote by D(CK) the homotopy category of D(CK).

For n ∈ Z, let D≤n(CK) (resp. D≥n(CK)) denote the full subcategory of D(CK) of complexes that
are strictly exact in degrees k > n (resp. k < n). The above truncation functors extend to truncations
functors τ≤n : D(CK) → D≤n(CK) and τ≥n : D(CK) → D≥n(CK). The pair (D≤n(CK), D≥n(CK))
defines a t-structure on D(CK). The (left) heart LH(CK) is an abelian category: every object of LH(CK)
is represented (up to equivalence) by a monomorphism f : E → F , where F is in degree 0, i.e., it is

isomorphic to a complex 0→ E
f→ F → 0; if f is strict this object is also represented by the cokernel of

f (the whole point of this construction is to keep track of the two possibly different topologies on E: the
given one and the one inherited by the inclusion into F ).

We have an embedding I : CK ↪→ LH(CK), E 7→ (0 → E), that induces an equivalence D(CK)
∼→

D(LH(CK)) that is compatible with t-structures. These t-structures pull back to t-structures on the
derived dg categories D(CK),D(LH(CK)) and so does the above equivalence. There is a functor (the
classical part) C : LH(CK) → CK that sends the monomorphism f : E → F to coker f . We have
CI ' IdCK and a natural epimorphism e : IdLH(CK) → IC.

We will denote by H̃n : D(CK) → D(LH(CK)) the associated cohomological functors. Note that

CH̃n = Hn and we have a natural epimorphism H̃n → IHn. If, evaluated on E, this epimorphism is

an isomorphism we will say that the cohomology H̃n(E) is classical (in most cases this is equivalent to
Hn(E) being separated).

3.1.2. The category of pro-discrete OK-modules. Objects in the category PDK of pro-discrete OK-modules
are topological OK-modules that are countable inverse limits, as topological OK-modules, of discrete OK-
modules M i, i ∈ N. It is a quasi-abelian category. It has countable filtered projective limits. Countable
products are exact functors.

Inside PDK we distinguish the category PCK of pseudocompact OK-modules, i.e., pro-discrete mod-
ules M ' lim←−i

Mi such that each Mi is of finite length (we note that if K is a finite extension of Qp this

is equivalent to M being profinite). It is an abelian category. It has countable exact products as well as
exact countable filtered projective limits.

There is a functor from the category of pro-discrete OK-modules to convex K-vector spaces. Since
K ' lim−→(OK

$−−→OK
$−−→OK

$−−→· · · ), the algebraic tensor product M ⊗OK K is an inductive limit:

M ⊗OK K ' lim−→(M
$−−→M $−−→M $−−→· · · ).

We equip it with the induced inductive limit topology. This defines a tensor product functor

(−)⊗K : PDK → CK , M 7→M ⊗OK K.

Since CK admits filtered inductive limits, the functor (−)⊗K extends to a functor (−)⊗K : Ind(PDK)→
CK .

The functor (−)⊗K is right exact but not, in general, left exact14. For example, the short strict exact
sequence

0→
∏
i≥0

piZp
can−−→

∏
i≥0

Zp →
∏
i≥0

Zp/p
i → 0

after tensoring with Qp is not costrict exact on the left (note that (
∏
i≥0 Zp/p

i)⊗Qp is not Hausdorff).

We will consider its (compatible) left derived functors

(−)⊗LK : D−(PDK)→ Pro(D−(CK)), (−)⊗LK : D−(Ind(PDK))→ Pro(D−(CK)).

The following fact will greatly simplify our computations.

14We will call a functor F right exact if it transfers strict exact sequences 0 → A → B → C → 0 to costrict exact

sequences F (A)→ F (B)→ F (C)→ 0.
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Proposition 3.1. ([9, Prop. 2.6]) If E is a complex of torsion free and p-adically complete (i.e., E '
lim←−nE/p

n) modules from PDK then the natural map

E⊗LK → E⊗K

is a strict quasi-isomorphism.

3.2. Pro-étale cohomology of dagger varieties. In this section we will define pro-étale cohomology
of dagger varieties and study its basic properties.

3.2.1. Dagger varieties and pro-systems of rigid analytic varieties. We will briefly review here the content
of [42, Appendix]. Recall the following definition [42, Def. A.19]:

Definition 3.2. Let X be a rigid analytic affinoid. A presentation of a dagger structure on X is a
pro-affinoid rigid variety {Xh}, h ∈ N, where X and all Xh are rational subvarieties of X1, such that
X b Xh+1 b Xh and the pro-system is coinitial among rational subvarieties of X1 containing X in their
interiors15. A morphism of presentations between {Xh} and {Yk} is a morphism of pro-objects, i.e., an
element of lim←−

k
lim−→
h

Hom(Xh, Yk).

Example 3.3. Let X = X1(f/g) be a rational subvariety of an affinoid variety X1. The pro-system
{Xh = X1($fh/gh)} of rational subvarieties of X1 is a presentation of a dagger structure on X.

More generally, consider the rational inclusion X = X1(f1/g, · · · , fm/g) b X1 of affinoid rigid varieties.
We can write

O(X1) = L{$τ1, · · · , $τn}/I,
O(X) = L{τ1, · · · , τn, v1, · · · , vm}/((vig − fi) + I).

Let Xh be the rational subvariety of X1 with

O(Xh) = L{$1/hτ1, · · · , $1/hτn, $
1/hv1, · · · , $1/hvm}/((vig − fi) + I).

The pro-system {Xh} of rational subvarieties of X1 is a presentation of a dagger structure on X. We
have

lim−→O(Xh) ' L[τ1, · · · , τn, v1, · · · , vm]†/((vig − fi) + I),

which is a dagger algebra.

The following proposition clarifies the relationship between presentations of dagger structures and
dagger algebras.

Proposition 3.4. ([42, Prop. A.22]) Let X̂ = Sp R̂ be a rigid affinoid and let {Xh} be a presentation of

a dagger structure on X̂. We have

(1) R = lim−→O(Xh) is a dagger algebra dense in R̂;

(2) the functor {Xh} 7→ Sp†R induces an equivalence of categories between dagger affinoid varieties
and their presentations.

In fact, it is not hard to see that we have a functor pres : X 7→ {Xh} from dagger algebras to
presentations of dagger structures (up to a unique isomorphism) that is the right inverse (on the nose)
of the functor in the above proposition.

15Recall that, for an open immersion X ⊂ Y of adic spaces over L, we write X b Y if the inclusion factors over the adic

compactification of X over L (see [23, Th. 5.1.5]).
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3.2.2. Étale topology of dagger varieties. For basic properties of dagger algebras and varieties and mor-
phisms between them see [20]. For basic properties of étale and smooth morphisms of dagger varieties
see [16]. We quote the following result.

Proposition 3.5. ([16, Th. 2.3]) Let X be a dagger affinoid with completion X̂. We have a natural
equivalence of étale topoi

Sh(X̂ét)
∼→ Sh(Xét).

One can promote the equivalence of categories between dagger spaces and their presentations in Propo-
sition 3.4 to an equivalence of topoi.

Definition 3.6. ([42, Def. A.24]) (i) Let P be a property of morphisms of rigid analytic varieties. We
say that a morphisms of pro-rigid varieties ϕ : X → Y has the property P if X ' {Xh}, Y ' {Yk} and
ϕ = {ϕh} with ϕh : Xh → Yh having property P .
(ii) We say that a collection of morphisms of pro-rigid spaces {ϕi : {Uih} → {Xh}}i∈I is a cover if
X b

⋃
i im(Uih) for all h.

In particular, one can define open immersions, smooth, and étale morphisms of presentations of dagger

affinoids which agree with the corresponding notions for dagger affinoids. Since the morphisms X̂ ⊂ Xh

are open immersions (hence étale), we deduce that, if a morphism X → Y is an open immersion (resp.

smooth, resp. étale), then so is the associated morphism X̂ → Ŷ .
(•) From now on we will use the following convention: if X is a smooth dagger affinoid, the presentation

X ' {Xh} will be assumed to have all Xh smooth as well.

Corollary 3.7. ([42, Cor. A.28]) Let X be a dagger affinoid with a presentation {Xh}. We have a
natural equivalence of étale topoi

Sh(Xét)
∼→ Sh({Xh}ét).

3.2.3. Definition of pro-étale cohomology.
(i) Local definition. If {Xh} is a pro-rigid analytic variety, we set

RΓproét({Xh},Z/pn(r)) := hocolimh RΓproét(Xh,Z/p
n(r))

∼← hocolimh RΓét(Xh,Z/p
n(r)), r ∈ Z.

Let X be a dagger affinoid. We define its pro-étale cohomology as

(3.8) RΓproét(X,Z/p
n(r)) := RΓproét(pres(X),Z/pn(r)), r ∈ Z.

If the dagger affinoidX has a dagger presentation {Xh} then RΓét(X,Z/p
n(r))

∼← hocolimh RΓét(Xh,Z/p
n(r))

and we have a natural quasi-isomorphism

(3.9) RΓét(X,Z/p
n(r))

∼→ RΓproét(X,Z/p
n(r)).

We make similar definitions for Zp and Qp coefficients. We have the natural maps (note the direction of
the second map)

(3.10) RΓproét(X,Zp(r))→ RΓproét(X,Qp(r)), RΓproét(X,Zp(r))→ RΓét(X,Zp(r)).

The first map is a rational quasi-isomorphism. If the dagger affinoid X has dagger presentation {Xh}
then we define the second map in the following way

RΓproét(X,Zp(r)) = hocolimh RΓproét(Xh,Zp(r))
∼← hocolimh RΓét(Xh,Zp(r))(3.11)

= hocolimh holimn RΓét(Xh,Z/p
n(r))→ holimn hocolimh RΓét(Xh,Z/p

n(r))

= holimn RΓét(X,Z/p
n(r))

∼← RΓét(X,Zp(r)).

Here the second quasi-isomorphism holds because Xh is quasi-compact (cover Xh with a finite number
of affionoids and use the quasi-isomorphism (3.9)).

(ii) Topological issues. We need to discuss topology. Let, for a moment, X be a rigid analytic
variety over L. We equip the pro-étale and étale cohomologies RΓproét(X,Qp(r)), and RΓét(X,Qp(r))
with a natural topology by proceeding as in [9, Sec. 3.3.2] by using as local data compatible Z/pn-free
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complexes16. If X is quasi-compact, we obtain in this way complexes of Banach spaces over Qp. In that
case the natural continuous map RΓét(X,Qp(r))→ RΓproét(X,Qp(r)) is a strict quasi-isomorphism.

More precisely, we have

RΓproét(X,Qp(r)) := hocolim RΓét(U•,Qp(r)),

where the homotopy colimit is over étale quasi-compact hypercoverings17 of X. Since all the com-
plexes RΓét(U•,Qp(r)) are complexes of Fréchet spaces, all the arrows in the colimit are strict quasi-
isomorphisms. Hence we can compute with any particular hypercovering.

Remark 3.12. We will often use the following simple observation. If X is a smooth rigid analytic variety
then we can find an increasing quasi-compact admissible covering {Un}n∈N of X such that Ui is contained
in the relative interior of Ui+1. If X is moreover partially proper we can assume that Ui b Ui+1. We
have analogous statements for dagger varieties.

It follows that, for a general smooth rigid analytic variety X we have an increasing quasi-compact
admissible covering {Un}n∈N of X, such that we have (in D(CQp

))

RΓproét(X,Qp(r)) ' holimn RΓét(Un,Qp(r)).

Hence we have the short exact sequence

0→ H1 holimn H̃
i−1
ét (Un,Qp(r))→ H̃iRΓproét(X,Qp(r))→ H0 holimn H̃

i
ét(Un,Qp(r))→ 0.

If X is a dagger affionoid, its pro-étale cohomology acquires now natural topology by taking the
homotopy colimit in (3.8) in D(CQp

).

(iii) Globalization. For a general smooth dagger variety X, we have the natural equivalence of analytic
topoi

Sh((SmAff†L/XL)ét)
∼→ Sh((Sm†L/XL)ét),

where Sm†L/XL is the category of smooth morphisms of dagger varieties to XL and SmAff†L/XL is its full
subcategory of affinoid objects. Using this equivalence, we define the sheaf Aproét(r), r ∈ Z, on Xét as

the sheaf associated to the presheaf defined by: U 7→ RΓproét(U,Qp(r)), U ∈ SmAff†L, U → X an étale
map. We define the pro-étale cohomology of X as

RΓproét(X,Qp(r)) := RΓét(X,Aproét(r)), r ∈ Z.

We equip it with topology by proceeding as in the case of pro-étale cohomology of rigid analytic varieties
starting with the case of dagger affinoids that was described above.

(iv) Local-global compatibility. This definition is consistent with the previous definition:

Lemma 3.13. Let X be a dagger affinoid with the presentation {Xh}. Then the natural map

RΓproét({Xh},Qp(r))→ RΓét(X,Aproét(r)), r ∈ Z,

is a strict quasi-isomorphism.

Proof. Set RΓ]proét(X,Qp(r)) := RΓproét({Xh},Qp(r)). It suffices to show that, for any étale affinoid
hypercovering U• of X, the natural map

RΓ]proét(X,Qp(r))→ RΓ]proét(U•,Qp(r))

is a strict quasi-isomorphism (modulo taking a refinement of U•). For that, it suffices to show that, for
any k ∈ N, the map

(3.14) τ≤kRΓ]proét(X,Qp(r))→ τ≤kRΓ]proét(T,Qp(r)),

where T = U•, is a strict quasi-isomorphism. Since, for that, it is enough to work with the truncation
τ≤k+1T we will assume that T is a finite hypercovering and has a finite number of affinoids in every
degree.

16Such complexes can be found, for example, by taking the system of étale hypercovers.
17Here and below, we use “colimit over hypercoverings” as a shorthand for “colimit over the filtered category of hyper-

coverings up to simplicial homotopy”.
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Take the dagger presentation X ' {Xh}, h ∈ N. We can represent T by a pro-system of hypercoverings
{Th → Vh}, Vh ⊂ Xh, h ∈ N, forming a dagger presentation of T degree-wise18. We note that then
Vh+1 b Vh. From the universal property of {Xh} and the quasi-compactness of Vh, we get that the
two pro-rigid varieties {Xh} and {Vh} are equivalent. It follows that we have a natural strict quasi-
isomorphism

hocolimh RΓét(Xh,Qp(r))
∼→ hocolimh RΓét(Vh,Qp(r)).

Hence the map (3.14) is represented by a composition

τ≤kRΓ]proét(X,Qp(r))
∼← τ≤k(hocolimh RΓét(Vh,Qp(r)))

∼→ τ≤k(hocolimh RΓét(Th,Qp(r))) ' τ≤kRΓ]proét(T,Qp(r)),

where the middle strict quasi-isomorphism follows from étale descent for rigid analytic varieties. This
finishes our proof of the lemma. �

Remark 3.15. For a smooth dagger variety X, we can define similarly the integral pro-étale cohomology
RΓproét(X,Zp(r)), r ∈ Z. We have the natural maps

RΓproét(X,Zp(r))→ RΓproét(X,Qp(r)),

RΓproét(X,Zp(r))→ RΓét(X,Zp(r))
∼→ RΓét(X̂,Zp(r))

∼→ RΓproét(X̂,Zp(r)).

For X quasi-compact, the first map becomes a strict quasi-isomorphism after tensoring with Qp; this is
not the case for general X. The second map is a globalization of maps for dagger affinoids defined in
(3.11).

3.2.4. Comparison isomorphisms. Let L = K,C. For X ∈ Sm†L, we have a natural map

(3.16) ιproét : RΓproét(X,Qp(r))→ RΓproét(X̂,Qp(r)).

It is obtained by the globalization of such maps for dagger affinoids: if the dagger affionoid X has a
dagger presentation {Xh} then we set

ιproét : RΓproét(X,Qp(r)) = hocolimh RΓproét(Xh,Qp(r))
can−−→RΓproét(X̂,Qp(r)).

Proposition 3.17. Let X be partially proper. Then the map (3.16) is a strict quasi-isomorphism.

Proof. Since a partially proper smooth dagger variety is locally Stein, we can assume X to be Stein.
Choose an admissible covering of X by an increasing sequence of dagger affinoids {Un}, n ∈ N, strictly
contained in each other. Then the map ιproét from (3.16) can be written as the composition

RΓproét(X,Qp(r))
∼→ holimn RΓproét(Un,Qp(r))→ holimn RΓproét(Ûn,Qp(r))

∼← RΓproét(X̂,Qp(r))

and we need to show that the middle map is a strict quasi-isomorphism. But, for every n > 1, the map

Ûn → Ûn−1 factorizes canonically as Ûn → pres(Un)→ Ûn−1 yielding the factorization

RΓproét(Ûn−1,Qp(r))→ RΓproét(pres(Un),Qp(r))→ RΓproét(Ûn,Qp(r)).

It follows that the prosystems

{RΓproét(Un,Qp(r))}, {RΓproét(pres(Un),Qp(r))}

are equivalent. Since, RΓproét(Un,Qp(r))
∼← RΓproét(pres(Un),Qp(r)) we are done. �

18This uses the simple observation that if a collection of morphisms of pro-rigid spaces {ϕi : {Vih} → {Xh}}i∈I is an

étale cover then we can choose a subsequence {Xkh} of {Xh} such that the pro-rigid spaces {Vi,kh := Vih ×Xh Xkh} form

an étale cover of {Xh} and moreover all the maps {ϕi : {Vi,kh} → {Xkh}}i∈I are étale covers (to see this use the ”initial”

part of the definition of presentations).
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4. Rigid analytic syntomic cohomology

In this section we define syntomic cohomology for smooth rigid analytic varieties over K or C by
η-étale descent of the classical definition due to Fontaine-Messing. We show that the computations of
syntomic cohomology from [10] done for rigid analytic varieties with semistable reduction generalize to
all smooth rigid varieties. We also introduce Hyodo-Kato cohomology for such varieties, prove that it
satisfies Galois descent, and define the Hyodo-Kato morphism (that is a quasi-isomorphism over C).
Finally, over K, we define Bloch-Kato rigid analytic syntomic cohomology (built from Hyodo-Kato and
de Rham cohomologies) and show that it is quasi-isomorphic to the rigid analytic syntomic cohomology.

4.1. Definition of rigid analytic syntomic cohomology. We define the syntomic cohomology of
smooth rigid analytic varieties by étale descent of crystalline syntomic cohomology of semistable models.

Let U ∈M ss
K . We consider it as a log-formal scheme with the log-structure associated to the special

fiber. For r ≥ 0, we have the mod pn, completed, and rational absolute (i.e., over Zp) filtered crystalline
cohomology

RΓcr(Un,J
[r]), RΓcr(U ,J [r]) := holimn RΓcr(Un,J

[r]),

RΓcr(U ,J [r])Qp
:= RΓcr(U ,J [r])⊗LZp Qp.

Here J [r] denotes the r’th Hodge filtration sheaf. The corresponding η-étale sheafifications on M ss
K we

will denote by F rAcr,n, F
rAcr, and F rAcr,Qp

. We make analogous definitions for crystalline cohomology
of basic semistable models over OC (see [2] for details).

For r ≥ 0, define the mod pn, completed, and rational crystalline syntomic cohomology

RΓsyn(U ,Z/pn(r)) := [RΓcr(Un,J
[r])

pr−ϕ−−→RΓcr(Un)] ' [[RΓcr(Un)]ϕ=pr can−−→RΓcr(Un)/RΓcr(Un,J
[r])],

RΓsyn(U ,Zp(r)) := holimn RΓsyn(U ,Z/pn(r)),

RΓsyn(U ,Zp(r))Qp
:= RΓsyn(U ,Zp(r))⊗LZp Qp ' [RΓcr(U ,J [r])Qp

pr−ϕ−−→RΓcr(U )Qp
].

The corresponding η-étale sheafifications on M ss
K we will denote by Asyn,n(r),Asyn(r), and Asyn(r)Qp

.
We make analogous definitions for crystalline syntomic cohomology of basic semistable models over OC .
We have the distinguished triangles

Asyn,n(r)→ F rAcr,n
pr−ϕ−−→Acr,n,

Asyn,n(r)→ A ϕ=pr

cr,n → Acr,n/F
r,

where we set A ϕ=pr

cr,n := [Acr,n
pr−ϕ−−→Acr,n]. Similarly for the completed and rational cohomology.

For X ∈ SmL, L = K,C, we define two rational (rigid analytic) syntomic cohomologies:

RΓsyn(X,Zp(r))Qp
:= RΓét(X,Asyn(r))⊗LZp Qp, RΓsyn(X,Qp(r)) := RΓét(X,Asyn(r)Qp

).

From now on, to simplify the notation, we will write (−)Qp for (−)⊗LZp Qp; similarly for coefficients other

than Qp. There is a canonical map

(4.1) RΓsyn(X,Zp(r))Qp
→ RΓsyn(X,Qp(r)).

It follows immediately from the definitions that, for X quasi-compact, this is a quasi-isomorphism (but
it is not so in general). By proceeding just as in [9, Sec. 3.3.1] (using crystalline embedding systems) we
can equip both complexes in (4.1) with a natural topology for which they become complexes of Banach
spaces over Qp in the case X is quasi-compact19 (and in that case the quasi-isomorphism (4.1) is strict).
We do the same for the crystalline complexes involved in the definition of syntomic cohomology. We have
distinguished triangles in D(CQp)

RΓsyn(X,Zp(r))Qp
→ RΓét(X,A

ϕ=pr

cr )Qp
→ RΓét(X,Acr/F

r)Qp
,(4.2)

RΓsyn(X,Qp(r))→ RΓét(X,A
ϕ=pr

cr,Qp
)→ RΓét(X,Acr,Qp

/F r).

19We note that OK being syntomic over OF , all the integral complexes in sight are in fact p-torsion free.
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We will show later (see Corollary 4.36) that if X = XK , for an admissible semistable formal scheme X
over OK , then the canonical map

RΓsyn(X ,Qp(r))→ RΓsyn(X,Qp(r))

is a strict quasi-isomorphism.

4.1.1. Rigid analytic de Rham cohomology. Let L = K,C. Consider the presheaf X 7→ RΓdR(X) of
filtered dg L-algebras on SmL. Let AdR be its étale sheafification on SmL. It is a sheaf of filtered
L-algebras on SmL,ét. For X ∈ SmL, we have the natural filtered quasi-isomorphism: RΓdR(X)

∼→
RΓét(X,AdR). We equip RΓdR(X) with the topology induced by the canonical topology on affinoid
algebras; we equip RΓét(X,AdR) with topology using étale descent as we did before. Then the above
quasi-isomorphism is strict: sheaves of differential forms satisfy étale descent in the strict sense.

Let X ∈ SmL. We will need to understand the cohomology groups in degrees r − 1 and r of

RΓdR(X)/F r ' RΓ(X,OX → Ω1
X → · · · → Ωr−1

X ).

To do that consider the distinguished triangle (in D(CL))

(4.3) 0→ ker dr[−r]→ τ≤rΩ
•
X → Ω≤r−1

X → 0,

where dr : ΩrX → Ωr+1
X is the de Rham differential. It yields the long exact sequence

0→ H̃r−1
dR (X)→ H̃r−1(RΓdR(X)/F r)→ H̃r(X, ker dr[−r])→ H̃r

dR(X).

Or, since H̃r(X, ker dr[−r]) = Ωr(X)d=0, the short exact sequence

0→ H̃r−1
dR (X)→ H̃r−1(RΓdR(X)/F r)→ kerπ → 0,

where π is the natural map Ωr(X)d=0 → H̃r
dR(X). We have a monomorphism im dr−1(X) ↪→ kerπ.

The distinguished triangle (4.3) yields also the long exact sequence

0→ cokerπ → H̃r(RΓdR(X)/F r)→ H̃1(X, ker dr)→ H̃r+1(X, τ≤rΩ
•
X).

Remark 4.4. (a) If X is proper, all the Hodge and de Rham cohomology groups are classical (finite
dimensional vector spaces over K), the Hodge-de Rham spectral sequence degenerates at E1 [37, Cor.
1.8], and we get the isomorphisms

Hr−1
dR (X)

∼→ H̃r−1(RΓdR(X)/F r), Hr
dR(X)/Ωr(X)

∼→ H̃r(RΓdR(X)/F r).

(b) If X is Stein, we have Hi(X,ΩjX) = 0, i 6= 0, and all the de Rham cohomology groups are classical
(Fréchet spaces). We have

RΓdR(X)/F r ' (O(X)→ Ω(X)→ · · · → Ωr−1(X))

with strict differentials. Hence we get the isomorphisms

H̃r−1(RΓdR(X)/F r) ' Ωr−1(X)/ im dr−1, H̃i(RΓdR(X)/F r) ' 0, i ≥ r.

Hence the cohomology H̃r−1(RΓdR(X)/F r) is classical.

Proposition 4.5. Let X ∈ SmK . Let r ≥ 0. We have a canonical strict quasi-isomorphism

γr : RΓdR(X)/F r
∼→ RΓét(X,Acr,Qp/F

r).

Proof. Let X be a quasi-compact semistable formal scheme over OE , [E : K] <∞. Recall that [31, Cor.
2.4] there exists a functorial and compatible with base-change quasi-isomorphism

γr : RΓdR(XK)/F r
∼→ RΓcr(X ,O/J [r])Qp .

This quasi-isomorphism is in fact strict: this is not completely evident because the integral version of
the morphism is only a pN -quasi-isomorphism for some constant N but can be seen by an argument
identical to the one used at the end of the proof of [9, Prop. 6.1]. By η-étale descent we get the strict
quasi-isomorphism in the proposition. �



ON p-ADIC COMPARISON THEOREMS FOR RIGID ANALYTIC VARIETIES, I 17

4.1.2. Some computations. Recall that, in a stable range and up to some universal constants, crystalline
syntomic cohomology has a simple relation to de Rham cohomology. Let X be an affine semistable
formal scheme over OK . Let r ≥ 0. We note that τ≤r−1(RΓcr(X )/F r)

∼→ RΓcr(X )/F r and that the

natural map τ≤r+1([RΓcr(X )]ϕ=pr ) → [RΓcr(X )]ϕ=pr is a p2r-quasi-isomorphism (since 1− psϕ, s ≥ 1,
is invertible on differentials in degree r + s).

Proposition 4.6. (Colmez-Nizio l, [10, Prop. 3.12]) (i) The natural map

τ≤r+1RΓsyn(X ,Zp(r))→ RΓsyn(X ,Zp(r))

is a p2r-quasi-isomorphism and Hr+1RΓsyn(X ,Zp(r))
∼→ Hr+1([RΓcr(X )]ϕ=pr ).

(ii) The complex τ≤r−1([RΓcr(X )]ϕ=pr ) is pN -acyclic, for a constant N = N(e, d, p, r), where e = [K :
F ], d = dim X /OK . Hence the natural map RΓcr(X )/F r → τ≤r−1(RΓsyn(X ,Zp(r))[1]) is a pN -quasi-
isomorphism.

(iii) The above statements are valid also modulo pn. Moreover, Hr+1([RΓcr(Xn)]ϕ=pr ) is, étale locally
on Xn, pN -trivial, for a constant N = N(r).

Let X ∈ SmK , r ≥ 0. The distinguished triangle (4.2) and Lemma 4.5 yield a natural map

∂r : (RΓdR(X)/F r)[−1]→ RΓsyn(X,Qp(r)).

Corollary 4.7. (1) For i ≤ r − 1, the map

∂r : H̃i−1
dR (X)→ H̃i

syn(X,Qp(r))

is an isomorphism.
(2) We have the exact sequence

0→ H̃r−1(RΓdR(X)/F r)
∂r−−→H̃r

syn(X,Qp(r))→ H̃r
ét(X,A

ϕ=pr

cr,Qp
)→ H̃r(RΓdR(X)/F r)

Proof. To prove the first claim, note that we have the long exact sequence

H̃i−1
ét (X,A ϕ=pr

cr,Qp
)→ H̃i−1(RΓdR(X)/F r)→ H̃iRΓsyn(X,Qp(r))→ H̃i

ét(X,A
ϕ=pr

cr,Qp
)

If i ≤ r − 1 then H̃i−1RΓdR(X)
∼→ H̃i−1(RΓdR(X)/F r) and (1) follows from Proposition 4.6 (which

implies that H̃i−1
ét (X,A ϕ=pr

cr,Qp
) = 0 and H̃i

ét(X,A
ϕ=pr

cr,Qp
) = 0).

By a similar argument we get that the map ∂r : H̃r−1(RΓdR(X)/F r) → H̃r
syn(X,Qp(r)) is injective

which yields the second claim of the corollary. �

4.2. Arithmetic rigid analytic Hyodo-Kato cohomology. We define here Hyodo-Kato cohomology
of smooth rigid analytic varieties over K as well as a Hyodo-Kato morphism. We do it by η-étale descent
of crystalline Hyodo-Kato cohomology and the Hyodo-Kato morphism for semistable models.

4.2.1. Hyodo-Kato cohomology. Let AHK be the η-étale sheafification of the presheaf X 7→ RΓHK(X0) :=
RΓcr(X0/O0

FL
)Qp

on M ss
K . Here X is a semistable formal model over OL, [L : K] < ∞, L = KX , and

FL is the maximal absolutely unramified subfield of L. The sheaf AHK is a sheaf of dg F -algebras
on SmK,ét equipped with a ϕ-action and a derivation N such that Nϕ = pϕN . For X ∈ SmK , set
RΓHK(X) := RΓét(X,AHK). Equip it with a topology in the usual way, via η-étale descent, from the
natural topology on RΓHK(X0).

4.2.2. Convergent cohomology. Let Aconv be the η-étale sheafification of the presheaf 20 X 7→ RΓconv(X1/O
×
L ),

L = KX , on M ss
K,ét. For X ∈ SmK , we set RΓconv(X) := RΓét(X,Aconv). It is a dg K-algebra. We

equip it with the topology induced by η-étale descent from the topology of the RΓconv(X1/O
×
L )’s. We

have natural (strict) quasi-isomorphisms

Aconv ' AdR, RΓconv(X) ' RΓdR(X)

induced by the quasi-isomorphisms RΓconv(X1/O
×
L ) ' RΓdR(XL) that hold because X is log-smooth

over O×L .

20Here RΓconv(X1/O
×
L ) (and later RΓrig(X1/O

×
L )) are defined following the construction of Grosse-Klönne [21, 1.1-1.4]

by taking rigid analytic tubes (resp. dagger tubes).
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4.2.3. Hyodo-Kato morphism. To define the Hyodo-Kato quasi-isomorphism we will use the original
Hyodo-Kato quasi-isomorphism defined for quasi-compact formal schemes in [24] (see also [34]). We
will describe it now in some detail. Denote by r+

F the algebra OF [[T ]] with the log-structure associated to

T . Sending T to p induces a surjective morphism r+
F → O×F . We denote by rPD

F the p-adic divided power

envelope of r+
F with respect to the kernel of this morphism. Frobenius is defined by T 7→ T p, monodromy

is a OF -linear derivation given by T 7→ T . We will skip the subscript F if there is no danger of confusion.

(i) Local definition. Assume that we have an admissible semistable formal scheme X over OK . We
will work in the classical derived category. Recall that the Frobenius

rPD
n,ϕ ⊗LrPD

n
RΓcr(X0/r

PD
n )→ RΓcr(X0/r

PD
n ), OF,n,ϕ ⊗LOF,n RΓcr(X0/O

0
F,n)→ RΓcr(X0/O

0
F,n)

has a pN -inverse, for N = N(d), d = dim X0. This is proved in [24, 2.24]. Recall also that the projection
p0 : RΓcr(X0/r

PD
n )→ RΓcr(X0/O0

F,n), T 7→ 0, has a functorial (for maps between formal schemes and a

change of n) and Frobenius-equivariant pNι -section, Nι = N(d),

ιn : RΓcr(X0/O
0
F,n)→ RΓcr(X0/r

PD
n ),

i.e., p0ιn = pNι . This follows easily from the proof of Proposition 4.13 in [24]; the key point being that
the Frobenius on RΓcr(X0/O0

F,n) is close to a quasi-isomorphism and the Frobenius on the PD-ideal of

rPD is close to zero. Moreover, the resulting map

(4.8) ιn : RΓcr(X0/O
0
F,n)⊗LOF,n r

PD
n → RΓcr(X0/r

PD
n )

is a pN -quasi-isomorphism, N = N(d), [24, Lemma 5.2] and so is the composite

ppιn : RΓcr(X0/O
0
F,n)→ RΓcr(X0/O

×
F,n),

where the projection pp : RΓcr(X0/r
PD
n ) → RΓcr(X0/O

×
F,n) is defined by T 7→ p. Taking holimn of the

last map we obtain a map

ppι : RΓcr(X0/O
0
F )→ RΓcr(X0/O

×
F )

that is a pN -quasi-isomorphism, N = N(d).
We define the Hyodo-Kato map as the composition

ιHK : RΓcr(X0/O
0
F )F

p−Nιppι−−−−→RΓcr(X0/O
×
F )F → RΓcr(X0/O

×
K)K

∼← RΓconv(X0/O
×
K)(4.9)

∼← RΓconv(X1/O
×
K)

∼← RΓdR(XK).

The fourth map is actually a natural isomorphism by the invariance under infinitesimal thickenings of
convergent cohomology [33, 0.6.1]. The induced map ιHK : RΓcr(X0/O0

F )F ⊗F K → RΓdR(XK) is a
strict quasi-isomorphism.

(ii) Globalization. Let now X be a smooth rigid analytic variety over K. Since the computation,
leading to the existence of the section ι, in Proposition 4.13 in [24] can be done on the big topos as long
as we can control the dimension of the schemes involved, the above Hyodo-Kato map can be lifted to a
Hyodo-Kato map

ιHK : AHK → AdR

in the classical derived category of étale sheaves on X. It induces the Hyodo-Kato map

(4.10) ιHK : RΓHK(X)→ RΓdR(X).

Proposition 4.11. (Local-global compatibility) For a semistable formal scheme X over OK , the canon-
ical map

(4.12) RΓHK(X0)→ RΓHK(XK)

is a strict quasi-isomorphism.

Proof. The proof of Proposition 3.18 in [31] goes through practically verbatim. Key points: the de Rham
analog of (4.12) holds plus we have Galois descent for both sides of (4.12) that allows us to deal with the
field extensions appearing in the construction of local semistable models. �
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Remark 4.13. The above definition of the Hyodo-Kato quasi-isomorphism was normalized (at p) so that
it is functorial. A more customary definition depends on the uniformizer $ (one basically proceeds as
above but using the PD-envelope of the map OF {T} → OK , T 7→ $, instead of rPD

F ) and hence it is not
functorial.

4.2.4. Arithmetic rPD-cohomology. We define the rPD-cohomology of smooth rigid analytic varieties over
K by η-étale descent of the rPD-cohomology of semistable models.

Let APD be the η-étale sheafification of the presheaf X 7→ RΓcr(X0/r
PD
L )Qp

on M ss
K . Here X is an

admissible semistable formal scheme over OL, L = KX . We wrote rPD
L for the rPD-ring corresponding

to FL. Let RPD be the η-étale sheafification of the presheaf X 7→ rPD
L,Qp

on M ss
K . The sheaf APD is a

sheaf of dg RPD
Qp

-algebras on SmK,ét equipped with a ϕ-action and a derivation N , compatible with the

derivation on RPD, such that Nϕ = pϕN . For X ∈ SmK , set RΓPD(X) := RΓét(X,APD). Equip it with
a topology in the usual way, via η-étale descent, from the natural topology on the RΓcr(X0/r

PD
L )Qp ’s.

Proposition 4.14. (Local-global compatibility) For a semistable formal model X over OK , the canonical
map

RΓcr(X0/r
PD
K )Qp

→ RΓPD(XK)

is a strict quasi-isomorphism.

Proof. It suffices to show that, for any η-étale hypercovering U• of X from M ss
K (we may assume that

in every degree of the hypercovering we have a quasi-compact formal scheme), the natural map

RΓcr(X0/r
PD)Qp

→ RΓcr(U•,0/r
PD
L• )Qp

is a strict quasi-isomorphism (modulo taking a refinement of U•). Recall that the pN -quasi-isomorphism ι

from (4.8) yields a strict quasi-isomorphism (⊗̂R denotes the right derived functor of the tensor product)

(4.15) s = p−Nιι : RΓHK(X0)⊗̂RF rPD
K,Qp

∼→ RΓcr(X0/r
PD
K )Qp

.

Using it we get the following commutative diagram

RΓcr(X0/r
PD
K )Qp

// RΓcr(U•,0/rPD
L•

)Qp

RΓHK(X0)⊗̂RF rPD
K,Qp

//

so
OO

RΓHK(U•,0)⊗̂RFL• r
PD
L•,Qp

s•o
OO

Since RΓHK(U•,0)⊗̂RFLr
PD
L,Qp

' RΓHK(U•,0)⊗̂RF rPD
K,Qp

and since, by Proposition 4.11, the natural map

RΓHK(X0)→ RΓHK(U•,0) is a strict quasi-isomorphism so is the bottom map in the above diagram. It
follows that the top map is also a strict-quasi-isomorphism, as wanted. �

4.3. Geometric rigid analytic Hyodo-Kato cohomology. We will now define the Hyodo-Kato co-
homology of smooth rigid analytic varieties over C. We will do it by η-étale descent of crystalline
Hyodo-Kato cohomology of basic semistable models.

4.3.1. Definition and basic properties. Let f : X → Spf(OC)× be a semistable formal model. Suppose
that f is the base change of a semistable formal model fL : XOL → Spf(OL)× by θ : Spf(OC)× →
Spf(OL)×, for a finite extension L/K. That is, we have a map θL : X → XOL such that the square
(f, fL, θ, θL) is Cartesian. In the algebraic setting (algebraic schemes and K in place of C) such data
(L,XOL , θL) clearly form a filtered set. In our analytic case this is also the case for the system

Σ =
{

(L,XOL,1 , θL)
}

corresponding to the reduction modulo p of such data21, i.e., a system in which objects are reductions
(L,XOL,1 , θL) modulo p of the tuples (L,XOL , θL) as above but morphisms are morphisms between the
reduced objects.

21This is because the schemes XOL,1 from above are algebraic.
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(i) Hyodo-Kato cohomology. For a morphism of tuples (L′,X ′
OL′ ,1

, θ′L′) → (L,XOL,1, θL) from Σ, we

have a canonical base change identification compatible with ϕ-action (crystalline unramified base change)

RΓHK(XOL,0)⊗FL FL′
∼→ RΓHK(X ′

OL′ ,0
).

We set22

RΓHK(X1) := hocolimΣ RΓHK(XOL,0).

RΓHK(X1) is a dg F nr-algebra23 equipped with a ϕ-action and a derivation N such that Nϕ = pϕN .
It is functorial with respect to X : note that the restriction of a morphism X → Y to a morphism
X1 → Y1 is defined over a finite extension of K. Let AHK be the η-étale sheafification of the presheaf

X 7→ RΓHK(X1) on M ss,b
C . For X ∈ SmC , we set RΓHK(X) := RΓét(X,AHK). It is a dg F nr-algebra

equipped with a Frobenius, monodromy action, and a continuous action of GK if X is defined over K (this
action is smooth, i.e., the stabilizer of every element is an open subgroup of GK , if X is quasi-compact;
in general, it is only “pro-smooth”). We equip it with the topology induced by η-étale descent from the
topology of the RΓHK(XOL,0)’s.

(ii) Convergent cohomology. Let Aconv be the η-étale sheafification of the presheaf X 7→ RΓconv(X1/O
×
C )

on M ss,b
C,ét. For X ∈ SmC , we set RΓconv(X) := RΓét(X,Aconv). It is a dg C-algebra equipped with a

continuous action of GK . We equip it with the topology induced by η-étale descent from the topology of
the RΓconv(X1/O

×
C )’s. We have natural (strict) quasi-isomorphisms

Aconv ' AdR, RΓconv(X) ' RΓdR(X).

Let Aconv,K be the étale sheafification of the presheaf X 7→ RΓconv,K(X1) on M ss,b
C,ét, where we set

RΓconv,K(X1) := hocolimΣ RΓconv(XOL,1/O
×
L )

in the notation from above. For X ∈ SmC , we set RΓconv,K(X) := RΓét(X,Aconv,K). It is a dg K-

algebra equipped with a continuous action of GK if X is defined over K (this action is smooth if X
is quasi-compact). We equip it with the topology induced by η-étale descent from the topology of the
RΓconv(XOL,1/O

×
L )’s. There are natural continuous morphisms

Aconv,K → Aconv, RΓconv,K(X)→ RΓconv(X).

Remark 4.16. Instead of RΓconv,K(X1) above we could have used

RΓconv,Fnr(X1) := hocolimΣ RΓconv(XOL,1/O
×
FL

).

This would give a natural F nr-structure on de Rham cohomology (see Proposition 4.23 below).

(iii) rPD-cohomology. Let APD be the η-étale sheafification of the presheaf X 7→ RΓPD(X1) on M ss,b
C,ét,

where we set

RΓPD(X1) := hocolimΣ RΓcr(XOL,0/r
PD
L )Qp

.

in the notation from above. For X ∈ SmC , we set RΓPD(X) := RΓét(X,APD). Set rPD
K

:= rPD
F ⊗OF

OFnr := lim−→L
(rPD
F ⊗OF OFL), [L : K] < ∞. RΓPD(X) is a dg rPD

K,Qp
-algebra equipped with a continuous

action of GK if X is defined over K (this action is smooth if X is quasi-compact). We equip it with the
topology induced by η-étale descent from the topology of the RΓcr(XOL,0/r

PD
L )Qp ’s.

22Everything here and below is done in the derived ∞-category D(CQp ).
23The field Fnr is equipped with the inductive limit topology. Later on we will use the same type of topology for K.
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4.3.2. Hyodo-Kato quasi-isomorphisms. We keep the set-up from Section 4.3.1. The Hyodo-Kato mor-
phism from (4.9):

(4.17) ιHK : RΓHK(XOL,0)→ RΓconv(XOL,1/O
×
L ), ιHK : RΓHK(XOL,0)⊗FL L

∼→ RΓconv(XOL,1/O
×
L )

is compatible with morphisms in Σ and taking its homotopy colimit yields the first of the following two
natural strict quasi-isomorphisms (called again the Hyodo-Kato quasi-isomorphisms)

ιHK : RΓHK(X1)⊗Fnr K
∼→ RΓconv,K(X1) = hocolimΣ RΓconv(XOL,1/O

×
L ),(4.18)

ιHK : RΓHK(X1)⊗̂RFnrC
∼→ RΓdR(XC).

By definition, RΓHK(X1) ⊗Fnr K := hocolimL(RΓHK(X1) ⊗Fnr L), the homotopy colimit taken over
fields L, [L : F nr] < ∞. We have RΓHK(X1) ⊗Fnr K ' hocolimΣ(RΓHK(XOL,0) ⊗FL L). In the second
Hyodo-Kato morphism in (4.18), by definition24,

RΓHK(X1)⊗̂RFnrC := hocolimΣ(RΓHK(XOL,0)⊗̂RFLC).

We note that all the maps in the homotopy colimits are strict quasi-isomorphisms. The Hyodo-Kato
morphism itself is induced from the Hyodo-Kato strict quasi-isomorphism (4.17):

hocolimΣ(RΓHK(XOL,0)⊗̂RFLC)
∼→ hocolimΣ(RΓconv(XOL,1/O

×
L )⊗̂RLC)

and the strict quasi-isomorphisms

hocolimΣ(RΓconv(XOL,1/O
×
L )⊗̂RLC)

∼→ RΓconv(X1/O
×
C ) ' RΓdR(XC).

The first quasi-isomorphism is given by base change. We note here that, since RΓconv(XOL,1/O
×
L ) is a

complex of Banach spaces, the completed tensor product with C is exact.
Similarly, for X as at the beginning of Section 4.3.1, the strict quasi-isomorphism (4.15) yields a strict

quasi-isomorphism

(4.19) s : RΓHK(X1)⊗̂RFnrrPD
K,Qp

∼→ RΓPD(X1),

where we set

RΓHK(X1)⊗̂RFnrrPD
K,Qp

:= hocolimΣ(RΓHK(XOL,0)⊗̂RFLr
PD
L,Qp

).

We also get (T 7→ 0)

RΓPD(X1)⊗rPD
K,Qp

F nr ' RΓHK(X1),

where we set

RΓPD(X1)⊗rPD
K,Qp

F nr := hocolimΣ(RΓcr(XOL,0/r
PD
L )Qp

⊗̂RrPD
L,Qp

FL).

Varying X in the above constructions we obtain the (Hyodo-Kato) maps

ιHK : AHK → Aconv,K , ιHK : AHK → AdR, s : AHK → APD

of sheaves on SmC,ét. We claim that, for X ∈ SmC , they induce the natural (Hyodo-Kato) strict quasi-
isomorphisms
(4.20)

ιHK : RΓHK(X)⊗̂FnrK
∼→ RΓconv,K(X), ιHK : RΓHK(X)⊗̂RFnrC

∼→ RΓdR(X), RΓHK(X)⊗̂RFnrrPD
K,Qp

∼→ RΓPD(X).

Here we set25

RΓHK(X)⊗̂FnrK := hocolim((RΓHK⊗FnrK)(U•,1)),(4.21)

RΓHK(X)⊗̂RFnrC := hocolim((RΓHK⊗̂
R
FnrC)(U•,1)),

RΓHK(X)⊗̂RFnrrPD
K,Qp

:= hocolim((RΓHK⊗̂
R

FnrrPD
K,Qp

)(U•,1)),

24See [9, Sec. 2.1] for a quick review of basic facts concerning tensor products in the category CQp .
25The notation is ad hoc and rather awful here but we hope that it is self-explanatory.
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where the homotopy colimit is taken over η-étale hypercoverings U• from M ss,b
C . We note that we have

(4.22) RΓconv,K(X) ' hocolim RΓconv,K(U•,1), RΓPD(X) ' hocolim RΓPD(U•,1).

Indeed, by Proposition 4.23 below (there is no circular reasoning here) we have

hocolim RΓconv,K(U•,1)
∼→ hocolim RΓconv,K(U•,C), hocolim RΓPD(U•,1)

∼→ hocolim RΓPD(U•,C).

Hence (4.22) follows from the fact that RΓconv,K(X) and RΓPD(X) satisfy η-étale descent. Having (4.22),

the first strict quasi-isomorphism in (4.20) follows from the first Hyodo-Kato strict quasi-isomorphism
in (4.18). The second Hyodo-Kato strict quasi-isomorphism in (4.18) implies easily the second strict
quasi-isomorphism we wanted. The third strict quasi-isomorphism follows from (4.19).

4.3.3. Local-global compatibility and comparison results. Having the quasi-isomorphisms (4.20) we can
prove the following comparison result (where the tensor products in (2) and (3) are defined as in (4.21):

Proposition 4.23. (1) Let X ∈M ss,b
C . The natural maps

RΓHK(X1)→ RΓHK(XC), RΓconv,K(X1)→ RΓconv,K(XC),

RΓconv(X1)→ RΓconv(XC), RΓPD(X1)→ RΓPD(XC)

are strict quasi-isomorphisms.
(2) For X ∈ SmC , we have natural strict quasi-isomorphisms

RΓconv,K(X)⊗̂RKC
∼→ RΓconv(X) ' RΓdR(X).

(3) For X ∈ SmK , we have a natural strict quasi-isomorphism

RΓdR(X)⊗̂KK ' RΓconv,K(XC).

Proof. For the first claim, it suffices to show that, for any η-étale hypercovering U• of X from M ss,b
C ,

the natural maps

(4.24) RΓ?(X1)→ RΓ?(U•,1), ? = HK, {conv,K}, conv,PD,

are strict quasi-isomorphisms (modulo taking a refinement of U•). We may assume that in every degree
of the hypercovering we have a finite number of formal models. For the Hyodo-Kato case, it suffices to
show the strict quasi-isomorphism after we tensor both sides with K over F nr. But then we can use the
Hyodo-Kato quasi-isomorphism (4.18) to reduce to the case of {conv,K} in (4.24).

For that case, note that our map is strictly quasi-isomorphic to a map

RΓdR(XL)⊗L K → (RΓdR ⊗L• K)(U•,L•).

The rather ugly notation for the hypercovering just underscores the fact that the field over which the par-

ticular formal schemes split varies. Passing to cohomology (H̃(−)-cohomology) and then to a truncated
hypercovering we can assume that all the rigid spaces and maps involved are defined over a common field
K ′, a finite extension of L. We get a strict quasi-isomorphism by étale descent for de Rham cohomology.
The cases of PD- and conv-cohomology, can be reduced to that of Hyodo-Kato and de Rham cohomolo-

gies via the strict quasi-isomorphisms RΓPD(X) ' RΓHK(X)⊗̂RFnrrPD
K,Qp

and RΓconv(X) ' RΓdR(X),

respectively.
For the second claim of the proposition, it suffices to show that for an η-étale hypercovering U• of X

from M ss,b
C , we have a strict quasi-isomorphism

(RΓconv,K⊗̂
R
KC)(U•,1) ' RΓdR(U•,C).
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It suffices to argue degree-wise. Hence it suffices to show that, for a semistable formal model U over OE ,
[E : L] <∞, the first top horizontal arrow in the following diagram is a strict quasi-isomorphism:

RΓconv,K(UOC ,1)⊗̂RKC // RΓconv(UOC ,1)
∼ // RΓdR(UC)

RΓconv(UOE ,1)⊗̂REC

∼
44

o
OO

∼ // RΓdR(UPD)⊗̂REC.

∼
66

Since this diagram clearly commutes and the other arrows are strict quasi-isomorphisms, this is evident.
For the third claim of the proposition, it suffices to show that, for any η-étale hypercovering U• of XC

from M ss,b
C , the natural map

(4.25) RΓdR(X)⊗̂KK → RΓconv,K(U•,1)

is a strict quasi-isomorphism (modulo taking a refinement of U•). We can assume that U• has formal
models in every degree. Then both sides of (4.25) can be computed by (RΓdR ⊗L• K)(U•,L•) proving
what we wanted. �

4.3.4. Galois descent. The following proposition shows that Hyodo-Kato cohomology satisfies Galois
descent.

Proposition 4.26. Let X ∈ SmK . The natural projection ε : XC,ét → Xét defines pullback strict
quasi-isomorphisms
(4.27)

ε∗ : RΓHK(X)
∼→ RΓHK(XC)GK , ε∗ : RΓconv(X)

∼→ RΓconv,K(XC)GK , ε∗ : RΓPD(X)
∼→ RΓPD(XC)GK .

Remark 4.28. Here, we denoted by RΓHK(XC)GK , etc., the complex obtained by taking the GK-fixed
points of a representative of RΓHK(XC). This definition makes sense, i.e., two strictly quasi-isomorphic
complexes representing RΓHK(XC) give two strictly quasi-isomorphic complexes representing RΓHK(XC)GK .
Or, otherwise speaking, taking a cone of the given quasi-isomorphism, for a complex T := T 0 → T 1 →
T 2 → · · · such that each T i is a direct sum of products of LB-spaces with a smooth action of GK , the
complex TGK is strictly exact. Indeed, since the complex T is strictly exact, for all i, we have the strictly
exact sequence

(4.29) 0→ ker di → T i → ker di+1 → 0,

and we need to show that the induced sequence

(4.30) 0→ (ker di)
GK → (T i)GK → (ker di+1)GK → 0

is exact. We note that there exists a normalized trace function

tr : T i → (T i)GK , x 7→ lim−→
L⊂K

1

[L : K]

∑
σ∈Gal(L/K)

σ(x).

This is well-defined because T i is a finite direct sum of products of smooth GK-modules and on a smooth
GK-module the limit in the formula stabilizes. Let now x ∈ (ker di+1)GK . Since the sequence (4.29) is
exact, there exists y ∈ T i mapping to x. But then tr(y) maps to tr(x) = x. Since tr(y) ∈ (T i)GK this
means that the sequence (4.30) is exact, as wanted.

Proof. (of Proposition 4.26) By η-étale descent, we may assume that X = XK for X ∈ M ss
K . Recall

that the action of GK on RΓHK(XC), RΓconv(XC), and RΓPD(XC) is then smooth. We will prove only
the first quasi-isomorphism - the proof of the others being analogous.

Passing to a finite extension of the splitting field L of X , if necessary, we may assume that X is
semistable over a finite Galois extension L of K. Consider the following commutative diagram (we added
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the base K and L in the definition of the arithmetic Hyodo-Kato cohomology to stress that we are working
with the category M ss

K and M ss
L , respectively):

RΓHK(X/L)
ε∗ // RΓHK(X ⊗L C)GL

RΓHK(X/K)

o
OO

ε∗ // RΓHK(X ⊗K C)GK

OO

By Proposition 4.11 and Proposition 4.23, the top horizontal map is quasi-isomorphic to the map

(4.31) ε∗ : RΓHK(X0)→ (RΓHK(X0)⊗FL F nr)GL ,

which clearly is a quasi-isomorphism. Since X ⊗K C ' (X ⊗L C)×H for H = Gal(L/K), we have

RΓHK(X ⊗K C) ' RΓHK(X ⊗L C)×H.
Hence the right vertical map in the above diagram is a quasi-isomorphism as well. It follows that so is
the bottom horizontal map, as wanted. �

4.4. Passage to Bloch-Kato arithmetic rigid analytic syntomic cohomology. Let X ∈ SmK .
Let r ≥ 0. In this section, we define the Bloch-Kato rigid analytic syntomic cohomology:

RΓBK
syn(X,Qp(r)) := [[RΓHK(X)]N=0,ϕ=pr ι′HK−−→RΓdR(X)/F r],

where the map ι′HK is defined below, and we show that it is strictly quasi-isomorphic to the rigid analytic
syntomic cohomology of X:

Proposition 4.32. There is a natural strict quasi-isomorphism

ι2 : RΓBK
syn(X,Qp(r)) ' RΓsyn(X,Qp(r)).

Proof.
(i) Local definition. Let X be an admissible semistable formal scheme over OK . We define a functorial

strict quasi-isomorphism

ι2 : RΓBK
syn(X ,Qp(r)) := [[RΓcr(X0/O

0
F )F ]N=0,ϕ=pr ι′HK−−→RΓdR(XK)/F r](4.33)

∼→ [[RΓcr(X1/OF )F ]ϕ=pr can−−→RΓcr(X1/O
×
K)K/F

r] ' RΓsyn(X ,Zp(r))Qp

by the following diagram

(4.34) RΓcr(X1/O
×
K)K RΓdR(XK)∼

oo

∼
ww

∼

��

[RΓcr(X1/OF )F ]ϕ=pr

can

22

i∗o
��

[RΓconv(X1/OF )]ϕ=pr

ε1

∼oo

i∗o
��

// RΓconv(X1/O
×
K)

i∗o
��

o

OO

[RΓcr(X0/OF )F ]ϕ=pr

))
o
��

[RΓconv(X0/OF )]ϕ=pr

))

//
ε0

∼oo RΓconv(X0/O
×
K)

[RΓcr(X0/r
PD
F )Qp ]N=0,ϕ=pr

pp //

p0

∼
,,

RΓcr(X0/O
×
F )F RΓconv(X0/O

×
F )∼

oo

OO

[RΓcr(X0/O0
F )F ]N=0,ϕ=pr

ι′HK

PP

The vertical left bottom map is a quasi-isomorphism by [26, Lemma 4.2]. The map ι′HK is defined by the
zigzag in the diagram. The map p0 is a quasi-isomorphism because Frobenius is highly nilpotent on T .
The slanted map from the convergent to crystalline cohomology is a strict quasi-isomorphism because the
log-scheme X1 is log-smooth over O×K,1. The two right maps i∗ are strict quasi-isomorphisms (actually,
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natural isomorphisms) by the invariance of convergent cohomology under infinitesimal thickenings; the
left map i∗ is a quasi-isomorphism by a standard Frobenius argument (see [10, proof of Lemma 5.9]). We
claim that the maps ε1, ε0 are strict quasi-isomorphisms. Indeed, it suffices to check this for the second
of the two maps and then it follows from the commutative diagram

[RΓcr(X0/OF )F ]ϕ=pr

o
��

[RΓconv(X0/OF )]ϕ=pr

ε0
oo

o
��

[RΓcr(X0/r
PD
F )Qp

]N=0,ϕ=pr

p0 o
��

[RΓconv(X0/r̂F )]N=0,ϕ=pr

ε
oo

p0 o
��

[RΓcr(X0/O0
F )F ]N=0,ϕ=pr [RΓconv(X0/O0

F )]N=0,ϕ=pr

ε0

∼oo

since the map ε0 is a strict quasi-isomorphism by the log-smoothness of the log-scheme X0 over k0. Here
r̂F := OF {T} and the right vertical maps are strict quasi-isomorphisms by the same arguments as the
left vertical maps.

(ii) Globalization. Let A BK
syn be the η-étale sheafification of the presheaf X → RΓBK

syn(X ,Qp(r)) on
M ss

K,ét. We have

RΓét(X,A
BK

syn ) ' [RΓét(X,AHK)N=0,ϕ=pr ι′HK−−→RΓét(X,AdR)/F r]

' [RΓHK(X)N=0,ϕ=pr ι′HK−−→RΓdR(X)/F r] ' RΓBK
syn(X,Qp(r)).

Since RΓsyn(X,Qp(r)) = RΓét(X,Asyn), by η-étale descent, the strict quasi-isomorphisms ι2 from (4.33)
can be lifted to a strict quasi-isomorphism

ι2 : RΓsyn(X,Qp(r)) ' RΓBK
syn(X,Qp(r)),

as wanted. �

Remark 4.35. Let us state the following corollary of the above computations.

Corollary 4.36. (Local-global compatibility) Let r ≥ 0. For a semistable formal scheme X over OK ,
the canonical map

RΓsyn(X ,Qp(r))→ RΓsyn(XK ,Qp(r))

is a strict quasi-isomorphism.

Proof. By construction and Proposition 4.32, we have compatible strict quasi-isomorphisms

ι2 : RΓsyn(X ,Qp(r)) ' [[RΓHK(X0)]N=0,ϕ=pr ι′HK−−→RΓdR(XK)/F r],

ι2 : RΓsyn(XK ,Qp(r)) ' [[RΓHK(XK)]N=0,ϕ=pr ι′HK−−→RΓdR(XK)/F r].

It suffice now to note that, by Proposition 4.11, the natural map RΓHK(X0) → RΓHK(XK) is a strict
quasi-isomorphism. �

5. Overconvergent syntomic cohomology

In this section we define syntomic cohomology for smooth dagger varieties over K or C in two ways
(yielding strictly quasi-isomorphic theories). Recall that in [9] syntomic cohomology of semistable weak
formal schemes is defined as a homotopy fiber of a map from Frobenius eigenspaces of Hyodo-Kato
cohomology to a filtered quotients of de Rham cohomology. By η-étale descent this yields the first
definition of syntomic cohomology for smooth dagger varieties. For the second definition we take, for
smooth dagger affinoids, the homotopy colimits of syntomic cohomologies of the rigid analytic affinoids
forming a presentation of the dagger structure, and then we globalize. The second definition will allow
us to define period maps to pro-étale cohomology.

To carry out the above, we introduce Hyodo-Kato cohomology for smooth dagger varieties, prove
that it satisfies Galois descent, and define the Hyodo-Kato morphism (that is a strict quasi-isomorphism
over C).
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5.1. Overconvergent de Rham cohomology. Let L = K,C. Consider the presheaf X 7→ RΓdR(X)

of filtered dg L-algebras on Sm†L. Let AdR be its étale sheafification. It is a sheaf of filtered L-algebras

on Sm†L,ét. For X ∈ Sm†L, we have the filtered quasi-isomorphism: RΓdR(X)
∼→ RΓét(X,AdR). We equip

RΓdR(X) with the topology induced by the canonical topology on dagger algebras; we equip RΓét(X,AdR)
with topology using étale descent as we did before. Then the above quasi-isomorphism is strict: dagger
differentials satisfy étale descent in the strict sense. The de Rham cohomology Hi

dR(X) is classical: it is a
finite dimensional K-vector space with its natural Hausdorff topology for X quasi-compact and a Fréchet
space (a surjective limit of finite dimensional K-vector spaces) for a general smooth X (use Remark 3.12).
See the proof of Proposition 5.6 below for how this can be shown.

5.1.1. Complex RΓdR(X)/F r. Let X ∈ Sm†L. The cohomology groups of RΓdR(X)/F r have the same
description as their rigid analytic counterparts in Section 4.1.1. That is, the distinguished triangle (in
D(CL))

(5.1) 0→ ker dr[−r]→ τ≤rΩ
•
X → Ω≤r−1

X → 0

yields the strict short exact sequence

0→ Hr−1
dR (X)→ H̃r−1(RΓdR(X)/F r)→ kerπ → 0,

where π is the natural map Ωr(X)d=0 → Hr
dR(X). We have a strict monomorphism im dr−1(X) ↪→ kerπ.

We note that the cohomology H̃r−1(RΓdR(X)/F r) is classical (as an extension of classical objects).
The distinguished triangle (5.1) yields also the strict long exact sequence

0→ cokerπ → H̃r(RΓdR(X)/F r)→ H̃1(X, ker dr)→ H̃r+1(X, τ≤rΩ
•
X).

5.2. Arithmetic overconvergent Hyodo-Kato cohomology. We define the Hyodo-Kato cohomol-
ogy of smooth dagger varieties over K by η-étale descent of overconvergent Hyodo-Kato cohomology of
semistable models.

5.2.1. Local definition. Let X be a log-smooth scheme over k0. The overconvergent Hyodo-Kato coho-
mology of X is defined (by Grosse-Klönne in [21]) as RΓHK(X) := RΓHK(X/OF ) := RΓrig(X/O0

F ). It
is a dg F -algebra, equipped with a ϕ-action and a monodromy operator N such that Nϕ = pϕN . We
equip it with a topology as in [9, Sec. 3.1].

Let X be a semistable scheme over k0. Recall that we have the Hyodo-Kato morphism

(5.2) ιHK : RΓrig(X/O0
F )→ RΓrig(X/O×F )

that is actually a strict quasi-isomorphism [9, Section 3.1.3]. We have chosen here the functorial version
of this morphism as defined by Ertl-Yamada [15, Prop. 2.5]: a combinatorial modification of the original
morphism of Grosse-Klönne yields easy functoriality on most of the data; full functoriality is obtained by
a coherent zigzag construction [15, Lemma 2.6].

Remark 5.3. For the convenience of the reader we will describe in more detail the constructions of Grosse-
Klönne (see for details [9, Section 3.1.3]) and Ertl-Yamada. Let {Xi}i∈I be the irreducible components of
X with the induced log-structure. Denote by M• the nerve of the covering

∐
i∈I Xi → X. By [9, Lemma

3.8], the natural map

RΓrig(X/O)→ RΓrig(M•/O), O = O0
F ,O

×
F ,

is a strict quasi-isomorphism.
Let X be the log-scheme with boundary attached to X in [21]. It comes equipped with a natural map

M ′• ↪→ X, where M ′• is a slight combinatorial modification26 of M•: there is a natural map M• → M ′•
that induces a strict quasi-isomorphism

RΓrig(M ′•/O)→ RΓrig(M•/O).

26We take the definition of Ertl-Yamada, which allows multiplicities in the index set, rather than the original definition

of Grosse-Klönne, which does not allow them.
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We have the following commutative diagram, where O(0) = O0
F ,O(p) = O×F , a = 0, p, and pa is the map

induced by T 7→ a:

RΓrig(X/O(a)) ∼
//

∼

))

RΓrig(M ′•/O(a))

o
��

RΓrig(X/r†F )∼
oo

��

RΓrig(M•/O(a))

RΓrig(M•/r
†
F )

pa

OO

RΓrig(X/r†F )
∼ //

∼
55

pa

OO

RΓrig(M ′•/r
†
F )

∼

ll

pa

ff

We wrote here r†F := OF [T ]† with the log-structure associated to T ; Frobenius is defined by T 7→ T p,
monodromy is the OF -linear derivation given by T 7→ T . The Hyodo-Kato morphism (5.2) is now defined
as the following composition

ιHK : RΓrig(X/O0
F )
∼→ RΓrig(M ′•/O

0
F )
∼← RΓrig(X/r†F )

∼→ RΓrig(M ′•/O
×
F )

∼← RΓrig(X/O×F ).

For another semistable scheme Y over k0 and a map of log-schemes g : Y → X, Ertl-Yamada define in

[15, Lemma 2.6] a pullback morphism g∗ : RΓrig(X/r†F )→ RΓrig(Y /r†F ) that makes ιHK functorial.
In what follows, to simplify the notation, we will write

pa : RΓrig(X/r†F )
∼→ RΓrig(M ′•/O(a))

∼← RΓrig(X/O(a)),

f1 : RΓrig(X/r†F )→ RΓrig(M ′•/r
†
F )
∼← RΓrig(X/r†F ).

The above commutative diagram yields the functorial commutative diagram

RΓrig(X/O(a)) RΓrig(X/r†F )
pa

∼oo

f1vv
RΓrig(X/r†F )

pa

OO

If X is a semistable weak formal scheme over OK , we define the Hyodo-Kato map

ιHK : RΓHK(X0)→ RΓdR(XK)

as the following composition

(5.4) RΓHK(X0) = RΓrig(X0/O
0
F )

ιHK−−→RΓrig(X0/O
×
F )→ RΓrig(X0/O

×
K) ' RΓdR(XK).

Note that this definition works also for base changes (with respect to OK) of semistable weak formal
schemes over OK . Since the natural morphism RΓrig(X0/O

×
F )⊗F K → RΓrig(X0/O

×
K) is a strict quasi-

isomorphism so is the induced morphism

ιHK : RΓHK(X0)⊗F K
∼→ RΓdR(XK).

5.2.2. Globalization. Let AHK be the η-étale sheafification of the presheaf X 7→ RΓHK(X0/OFL), L =

KX , on M †,ss
K ; this is an étale sheaf of dg F -algebras on Sm†K equipped with a ϕ-action and a derivation

N such that Nϕ = pϕN . For X ∈ Sm†K , set RΓHK(X) := RΓét(X,AHK). Equip it with a topology in
the usual way, via η-étale descent, from the topology on the RΓHK(X0/OFL)’s.

Proposition 5.5. (Local-global compatibility) Let X be a semistable weak formal scheme over OK . Then
the natural map

RΓHK(X0)→ RΓHK(XK)

is a strict quasi-isomorphism.

Proof. Same as the proof of Proposition 4.11. �
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For X ∈ Sm†K , we define natural F -linear maps (the overconvergent Hyodo-Kato morphisms)

ιHK : AHK → AdR, ιHK : RΓHK(X)→RΓdR(X)

by the η-étale sheafification of the Hyodo-Kato map ιHK : RΓHK(X0)→RΓdR(XK) and its globalization,
respectively.

5.2.3. Topology. We will now discuss topology in more detail.

Proposition 5.6. Let X be a smooth dagger variety over K.

(1) If X is quasi-compact then H̃∗HK(X) is classical. It is a finite dimensional F -vector space with
its unique locally convex Hausdorff topology.

(2) For a general X, the cohomology H̃∗HK(X) is classical. It is a Fréchet space, a limit of finite
dimensional F -vector spaces.

(3) The endomorphism ϕ on H∗HK(X) is a homeomorphism.
(4) If k is finite and X is quasi-compact then H∗HK(X) is a mixed F -isocrystal, i.e., the eigenval-

ues27 of ϕ are Weil numbers (if X is not quasi-compact then H∗HK(X) is a product of mixed
F -isocrystals).

Proof. In the case X = XK , for a semistable weak formal model X over OK , and for H̃∗HK(X0) this is
[9, Prop. 3.2]. All algebraic statements concerning cohomology in the proposition follow from that by
using η-étale descent and the quasi-isomorphism from Proposition 5.5.

We treat now the topological claims. For (1), we first use the η-étale descent and the fact that claim (1)
holds in the case X has a semistable model over OK to construct a filtration on the classical cohomology
Hi

HK(X) with graded pieces finite rank vector spaces over F with their canonical Hausdorff topology.

This implies that the natural topology on Hi
HK(X) is also Hausdorff. It remains to show that H̃i

HK(X)

is classical. Take an η-étale hypercovering U• of X built from objects of M †,ss
K . Assume that in every

degree we have a finite number of affine weak formal schemes (recall that X is quasi-compact). Then the
complex RΓHK(U•,0) is built from inductive limits of Banach spaces with injective and compact transition
maps. Using the fact that these are strong duals of reflexive Fréchet spaces we know that the kernels
of the differentials and their coimages have the same property. In particular, they are LB-spaces. The

cohomology H̃i
HK(X) is represented by the pair coim di−1 → ker di and Hi

HK(X) = ker di/ im di−1 with
the induced topology. Let W be a subspace of ker di that maps onto Hi

HK(X) and has the same rank as
the latter. Then the map coim di−1 ⊕W → ker di is a continuous map of LB-spaces that is an algebraic
isomorphism hence, by the Open Mapping Theorem, it is a topological isomorphism. Hence the map

coim di−1 → ker di is strict and the cohomology H̃i
HK(X) is classical.

A similar argument, using strong duals of reflexive Fréchet spaces, implies that a map between two
Hyodo-Kato complexes associated to two (different) η-étale affine hypercoverings of X as above is a strict
quasi-isomorphism. This implies that, for X quasi-compact, the cohomology of RΓHK(X) is strictly
quasi-isomorphic to the cohomology of RΓHK(U•,0) for any η-étale affine hypercovering U• as above.

To see that ϕ is a homeomorphism in (3), note that this is clear for quasi-compact X by the above
remarks. For a general X, as in the case of pro-étale cohomology, cover it with an admissible increasing
quasi-compact covering {Un}n∈N. We obtain the exact sequence

0→ H1 holimn H̃
i−1
HK (Un)→ H̃i

HK(X)→ H0 holimn H̃
i
HK(Un)→ 0

But, by (1), the cohomologies H̃i
HK(Un) are classical and finite dimensional over F . Hence, the cohomology

H̃i
HK(X) is classical and we have

Hi
HK(X)

∼→ lim←−n
Hi

HK(Un).

Hence it is Fréchet, as wanted. We have proved (2), and (4) follows now trivially from (1). �

27We define the eigenvalues of ϕ in Q⊗F ∗ to be the s’th roots of the eigenvalues of ϕs, where s is any non-zero multiple

of f for |k| = pf . We note that this definition is stable under base change from F to F ′, [F ′ : F ] <∞.
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5.2.4. (ϕ,N)-cohomology. Let X ∈ Sm†K , r ≥ 0. We will need to understand the cohomology of

[RΓHK(X)]N=0,ϕ=pr . We have

[RΓHK(X)]N=0,ϕ=pr =


RΓHK(X)

N
��

pr−ϕ // RΓHK(X)

N
��

RΓHK(X)
pr−pϕ // RΓHK(X)


This gives rise to a spectral sequence

(5.7) Eij2 = H̃i([Hj
HK(X)]N=0,ϕ=pr )⇒ H̃i+j(RΓHK(X)N=0,ϕ=pr ),

where H̃∗([Hj
HK(X)]N=0,ϕ=pr ) is the cohomology of the complex

Hj
HK(X)

pr−ϕ //

N��

Hj
HK(X)

N��
Hj

HK(X)
pr−pϕ // Hj

HK(X)


That is, we can compute it by the sequence

Hj
HK(X)

(N,pr−ϕ)−−−−−−→Hj
HK(X)⊕Hj

HK(X)
(pr−pϕ)−N−−−−−−→Hj

HK(X).

The cohomology H̃i([Hj
HK(X)]N=0,ϕ=pr ) is classical and a Fréchet space. This is because we can write

naturally Hi
HK(X) ' lim←−n

Hi
HK(Un), for an admissible increasing quasi-compact covering {Un}n∈N of X,

and all the cohomologies Hi
HK(Un) are finite dimensional over F .

Hence, in the spectral sequence (5.7), the terms are classical and Fréchet spaces. Arguing by limits as
above, we conclude that so is the abutment.

Remark 5.8. In the case when Hj
HK(X) is a finite (ϕ,N)-module (for example when X is quasi-compact),

then H∗([Hj
HK(X)]N=0,ϕ=pr ) ' Ext∗ϕ,N (F,Hj

HK(X){r}), the Ext-groups in the category of finite (ϕ,N)-
modules [2].

Proposition 5.9. Let X ∈ Sm†K , r ≥ 0.

(1) We have Hi([RΓHK(X)]N=0,ϕ=pr ) = 0 for i ≤ r − 1.
(2) There is a strict short exact sequence

(5.10) 0→ Hr−1
HK (X)ϕ=pr−1

→ Hr([RΓHK(X)]N=0,ϕ=pr )→ Hr
HK(X)N=0,ϕ=pr → 0

Proof. To see that, we note that the slopes of Frobenius on Hi
HK(X) are ≤ i: it is enough to show this for

X with a semistable reduction where we can use the weight spectral sequence to reduce to showing that,
for a smooth scheme Y over k, the slopes of Frobenius on the (classical) rigid cohomology Hi

rig(Y/F ) are

≤ i; but this is well-known [7, Th. 3.1.2]. It follows that the morphism ϕ − pj is an isomorphism on
Hi

HK(X) for i < j. Knowing that, we obtain both claims of the proposition from the spectral sequence
(5.7). �

5.3. Geometric overconvergent Hyodo-Kato cohomology. We define the Hyodo-Kato cohomol-
ogy of smooth dagger varieties over C by η-étale descent of overconvergent Hyodo-Kato cohomology of
semistable models.

5.3.1. Definition and basic properties. Let f : X → Spwf(OC)× be a semistable weak formal model.
Suppose that f is the base change of a semistable weak formal model fL : XOL → Spwf(OL)× over OL
by θ : Spwf(OC)× → Spwf(OL)×, for a finite extension L/K. That is, we have a map θL : X → XOL

such that the square (f, fL, θ, θL) is Cartesian. Such data {(L,X , θL)} reduced modulo p form a filtered
set Σ (cf. Section 4.3.1).
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(i) Hyodo-Kato cohomology. For a morphism of tuples (L′,X ′
OL′,1

, θ′L′)→ (L,XOL,1 , θL) from Σ, we have

a canonical base change identification compatible with ϕ-action (unramified base change)

(5.11) RΓHK(XOL,0)⊗FL FL′
∼→ RΓHK(X ′

OL′ ,0
).

We set

RΓHK(X1) := hocolimΣ RΓHK(XOL,0).

It is a dg F nr-algebra28 equipped with a ϕ-action and a derivation N such that Nϕ = pϕN . It is functorial
with respect to X : note that the restriction of a morphism X → Y to a morphism X1 → Y1 is defined
over a finite extension of K.

Let AHK be the η-étale sheafification of the presheaf X 7→ RΓHK(X1) on M †,ss,b
C . For X ∈ Sm†C , we

set RΓHK(X) := RΓét(X,AHK). It is a dg F nr-algebra equipped with a Frobenius, monodromy action,
and a continuous action of GK if X is defined over K (this action is smooth if X is quasi-compact). We
equip it with the topology induced, by η-étale descent, from the topology on the RΓHK(XOL,0)’s.

Proposition 5.12. Let X be a smooth dagger variety over C.

(1) If X is quasi-compact then H̃∗HK(X) is classical. It is a finite dimensional Fnr-vector space with
its natural topology.

(2) The cohomology H̃∗HK(X) is classical. It is a limit (in CF ) of finite dimensional F nr-vector spaces.
(3) The endomorphism ϕ on H∗HK(X) is a homeomorphism.
(4) If k is finite and X is quasi-compact then H∗HK(X) is a mixed F -isocrystal, i.e., the eigenval-

ues29 of ϕ are Weil numbers (if X is not quasi-compact then H∗HK(X) is a product of mixed
F -isocrystals).

Proof. For claim (1), it suffices to show that, for every η-étale hypercovering U• of X from M †,ss,b
C , the

cohomology H̃i
HK(U•,C), i ≥ 0, is classical and of finite rank over F nr. Since we can assume that the

weak formal schemes in every degree of the hypercovering are admissible, this follows immediately from
Proposition 5.6 and the quasi-isomorphism (5.11).

Claim (2) follows easily from claim (1). Claim (3) and (4) follow by the same argument as claim (1). �

(i) Rigid cohomology. Let Arig be the η-étale sheafification of the presheaf X 7→ RΓrig(X1/O
×
C )

on M †,ss,b
C . For X ∈ Sm†C , we set RΓrig(X) := RΓét(X,Arig). It is a dg C-algebra equipped with a

continuous action of GK if X is defined over K. We equip it with the topology induced, by η-étale
descent, from the topology on the RΓrig(X1/O

×
C )’s. We have natural (strict) quasi-isomorphisms

Arig
∼→ AdR, RΓrig(X)

∼→ RΓdR(X).

Let Arig,K be the η-étale sheafification of the presheaf X 7→ RΓrig,K(X1) on M †,ss,b
C , where we set

RΓrig,K(X1) := hocolimΣ RΓrig(X0/O
×
L ).

For X ∈ Sm†C , we set RΓrig,K(X) := RΓét(X,Arig,K). It is a dg K-algebra equipped with a continuous

action of GK if X is defined over K (this action is smooth if X is quasi-compact). We equip it with
the topology induced, by η-étale descent, from the topology on the RΓrig(XOL,0)’s. There are natural
continuous morphisms

Arig,K → Arig, RΓrig,K(X)→ RΓrig(X).

28The field Fnr is equipped here with the inductive limit topology in CF . In particular, a sequence (xn)n∈N, of elements
of Fnr converges if and only if there exists a finite extension L of F such that all xn ∈ L and the sequence (xn)n∈N converges

inside L.
29The cohomology H∗HK(X) together with its Frobenius, a priori an Fnr-vector space of finite rank, is obtained by a

base change from a finite rank F ′-vector space V , where [F ′ : F ] <∞, equipped with a semilinear Frobenius so we can use

the definition of eigenvalues of Frobenius from the footnote to Proposition 5.6.
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5.3.2. Galois descent. Again we have a Galois descent.

Proposition 5.13. Let X ∈ Sm†K . The natural projection ε : XC,ét → Xét defines pullback quasi-
isomorphisms

(5.14) ε∗ : RΓHK(X)
∼→ RΓHK(XC)GK , ε∗ : RΓdR(X)

∼→ RΓrig,K(XC)GK .

Proof. We can use the proof of Proposition 4.26 almost verbatim30. �

5.3.3. Hyodo-Kato quasi-isomorphisms.
(i) Local definition. Let X → Spwf(OC)× be as above. The Hyodo-Kato morphism from (5.4):

(5.15) ιHK : RΓHK(XOL,0)→ RΓrig(XOL,0/O
×
L ), ιHK : RΓHK(XOL,0)⊗FL L

∼→ RΓrig(XOL,0/O
×
L )

is compatible with the morphisms in Σ and taking its homotopy colimit yields the first of the following
two natural strict quasi-isomorphisms (called again the Hyodo-Kato quasi-isomorphisms)

ιHK : RΓHK(X1)⊗FnrK ' hocolimΣ(RΓHK(XOL,0)⊗FL L)
∼→ hocolimΣ RΓrig(XOL,0/O

×
L ) =: RΓrig,K(X1),

(5.16)

ιHK : RΓHK(X1)⊗̂RFnrC
∼→ RΓrig(X1/O

×
C ) ' RΓdR(XC).

In the second Hyodo-Kato morphism, we set

RΓHK(X1)⊗̂RFnrC := hocolimΣ(RΓHK(XOL,0)⊗̂RFLC),

where all the maps in the homotopy limit are strict quasi-isomorphisms. This morphism is then defined
as the composition

hocolimΣ(RΓHK(XOL,0)⊗̂RFLC)
ιHK−−→hocolimΣ(RΓrig(XOL,0/O

×
L )⊗̂RLC)

∼→ RΓrig(X1/O
×
C )

∼→ RΓdR(XC),

where we have used the Hyodo-Kato quasi-isomorphism from (5.15), the second map is a strict quasi-
isomorphism by base change. So defined morphism is clearly a strict quasi-isomorphism.

(ii) Globalization. Varying X in the above constructions we obtain the Hyodo-Kato maps

ιHK : AHK → Arig, ιHK : AHK → AdR

of sheaves on Sm†C,ét. For X ∈ Sm†C , they induce the natural Hyodo-Kato strict quasi-isomorphisms

(5.17) ιHK : RΓHK(X)⊗̂FnrK
∼→ RΓrig,K(X), ιHK : RΓHK(X)⊗̂RFnrC

∼→ RΓdR(X).

Here we set

RΓHK(X)⊗̂FnrK := hocolim((RΓHK⊗FnrK)(U•,0)),(5.18)

RΓHK(X)⊗̂RFnrC := hocolim((RΓHK⊗̂
R

FnrC)(U•,0)),

where the homotopy colimit is taken over η-étale hypercoverings from M †,ss,b
C . We note that

(5.19) RΓrig,K(X) ' hocolim RΓrig,K(U•,1).

This is because hocolim RΓrig,K(U•,1) ' hocolim RΓrig,K(U•,C) by Proposition 5.20 below (there is no

circular reasoning here) and we have η-étale descent for RΓrig,K(X). Having (5.19), the first strict quasi-

isomorphism in (5.17) follows from the strict Hyodo-Kato quasi-isomorphism in (5.16). The latter also
imply easily the second strict quasi-isomorphism we wanted.

(iii) Local-global compatibility and comparison results. The Hyodo-Kato quasi-isomorphisms allow us
now to prove the following comparison result (where the tensor products in (2) and (3) are defined as in
(5.18).

30Note that Remark 4.28 applies to this setting.
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Proposition 5.20. (1) Let X ∈M †,ss,b. Then the natural maps

RΓHK(X1)→ RΓHK(XC), RΓrig(X1)→ RΓrig(XC), RΓrig,K(X1)→ RΓrig,K(XC)

are strict quasi-isomorphisms.

(2) For X ∈ Sm†C , we have a natural strict quasi-isomorphism

RΓrig,K(X)⊗̂RKC
∼→ RΓrig(X) ' RΓdR(X).

(3) For X ∈ Sm†K , we have a natural strict quasi-isomorphism

RΓdR(X)⊗̂KK ' RΓrig,K(XC).

Proof. The proof is almost verbatim the same as the proof of Proposition 4.23 (which contains analogous
claims in the case of rigid analytic varieties) we just need to replace RΓconv used there with RΓrig. �

Remark 5.21. Much of what we have described above in Section 5.3 goes through, with minimal changes,
for X ∈ SmC . Hence, working with formal schemes instead of weak formal schemes, we have the geometric

Hyodo-Kato cohomology RΓ†HK(X). We wrote † to distinguished this cohomology from the geometric
Hyodo-Kato cohomology RΓHK(X) defined in Section 4.3. It is a dg F nr-algebra equipped with a ϕ-
action, derivation N such that Nϕ = pϕN , and a continuous action of GK (which is smooth when X
is quasi-compact). It has an arithmetic analogue that satisfies Galois descent of the type described in
Proposition 5.13. We also have the Hyodo-Kato quasi-isomorphism

ιHK : RΓ†HK(X)⊗̂FnrK
∼→ RΓrig,K(X),

where the rigid cohomology is defined like its analog for dagger varieties.

If X is quasi-compact, the underlying isocrystal of HiRΓ†HK(X) should be the one defined by Le Bras
in [28].

5.4. Arithmetic overconvergent syntomic cohomology. We define now arithmetic overconvergent
syntomic cohomology of smooth dagger varieties over K by η-étale descent of overconvergent syntomic
cohomology of semistable weak formal models.

Let X be an admissible semistable weak formal scheme over OL, [L : K] < ∞. For r ≥ 0, we define
the overconvergent syntomic cohomology as

(5.22) RΓsyn(X ,Qp(r)) := [[RΓHK(X0)]N=0,ϕ=pr ιHK−−→RΓdR(XL)/F r].

For a smooth dagger space X over K we define the syntomic cohomology Asyn(r) as the η-étale sheafifi-

cation of the above complexes on M ss,†
K ; and we define the syntomic cohomology of X as

RΓsyn(X,Qp(r)) := RΓét(X,Asyn(r)).

We have the distinguished triangle

(5.23) RΓsyn(X,Qp(r))→ [RΓHK(X)]N=0,ϕ=pr ιHK−−→RΓdR(X)/F r

Proposition 5.24. (Local-global compatibility) Let r ≥ 0. Let X be a semistable weak formal scheme
over OK . Then the natural map

RΓsyn(X ,Qp(r))→ RΓsyn(XK ,Qp(r))

is a strict quasi-isomorphism.

Proof. Using the presentations of syntomic cohomology from (5.22) and (5.23) we reduce to proving that
the natural map RΓHK(X0) → RΓHK(XK) is a strict quasi-isomorphism. But this we know to be true
by Proposition 5.5. �
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5.4.1. Examples. We will discuss a couple of examples.
(i) The closed ball. Let L = K,C. Let XL := BdL(ρ) be the overconvergent closed ball over L of

dimension d ≥ 0 and radius ρ ∈
√
|L×|. Since H0

dR(XL) ' L and Hi
dR(XL) = 0, i > 0, and we

have the Hyodo-Kato isomorphism Hi
HK(XC)⊗FnrC ' Hi

dR(XC) and the Galois descent Hi
HK(XK)

∼→
Hi

HK(XC)GK , we get

Hi
HK(BdL(ρ)) '

{
FL if i = 0,

0 if i ≥ 1,

where FC = F nr and FK = F .
From the exact sequence (5.10), we get

H0([RΓHK(XK)]N=0,ϕ=1)
∼→ H0

HK(XK)N=0,ϕ=1,

H0
HK(XK)N=0,ϕ=1 ∼→ H1([RΓHK(XK)]N=0,ϕ=p).

Hence, by the above,

Hi([RΓHK(BdK(ρ))]N=0,ϕ=pi)) '

{
Qp if i = 0, 1,

0 if i ≥ 2.

Let r ≥ 0. By the triviality, in nonzero degrees, of the cohomology of coherent sheaves on BdK(ρ), we
have

RΓdR(XK)/F r ' O(XK)→ Ω(XK)→ · · · → Ωr−1(XK).

HenceHi(RΓdR(XK)/F r) = 0, for i ≥ r, andHr−1(RΓdR(XK)/F r)
∼← Ωr−1(XK)/ im dr−2 ' Ωr(XK)d=0.

From the definition of syntomic cohomology and the above computations, we get the long exact sequence

Hr−1([RΓHK(XK)]N=0,ϕ=pr )→ Ωr−1(XK)/ im dr−2 → Hr
syn(XK ,Qp(r))→ Hr([RΓHK(XK)]N=0,ϕ=pr )→ 0

Hence

Hr
syn(BdK(ρ),Qp(r)) '

{
Qp if r = 0,

Ωr−1(BdK(ρ))/ im dr−2 if r ≥ 2,

and, for r = 1, we get an extension

0→ O(BdK(ρ))→ H1
syn((BdK(ρ),Qp(1))→ Qp → 0

(ii) The open ball. Let L = K,C. Let Bo,d
L (ρ) be the overconvergent open ball over L of dimension

d ≥ 0 and radius ρ. Cover Bo,d
L (ρ) with an increasing union of overconvergent closed balls {Un}n∈N. By

the above example, we have Hi
HK(Bo,d

L (ρ)) ' lim←−n
Hi

HK(Un). Hence

Hi
HK(Bo,d

L (ρ)) '

{
FL if i = 0,

0 if i > 0.

The rest of the computations is exactly the same as for the closed ball in the first example (note that

Bo,d
K (ρ) is Stein) yielding the same final formulas for Hr

syn((Bo,d
K (ρ),Qp(r)) (with Bo,d

K (ρ) in the place of

BdK(ρ)).

6. Comparison of overconvergent and rigid analytic arithmetic syntomic cohomology

We define a map from syntomic cohomology of a smooth dagger variety to syntomic cohomology of its
completion. We show that it is a strict quasi-isomorphism when the variety is partially proper.
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6.1. Construction of the comparison morphism. Let X be a smooth dagger space over K. We will
now construct a functorial map

ι : RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r))

from the syntomic cohomology of X to the syntomic cohomology of its completion X̂. This will be done
by first constructing a map ι1 to the Bloch-Kato syntomic cohomology from Section 4.4:

ι1 : RΓsyn(X,Qp(r))→ RΓBK
syn(X̂,Qp(r))

and then setting ι := ι2ι1, for the map ι2 : RΓBK
syn(X̂,Qp(r)) ' RΓsyn(X̂,Qp(r)) that was defined in

Proposition 4.32.
(i) Local definition. Let X be a semistable weak formal scheme of finite type over OK . First, we

define a functorial morphism

ι1 : RΓsyn(X ,Qp(r)) = [[RΓrig(X0/O
0
F )]ϕ=pr ιHK−−−−→RΓdR(XK)/F r](6.1)

→ [[RΓcr(X0/O
0
F )F ]N=0,ϕ=pr ι′HK−−→RΓdR(X̂K)/F r].

We use for that the following diagram (we note that that all the terms in the first two columns carry a
monodromy operator and that all the maps between these terms are compatible with the monodromy
action)

(6.2) [RΓrig(X0/O0
F )]ϕ=pr

((

ιHK

))

ιHK

))
[RΓrig(X 0/r

†
F )]ϕ=pr

p0 o

OO

f1

��

pp

∼
// RΓrig(X0/O

×
F )

��

// RΓrig(X0/O
×
K)

��

RΓdR(XK)

��

∼
oo

[RΓrig(X0/r
†
F )]ϕ=pr

p0

66

pp

55

��

RΓconv(X0/O
×
F ) //

o
��

RΓconv(X0/O
×
K) RΓdR(X̂K)∼
oo

[RΓcr(X0/r
PD
F )Qp

]ϕ=pr

p0 o
��

pp // RΓcr(X0/O
×
F )F

[RΓcr(X0/O0
F )F ]ϕ=pr

ι′HK

88

The maps p0, pp are defined by sending T to 0, p, respectively. The top triangle defines the overconvergent
Hyodo-Kato morphism ιHK as explained in Remark 5.3, where it is also shown that the maps p0, pp from

X 0 commute with the ones from X0. The strict quasi-isomorphism between crystalline and convergent
cohomology holds because X0 is log-smooth over k0. The morphism between de Rham cohomologies is
compatible with Hodge filtrations.

(ii) Globalization. We define the functorial map ι1 : RΓsyn(X,Qp(r)) → RΓBK
syn(X̂,Qp(r)) by lifting

the map (6.1) via η-étale descent.

6.2. A comparison result. We are now ready to prove our main comparison theorem:

Theorem 6.3. Let X be a partially proper dagger space over K. The map

ι : RΓsyn(X,Qp(r))→ RΓsyn(X̂,Qp(r))

is a strict quasi-isomorphism.

Proof. By the construction of the maps ι1, ι2, it suffices to show that the following canonical maps

(6.4) RΓdR(X)→ RΓdR(X̂), [RΓHK(X)]ϕ=pr → [RΓHK(X̂)]ϕ=pr
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are (filtered) strict quasi-isomorphisms. The first map is an isomorphism induced by the canonical
identification of coherent cohomology of a partially proper dagger variety and its rigid analytic avatar
[20, Th. 2.26]. For the second map, we will show that already the canonical map

(6.5) RΓHK(X)→ RΓHK(X̂)

is a strict quasi-isomorphism. Our strategy is to pass to the geometric situation, where we can use the
Hyodo-Kato isomorphisms to reduce to the de Rham cohomology. The main difficulty in this approach
lies in showing the compatibility of the overconvergent and rigid analytic Hyodo-Kato isomorphisms.

(i) Passage to de Rham cohomology.
We start with the passage to the geometric cohomologies. Since we have compatible strict quasi-

isomorphisms (see Proposition 4.26 and Proposition 5.13)

RΓHK(X)
∼→ RΓHK(XC)GK , RΓHK(X̂)

∼→ RΓHK(X̂C)GK ,

to show that the map (6.5) is a strict quasi-isomorphism, it suffices to show that so is the canonical map

(6.6) RΓHK(XC)→ RΓHK(X̂C).

Remark 6.7. Now, if we were to argue in analogy with the algebraic situation, we would use the following
approach:

(1) we would prove the commutativity of the diagram:

RΓHK(XC)⊗̂RFnrC //

ιHKo
��

RΓHK(X̂C)⊗̂RFnrC

ιHKo
��

RΓdR(XC)
∼ // RΓdR(X̂C).

This is not an easy task since the constructions of the rigid and the crystalline Hyodo-Kato maps are
very different.

(2) The vertical arrows are the Hyodo-Kato quasi-isomorphisms (4.20) and (5.17) and the bottom
arrow is a strict quasi-isomorphism because XC is partially proper. Hence the top arrow is a strict
quasi-isomorphism. The problem is that we do not know how to show that this implies the same for the
map (6.6). So, below, we use instead the K-Hyodo-Kato quasi-isomorphisms.

Consider the diagram

(6.8) RΓHK(XC) //

can
��

RΓHK(X̂C)

can
��

RΓHK(XC)⊗̂FnrK
β //

ιHKo
��

α

EE

RΓHK(X̂C)⊗̂FnrK

ιHKo
��

α̂

EE

RΓrig,K(XC)
β′

∼
// RΓconv,K(X̂C)

RΓdR(X)⊗̂KK
∼ //

o
OO

RΓdR(X̂)⊗̂KK.

o
OO

The maps α, α̂ are the normalized trace maps, natural left inverses of the canonical vertical maps. The
top squares, the dotted and the non-dotted one, commute. The bottom square clearly commutes. Its
vertical maps are strict quasi-isomorrphisms by Proposition 4.23 and Proposition 5.20. The bottom map
is a strict quasi-isomorphism because X is partially proper. It follows that the map β′ is a strict quasi-

isomorphism. We will show below that the middle square commutes on the level of (H̃-)cohomology. This
will imply that the map β is a cohomological isomorphism. This in turn will imply immediately that
the map (6.6) is injective on cohomology level; we get its cohomological surjectivity by using the maps α, α̂.
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(ii) Comparison of Hyodo-Kato quasi-isomorphisms.
Hence, it remains to show that the middle square in the above diagram commutes on cohomology

level, or that the following diagram commutes

(6.9) H̃i(RΓHK(XC)⊗̂FnrK) //

ιHKo
��

H̃i(RΓHK(X̂C)⊗̂FnrK)

ιHKo
��

H̃i
rig,K

(XC)
∼ // H̃i

conv,K
(X̂C).

We claim that we can assume that X is quasi-compact and argue just on the level of classical cohomology.
Indeed, write X as an increasing union of quasi-compact open sets {Un}, n ≥ 0. Then we have

RΓHK(XC)⊗̂FnrK ' holimn(RΓHK(Un,C)⊗FnrK).

This yields the exact sequence

0→ H1 holimn(H̃i−1
HK (Un,C)⊗FnrK)→ H̃i(RΓHK(XC)⊗̂FnrK)→ H0 holimn(H̃i

HK(Un,C)⊗FnrK)→ 0

By Proposition 5.12, the cohomology H̃i
HK(Un,C) is classical and finite rank over F nr. This implies that

the cohomology H̃i(RΓHK(XC)⊗̂FnrK) is classical as well and

Hi(RΓHK(XC)⊗̂FnrK)
∼→ H0 holimn(Hi

HK(Un,C)⊗FnrK).

Similarly, we can show that the cohomology H̃i
conv,K

(X̂C) is classical and we have

Hi
conv,K

(X̂C)
∼→ H0 holimnH

i
conv,K

(Ûn,C).

Indeed, arguing as above we get the exact sequence

(6.10) 0→ H1 holimn H̃
i−1

conv,K
(Ûn,C)→ H̃i

conv,K
(X̂C)→ H0 holimn H̃

i
conv,K

(Ûn,C)→ 0

We note that the prosystems {H̃i
conv,K

(Ûn,C)}n∈N and {H̃i
rig,K

(Un,C)}n∈N are equivalent. This follows

from the commutative diagram of prosystems

{H̃i
conv,K

(Ûn,C)}n∈N
∼ // {H̃i

conv,K
(Uo

n,C)}n∈N

{H̃i
rig,K

(Un,C)}n∈N

OO

∼ // {H̃i
rig,K

(Uo,†
n,C)}n∈N

o
OO

Here Uo,† denotes the rigid analytic space Uo, the interior of U , equipped with its canonical overconvergent
structure. The horizontal equivalences are clear. The right vertical map is an isomorphism degree by
degree because Uo,† is partially proper. This implies that the left vertical map is a an equivalence, as
wanted.

Now, the cohomology H̃i
rig,K

(Un,C) is classical and finite rank over K (it is strictly quasi-isomorphic

to Hi
dR(Un)⊗KK by Proposition 5.20). Hence the term H1 holimn in the exact sequence (6.10) vanishes

and we get our claim.
So, from now on, X is quasi-compact and we will show that the diagram (6.9) commutes on the level

of classical cohomology. We have

Hi(RΓHK(XC)⊗̂FnrK) ' Hi
HK(XC)⊗FnrK, Hi(RΓHK(X̂C)⊗̂FnrK) ' Hi

HK(X̂C)⊗FnrK.

Hence, we are reduced to showing that, for a quasi-compact X ∈ SmK , the following diagram commutes

(6.11) Hi
HK(XC) //

ιHK

��

Hi
HK(X̂C)

ιHK

��
Hi

rig,K
(XC) // Hi

conv,K
(X̂C).
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Assume first that X has an admissible semistable weak formal model X over OL, [L : K] < ∞, and
consider the diagram

(6.12) RΓrig(X0/O0
FL

)

��

ιHK

))
RΓrig(X 0/r

†
L)

p0 o

OO

f1

��

pp // RΓrig(X0/O
×
FL

)

��
RΓrig(X0/r

†
L)

p0

88

pp
66

��

RΓconv(X0/O
×
FL

)

o
��

RΓcr(X0/O0
FL

)Qp

ιHK

33

s

$$
RΓcr(X0/r

PD
L )Qpp0

oo pp // RΓcr(X0/O
×
FL

)Qp

If we remove the section s (and hence also the bottom map ιHK) the above diagram commutes. For a
general quasi-compact and smooth X, take first a homotopy colimit of the above diagram (over L) and
then glue by η-étale descent. We obtain the following diagram

(6.13) RΓHK(XC)

��

ιHK

((
RΓrig(XC/r

†)

p0 o

OO

f1

��

pp

∼
// RΓrig(XC/O

×
F )

��
RΓrig(XC/r

†)

p0

77

pp
66

��

RΓconv(X̂C/O
×
F )

o
��

RΓHK(X̂C)

ιHK

44

s

!!
RΓPD(X̂C)

p0

oo pp // RΓcr(X̂C/O
×
F )

The notation should be mostly self-explanatory: the cohomology complexes are defined by the homotopy
colimit and the étale descent from the corresponding complexes in the diagram (6.12) following the
procedure used in Section 5.3.1. The groups in the right column are F nr-modules.

If we remove the section s the above diagram commutes. To prove that the diagram (6.11) commutes,
by the diagram (6.2), it suffices to show that so does, on the level of classical cohomology, the large round
triangle31, in the diagram (6.13). For that we note that we have the isomorphism

(6.14) s : Hi
HK(X̂C)⊗̂FnrrPD

K,Qp

∼→ Hi
PD(X̂C).

If X̂ has a quasi-compact semistable formal model X over OL, this arises from the pN -quasi-isomorphism,
N = N(d), (see (4.8))

s : RΓcr(X0/O
0
FL)⊗̂OFL

rPD
L →RΓcr(X0/r

PD
L )

and the fact that RΓcr(X0/O0
FL

)⊗̂OFL
rPD
L is p-adically derived complete and rPD

L,n is free over OFL,n. For a

general quasi-compact and smooth X̂ over K, the above argument goes through yielding the isomorphism
(6.14), as wanted.

Now, to show that the round triangle in the diagram (6.13) commutes, consider the ideal

In :=
{ ∑
i≥pn

ai
bi/ec!T

i, lim
i 7→∞

ai = 0
}
.

31That is, the round triangle with vertices RΓHK(XC), RΓHK(X̂C), and RΓPD(X̂C).
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We have the exact sequence

0→ I0 → rPD
K,Qp

→ F nr → 0.

The F nr-linear and Frobenius equivariant section s : Hi
HK(X̂C)→ Hi

PD(X̂C) of the projection p0 satisfies

s(a) = ϕnϕ̃−n(a) mod Hi
HK(X̂C)⊗̂FnrIn, a ∈ Hi

HK(X̂), n ≥ 0,

where b̃, for b ∈ Hi
HK(X̂C), is a lifting of b via p0. This is because, for any a ∈ Hi

HK(X̂C), we have

s(a) = ϕns(ϕ−n(a)) and s(a) = ϕnϕ̃−n(a) mod Hi
HK(X̂C)⊗̂FnrI0. And we also have ϕn(I0) ⊂ In.

Hence, to show that the large round triangle in the diagram (6.13) commutes, it suffices to show that

the intersection of the submodules Hi
HK(X̂C)⊗̂FnrIn, n ≥ 0, is trivial. But this is clear. �

6.3. Overconvergent syntomic cohomology via presentations of dagger structures. In this
section we introduce a definition of overconvergent syntomic cohomology using presentations of dagger
structures (see [42, Appendix], Section 3.2.1). We show that so defined syntomic cohomology, a priori
different from the one defined in Section 5.4, is strictly quasi-isomorphic to it.

(i) Local definition. Let X be a dagger affinoid over L = K,C. Let pres(X) = {Xh}. Define

RΓ†syn(X,Qp(r)) := hocolimh RΓsyn(Xh,Qp(r)), r ∈ N.

Let L = K. We have a natural map

(6.15) ι†syn : RΓ†syn(X,Qp(r))→ RΓsyn(X,Qp(r))

defined as the composition

RΓ†syn(X,Qp(r)) = hocolimh RΓsyn(Xh,Qp(r))
∼→ hocolimh RΓsyn(X0

h,Qp(r))(6.16)
∼← hocolimh RΓsyn(X0,†

h ,Qp(r))→ RΓsyn(X,Qp(r)).

The third quasi-isomorphism holds by Theorem 6.3 because X0
h is partially proper.

(ii) Globalization. For a general smooth dagger variety X over L, using the natural equivalence of
analytic topoi

Sh(SmAff†L,ét)
∼→ Sh(Sm†L,ét),

we define the sheaf A †syn(r), r ∈ N, on Xét as the sheaf associated to the presheaf defined by: U 7→
RΓ†syn(U,Qp(r)), U ∈ SmAff†L, U → X an étale map. We define32

RΓ†syn(X,Qp(r)) := RΓét(X,A
†

syn(r)), r ∈ N.

Globalizing the map ι†syn from (6.15) we obtain a natural map

ι†syn : RΓ†syn(X,Qp(r))→ RΓsyn(X,Qp(r)).

(iii) A comparison quasi-isomorphism.

Proposition 6.17. The above map ι†syn is a strict quasi-isomorphism.

Proof. By étale descent, we may assume that X is a smooth dagger affinoid. Looking at the composition
(6.16) defining the map ι†syn we see that it suffices to show that the natural map

hocolimh RΓsyn(Xo,†
h ,Qp(r))→ RΓsyn(X,Qp(r))

is a strict quasi-isomorphism. Or, from the definitions of both sides, that we have strict quasi-isomorphisms

RΓHK(X)
∼← hocolimh RΓHK(Xo,†

h ), RΓdR(X)
∼← hocolimh RΓdR(Xo,†

h ).

This is clear in the case of the second map since this map factors as

(6.18) hocolimh RΓdR(Xo,†
h )

∼→ hocolimh RΓdR(Xh+1)
∼→ RΓdR(X).

32We will show below (see Remark 6.19) that this definition of RΓ†syn(X,Qp(r)), for a smooth dagger affinoid X, gives

an object naturally strictly quasi-isomorphic to the one defined above.
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For the first map consider the commutative diagram

RΓHK(X)

o
��

hocolimh RΓHK(Xo,†
h )oo

o
��

RΓHK(XC)GK hocolimh RΓHK(Xo,†
h,C)GKoo ∼ // (hocolimh RΓHK(Xo,†

h,C))GK .

Here the vertical maps are strict quasi-isomorphisms by Proposition 5.13. The horizontal map is a strict

quasi-isomorphism because the prosystems {RΓHK(Xo,†
h,C)} and {RΓHK(Xh,C)} are equivalent and the

action of GK on the terms of the last one is smooth. It suffices thus to show that the natural map

RΓHK(XC)← hocolimh RΓHK(Xo,†
h,C)

is a strict quasi-isomorphism. For that consider the following diagram

RΓHK(XC) //

��

hocolimh RΓHK(Xo,†
h,C)

��
RΓHK(XC)⊗̂FnrK

oιHK

��

α

EE

hocolimh RΓHK(Xo,†
h,C)⊗̂FnrK

f1oo

oιHK

��

hocolimh αh

GG

RΓrig,K(XC) hocolimh RΓrig,K(Xo,†
h,C)

f2oo

RΓdR(X)⊗̂KK

o β
OO

hocolimh RΓdR(Xo,†
h )⊗̂KK

f3oo

o hocolimh βh

OO

hocolimh RΓdR(Xh)⊗KK
∼oo

(hocolimh RΓdR(Xh))⊗KK

o γ
OO

∼

mm

The maps α, αh are left inverses of the canonical vertical maps (used already in the diagram (6.8)). The
Hyodo-Kato morphisms are the ones from (5.17); they are strict quasi-isomorphisms. The maps β, βh are
those from Proposition 5.20; they are strict quasi-isomorphisms as well. The diagram clearly commutes.
The strict quasi-isomorphism γ uses the fact that Xh is quasi-compact. It follows that the map f3 is
a quasi-isomorphism and then that so is the map f1 and, finally, that so is the top horizontal map, as
wanted. �

Remark 6.19. The above proof shows that, for a smooth dagger affinoid X over K with a dagger presen-
tation {Xh}, the natural map

hocolimh RΓsyn(Xh,Qp(r))→ RΓét(X,A
†

syn(r))

is a strict quasi-isomorphism. Hence the two definitions of RΓ†syn(X,Qp(r)) that we gave above coincide.

7. Arithmetic p-adic pro-étale cohomology

We pass now to the computation of arithmetic p-adic pro-étale cohomology of smooth dagger and rigid
analytic varieties.

7.1. Syntomic period isomorphisms. First, we will use the comparison theorem between syntomic
complexes and p-adic nearby cycles from [10] to define period maps for smooth rigid analytic and dagger
varieties.

Let X be a semistable formal model over OK . Recall that Fontaine-Messing [19] and Kato [26] have
constructed period morphisms (i : X0 ↪→X , j : XK ↪→X )

αFM
r,n : Sn(r)X → i∗Rj∗Z/p

n(r)′XK
, r ≥ 0,
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from syntomic cohomology to p-adic nearby cycles taken as complexes of sheaves on the étale site of X0.
Here we set Zp(r)

′ := 1
pa(r) Zp(r), for r = (p− 1)a(r) + b(r), 0 ≤ b(r) ≤ p− 1. The syntomic sheaf Sn(r)

is associated to the presheaf U 7→ RΓsyn(U ,Z/pn(r)), for formally étale U →X .
Recall the following comparison result.

Theorem 7.1. (Colmez-Nizio l, [10, Th. 1.1]) For 0 ≤ i ≤ r, consider the period map

(7.2) αFM
r,n : H i(Sn(r)X )→ i∗Rij∗Z/p

n(r)′XK
.

(i) If K has enough roots of unity33 then the kernel and cokernel of this map are annihilated by pNr+cp

for a universal constant N (not depending on p, X , K, n or r) and a constant cp depending only on p
(and d if p = 2).

(ii) In general, the kernel and cokernel of this map are annihilated by pN for an integer N = N(e, p, r),
which depends on e, r, but not on X or n.

7.1.1. Rigid analytic varieties. The above comparison quasi-isomorphism globalizes easily to smooth rigid
analytic varieties:

Corollary 7.3. For X ∈ SmL, L = K,C, the period maps

αr : RΓsyn(X,Zp(r))Qp
→ RΓét(X,Qp(r)), αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

are strict quasi-isomorphisms after truncation τ≤r.

Proof. Since both the domain and the target of the period maps satisfy η-étale descent we may assume
that X has a semistable model over OK . But in that case this follows from Theorem 7.1 as in analogous
claims in the geometric setting in [9, Prop. 6.1, Cor. 3.46]. �

7.1.2. Dagger varieties. The comparison quasi-isomorphism (7.2) can also be extended to smooth dagger

varieties. Let X ∈ Sm†K , r ≥ 0. Define the period map

(7.4) αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

as the composition

RΓsyn(X,Qp(r))
∼← RΓ†syn(X,Qp(r))

α†r−−→RΓproét(X,Qp(r)),

where the first map is the map ι†syn from Proposition 6.17 and the second map is defined by globalizing
the following map defined for X a dagger affinoid with presentation {Xh}:
RΓ†syn(X,Qp(r)) = hocolimh RΓsyn(Xh,Qp(r))

αr−−→hocolimh RΓproét(Xh,Qp(r)) ' RΓproét(X,Qp(r)).

Corollary 7.3 implies immediately the following result:

Corollary 7.5. For X ∈ Sm†K , the period map

αr : RΓsyn(X,Qp(r))→ RΓproét(X,Qp(r))

is a strict quasi-isomorphism after truncation τ≤r.

Remark 7.6. Let X be a smooth partially proper dagger variety over K. We claim that the following
diagram commutes:

RΓsyn(X,Qp(r))
αr //

oι
��

RΓproét(X,Qp(r))

oιproét
��

RΓsyn(X̂,Qp(r))
α̂r // RΓproét(X̂,Qp(r))

The map ι is the strict quasi-isomorphism from Theorem 6.3; the map ιproét is the strict quasi-isomorphism
from Proposition 3.17. The period maps α̂r, αr are the ones defined above (we put hat above the rigid
analytic period map to distinguish it from the dagger period map).

It suffices to show that this diagram naturally commutes étale locally. So we may assume that X is a
smooth dagger affinoid. Then checking commutativity is straightforward from the definitions (if tedious).

33See [10, Sec. 2.2.1] for what it means for a field to contain enough roots of unity. For any K, the field K(ζpn ), for

n ≥ c(K) + 3, where c(K) is the conductor of K, contains enough roots of unity.
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7.2. Applications and Examples. We are now ready to list some applications of our computations
and to discuss some examples of computations of p-adic pro-étale cohomology.

7.2.1. Rigid analytic varieties. We start with the rigid analytic case. Let X ∈ SmK , r ≥ 0. The
distinguished triangle (4.2), Lemma 4.5, and the period map αr above yield a natural map

∂r : (RΓdR(X)/F r)[−1]→ RΓproét(X,Qp(r)).

Theorem 7.7. Let X ∈ SmK , r ≥ 1.

(1) For 1 ≤ i ≤ r − 1, the map

∂r : H̃i−1
dR (X)→ H̃i

proét(X,Qp(r))

is an isomorphism. In particular, the cohomology H̃i
proét(X,Qp(r)) is not, in general, classical.

(2) We have the short exact sequence
(7.8)

0→ H̃r−1(RΓdR(X)/F r)
∂r−−→H̃r

proét(X,Qp(r))→ H̃r([RΓHK(X)]N=0,ϕ=pr )→ H̃r(RΓdR(X)/F r)

Proof. Corollary 7.3 allows us to pass (by the period map) to syntomic cohomology for which, by Corollary

4.7, we have an analogous claim with H̃r
ét(X,A

ϕ=pr

cr,Qp
) in place of H̃r([RΓHK(X)]N=0,ϕ=pr ). That the latter

two are isomorphic follows from diagram (4.34). �

7.2.2. Dagger varieties. Now we pass to the overconvergent case. Let X ∈ Sm†K , r ≥ 0. The distinguished
triangle (5.23) and the period map αr from (7.4) yield a natural map

∂r : (RΓdR(X)/F r)[−1]→ RΓproét(X,Qp(r)).

Theorem 7.9. Let X ∈ Sm†K , r ≥ 1.

(1) For 1 ≤ i ≤ r − 1, the map

∂r : H̃i−1
dR (X)→ H̃i

proét(X,Qp(r))

is an isomorphism. In particular, the cohomology H̃i
proét(X,Qp(r)) is classical.

(2) We have the long exact sequence

0→ H̃r−1(RΓdR(X)/F r)
∂r−−→H̃r

proét(X,Qp(r))→ H̃r([RΓHK(X)]N=0,ϕ=pr )
ιHK−−→H̃r(RΓdR(X)/F r)

Proof. For i ≤ r, from the definition of syntomic cohomology and Corollary 7.5 we get the long exact
sequence

· · · → H̃i−1(RΓdR(X)/F r)→ H̃i
proét(X,Qp(r))→ H̃i([RΓHK(X)]N=0,ϕ=pr )→ H̃i(RΓdR(X)/F r)→ · · ·

For the first claim of the theorem, it suffices to show that, for i ≤ r − 1, H̃i([RΓHK(X)]N=0,ϕ=pr ) = 0

and H̃i−1
dR (X)

∼→ H̃i−1(RΓdR(X)/F r). The second isomorphism is clear and the first one follows from
Proposition 5.9.

For the second claim of the theorem, we note that the injectivity on the left is implied by the fact that

H̃r−1([RΓHK(X)]N=0,ϕ=pr ) = 0 (see Proposition 5.9).
�

7.2.3. Overconvergent balls. Let X be the overconvergent open or closed ball over K of dimension d ≥ 0
and radius ρ ∈

√
|K×|. Using Corollary 7.5 and Example 5.4.1 we get

Hr
proét(X,Qp(r)) '

{
Qp if r = 0,

Ωr−1(X)/ ker dr−1 ' Ωr(X)d=0 if r ≥ 2,

and, for r = 1, we get a strict exact sequence

0→ O(X)→ H1
proét(X,Qp(1))→ Qp → 0.

For comparison, recall that, for the geometric pro-étale cohomology, we have a topological isomor-
phism [11]

Ωr−1(XC)/ ker dr−1
∼→ Hr

proét(XC ,Qp(r)), r ≥ 1.
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7.2.4. Proper smooth rigid analytic varieties. Let X be a proper smooth dagger variety over K (recall
that every smooth proper rigid analytic variety over K has a canonical dagger structure). For r ≥ 1,
Theorem 7.9 and Section 4.1.1 imply that the cohomology Hr

proét(X,Qp(r)) is classical, we have

Hi−1
dR (X) ' Hi

ét(X,Qp(r)), 1 ≤ i ≤ r − 1,

and we have a strict exact sequence (we note that Hr
proét(X,Qp(r)) ' Hr

ét(X,Qp(r)))

0→ Hr−1
dR (X)→ Hr

ét(X,Qp(r))→ E(r)→ 0,

where E(r) is an extension

0→ Hr−1
HK (X)ϕ=pr−1

→ E(r)→ Hr
HK(X)N=0,ϕ=pr ∩ Ωr(X)→ 0

7.2.5. The Drinfeld half-space. Let d ≥ 1 and let HdK be the Drinfeld half-space of dimension d, i.e.,

HdK := PdK \
⋃

H∈H

H,

where H denotes the set of K-rational hyperplanes. We set G := GLd+1(K). For 1 ≤ r ≤ d, denote by
Spr(Qp) the generalized locally constant Steinberg Qp-representation of G equipped with a trivial action
of GK (for a definition see [9, Sect. 5.2.1]).

Corollary 7.10. (1) For 0 ≤ i ≤ r, the cohomology H̃i
proét(HdK ,Qp(r)) is classical.

(2) For i ≤ r − 1, there is a natural G-equivariant topological isomorphism

Hi
proét(HdK ,Qp(r)) ' Spi−1(K)∗.

(3) We have a G-equivariant diagram of strict exact sequences

0

��
Spr−1(Qp)

∗

��
0 // Ωr−1(HdK)/ im dr−2

// Hr
proét(HdK ,Qp(r)) // E(Qp) //

��

0

Spr(Qp)
∗

��
0

Proof. Point (2) follows from Theorem 7.9 and the computations of Schneider-Stuhler [36] of the de Rham

cohomology of the Drinfeld half-space: H̃i
dR(HdK) ' Spi(K)∗.

For point (3), since HdK is Stein, by Section 4.1.1, we have

H̃r−1(RΓdR(HdK)/F r) ' Ωr−1(HdK)/ im dr−2, H̃r(RΓdR(HdK)/F r) ' 0.

On the other hand, from (5.10) we get an exact sequence

(7.11) 0→ H̃r−1
HK (HdK)ϕ=pr−1

→ H̃r([RΓHK(HdK)]N=0,ϕ=pr )→ H̃r
HK(HdK)N=0,ϕ=pr → 0,

where all the cohomologies are classical. But, by [9, Lemma 5.11], we have a G-equivariant isomorphism

H̃i
HK(HdK)ϕ=pi ' Spi(Qp)

∗. Since the monodromy is trivial (see [9, Sect. 5.5]), (7.11) then yields an
exact sequence

0→ Spr−1(Qp)
∗ → H̃r([RΓHK(HdK)]N=0,ϕ=pr ))→ Spr(Qp)

∗ → 0

Plugging the above computations into Theorem 7.9 and setting E(Qp) := Hr([RΓHK(HdK)]N=0,ϕ=pr )) we
get point (2).

Point (1) follows now trivially from points (2) and (3). �
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Remark 7.12. (1) We note that we have the strict exact sequence

0→ Hr−1
dR (HdK)→ Ωr−1(HdK)/ im dr−2

dr−1−−→Ωr(HdK)d=0 → Hr
dR(HdK)→ 0

and that the two de Rham cohomology terms are topologically isomorphic to Spr−1(K)∗ and
Spr(K)∗, respectively.

(2) It would be interesting to understand the computations in this example better. In particular, to
describe the extensions of Steinberg representations that appear.

Remark 7.13. It is interesting to link the computation of the arithmetic cohomology Hi
proét(HdK ,Qp(r))

presented here to the computation of the geometric cohomology Hi
proét(HdC ,Qp(r)) done in [9, Th. 5.15].

The following argument would need to be made more precise but it shows that the two computations,
the arithmetic and the geometric one, are compatible.

We have the Hochschild-Serre spectral sequence

(7.14) Hn(GK , H
i−n
proét(H

d
C ,Qp(r))) =⇒ Hi

proét(HdK ,Qp(r)).

(Only n = 0, 1, 2 can possibly give a nonzero contribution.) Now, the exact sequence from [9, Th. 5.15]
twisted by (j − k), yields an exact sequence of GK ×G-modules

0→ C(j − k)⊗̂K(Ωk−1(HdK)/ ker dk−1)→ Hk
proét(HdC ,Qp(j))→ Spk(Qp)

∗(j − k)→ 0.

Hence the computation of Hn(GK , H
i−n
proét(HC ,Qp(r))) will involve the groups Hn(GK ,Qp(r− i+n)) and

Hn(GK , C(r − i+ n)).
Recall the following results of Tate and Bloch-Kato:

H0(GK ,Qp(j)) '

{
Qp if j = 0,

0 if j ≥ 1,
H1(GK ,Qp(j)) '

{
K ⊕Qp if j = 1,

K if j ≥ 2,
(7.15)

H2(GK ,Qp(j)) = 0, if j ≥ 2,

H0(GK , C(j)) '

{
K if j = 0,

0 if j ≥ 1,
H1(GK , C(j)) '

{
K if j = 0,

0 if j ≥ 1,

H2(GK , C(j)) = 0 if j ≥ 0.

Using them, we see that the nonzero terms of the spectral sequence (7.14) contributing toHi
proét(HdK ,Qp(r)),

i ≤ r, are the following:

0→ Ωi−1(HdK)/ ker di−1 →H0(GK , H
i
proét(HdC ,Qp(r)))→ Spi(Qp)

∗ → 0, if i = r;

H1(GK , H
i−1
proét(HC ,Qp(r))) ' (K ⊕Qp)⊗Qp

Spi−1(Qp)
∗, if i = r;

H1(GK , H
i−1
proét(HC ,Qp(r))) ' K ⊗Qp

Spi−1(Qp)
∗ ' Spi−1(K)∗, if i ≤ r − 1.

Here the top sequence is exact though (7.15) is not enough to ensure the surjectivity of the map
H0(GK , Hi

proét(HdC ,Qp(r)))→ Spi(Qp)
∗. It yields however the exact sequence

H0(GK , H
i
proét(HdC ,Qp(r)))→ Spi(Qp)

∗ ∂−−→Ωi−1(HdK)/ ker di−1

Now the boundary map ∂ is trivial by a representation theory argument: the map ∂ is continuous and
G-equivariant, the G-smooth vectors are dense in Spi(Qp)

∗, but Ωi−1(HdK)/ ker di−1 does not have any
nonzero G-smooth elements since it injects into Ωi(HdK).
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Hence, for 0 ≤ i ≤ r − 1, we get Hi
proét(HdK ,Qp(r)) ' Spi−1(K)∗ as in Corollary 7.10. For i = r, we

get the diagram of exact sequences

0

��
Ωr−1(HdK)/ ker dr−1

��
0 // Spr−1(K)∗ ⊕ Spr−1(Qp)

∗ // Hr
proét(HdK ,Qp(r)) // H0(GK , Hr

proét(HdC ,Qp(r))) //

��

0

Spr(Qp)
∗

��
0

To compare this with Corollary 7.10, note that we have an exact sequence

0→ Hi−1
dR (HdK)→ Ωi−1(HdK)/im di−2 → Ωi−1(HdK)/ ker di−1 → 0

and the Schneider-Stuhler isomorphism

Hi−1
dR (HdK) ∼= Spi−1(K)∗.

Hence Corollary 7.10 and the above computation via Galois descent give us the same Jordan-Hölder
components of Hr

proét(HdK ,Qp(r)) but they are put together in two different ways.
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