
K-THEORY OF LOG-SCHEMES I
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Abstract. We set down some basic facts about the algebraic and topological K-theory of log-schemes.
In particular, we show that the l-adic topological log-étale K-theory of log-regular schemes computes
the l-adic étale K-theory of the largest open sets where the log-structure is trivial.
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1. Introduction

The purpose of this paper is to set down some basic facts about the algebraic and topological K-
theory of log-schemes. Log-schemes come equipped with several natural topologies. The main two are
the Kummer log-étale topology, well suited to study l-adic phenomena, and the Kummer log-flat topology
(together with its derivative – the Kummer log-syntomic topology) reasonably well-suited to study p-adic
phenomena. These topologies are often enhanced by adding log-blow-ups as coverings, a procedure that
yields better behaved topoi.

The investigation of coherent and locally free sheaves in these topologies as well as of the related
descent questions was initiated by Kato in [24]. In particular, Kato was able to compute the Picard
groups of strictly local rings. A foundational study of the algebraic K-theory of the Kummer log-étale
topos (i.e. the Quillen K-theory of locally free sheaves in that topos) was done by Hagihara in [14]. He
has shown that over a separably closed field Kummer log-étale K-theory satisfies devissage, localization
as well as Poincaré duality for log-regular regular schemes. Using these facts and an equivariant K-theory
computation of the Kummer log-étale K ′-theory of log-points (fields equipped with log-structure) he
obtained a structure theorem (see Theorem 4.13 below) for Kummer log-étale K-theory of a certain class
of log-schemes including those coming from a smooth variety with a divisor with strict normal crossings.

This paper builts on the results of Kato and Hagihara. In section 2 we focus on some basic properties of
the topologies we will use. In section 3 we study coherent and locally free sheaves in these topologies. Since
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Kato’s paper remains unfinished and unpublished, for the convenience of the reader (and the author),
this section contains some of Kato’s proofs as well as supplies proofs of the results only announced in
[24]. In section 4 we study algebraic K-theory. We generalize Hagihara’s work to schemes over fields
with Kummer log-étale topology and to arbitrary schemes with Kummer log-flat topology. This is rather
straightforward and is done by studying equivariant K-theory of finite flat group schemes instead of just
finite groups as in Hagihara. The following structure theorem follows. Let X be a regular, log-regular
scheme with the log-structure associated to a divisor D with strict normal crossing. Let {Di|i ∈ I} be the
set of the irreducible (regular) components of D. For an index set J ⊂ I denote by DJ the intersection
of irreducible components indexed by J and by Λ|J| (resp. Λ

′
|J|) the free abelian groups generated by the

set {(a1, . . . , a|J|)|ai ∈ Q/Z \ {0}} (resp. the set {(a1, . . . , a|J|)|ai ∈ (Q/Z)′ \ {0}}).
Theorem 1.1. For any q ≥ 0 we have the canonical isomorphism

Kq(Xkfl) ≃
⊕

J⊂I

Kq(DJ )⊗ Λ|J|

Moreover, if D is equicharacteristic then canonically

Kq(Xkét) ≃
⊕

J⊂I

Kq(DJ )⊗ Λ′
|J|

Section 5 is devoted to topological K-theory. By definition this is K-cohomology of the various sites
considered in this paper. The main theorem (Theorem 5.14 and Corollary 5.17) states that l-adic log-
étale K-theory of a log-regular scheme computes the étale K-theory of the largest open set on which the
log-structure is trivial.

Theorem 1.2. Let X be a log-regular scheme satisfying condition (*) from section 5. Let n be a natural
number invertible on X. Then the open immersion j : U →֒ X, where U = Xtr is the maximal open set
of X on which the log-structure is trivial, induces an isomorphism

j∗ : Kvét
m (X,Z/n)

∼→ K ét
m(U,Z/n), m ≥ 0.

This follows from the fact that we can resolve singularities of log-regular schemes by log-blow-ups and
that the étale sheaves of nearby cycles can be killed by coverings that are étale where the log-structure
is trivial and tamely ramified at infinity.

Acknowledgments. Parts of this paper were written during my visits to Strasbourg University, Cam-
bridge University, and Tokyo University. I would like to thank these institutions for their hospitality and
support.

For a log-scheme X , MX will always denote the log-structure of X . Unless otherwise stated all the
log-structures on schemes are fine and saturated (in short: fs) and come from the étale topology, and all
the operations on monoids are performed in the fine and saturated category.

2. Topologies on log-schemes

In this section we collect some very basic facts about topologies on log-schemes.

2.1. The Kummer log-flat and the Kummer log-syntomic topology.

2.1.1. The log-étale, log-syntomic, and log-flat morphisms. The notion of the log-étale and the log-flat
morphism recalled below is the one of Kato [23, 3.1.2]. The notion of log-syntomic morphism we introduce
is modeled on that. Our main reason for introducing it is the local lifting property it satisfies (see Lemma
2.9).

def Definition 2.1. Let f : Y → X be a morphism of log-schemes. We say that f is log-étale (resp. log-flat,
resp. log-syntomic) if locally on X and Y for the (classical) étale (resp. fppf, resp. syntomic) topology,
there exists a chart (P →MX , Q→MY , P → Q) of f such that the induced morphisms of schemes

• Y → X ×Spec(Z[P ]) Spec(Z[Q]),
• Spec(OY [Q

gp])→ Spec(OY [P
gp])
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are classically étale (resp. flat, resp. syntomic).

Recall the definition of (classical) syntomic morphism.

Definition 2.2. Let f : Y → X be a morphism of schemes. We say that f is syntomic if locally
on X and Y for the classical étale topology f can be written as f : Spec(B) → Spec(A), with B =
A[X1, . . . , Xr]/(f1, . . . , fs), where the sequence (f1, . . . , fs) is regular in A[X1, . . . , Xr] and the algebras
A[X1, . . . , Xr]/(f1, . . . , fi) are flat over A, for all i.

Syntomic morphisms are stable under composition and base change.

Remark 2.3. We should mention that, a priori, in the Definition 2.1 we have used (after Kato [23, 3.1])
the following meaning of property being local on X and Y : there exist coverings (Xi → X)i and (Yij →
Xi×X Y )j , for each i, for the corresponding topology such that each morphism Yij → Xi has the required
property. By Lemma 2.8 below, this is equivalent for log-étale, log-flat, and log-syntomic morphisms, to
the more usual meaning: for every point y ∈ Y and its image x ∈ X , there exist neighbourhoods U and
V of y and x respectively (for the corresponding topology) such that U maps to V and the morphism
U → V has the required property. In particular, in the Definition 2.1 we may use the second meaning of
“locally” and change the second condition to “Spec(OX [Qgp])→ Spec(OX [P gp]) is classically étale (resp.
flat, resp. syntomic).”

Remark 2.4. The notion of log-syntomic morphism presented here is not the same as the one used
by Kato [21, 2.5]. Recall that Kato defines an integral morphism f : Y → Z of fine log-schemes to
be log-syntomic if étale locally Y (over Z) embeds into a log-smooth Z-scheme via an exact classically
regular embedding over Z. In particular, Kato’s log-syntomic morphisms are classically flat while ours
are not necessarily so.

cond Lemma 2.5. Let S be a nonempty scheme and let h : G→ H be a homomorphism of finitely generated
abelian groups. Then the morphism OS [G] → OS [H ] is étale (resp. flat or syntomic) if and only if the
kernel and the cokernel of h are finite groups whose orders are invertible on S (resp. if the kernel of h is
a finite group whose order is invertible on S).

Proof. The étale case follow from [22, 3.4]. The “if” part of the flat case follows from [22, 4.1]. We will
now show that if the induced morphism f : k[G] → k[H ], where k is a field is flat, then the kernel N
of h is torsion of order invertible in k. Take an element g from N . It is easy to see that the kernel of
the multiplication by g − 1 on k[G] is generated, as an ideal, by elements 1 + g + . . . + gn−1, such that
gn = 1. By the flatness of f , the images of these elements in k[H ] generate as an ideal the whole of k[H ].
In particular, the element g has to be of finite order d and the ideal of the multiplication by g − 1 on
k[G] is generated by the element 1 + g + . . .+ gd−1. But f(1 + g + . . .+ gd−1) = d. Hence d is invertible
in k, as wanted. The syntomic case follows from Lemma 2.6 below. �

synflat Lemma 2.6. With the notation as in the above lemma, the morphism OS [G] → OS [H ] is flat if and
only if it is syntomic.

Proof. Since syntomic morphism is flat, we have to show that if the morphism OS [G] → OS [H ] is flat
it is already syntomic. Let N = ker(G → H). Our morphism OS [G] → OS [H ] factors as OS [G] →
OS [G/N ] → OS [H ]. Since the morphism OS [G] → OS [H ] is flat, the group N is torsion of order
invertible on S (see the previous lemma). This yields that the first morphism in our factorization is étale
hence syntomic. This allows us to reduce the question to proving that if the morphism h : G → H is
injective then the induced morphism Z[G]→ Z[H ] is syntomic.

Write H = H1/G1, for H1 = G⊕Zr1⊕ . . .⊕Zrn and a subgroup G1 of H1. Since H1,tor = Gtor and the
map G→ H is injective, the group G1 is finitely generated and torsion-free. Write G1 = Za1⊕ . . .⊕Zak.
We claim that Z[H ] ≃ Z[H1]/(a1 − 1, . . . , ak − 1) and the sequence {a1 − 1, . . . , ak − 1} is regular. Set
H1,l := H1/Za1 ⊕ . . . ⊕ Zal. Note that, since the group Za1 ⊕ . . . ⊕ Zal ⊕ Zal+1 is torsion free, the
element al+1 is not torsion in H1,l. This easily implies (cf. [5, 2.1.6]) that al+1 − 1 is not a zero-divisor
in Z[H1,l]. To finish, it suffices to check that the natural map Z[H1,l]/(al+1 − 1)→ Z[H1,l/Zal+1] is an
isomorphism. But this is clear since we have the inverse induced by x 7→ x, for x ∈ H1,l. �
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proper Lemma 2.7. (1) Log-étale, log-flat, log-syntomic morphisms are stable under compositions and un-
der base changes.

(2) Let f : Y → X be a strict morphism of log-schemes, i.e., a morphism such that f∗MX
≃→ MY .

Then f is log-étale (resp. log-flat, resp. log- syntomic) if and only if the underlying morphism of
schemes is (classically) étale (resp. flat, resp. syntomic).

(3) Let S be a scheme and let P → Q be a morphism of monoids. Then the induced morphism of
log-schemes Spec(OS [Q]) → Spec(OS [P ]) is log-étale (resp. log-flat, resp. log-syntomic) if and
only if the morphism of schemes Spec(OS [Q

gp]) → Spec(OS [P
gp]) is (classically) étale (resp.

flat, resp. syntomic).

Proof. The only nonobvious statement is the one concerning compositions, which follow easily from
Lemma 2.8 below. �

comp1 Lemma 2.8. Let f : Y → X be a morphism of log-schemes and let β : P →MX be a chart. Assume that
f is log-étale (resp. log-flat, resp. log-syntomic). Then, étale (resp. flat, resp. syntomic) locally on X
and on Y in the classical sense, there exists a chart (P →MX , Q→MY , P → Q) including β satisfying
the conditions in Definition 2.1. We can require further P gp → Qgp to be injective.

Proof. For the log-étale and the log-flat topology this is Lemma 3.1.6 from [23]. We will argue in a
similar fashion for the log-syntomic case taking into account that (unlike in [23]) our monoids are always
saturated.

Let (P ′ → MX , Q′ → MY , P
′ → Q′) be a chart satisfying the conditions in Definition 2.1. Fix

y ∈ Y, x = f(y) ∈ X . By replacing P ′ with the inverse image P1 (which is always saturated) of MX,x

under the map
P gp ⊕ (P ′)gp →Mgp

X,x; (a, b) 7→ ab,

and by replacing Q′ with the pushout P1 ← P ′ → Q′, we may assume that β : P → MX factors
as P → P ′ → MX . By (Zariski) localization we may also assume that P ′/(P ′)∗ ≃ MX,x/O∗

X,x and

Q′/(Q′)∗ ≃MY,y/O∗
Y,y.

Assume for the moment that the morphism (P ′)gp → (Q′)gp is injective. Consider the pushout
diagrams with exact rows

0 −−−−→ P gp −−−−→ H −−−−→ W −−−−→ 0
y

y
∥∥∥

0 −−−−→ (P ′)gp −−−−→ (Q′)gp −−−−→ W −−−−→ 0
y

y
∥∥∥

0 −−−−→ G −−−−→ T −−−−→ W −−−−→ 0,

where the group G is the cokernel of the map P gp → (P ′)gp. We want to construct the group H . For
that, it suffices to show that the map T → W has a section. Consider a direct summond Z/nZ of W .
Let t ∈ T be a preimage of a generator of Z/nZ. Then tn = b, b ∈ G. Take b′ ∈ (P ′)∗ in the preimage
of b. Since P ′/(P ′)∗ ≃ MX,x/O∗

X,x and P gp maps onto Mgp
X,x/O∗

X,x such a b′ exists. Define the group

G1 by adjoining the n’th root of b′ to (P ′)∗. By localizing in the classical syntomic topology, we can
now change P ′ and Q′ into the pushouts P ′ ← (P ′)∗ → G1 and Q′ ← (P ′)∗ → G1. Note that we can
do that since the morphism (P ′)∗ → G1 is injective with finite cokernel, hence the induced morphism
Spec(Z[G1]) → Spec(Z[(P ′)∗]) is syntomic (Lemma 2.5) and surjective. Moreover, the above pushouts
taken in the category of monoids are already fine and saturated. Now, b = an for some a ∈ G. Changing
t to t/a gives us an element in the preimage of our generator of Z/nZ whose n’th power is one, hence the
section we wanted.

Let now Q be the inverse image of MY,y under the map H →Mgp
Y,y (it is saturated). Since P ′/(P ′)∗ ≃

MX,x/O∗
X,x and Q′/(Q′)∗ ≃MY,y/O∗

Y,y this gives a local chart at y. We claim that the natural morphism
P → Q gives us the chart we wanted. The map P gp → Qgp is clearly injective. Let Q1 be the pushout
P ′ ← P → Q. There is a natural morphism Q1 → Q′. By Zariski localizing on Y , we may assume that
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Q1/Q
∗
1

∼→ Q′/(Q′)∗. Since the map Qgp
1 → (Q′)gp is an isomorphism, this yields that Q1

∼→ Q′. Hence
the morphism P → Q is indeed the chart we wanted.

Let now (P →MX , Q→MY , P → Q) be a chart satisfying the conditions in Definition 2.1. It remains
to show that we may assume P gp → Qgp to be injective. Indeed, let N be the kernel of P gp → Qgp.
Consider the pushout diagram with exact rows

0 −−−−→ P gp −−−−→ H −−−−→ W −−−−→ 0
y

y
∥∥∥

0 −−−−→ P gp/N −−−−→ Qgp −−−−→ W −−−−→ 0.

It is easy to construct the group H . Let now Q′ be the inverse image of MY,y under the map H →Mgp
Y,y

(it is saturated). Q′ gives a local chart at y. Since N is the kernel of the map (Q′)gp → Qgp and N is a
finite group of order invertible on Y , there exists an open set U ⊂ X ×Spec(Z[P ]) Spec(Z[Q

′]) such that
the order of N is invertible on U . Then the morphism U → X ×Spec(Z[P ]) Spec(Z[Q

′]) is log-étale. On
the other hand this morphism is (perhaps after Zariski localization) strict. Hence it is étale. This shows
that (P → MX , Q′ → MY , P → Q′) is a chart satisfying the conditions in Definition 2.1 such that the
map P gp → (Q′)gp is injective. �

lifting Lemma 2.9. Let Y →֒ X be a exact closed immersion defined by a nilideal. Étale locally log-syntomic
morphisms over Y can be lifted to log-syntomic morphisms over X.

Proof. Immediate from Lemma 2.8 (note that it suffices to localize in the étale topology on Y ) and the
well-known lifting property for classical syntomic morphisms that we recall below. �

Lemma 2.10. Let A be a commutative ring, B → A a closed immersion defined by a nilideal, and
C = A[X1, . . . , Xn]/(G1, . . . , Gr) an A-algebra such that the sequence (G1, . . . , Gr) is regular and each
A[X1, . . . , Xn]/(G1, . . . , Gi), i ≤ r, is flat over A. Let (Ǧ1, . . . , Ǧr) be liftings of (G1, . . . , Gr) to
B[X1, . . . , Xn]. Then the sequence (Ǧ1, . . . , Ǧr) is regular and each B[X1, . . . , Xn]/(Ǧ1, . . . , Ǧi), i ≤ r,
is flat over B.

2.1.2. Kummer topologies. Recall first the definition of Kummer morphisms.

Definition 2.11. (1) A homomorphism of monoids h : P → Q is said to be of Kummer type if it is
injective and, for any a ∈ Q, there exists n ≥ 1 such that an ∈ h(P ).

(2) A morphism f : X → Y of log-schemes is of Kummer type if for any x ∈ X , the induced
homomorphism of monoids (M/O∗)Y,f(x) → (M/O∗)X,x is of Kummer type in the sense of (1).

One checks [27, 2.1.2] that Kummer morphisms are stable under base changes and compositions.

Remark 2.12. Note that if the morphism P → Q is Kummer, then by Lemma 2.6 the associated
morphism Spec(Z[Q])→ Spec(Z[P ]) is both log-flat and log-syntomic.

Definition 2.13. Let X be a log-scheme. A morphism Y → X is called Kummer log-étale (resp. log-
flat, log-syntomic) if it is log-étale (resp. log-flat, log-syntomic) and of Kummer type and the underlying
morphism of schemes is locally of finite presentation. The log-étale (resp. log-flat, log-syntomic) topology
on the category of Kummer log-étale (resp. log-flat, log-syntomic) morphisms over X is defined by taking
as coverings families of morphisms {fi : Ui → T }i such that each fi is log-étale (resp. log-flat, log-
syntomic) and T =

⋃
i fi(Ui) (set theoretically).

This defines a Grothendieck topology by the following result of Nakayama [27, 2.2.2].

Na Lemma 2.14. Let f : Y → X be a morphism of log-schemes that is Kummer and surjective. Then, for
any log-scheme X ′ → X, the morphism Y ×X X ′ → X ′ is surjective. In fact, for any y ∈ Y and x ∈ X ′

having the same image in X, there exists z ∈ Y ×X X ′ mapping to x and to y.

The following proposition describes a very useful cofinal system of coverings for the Kummer log- étale,
log-flat and log-syntomic sites.



6 WIES LAWA NIZIO L

factor Proposition 2.15. Let f : Y → T be a Kummer log-étale (resp. log-flat, log-syntomic) morphism. Let
y ∈ Y, t = f(y), and P →MT be a chart such that P ∗ ≃ {1}. Then there exists a commutative diagram

X
h−−−−→ Tn

g

y
y

Y
f−−−−→ T,

where y is in the image of g, h is classically étale (resp. flat, syntomic), g is Kummer log-étale (resp.
log-flat, log-syntomic), and n is invertible on X (resp. any, any).

Proof. We will argue the case of Kummer log-flat topology. The other cases are similar. By Lemma 2.8
localizing on Y (but keeping y ∈ Y ) for the flat topology, we get a chart (P →MT , Q→MY , P → Q) as
in Definition 2.1 such that P gp → Qgp is injective. Note that localizing on T is not necessary. Arguing
further as in the proof of Proposition A.2 in [28] we may assume that Q is torsion free. Hence P gp ≃ Qgp

as abelian groups. Write n : P → Q→ P 1/n for some n, where P 1/n is a P -monoid such that P → P 1/n

is isomorphic to n : P → P . Set X = Y ×TQ Tn, where Tn = T ⊗Z[P ] Z[P
1/n], TQ = T ⊗Z[P ] Z[Q]. By

definition the map h : X → Tn is classically flat and, since Qgp →֒ P 1/n,gp, the induced map g : X → Y
is surjective and Kummer log-flat. �

factor1 Corollary 2.16. Let f : Y → T be a Kummer log-flat (resp. log-syntomic) morphism. Let P →MT be
a chart such that P ∗ ≃ {1}. Then there exists a Kummer log-flat (resp. log-syntomic) covering V → Y
such that for some n the map V ×T Tn → Tn is classically flat (resp.syntomic).

Proof. We will treat the flat case. The syntomic case is similar. By Proposition 2.15, there exists n such
that for a flat covering V → Y the induced map V → T factors as V → Tn → T , where the map V → Tn

is classically flat. We have the following cartesian diagram

Vn = V ×Tn Tn ×T Tn −−−−→ Tn ×T Tn
p2−−−−→ Tny p1

y
y

V −−−−→ Tn −−−−→ T,

Since p1, p2 are classicaly flat, so is the map Vn → Tn, as wanted. �

Similarly one proves the following

factor2 Corollary 2.17. Let f : Y → T be a Kummer log-étale covering. Let P → MT be a chart such that
P ∗ ≃ {1}. Then, Zariski locally on T , there exists a Kummer log-étale covering V → T refining f such
that, for some n invertible on T , the map V ×T Tn → Tn is classically étale.

For a log-scheme X , we will denote by Xkét (resp. Xkfl, Xksyn) the site defined above. In what follows,
I will denote sites and the associated topoi in the same way. I hope that this does not lead to a confusion.

We will need to know that certain presheaves are sheaves for the Kummer topologies.

sheaf Proposition 2.18. Let X be a log-scheme. Then the presheaf (Y → X) 7→ Γ(Y,OY ) is a sheaf on all
Kummer sites.

Proof. It is clearly enough to show this for the Kummer log-flat site. In that case it follows from a
Kummer descent argument (see Lemma 3.28 below). �

More generally

sheaf1 Proposition 2.19. Let X be a log-scheme. Let F be a quasi-coherent sheaf on XZar. Then the presheaf

(f : T → X) 7→ Γ(T, f∗F)
is a sheaf on all Kummer sites.
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Proof. It is clearly enough to show this for the Kummer log-flat site. In that case it follows from the proof
of the Kummer descent argument below via exhibiting an explicite contracting homotopy (see Lemma
3.28). �

And in a different direction, we have the following theorem. The proof presented here is that of Kato
[24, 3.1].

Theorem 2.20. Let X be a log-scheme, and let Y be a log-scheme over X. Then the functor

MorX( , Y ) : T 7→ MorX(T, Y )

on (fs/X) is a sheaf for all the Kummer topologies.

Proof. We claim that it suffices to show that the functors

w1w1 (2.1) T 7→ Γ(T,OT ), T 7→ Γ(T,MT ).

are sheaves for the Kummer log-flat topology. To see that assume that X = Spec(Z) with the trivial
log-structure, Y is an affine scheme with a chart P → Γ(Y,MY ). Let F,G,H be the following functors
from (fs)/ Spec(Z) to (Sets)

F (T ) = {ring homomorphisms Γ(Y,OY )→ Γ(T,OT )},
G(T ) = {monoid homomorphisms P → Γ(T,MT )},
H(T ) = {monoid homomorphisms P → Γ(T,OT )}.

The functor MorX( , Y ) : T 7→ MorX(T, Y ) is the fiber product F → H ← G, where the first arrow is
induced by P → Γ(Y,OY ) and the second one by Γ(T,MT ) → Γ(T,OT ). It follows that it suffices to
show that the functors F,G,H are sheaves.

Take now a presentation

Γ(Y,OY ) = Z[Ti; i ∈ I]/(fj; j ∈ J),

Nr
⇒ Ns → P.

We get that F (T ) is the kernel of Γ(T,OT )
I → Γ(T,OT )

J and G(T ) and H(T ) are the equalizers of
Γ(T,MT )

s ⇒ Γ(T,MT )
t and Γ(T,OT )

s ⇒ Γ(T,OT )
t, respectively. Thus it suffices to show that the

functors in (2.1) are sheaves.
For the functor T 7→ Γ(T,OT ) this follows from Lemma 3.28. For the functor T 7→ Γ(T,MT ) we first

show that it is a sheaf for the classical flat topology. If T ′ → T is a fppf covering, then we know that the
sequence

Γ(T,O∗
T )→ Γ(T ′,O∗

T ′) ⇒ Γ(T ′′,O∗
T ′′)

where T ′ = T ′ ×T T ′, is exact. Since MT ′/O∗
T ′ and MT ′′/O∗

T ′′ are pulbacks of MT /O∗
T , the sequence

Γ(T,MT/O∗
T )→ Γ(T ′,MT ′/O∗

T ′) ⇒ Γ(T ′′,MT ′′/O∗
T ′′)

is exact as well. Next we treat Kummer coverings

Lemma 2.21. Take T = Spec(A) for a local ring A equipped with a chart P → Γ(T,MT ), P ≃
(MT /O∗

T )t, where t is the closed point of T . Let Q be a monoid with no torsion. Let P → Q be a
homomorphism of Kummer type. Let T ′ = T ⊗Z[P ] Z[Q] endowed with the log-structure associated to Q.
Let T ′′ = T ′ ×T T ′. Then

Γ(T,MT )→ Γ(T ′,MT ′) ⇒ Γ(T ′′,MT ′′)

is exact.

Proof. Set A′ = Γ(T ′,OT ′) = A ⊗Z[P ] Z[Q], A′′ = Γ(T ′′,OT ′′) = A ⊗Z[P ] Z[Q ⊕ (Qgp/P gp)]. By
Lemma 3.28 the sequence A → A′ ⇒ A′′ is exact. Let I, I ′, I ′′ be the ideals of A,A′, A′′, respectively,
generated by the images of P \ {1}, Q \ {1}, Q \ {1}, respectively. Let V, V ′, V ′′ be the subgroups of
A∗, (A′)∗, (A′′)∗, respectively, consisting of elements that are congruent to 1 modulo I, I ′, I ′′, respectively.
Since A/I ≃ A′/I ′ the sequence V → V ′ ⇒ V ′′ is exact. It remains to show that the sequence

Γ(T,MT )/V → Γ(T ′,MT ′)/V ′
⇒ Γ(T ′′,MT ′′)/V ′′
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is exact. This sequence is isomorphic to

P ⊕ (A/I)∗ → Q ⊕ (A/I)∗ ⇒ Q⊕ {(A/I)[Qgp/P gp]}∗,
where the two arrows in the middle are β1 : (q, u) 7→ (q, u), β2 : (q, u) 7→ (q, qu). The exactness of the
last sequence follows from the exactness of P → Q→ Q ⊕ (Qgp/P gp). �

�

Denote by G×
m the functor T 7→ Γ(T,Mgp

T ) on (fs/X). The above theorem yields

Corollary 2.22. ([24, 3.6]) The functor G×
m is a sheaf for all the Kummer topologies.

Proof. This argument is also due to Kato [24, 3.6]. It suffices to show that G×
m is a sheaf for the Kummer

log-flat topology. Let T ′ → T be a Kummer log-flat covering equipped with a chart P → Γ(T,MT ).
Set T ′′ = T ′ ×T T ′. We have Γ(T,Mgp

T ) = inj lima Γ(T, a
−1MT ), where a ranges over all elements of P .

Since both T ′ and T ′′ are of Kummer type over T , we also have Γ(T ′,Mgp
T ′ ) = inj lima Γ(T

′, a−1MT ′) and
Γ(T ′′,Mgp

T ′′) = inj lima Γ(T
′′, a−1MT ′′). It follows that the exactness of the sequence

Γ(T,Mgp
T )→ Γ(T ′,Mgp

T ′ ) ⇒ Γ(T ′′,Mgp
T ′′)

is reduced to the exactness of the sequence

Γ(T,MT )→ Γ(T ′,MT ′) ⇒ Γ(T ′′,MT ′′)

that was proved above. �
valuative

2.2. The valuative topologies. The valuative topologies refine Kummer topologies with log-blow-up
coverings. That makes them slightly pathological (blow-ups do not change the global sections of sheaves)
but also allows for better functorial properties [15].

Definition 2.23. LetX be a log-scheme. A morphism Y → X is called Zariski (resp. étale, log-étale, log-
flat, log-syntomic) valuative if it is a composition of Zariski open (resp. étale, Kummer log-étale, Kummer
log-flat, Kummer log-syntomic) morphisms and log-blow-ups. The Zariski (resp. étale, log-étale, log-flat,
log-syntomic) valuative topology on this category of morphisms over X is defined by taking as coverings
families of morphisms {fi : Ui → T }i such that each fi is Zariski (resp. étale, log-étale, log-flat, log-
syntomic) valuative and T =

⋃
i fi(Ui) universally (i.e., this equality is valid after any base change by a

map S → T of log-schemes). We will denote the corresponding site by Xval (resp. Xvét, Xvkét, Xvkfl,
Xvksyn).

Note that, since any base change of a log-blow-up is a log-blow-up [30, Cor.4.8], the above definition
makes sense. We have the following commutative diagram of continuous maps of sites

Xvkfl −−−−→ Xvksyn −−−−→ Xvkét −−−−→ Xvét −−−−→ Xvaly
y

y
y

y

Xkfl −−−−→ Xksyn −−−−→ Xkét −−−−→ Xét −−−−→ XZar.

Remark 2.24. Note that the site Xvkét is the same as the full log-étale site X log
ét [15].

Denote by OX∗ (or by OX if there is no risk of confusion) the structure sheaf of the topos on X
induced by one of the above topologies, i.e., the sheaf associated to the presheaf (Y → X) 7→ Γ(Y,OY ).

We will now describe points of the topoi associated to some of the above sites. Recall [27, 2.4] that a
log-geometric point is a scheme Spec(k), for a separably closed field k, equipped with a saturated monoid
M such that the map a 7→ an on P = M/k∗ is bijective for any integer n prime to the characteristic of
k. Log-geometric points form a conservative system for the Kummer log-étale topos [27, 2.5]. We get
enough points of the full log-étale topos by taking (valuative) log-geometric points, i.e., log-geometric
points with M/k∗ valuative (recall that a saturated monoid P is called valuative if for any a ∈ P gp,
either a or a−1 is in P ). There is an alternative way of describing a conservative family of points for
the log-étale topos. For x ∈ X , choose a chart x ∈ U , U → SpecZ[P ]. For each finitely generated and
nonempty ideal J ⊂ P , let UJ be the log-blow-up of U along J . These UJ ’s form an inverse system
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indexed by the set of finitely generated and nonempty ideals J partially ordered by divisibility. Take now
a compatible system of log-geometric points of the U ′

Js lying above x.
A conservative family of points of Xval (resp. Xvét) can be described in a similar fashion by taking

compatible systems of Zariski (resp. geometric) points. Recall [23, 1.3.5] that in the case of Xval and a
chart X → SpecZ[P ] there is a canonical bijection between this set of points and all pairs (V, p) such
that V is a valuative submonoid of P gp containing P and p is a point of XV = X ⊗Z[P ] Z[V ] satisfying
the following condition: If a ∈ V and the image of a in OXV ,p is invertible, then a ∈ V ∗. We have then
the following description of stalks of the structure sheaf: OXval,(V,p) ≃ OXV ,p.

fact Lemma 2.25. Let Y → X be a log-flat valuative morphism. Then there is a log-blow-up Y ′ → Y (hence
necessarily a covering) such that the morphism Y ′ → X can be written as a composition Y ′ → T → X,
where Y ′ → T is Kummer log-flat and T → X is a log-blow-up.

Proof. Since composition of log-blow-ups is a log-blow-up [30, Cor.4.11], it is enough to show this for a
composition Y → Z → X of a log-blow-up Y → Z with a Kummer log-flat morphism Z → X . Recall
that by [20, 3.13] we can find a log-blow-up B → X such that the base change Y ′ := Y ×X B → B
is exact. Here a morphism of log-schemes f : T → S is called exact if, for every t ∈ T , the morphism
f : MS,s/O∗

S,s →MT,t/O∗
T,t

, s = f(t), is exact, i.e., (fgp)−1(MT,t/O∗
T,t

) = MS,s/O∗
S,s. Consider now the

following commutative diagram
Y −−−−→ Z −−−−→ X
x

x
x

Y ′ ∼−−−−→ Z ×X B −−−−→ B.

Since base change of a log-blow-up is a log-blow-up [30, Cor.4.8] the morphisms Y ′ → Y , Z ×X B → Z
and Y ′ → Z ×X B are log-blow-ups. But because the composition Y ′ → B is exact, the morphism
Z ×X B → B is Kummer, and the log-schemes are saturated, the morphism Y ′ → Z ×X B is actually an
isomorphism. Hence Y ′ → B is Kummer log-flat as wanted. �

For a general scheme X , the presheaf (Y → X) 7→ Γ(Y,OY ) on Xval is not always a sheaf (see [12,
2.5]). Let, for example, X = Spec(k[T1, T2]/(T

2
1 , T

2
2 )) with the log-structure N2 → OX ; ei 7→ Ti, and let

Y → X be the log-blow-up of the ideal generated by e1 and e2. Then the map Γ(X,OX)→ Γ(Y,OY ) is
not injective. On the other hand, since Y covers X and Y ×X Y ≃ Y , the map Γ(X,OXval

)→ Γ(Y,OYval
)

is necessarily an isomorphism. We have however the proposition below. But first we need to recall the
notion of a log-regular scheme.

Definition 2.26. A log-schemeX is called log-regular at x ∈ X ifOX,x/IxOX,x is regular and dim(OX,x) =
dim(OX,x/IxOX,x) + rankZ((M

gp
X /O∗

X)x), where Ix = MX,x \O∗
X,x. We say that X is log-regular if X is

log-regular at every point x ∈ X .

Proposition 2.27. Let X be a log-regular log-scheme. Then the presheaf (Y → X) 7→ Γ(Y,OY ) is a
sheaf on all valuative sites.

Proof. It is clearly enough to show this for the log-flat valuative site. Since this presheaf is a sheaf on
the Kummer log-flat site, by Lemma 2.25, it suffices to show that if π : B → T is a log-blow-up of a
log-scheme T → X , log-flat valuative over X , then Γ(T,OT ) → Γ(B,OB) is an isomorphism. We will

show that OT
∼→ Rπ∗OB. Assume for the moment that T is log-regular. Then T behaves like a toric

variety, and this is a well-known result. As the argument in [30] shows the key-point is that (flat) locally
there is a chart P → OT , with a torsion free monoid P , such that

w3w3 (2.2) for every injective morphism P → Q, Tor
Z[P ]
i (OT ,Z[Q]) = 0, i ≥ 1.

We will show that this is also the case for our (general now) T . By induction, assume that a log-scheme
Z → X , log-flat valuative over X satisfies the condition (2.2). We have to show that any log-scheme
T → Z, Kummer log-flat or log-blow-up over Z, also satisfies this condition. We will show the argument
in the case when T → Z is Kummer log-flat. The argument for log-blow-up is similar but simpler.
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Consider a “good” chart
T −−−−→ Spec(Z[Q])
y

y

Y −−−−→ Spec(Z[P ]),

where the monoid P has no torsion, the morphism P → Q is injective, and the morphism T → Y1,
Y1 := Y ×Spec(Z[P ]) Spec(Z[Q]) is flat. A slight modification of an argument of Nakayama in [28, A.2.],
yields that, modulo a flat localization, we may assume Q to be torsion free as well. Since the morphism

T → Y1 is flat, we just need to show that Tor
Z[Q]
i (OY1

,Z[Q1]) = 0, i ≥ 1, for any injection Q→ Q1. But

this follows from the fact that Tor
Z[P ]
i (OY ,Z[P1]) = 0, i ≥ 1, for any injection P → P1. �

3. Coherent and locally free sheaves on log-schemes

Let us first collect some basic facts about coherent and locally free sheaves in the various topologies on
log-schemes discussed above. Let F(X)∗ be the category of OX -modules, where ∗ stands for one of the
considered here topologies. It is an abelian category. Let P(X)∗ denote the category of OX -modules that
are locally a direct factor of a free module of finite type. By [3, I.2.15.1.ii] this is the same as the category
of locally free sheaves of finite type. Let M(X)∗ denote the category of coherent OX -modules, i.e.,
OX -modules that are of finite type and precoherent. Recall that an OX -module F is called precoherent

[3, I.3.1] if for every object Y → X in X∗ and for every map E f→ F|Y∗ from a locally free finite type
OY -module E , the kernel of f is of finite type.

Lemma 3.1. (1) The category M(X)∗ is abelian and closed under extensions.
(2) The category P(X)∗ is additive and when embedded in F(X)∗ with the induced notion of a short

exact sequence, it is exact.

Proof. The first statement follows from [3, I.3.3]. For the second one it suffices to check that P(X)∗ is
closed under extensions in F(X)∗. That follows from the fact that OX∗

-modules of finite type are closed
under extensions [3, I.3.3] and that all epimorphismsM1 →M2,M2 ∈ P(X)∗, locally admit a section
[3, I.1.3.1]. �

The simplest coherent sheaves come from the Zariski topology. Let X∗ denote one of the Kummer
topologies and let εX : X∗ → XZar be the natural projection. We have

Lemma 3.2. The pullback functor ε∗X : QM(XZar)→ F(X∗) (from the category of quasicoherent Zariski
sheaves) is fully faithful.

Proof. Immediate from Proposition 2.19. �

Proposition 3.3. Let X∗ satisfy the following property

w4w4 (3.1) ε∗ is exact for a cofinal system of coverings in X∗

Then the structure sheaf OX∗
is coherent on all Kummer sites.

Proof. We need to check that for any object Y → X in the Kummer site X∗ the kernel of any morphism
f : Om

Y∗
→ OY∗

is of finite type. But f comes from a Zariski morphism f ′ : Om
YZar

→ OYZar
and by

exactness ε∗Y ker f ′ = ker f . Since ker f ′ is of finite type so is ker f . �

Corollary 3.4. If X has property (3.1) then the F is coherent if and only if there exists a covering
Xi → X of X such that F|Xi is isomorphic to ε∗Xi

F ′
i for some coherent sheaf F ′

i on Xi,Zar.

Example 3.5. A log-scheme X such that (MX/O∗
X)x ≃ Nr(x) has property (3.1). In particular, X can

be a strict closed subscheme of a regular, log-regular scheme.

Definition 3.6. The coherent sheaves or locally free sheaves in the (essential) image of the functor ε∗

are called classical.
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equiv Lemma 3.7. Let X be a log-regular log-scheme. Let Y → X be a log-blow-up. Then the restrictions

r : F(X)∗ → F(Y )∗, r :M(X)∗ →M(Y )∗, r : P(X)val
∗ → P(Y )∗

are equivalences of categories for ∗ any of the valuative topologies.

Proof. Let M ∈ F(Y )∗. Consider the functor π : F(X)∗ → F(Y )∗ given by π(M) : (T → X) 7→
Γ(T ×X Y,M). Since Y ×X Y ≃ Y , the compositions rπ and πr are naturally equivalent to the identity.
Hence the restriction induces an equivalence of categories F . The remaining equivalences follow since the
map Y → X is covering. �

vect Lemma 3.8. Let X be a log-regular quasi-compact log-scheme. Let F ∈ P(X)vkfl be a locally free sheaf
of rank n. Then, for some log-blow-up T → X, F|Tvkfl is isomorphic to a pullback of a locally free sheaf
of rank n from Tkfl.

Proof. By Lemma 2.25 we can restrict our attention to trivializing coverings of the form Y → T → X ,
where Y → T is a Kummer log-flat covering and T → X is a log-blow-up. Since the isomorphism classes
of locally free sheaves of rank n are classified by the first Čech cohomology groups of the sheaf GLn, the
statement of the lemma follows now easily from the following commutative diagram

GLn(Y ) −−−−→ GLn(Y ×X Y ) −−−−→ GLn(Y ×X Y ×X Y )
y≀

y≀

y≀

GLn(Y ) −−−−→ GLn(Y ×T Y ) −−−−→ GLn(Y ×T Y ×T Y ),

where the equalities hold already on the level of schemes (since T ×X T ≃ T ). �

inj Corollary 3.9. Let X be a log-regular quasi-compact log-scheme. Then the pullback functor

inj lim
Y
P(Ykfl)→ P(Xvkfl)

is an equivalence of categories, where the limit is over log-blow-ups Y → X.

synfl Lemma 3.10. Let X be a log-regular log-scheme. The the pullback functor P(Xvksyn)→ P(Xvkfl) is an
equivalence of categories.

Proof. Let E be a locally free sheaf on Xvkfl. Denote by E ′ its restriction to Xvksyn. It is a sheaf. We claim

that E ′ is actually a locally free sheaf and that ε∗E ′ ∼→ E , where ε : Xvkfl → Xvksyn is the natural map.
By Corollary 2.16 and Lemma 2.25, E can be trivialized by a covering of the form U → T → Y → X ,
where U → T is a (classical) flat covering, T → X is a Kummer log-syntomic covering, and Y → X is
a log-blow-up. The restriction of E to T , E|T , comes from flat topology hence by faithfully flat descent

from a Zariski locally free sheaf. This allows us to show that (ε∗E ′)|T ∼→ E|T , as wanted. �

Basically the same argument gives the following

syn=fl Lemma 3.11. For any Noetherian log-scheme X, the pullback functors

P(Xksyn)→ P(Xkfl), M(Xksyn)→M(Xkfl)

are equivalences of categories.

3.1. Invertible sheaves. We will compute now the groups H1(X∗,Gm) of isomorphism classes of in-
vertible sheaves for X local and equipped with one of the Kummer topologies. The main ideas here
are due to Kato [24]. Let X be a log-scheme. We have the following Kummer exact sequences on Xkfl,
respectively Xkét,

0→Z/n(1)→ G×
m

n→ G×
m → 0,

0→Z/n(1)→ G×
m

n→ G×
m → 0,

for any nonzero integer n, respectively for any integer n which is invertible on X . Here Z/n(1) is by
definition the kernel of the multiplication by n on the multiplicative group Gm.
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The following theorem was basically proved by Kato in [24, Theorem 4.1]. We supplied the missing
arguments.

kaa Theorem 3.12. Let X be a log-scheme and assume X to be locally Noetherian. Let ε : Xkfl → Xfl be the
canonical map. Let G be a commutative group scheme over the underlying scheme of X satisfying one of
the following two conditions

(1) G is finite flat over the underlying scheme of X;
(2) G is smooth and affine over the underlying scheme of X.

We endow G with the inverse image of the log-structure of X. Then we have a canonical isomorphism

R1ε∗G ≃ inj lim
n6=0

Hom(Z/n(1), G)⊗Z (G×
m/Gm).

Proof. Let X be a log-scheme and let G be a sheaf of abelian groups on Xkfl. Define a canonical
homomorphism of sheaves on Xkfl

µ : inj lim
n6=0

Hom(Z/n(1), G)⊗Z (G×
m/Gm)→ R1ε∗G

as follows. Let h be a local section of Hom(Z/n(1), G). The Kummer exact sequence on Xkfl

0→ Z/n(1)→ G×
m

n→ G×
m → 0

yields the composition

G×
m = ε∗G

×
m

∂→ R1ε∗(Z/n(1))
h→ R1ε∗G,

where ∂ is the connecting morphism. Since multiplication by n on Gm on the site Xfl is surjective, the
map ∂ kills Gm. That gives us the definition of the map µ.

It is easy to see now that the first case of the theorem follows from the second. Indeed, if G is a finite
flat commutative group scheme on X we can take its (see [26, A.5]) smooth resolution, i.e., an exact
sequence of sheaves on Xfl

0→ G→ L→ L′ → 0,

where both L and L′ are smooth and affine group schemes over the underlying scheme of X . We endow
both L and L′ with the inverse image log-structure. By applying the pushforward ε∗ to the above exact
sequence and using the fact that L = ε∗L→ L′ = ε∗L

′ is surjective on Xfl we get an exact sequence

0→ R1ε∗G→ R1ε∗L→ R1ε∗L
′.

Hence bijectivity of the map µ for G is reduced to the bijectivity of this map for L and L′.
It suffices now to prove the following proposition

invertible Proposition 3.13. Assume X = Spec(A), where A is strictly local, and assume that G is represented
by a smooth commutative group scheme over X endowed with the induced log-structure. Assume that
P

∼→ (MX/O∗
X)x, where x is the closed point of X. Then the map

inj lim
n

Hom(Z/n(1), G)⊗Z P gp µ→ H1(Xkfl, G),

is an isomorphism.

Proof. For n ≥ 1, consider Xn = X ⊗Z[P ] Z[P
1/n], with the induced log-structure. Here P 1/n is a P -

monoid such that P → P 1/n is isomorphic to n : P → P . The map Xn → X is a covering in Xkfl.
Denote by Xn,i the fiber product of i + 1 copies of Xn over X . For any sheaf of abelian groups G on

Xkfl, we have a Čech complex

C·
G,n : Γ(Xn,0, G)→ Γ(Xn,1, G)→ Γ(Xn,2, G)→ . . .

Assume that A is Noetherian and complete. Then our proposition is proved in two steps via the
following two lemmas
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39 Lemma 3.14. Assume X = Spec(A), where A is strictly local, and assume that G is represented by a
smooth commutative group scheme over X endowed with the induced log-structure. Then

inj lim
n

H1(C·
G,n)

∼→ H1(Xkfl, G).

Proof. From Čech cohomology we know that the map inj limn H
1(CG,n) → H1(Xkfl, G) is injective and

its cokernel injects into inj limn H
1((Xn)kfl, G). Hence it suffices to show that inj limn H

1((Xn)kfl, G) = 0.
Take an element α of H1((Xn)kfl, G). Let T → Xn be a log-flat Kummer covering such that α dies in
H1(Tkfl, G). By Corollary 2.16, we may assume that for somem, we have a factorization T → Xmn → Xn,
where T → Xmn is a classically flat covering. It follows that the class α on Xmn is trivialised by a
classically flat cover. Thus the class of α in H1((Xmn)kfl, G) comes from H1((Xmn)fl, G). But the group
scheme G being smooth, H1((Xmn)fl, G) ≃ H1((Xmn)ét, G). Finally, since Xmn is a disjoint union of a
finite number of Spec of strictly local rings, we have H1((Xmn)ét, G) = 0, as wanted. �

Before stating the second lemma, we would like to show that the composition of the structure map
P gp → H0(Xkfl,G

×
m) with the map µh : H0(Xkfl,G

×
m) → H1(Xkfl, G) induced by a section h ∈

Hom(Z/n(1), G) factors through H1(C·
G,n). For that, consider the classical commutative group scheme

Hn = Spec(Z[P gp/(P gp)n]) over Spec(Z). It defines the sheaf T 7→ Hom(P gp/(P gp)n,Γ(T,Z/n(1)))
on Xkfl. The group scheme Hn acts on Xn over X , and we have Hn ×Z Xn ≃ Xn ×X Xn. Hence,
Xn,i ≃ (Hn)

×i ×Z Xn. For a sheaf of abelian groups G on Xkfl, let Gn be the sheaf of abelian groups on

Xkfl defined by Gn(T ) = Γ(T ×X Xn, G). The sheaf Hn acts on Gn. The Čech complex C·
G,n can now

be written as

C·
G,n : Mor(1, Gn)

∂0→ Mor(Hn, Gn)
∂1→ Mor(H×2

n , Gn)
∂2→ . . . ,

where Mor refers to morphisms of sheaves of sets, and

∂0(x) = (σ 7→ σx− x), ∂1(x) = ((σ, τ) 7→ σx(τ) − x(στ) + x(σ)), . . .

Note that the above complex is the standard complex that computes the cohomology of the Hn-module
Gn (see [6, II.3]).

Consider now G with the trivial action of Hn. Note that

H1(Hn, G) = Hom(Hn, G) = Hom(Z/n(1), G)⊗Z P gp.

It can be easily checked that the map

Hom(Z/n(1), G)⊗Z P gp ≃ H1(Hn, G)→ H1(Hn, Gn) ≃ H1(C·
G,n)→ H1(Xkfl, G)

maps h⊗ a to the image of a under the above composition. We can now state the second lemma.

l2 Lemma 3.15. Assume X = Spec(A), where A is a Noetherian complete local ring with separably closed
residue field, and assume that G is represented by a smooth commutative group scheme over X endowed
with the induced log-structure. Assume that P

∼→ (MX/O∗
X)x, where x is the closed point of X. Then,

for any n 6= 0,
µ : Hom(Z/n(1), G)⊗Z P gp ∼→ H1(C·

G,n).

Proof. Let’s treat first the case when A is Artinian. Let I (resp. J) be the ideal of A (resp. OXn)
generated by the image of P \ {1} (resp. P 1/n \ {1}). Then I (resp. J) is a nilpotent ideal. Define a
descending filtration Gi on the Hn-module G and Gi

n on the Hn-module Gn by

Gi(T ) = ker(G(T )→ G(T ×X Spec(OX/Ii))); Gi
n(T ) = ker(Gn(T )→ G(T ×X Spec(OXn/J

i))).

Since I and J are nilpotent, we have that Gi(T ) = Gi
n(T ) = 0 for a large enough i. Since the group

scheme G is smooth, for i ≥ 1 we get

gri(G)(T ) ≃ Lie(G)⊗A Γ(T, IiOT /I
i+1OT ), gri(Gn)(T ) ≃ Lie(G)⊗A Γ(T, J iOT /J

i+1OT ).

Also, since OX/I
∼→ OXn/J , we have that gr0(G)(T )

∼→ gr0(Gn)(T ). We will prove now the following
lemma

vanish Lemma 3.16. For any i ≥ 1 and any m ≥ 1, the groups Hm(Hn, gr
i(G)) and Hm(Hn, gr

i(Gn)) are
zero.
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Proof. Let i ≥ 1 and consider the standard complex C·(Hn, gr
i(G)) that computes the cohomology of

the Hn-module gri(G). Then for m ≥ 0, since Hn is flat over Z and G is smooth over X , for a certain
number k we have

Cm(Hn, gr
i(G)) = Mor(H×m

n , gri(G)) = gri(G)(H×m
n ×Z X) = Lie(G)⊗A Γ(H×m

n ×Z X, IiO/Ii+1O)
= Lie(G)⊗A OH×m

n ×ZX ⊗A Ii/Ii+1 = Gk
a(H

×m
n ×Z X)⊗A Ii/Ii+1

= Mor(H×m
n ,Gk

a)⊗A Ii/Ii+1 = Cm(Hn,G
k
a)⊗A Ii/Ii+1.

Similarly, for the standard complex C·(Hn, gr
i(Gn)) that computes the cohomology of the Hn-module

gri(Gn), we get

Cm(Hn, gr
i(Gn)) = Mor(H×m

n , gri(Gn)) = Mor(H×m
n ,Gk

a)⊗A J i/J i+1 = Cm(Hn,G
k
a)⊗A J i/J i+1,

Since Hn is diagonalizable and it acts trivially on Gk
a, we know that Hm(Hn,G

k
a) = 0 for m ≥ 1 [33,

Exp.I, Theorem 5.3.3]. Moreover, Gk
a embeds into Mor(Hn,G

k
a) with an Hn-equivariant section [33,

Exp.I, Prop. 4.7.4]. Hence

Mor(Hn,G
k
a) ≃ Gk

a ⊕Mor(Hn,G
k
a)/G

k
a

as Hn-modules. That gives us that

C·(Hn,Mor(Hn,G
k
a)) ≃ C·(Hn,G

k
a)⊕ C·(Hn,Mor(Hn,G

k
a)/G

k
a).

Now, C·(Hn,Mor(Hn,G
k
a)) has anA-linear contracting homotopy [33, Exp.I, Lemma 5.2.]. It follows that

C·(Hn,Mor(Hn,G
k
a))⊗AIi/Ii+1 also has a contracting homotopy. Hence Hm(C·(Hn,Mor(Hn,G

k
a))⊗A

Ii/Ii+1) = 0, for m ≥ 1, and by the above splitting Hm(C·(Hn,G
k
a)⊗A Ii/Ii+1) = 0, as wanted.

Similarly, Hm(Hn, gr
i(Gn))) = Hm(C·(Hn,G

k
a)⊗A J i/J i+1) = 0, for m ≥ 1. �

Using the above lemma, we get

Hom(Z/n(1), G)⊗ZP
gp = H1(Hn, G)

∼→ H1(Hn, gr
0(G))

∼→ H1(Hn, gr
0(Gn))

∼← H1(Hn, Gn) = H1(C·
G,n),

as wanted.
Let’s turn now to the general case of A complete. We will basically “go to the limit over the argument

for A Artinian”. Denote the maximal ideal of A by mA. Note that G(A)
∼→ proj limi G(A/mi

A) and

G(Xn,k)
∼→ proj limi G(Xn,k ⊗A A/mi

A). Moreover, since G is smooth, we have that the maps

G(A/mi+1
A )→ G(A/mi

A), G(Xn,k ⊗A A/mi+1
A )→ G(Xn,k ⊗A A/mi

A)

are surjective. Hence we get the following exact sequences

0→G(A)→ G(Xn,0)→ D → 0,

0→E → G(Xn,1)→ G(Xn,2),

where E = proj limiEi and D = proj limiDi, and Ei and Di are defined by the following exact sequences

0→G(A/mi
A)→ G(Xn,0 ⊗A A/mi

A)→ Di → 0,

0→Ei → G(Xn,1 ⊗A A/mi
A)→ G(Xn,2 ⊗A A/mi

A).

We have Di ⊂ Ei and Ei/Di is H1 of the complex C·
G,n for Spec(A/mi

A). Also E/D ≃ H1(C·
G,n)

and, since the maps Di+1 → Di are surjective, E/D ≃ proj limi(Ei/Di). On the other hand, let
Hom(Z/n(1), G)i denote the group Hom(Z/n(1), G) over Spec(A/mi

A). Since Hom(Z/n(1), G) is repre-
sentable by an étale scheme [1, Exp.XI, Prop. 3.12], [2, Exp.XV, Prop.16], we have Hom(Z/n(1), G) ≃
Hom(Z/n(1), G)i, i ≥ 1. The proof of our lemma for A Artinian gives that

Hom(Z/n(1), G)i ⊗Z P gp ∼→ Ei/Di.

Hence taking limits

Hom(Z/n(1), G)⊗Z P gp ∼→ E/D ≃ H1(C·
G,n),

as wanted. �
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In the general case we have to argue a little bit more. Let X̂ = Spec(Â), where Â is the completion

of A. Endow X̂ with the inverse image log-structure. Since Hom(Z/n(1), G) is represented by an étale

scheme and the morphism A → Â is a covering for the fpqc topology, Hom(Z/n(1), G) does not change

when we pass to the completion. It suffice thus to show that H1(Xkfl, G) → H1(X̂kfl, G) is injective.

Let α ∈ H1(Xkfl, G) be a class that dies in H1(X̂kfl, G). By fpqc descent, α is a class of a representable
smooth affine G-torsor Y over X (equipped with the inverse image log-structure). Since X is strictly
local, Y has an X-rational point. Hence α = 0. �

�

picard Corollary 3.17. Let X = Spec(A) be a log-scheme such that A is Noetherian and strictly local. We
have the following isomorphisms

H1(Xkfl,Gm) ≃ (Mgp
X /O∗

X)x ⊗ (Q/Z), H1(Xkét,Gm) ≃ (Mgp
X /O∗

X)x ⊗ (Q/Z)′,

where x denotes the closed point of X and (Q/Z)′ = ⊕l 6=char(x)Ql/Zl.

Proof. The case of Xkfl follows from Proposition 3.13. Inspecting its proof we see that together with
Corollary 2.17 it actually proves the statement for H1(Xkét,Gm) as well. �

picardZar Corollary 3.18. Let X = Spec(A) be a log-scheme equipped with a Zariski log-structure such that A is
Noetherian and local. We have the following isomorphisms

H1(Xkfl,Gm) ≃ (Mgp
X /O∗

X)x ⊗ (Q/Z), H1(Xkét,Gm) ≃ (Mgp
X /O∗

X)x ⊗ (Q/Z)′.

Proof. The proof of Proposition 3.13 goes through with few small changes. In Lemma 3.14 we have to use
the fact that Xmn is a product of a finite number of Spec of local rings and we have H1((Xmn)ét,Gm) =
H1((Xmn)Zar,Gm) = 0. Similarly, at the very end of the proof of the proposition we get that, since X
is local, and Y is a Gm-torsor, it has a rational point. �

example Example 3.19. We can obtain invertible sheaves on the Kummer log-flat site in the following way.
Take a log-scheme X with a chart P → MX . Consider the covering Y = X ⊗Z[P ] Z[Q] associated to
a Kummer map P → Q. The OX -module f∗OY on Xkfl, f : Y → X , has an action of the group
scheme H = Spec(Z[Qgp/P gp]). It decomposes under this action into a direct sum of invertible sheaves
f∗OY ≃ ⊕aOX(a), a ∈ Qgp/P gp. Here OX(a) is the part of f∗OY on which H acts via the character
H → Gm corresponding to a. More specifically,

f∗OY (Y ) ≃ OY ×XY ≃ OX ⊗Z[P ] Z[Q⊕Qgp/P gp] = ⊕a∈Qgp/P gpaOY

and OX(a)|Ykfl = ε∗aOY . The element of H1(Xkfl,Gm) corresponding to the invertible sheaf OX(a) is
given by the image of am under

H0(Xkfl,G
×
m)→ H1(Xkfl,Z/m(1))→ H1(Xkfl,Gm),

where the first arrow is the connecting map of the Kummer sequence

0→ Z/m(1)→ G×
m

m→ G×
m → 0

Here m is a number such that am ∈ P gp and the above image is independent of m chosen. If X and x
are as in the above corollary then this element corresponds to a⊗m−1 of (Mgp

X /O∗
X)x ⊗ (Q/Z).

To get nontrivial Kummer log-flat coherent sheaves note that, for a ∈ Q and for the natural map
α : Q → MY , the element a ⊗ α(a) ∈ f∗OY (Y ) is a global section of OX(a). Define OX{a} to be the
image of the map α(a) : OX → OX(a).

As the next corollary we get the following log-version of Hilbert 90.

Theorem 3.20. (Hilbert 90) Let X be a log-scheme whose underlying scheme is locally Noetherian. Then
the canonical maps

H1(Xfl,G
×
m)

∼→ H1(Xkfl,G
×
m), H1(Xét,G

×
m)

∼→ H1(Xkét,G
×
m)

are isomorphisms.
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Proof. We have the short exact sequence

0→ Gm → G×
m → G×

m/Gm → 0

of sheaves onXfl. ForX = Spec(A), where A is a Noetherian strictly local ring, this yieldsH1(Xfl,G
×
m) =

0. Indeed, we have H1(Xfl,Gm) = 0. And, since G×
m/Gm = ε∗(G×

m/Gm), where ε : Xfl → Xét is the
natural map, H1(Xfl,G

×
m/Gm) = H1(Xét,G

×
m/Gm) = 0 (cf., [25, II.3]).

The above implies that this theorem is equivalent to the following local form. �

cor Corollary 3.21. Let X be a log-scheme whose underlying scheme is Spec of a Noetherian strictly local
ring. Then the groups H1(Xkfl,G

×
m), H1(Xkét,G

×
m) and H1(Xét,G

×
m) are zero.

Proof. Let X = Spec(A), where A is a Noetherian strictly local ring. Assume that P
∼→ (MX/O∗

X)x,
where x is the closed point of X . We will show that H1(Xkfl,G

×
m) = 0 (the proof for the Kum-

mer log-étale site is almost the same and the case of the étale site is obvious). From Čech cohomol-
ogy we know that the map inj limn Ȟ

1(Xn/X,G×
m) → H1(Xkfl,G

×
m) is injective and its cokernel in-

jects into inj limn H
1((Xn)kfl,G

×
m). Hence it suffices to show that inj limn H

1((Xn)kfl,G
×
m) = 0 and

Ȟ1(Xn/X,G×
m) = 0. Here the covering Xn = X ⊗Z[P ] Z[Q], Q = P 1/n.

First, let’s show that inj limn H
1((Xn)kfl,G

×
m) = 0. Take an element α of H1((Xn)kfl,G

×
m). Let

T → Xn be a log-flat Kummer covering such that α comes from Ȟ1(T/Xn,G
×
m). By Corollary 2.16, for

some m, we may assume that we have a factorization T → Xmn → Xn, where T → Xmn is classically
flat and surjective. It follows that the class α on Xmn comes from Ȟ1(T ×Xn Xmn/Xmn,G

×
m). Thus the

class of α in H1((Xmn)kfl,G
×
m) comes from H1((Xmn)fl,G

×
m). Since Xmn is a disjoint union of a finite

number of Spec of strictly local rings, the last group is trivial as we have shown above.
Now, let’s show that Ȟ1(Xn/X,G×

m) = 0. Consider the exact sequence of presheaves (!) on Xkfl

0→ Gm → G×
m → G×

m/Gm → 0.

It gives us the exact sequence of Čech cohomology groups

→ Ȟ0(Xn/X,G×
m/Gm)

∂→ Ȟ1(Xn/X,Gm)→ Ȟ1(Xn/X,G×
m)→ Ȟ1(Xn/X,G×

m/Gm)→

By Proposition 3.13 the connecting morphism ∂ is surjective. Indeed, consider an element a ⊗ n−1 ∈
Ȟ1(Xn/X,Gm) ≃ P gp ⊗ Z/n, a ∈ P gp. Choose an element b ∈ Qgp such that bn = a. It belongs to
Ȟ0(Xn/X,G×

m/Gm). To see that recall that the exact sequence of the covering Xn/X

0→ Γ(X,OX)→ Γ(Xn,OXn)→ Γ(Xn ×X Xn,OXn×XXn)

is isomorphic to

0→ A→ A⊗Z[P ] Z[Q]
β1−β2−→ A⊗Z[P ] Z[Q⊕Qgp/P gp],

where β1(x) = 1⊗ x, x ∈ Q, β2(x) = 1⊗ (x, x mod P gp). Hence

(β∗
1 − β∗

2 )(b) = 1⊗ b− 1⊗ (b, b mod P gp) = 1⊗ b− 1⊗ b = 0

and b ∈ Ȟ0(Xn/X,G×
m/Gm), as wanted. One easily now checks that ∂(b) = a⊗ n−1.

It remains to show that Ȟ1(Xn/X,G×
m/Gm) = 0. Or that the sequence

G×
m/Gm(Xn)

d0→ G×
m/Gm(Xn ×X Xn)

d1→ G×
m/Gm(Xn ×X Xn ×X Xn)

is exact. By Lemma 3.28 this sequence is isomorphic to

Qgp d0→ Qgp d1→ Qgp,

where d0 = 0 and d1 = 1. Hence it is exact, as wanted. �
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3.2. Locally free sheaves of higher rank. For isomorphism classes of locally free sheaves of arbitrary
rank we have the following theorem stated already by Kato [24, Cor. 6.4].

gl Theorem 3.22. Let X = Spec(A) be a log-scheme such that A is Noetherian and strictly local. The map

n∏
Ȟ1(Xkfl,Gm)→ Ȟ1(Xkfl,GLn)

given by the diagonal embedding
∏n

Gm →֒ GLn induces an isomorphism

Ȟ1(Xkfl,GLn) ≃ Sn\(
n∏
(Mgp

X /O∗
X)x ⊗ (Q/Z)),

where Sn\ denotes the quotient by the action of the symmetric group of degree n on the product of n
copies. Similarly, we have an isomorphism

Ȟ1(Xkét,GLn) ≃ Sn\(
n∏
(Mgp

X /O∗
X)x ⊗ (Q/Z)′).

Proof. Assume that P
∼→ (MX/O∗

X)x. For m ≥ 1, let Xm = X ⊗Z[P ] Z[P
1/m], with the induced

log-structure.

40 Lemma 3.23. We have

inj lim
m

Ȟ1(Xm/X,GLn)
∼→ Ȟ1(Xkfl,GLn).

Proof. The injectivity is obvious. For the surjectivity, consider a class α ∈ Ȟ1(Xkfl,GLn). Let T → X
be a log-flat Kummer covering such that α ∈ Ȟ1(T/X,GLn). By Corollary 2.16, we may assume that for
some m, we have a factorization T → Xm → X , where T → Xm is classically flat and surjective. Since
Xm is a disjoint union of a finite number of Spec of strictly local rings we have Ȟ1(Xm,fl,GLn) = 0. It

follows that α is trivialised on Xm hence α ∈ Ȟ1(Xm/X,GLn), as wanted. �

Lemma 3.24. Assume X = Spec(A), where A is a Noetherian complete local ring with separably closed
residue field. Then, for any n 6= 0,

(Hom(Hm,GLn)/ ≡) ∼→ Ȟ1(Xm/X,GLn),

where Hm is the group scheme Spec(Z[P gp/(P gp)m]) and / ≡ means the quotient set by the inner conju-
gation by elements of GLn(A).

Proof. We proceed as in the proof of Lemma 3.15 and keep its notation. Note that

(Hom(Hm,GLn)/ ≡) = H1(Hm,GLn)

Let’s treat first the case when A is Artinian. Consider the corresponding filtrations GLi
n, GLi

n,m of GLn

and GLn,m. The computation of the graded pieces goes through and, since Lie(GLn) ≃ Gn2

a , so does
the proof of Lemma 3.16. Hence

Hk(Hn, gr
i(GLn)) = Hk(Hn, gr

i(GLn,m)) = 0, i ≥ 1, k ≥ 1.

Using now the exact sequences

0→ GLi−1
n /GLi

n → GLn/GLi
n → GLn/GLi−1

n → 0

(starting from i such that GLi
n = 0) we get that H1(Hn,GLn)

∼→ H1(Hn, gr
0(GLn)). Similarly,

H1(Hn,GLn,m)
∼→ H1(Hn, gr

0(GLn,m)). Since gr0(GLn)
∼→ gr0(GLn,m), we are done.

Let’s turn now to the general case of A complete. We compute

(Hom(Hm,GLn)/ ≡) = Sn\Hom(Hm,

n∏
Gm) = Sn\

n∏
Hom(Hm,Gm)

= Sn\
n∏

Hom(Z/m(1),Gm)⊗ P gp = Sn\
n∏

Z/m⊗ P gp.
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The same computation works over each A/mi
A. Passing now to the limit over i it suffices to show that

the natural map

Ȟ1(Xm,GLn)→ proj lim
i

Ȟ1(Xm,i,GLn),

where Xm,i is the base change of Xm to A/mi
A, is injective. By straightforward computation this follows

from the fact that GLn defines a sheaf for the Kummer log-flat topology. �

In the general case we have to argue a little bit more. Let X̂ = Spec(Â), where Â is the completion of

A. Endow X̂ with the inverse image log-structure. Since Hom(Hm,GLn)/ ≡ does not change when we

pass to the completion (see above), it suffice to show that Ȟ1(Xkfl,GLn)→ Ȟ1(X̂kfl,GLn) is injective.
This is proved exactly like the corresponding fact in the proof of Lemma 3.15.

The proof for Xkét is analogous (using Corollary 2.17). �

glZar Corollary 3.25. In the above theorem we may take X = Spec(A) to be a log-scheme equipped with a
Zariski log-structure such that A is Noetherian and local.

Proof. The proof of Theorem 3.22 goes through with few small changes. In Lemma 3.23 we have to use
the fact that Xm is a product of a finite number of Spec of local rings and we have Ȟ1((Xm)fl,GLn) = 0.
Similarly, at the very end of the proof of the theorem we get that, since X is local, and Y is a GLn-torsor,
it has a rational point. �

split1 Corollary 3.26. Let X = Spec(A) be a log-scheme such that A is Noetherian and strictly local. Let F
be a locally free finite type OX-module on Xkfl (resp. Xkét). Then F is a direct sum of invertible sheaves
on Xkfl (resp. Xkét). Similarly for A local and equipped with a Zariski log-structure.

The following proposition will be useful in computing K-theory groups. It was originally stated by
Kato [24, Prop. 6.5].

cohom Proposition 3.27. Let X be an affine log-scheme. Let F be an OX-module on Xkfl such that for some
Kummer log-flat covering Y → X the restriction F|Y is isomorphic to the inverse image of a quasi-
coherent sheaf on the small Zariski site of Y . Then Hn(Xkfl,F) = 0 for any n ≥ 1. Similar statement
holds for Xkét.

Proof. Consider the case of Xkfl. Assume first that F is isomorphic to the inverse image of a quasi-
coherent sheaf on the small Zariski site of X . Since Hn(XZar,F) = 0, n ≥ 1, we may assume that
X is equipped with a chart P → MX , P ∗ = {1}. We may work on the small site of the Kummer
log-flat site built from affine maps. It suffices now to show that our sheaf F is flasque. We will show
that for every covering Y → X from some cofinal system of coverings the Čech cohomology groups
Ȟn(Y/X,F) = Hn(C·(Y/X)), n ≥ 1, are trivial. Since our coverings are log-flat and of Kummer type,
by Corollary 2.16 we may assume that there exists a factorization of Y → X into f : Y → Y1 and
g : Y1 → X , where f is affine, strictly flat and a covering and Y1 = Y ×Spec(Z[P ]) Spec(Z[Q]), for a
Kummer morphism u : P → Q.

We will show now that the complex C·(Y/X) has trivial cohomology in degrees higher than 0. Assume

first that the augmentation Γ(X,F) g∗

→ C·(Y1/X) is a quasi-isomorphism. We will check that this implies

that the augmentation Γ(X,F) (gf)∗→ C·(Y/X) is a quasi–isomorphism as well. The reader will note that
because the schemes Y , Y1, and X are assumed to be affine, all the schemes appearing in the argument
below are affine as well. Consider the double complex

C·(Y, Y1, X) : (i, j) 7→ Γ(Y (i+1) ×X Y
(j+1)

1 ,F),

where, for any n ≥ 1, Y n = (Y/X)×n, and Y n
1 = (Y1/X)×n. Consider the natural maps C·(Y/X)

f∗

1→
C·(Y, Y1, X) and C·(Y1/X)

g∗

1→ C·(Y, Y1, X). First, we claim that f∗
1 is a quasi-isomorphism. For that,

it suffices to show that, for any n ≥ 1, the map Γ(Y n,F) f∗

1→ C·(Y n ×X Y1/Y
n) is a quasi-isomorphism.

Since the projection Y n×X Y1 → Y n admits a section Y n sn→ Y n×X Y1, this is clear. Next, we will show
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that g∗1 is a quasi-isomorphism. It suffices to show that the augmentation Γ(Y n
1 ,F) g∗

1→ C·(Y n
1 ×X Y/Y n

1 )

is a quasi-isomorphism. Consider the composition Y n fn−1×s1→ Y n
1 ×X Y → Y n

1 . It is equal to the map
fn, which is faithfully flat. By faithfully flat descent, since the base-change of the augmentation g∗1 by fn

is a quasi-isomorphism Γ(Y n,F) → C·(Y (n+1)/Y n) (the morphism Y (n+1) = Y n ×Y n
1
Y n

1 ×X Y → Y n

admitting a section), so is the augmentation g∗1 .
Finally, we have that

f∗
1 (gf)

∗ = g∗1g
∗ : Γ(X,F)→ C·(Y, Y1, X).

Since f∗
1 , g

∗
1 , and g∗ are quasi-isomorphisms, so is (gf)∗.

descent Lemma 3.28. Let A = Γ(X,OX). Then the augmentation

desdes (3.2) A
e∗→ C·(Y1/X)

is a quasi-isomorphism.

Proof. The essential point is that the morphism of monoids u : P → Q is exact, i.e., P = (ugp)−1(Q) in
P gp, where ugp : P gp → Qgp. Set G = Qgp/P gp. The augmentation e∗ is isomorphic to

A
e∗→ A⊗Z[P ] Z[Q]

d0→ A⊗Z[P ] Z[Q⊕G]
d1→ A⊗Z[P ] Z[Q ⊕G⊕2]

d2→ . . .

Here the A-linear morphism dn : A⊗Z[P ] Z[Q⊕G⊕n]→ A⊗Z[P ] Z[Q⊕G⊕n+1] is equal to the alternating
sum of maps β1, β2, . . . , βn+2, where

βk(b1, b2, . . . , bn+1) =

{
(b1, b1b

−1
2 · · · b−1

n+1, b2, . . . , bn+1) if k = 1

(b1, b2, . . . , bk−1, 1, bk+1, . . . , bn+1) if k 6= 1,

for b1 ∈ Q, b2, . . . , bn+1 ∈ G. Consider now the following A-module homomorphisms hn+1 : A ⊗Z[P ]

Z[Q ⊕G⊕n]→ A⊗Z[P ] Z[Q⊕G⊕n−1] for n ≥ 1,

hn+1(b1, b2, . . . , bn+1) =

{
(−1)n(b1, b2, . . . , bn) if bn+1 = 1

0 if bn+1 6= 1

We claim that hn’s together with the morphism h1 : A ⊗Z[P ] Z[Q] → A sending 1 ⊗ b to b if b ∈ P and
to 0 if b /∈ P (h1 is well-defined since u is exact), form a contracting homotopy, i.e., that h1e

∗ = Id,
h2d0 + e∗h1 = Id, and hn+2dn + dn−1hn+1 = Id, n ≥ 1. We compute that

(h2d0 + e∗h1)(b1) =

{
h2((b1, 1)− (b1, 1)) + 1⊗ b1 if b1 ∈ P

h2((b1, b1)− (b1, 1)) if b1 /∈ P

= 1⊗ b1

(use that u is exact), and that, for n ≥ 1,

hn+2dn(b1, b2, . . . , bn+1) = hn+2[(b1, b1b
−1
2 · · · b−1

n+1, b2, . . . , bn+1)− (b1, 1, b3, . . . , bn+1) + . . .

+ (−1)n+1(b1, b2, b3, . . . , bn+1, 1)]

=





(−1)n+1(b1, b1b
−1
2 · · · b−1

n+1, b2, . . . , bn)− (−1)n+1(b1, 1, b3, . . . , bn) + . . .

−(b1, b2, b3, . . . , bn, 1) + (b1, b2, b3, . . . , bn+1) if bn+1 = 1

(b1, b2, b3, . . . , bn+1) if bn+1 6= 1

dn−1hn+1(b1, b2, . . . , bn+1) =

{
(−1)ndn−1(b1, b2, . . . , bn) if bn+1 = 1

0 if bn+1 6= 1

=





(−1)n(b1, b1b
−1
2 · · · b−1

n , b2, . . . , bn)− (−1)n(b1, 1, b3, . . . , bn) + . . .

+(b1, b2, b3, . . . , bn, 1) if bn+1 = 1

0 if bn+1 6= 1
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Hence we get that

(hn+2dn + dn−1hn+1)(b1, b2, . . . , bn+1) =

{
(b1, b2, . . . , bn, 1) if bn+1 = 1

(b1, b2, b3, . . . , bn+1) if bn+1 6= 1,

as wanted. �

This proves the vanishing of cohomology for F = OX . For general F , the complex Γ(X,F) e∗→
C·(Y1/X) is isomorphic to the tensor product (over A) of the complex (3.2) with Γ(X,F). Since the
contracting homotopy we have constructed above is A-linear, this complex is clearly exact.

Let us turn now to the case of general Y . By Corollary 2.16 and faithfully flat descent we may assume
that Y = Spec(A⊗Z[P ] Z[P

1/m]) for some m. Then (see the proof of Proposition 3.13)

Ȟn(Y/X,F) = Hn(Hm, f∗F)

whereHm is the group scheme Spec(Z[P gp/(P gp)m]). SinceHm is diagonalizable, we know thatHn(Hm, f∗F) =
0 for n ≥ 1 [33, Exp. I, Thm. 5.3.3]. This finishes our proof for the Kummer log-flat topology. The proof
for the Kummer log-étale topology is analogous (replace Corollary 2.16 with Corollary 2.17). �

The above proposition implies the following

split Proposition 3.29. Let X be a log-scheme and let

0→ F ′ → F → F ′′ → 0

be an exact sequence of locally free finite rank OX-sheaves on Xkfl or Xkét. Then

(1) if X is affine, this exact sequence splits;
(2) F is classical if and only if so is F ′ and F ′′.

Proof. Consider the following exact sequence of sheaves on Xkfl

0→ HomOX (F ′′,F ′)→ HomOX (F ′′,F)→ HomOX (F ′′,F ′′)→ 0.

Since, by Proposition 3.27, H1(Xkfl,HomOX (F ′′,F)) = 0, (1) follows. To prove (2) reduce to the case of
X affine and use (1). Treat the case of Xkét similarly. �

4. Algebraic K-theory of log-schemes

We present in this section basic properties and some examples of calculations of algebraic (Quillen)
K-theory of log-schemes for the topologies discussed earlier. Hagihara [14] was the first one to study
algebraic K-theory of Kummer log-étale topos. Most of his results hold for log-schemes over (separably)
closed fields. Working with equivariant K-theory for finite flat group schemes instead of finite groups and
using some of the results from earlier sections we show that they hold in greater generality. In particular,
for the Kummer log-flat site.

Let X be a Noetherian log-scheme. Let K(X∗) = K(P(X)∗) denote the higher K-theory groups of the
exact category P(X)∗ as defined by Quillen [32]. Similarly, let K ′(X∗) = K(M(X)∗) be the Quillen’s
K-theory of the abelian categoryM(X)∗. Denote by K(X∗),K

′(X∗) the Waldhausen spectra [35, 1.5.3]
corresponding respectively to the categories P(X)∗,M(X)∗. Recall that they are functorial with respect
to exact functors. We have

πi(K(X∗)) = Ki(X∗), πi(K
′(X∗)) = K ′

i(X∗)

Let K/n(X∗),K
′/n(X∗) be the associated mod-n spectra. Set

Ki(X∗,Z/n) = πi(K/n(X∗)), K ′
i(X∗,Z/n) = πi(K

′/n(X∗)).
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4.1. Basic properties. We easily check that we have the following morphisms

• K(X∗)→ K ′(X∗) if OX∗
is a coherent sheaf;

• f∗ : K(X∗)→ K(Y∗), for any morphism f : Y → X ;
• f∗ : K ′(X∗) → K ′(Y∗) for any object f : Y → X in X∗ or f classically flat and ∗ any Kummer
site.

Less obvious is the existence of pushforward for exact closed immersions.

Lemma 4.1. The pushforward functor i∗ : K ′(Y∗) → K ′(X∗) exists for an exact closed immersion
i : Y →֒ X, X such that (MX/O∗

X)x ≃ Nr(x) for every point x ∈ X, and ∗ any Kummer topology.

Proof. This follows easily for the Kummer étale topology from the exactness of i∗ on all abelian sheaves
(check on stalks at log-geometric points of X). We present here the argument for the Kummer log-flat
topology (the log-syntomic case is analogous). In that case it can be reduced to the exactness of i∗ for
the Zariski topology. Let f : F1 → F2 be a surjective morphism of Kummer log-flat coherent sheaves on
Y . Cover X with étale open sets U that are affine and equipped with charts P → MU , P ≃ Nr. For
each U , by Corollary 2.16 and faithfully flat descent, there exists an n such that the map f |U comes from
a Zariski map fZar : F1,Zar → F2,Zar on UY,n = YU ×U Un. Since ε∗ : UY,n,kfl → UY,n,Zar is exact and
faithful, the map fZar is surjective as well. It follows that the pushforward i∗fZar : i∗F1,Zar → i∗F2,Zar is
a surjection on Xn. Since ε∗i∗ ≃ i∗ε

∗ (easy to check), we are done. �

The following two propositions follow from Corollary 3.9, Lemma 3.10, and Lemma 3.11.

Proposition 4.2. Let X be a log-regular quasi-compact log-scheme. Then

(1) inj limY K∗(Ykfl)
∼→ K∗(Xvkfl), where the limit is over log-blow-ups Y → X;

(2) K∗(Xvksyn)
∼→ K∗(Xvkfl).

Proposition 4.3. For any Noetherian log-scheme X, the pullback functors induce isomorphisms

K∗(Xksyn)
∼→ K∗(Xkfl), K ′

∗(Xksyn)
∼→ K ′

∗(Xkfl).

The following two propositions are proved in a similar way to their classical versions.

Proposition 4.4. Let X be a Noetherian, log-scheme satisfying property (3.1). Then the natural im-

mersion i : Xred →֒ X induces an isomorphism i∗ : K ′
q(Xred,∗)

∼→ K ′
q(X∗), for any Kummer topology.

Proposition 4.5. Let {Xi} be a filtered system of Noetherian log-schemes. Assume that all the schemes
Xi satisfy property (3.1) and the transition maps αij : Xj → Xi are affine and classically flat. Then, for
any Kummer site ∗,

inj lim
i

K ′
q(Xi,∗) ≃ K ′

q((proj lim
i

Xi)∗).

We have the following versions of the localization exact sequence. Their proofs are analogous to the
proof of their classical version and the interested reader will find the details of the Kummer log-étale case
in Hagihara [14, Theorem 4.5].

Proposition 4.6. Let X be a Noetherian, equicharacteristic log-scheme, Y a strictly closed subscheme
and U its complement. Assume that (MX/O∗

X)x ≃ Nr(x) for every point x ∈ X. Then we have the
canonical long exact sequence

→ K ′
i(Ykét)→ K ′

i(Xkét)→ K ′
i(Ukét)→ K ′

i−1(Ykét)→
Proposition 4.7. Let X be a Noetherian log-scheme, Y a strictly closed subscheme and U its complement.
Assume that (MX/O∗

X)x ≃ Nr(x) for every point x ∈ X. Then we have the canonical long exact sequence

→ K ′
i(Ykfl)→ K ′

i(Xkfl)→ K ′
i(Ukfl)→ K ′

i−1(Ykfl)→
Recall Hagihara’s notion of an M -framed log-scheme. Let M ≃ Nr be a monoid. An M -framed

log-scheme is a pair (X, θ), where θ : M → Γ(X,MX/O∗
X) is a frame such that for all points x ∈ X

the composite M → Γ(X,MX/O∗
X) → (MX/O∗

X)x is isomorphic to a projection Nr → Nm, r ≥ m.
Note that the log-structure on X is Zariski. A standard example is given by a regular scheme with the
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log-structure coming from a strict normal crossing divisor (generate M from the irreducible components
of the divisor at infinity).

Proposition 4.8. (Poincaré isomorphism) Let X be a log-regular, regular quasi-compact log-scheme with
a frame M . Then the natural morphism Ki(X∗)→ K ′

i(X∗) is an isomorphism for all i and any Kummer
topology.

Proof. We will argue the case of the Kummer log-flat topology. Assume that X has dimension n. Let F
be a log-flat coherent sheaf. By the lemma below we can find a resolution

0→ P → En−1 → . . .E0 → F → 0,

where each Ei is a locally free sheaf and P is coherent. Zariski localize now on X and take Y = Spec(OX,x)
for a point x ∈ X with a chart P → MY , P ≃ (MX/O∗

X)x ≃ Nr. We may assume that the above long

exact sequence pullbacked to Ykfl comes from a Zariski long exact sequence on B = OX,x ⊗Z[P ] Z[P
1/m],

for some m. Note that B is log-regular and regular. Hence P| Spec(B)kfl is locally free. This suffices to
exhibit a covering U → X for the Kummer log-flat topology such that P|Ukfl is locally free, as wanted. �

Lemma 4.9. For any Kummer log-flat or log-étale coherent sheaf F there exists a locally free sheaf E
that surjects onto F .

Proof. Take a point x ∈ X . By interpreting kfl-modules as equivariant modules, we can construct a
surjection: fx : Ex → Fx on Spec(OX,x)kfl. Note that, by Corollary 3.25, Ex is a sum of invertible
sheaves.

Consider now the following commutative diagram

Mdiv θ−−−−→ Γ(Xkfl,MX/O∗
X)

∂−−−−→ Pic(Xkfl)∥∥∥
y

y

Mdiv θx−−−−→ Γ(OX,x,kfl,MX/O∗
X)

∂−−−−→ Pic(OX,x,kfl),

where Mdiv = inj limn M
1/n or Mdiv = inj lim(n,p)=1 M

1/n, p = char(x). By Corollary 3.18, the map ∂θx
is surjective. Hence there exists a locally free sheaf E on Xkfl that restricts to Ex. By [14, Lemma 4.11] ,
there exists an invertible sheaf L on Xkfl such that the map Ex → Fx extends to a map f : E ⊗ L → F .
The map f is surjective in a neighbourhood Ux of x. We finish by covering X with a finite number of
such Ux’s and taking a direct sum of the corresponding maps f . �

Remark 4.10. It is easy to see that all of the above holds for the K-theory groups with coefficients:
K∗(X∗,Z/n) and K ′

∗(X∗,Z/n).

4.2. Calculations.

picard1 Proposition 4.11. Let X = Spec(A) be a log-scheme such that A is Noetherian and strictly local. We
have the following isomorphisms

Pic(Xkfl) ≃ (Mgp
X /O∗

X)x ⊗ (Q/Z), Pic(Xkét) ≃ (Mgp
X /O∗

X)x ⊗ (Q/Z)′,

K0(Xkfl) ≃ Z[(Mgp
X /O∗

X)x ⊗Q/Z], K0(Xkét) ≃ Z[(Mgp
X /O∗

X)x ⊗ (Q/Z)′]

where x denotes the closed point of X.

Proof. The statement about the Picard groups is simply a reformulation of Corollary 3.17. Since, by
Theorem 3.22, every locally free sheaf is a sum of invertible sheaves and, by Proposition 3.29, there are
no nontrivial relations we get the statement about K0-groups. �

field Proposition 4.12. Let X = Spec(K), for a field K, be a log-scheme with a chart P → MX , P ≃
MX/O∗

X ≃ Nr. Then

K ′
∗(Kkfl) ≃ K ′

∗(KZar)⊗Z Z[P gp ⊗Q/Z], K ′
∗(Kkét) ≃ K ′

∗(KZar)⊗Z Z[P gp ⊗ (Q/Z)′].
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Proof. For anym, denote by FmM(Xkfl) the full subcategory of the category of Kummer log-flat coherent
sheaves that become classical on the covering Xm of X . We have FmM(Xkfl) ≃ M(Xm,Zar, Hm),

where the group scheme Hm = Spec(Z[P 1/m,gp/P gp]). Here the right hand side denotes the category
of Hm-equivariant Zariski coherent sheaves on Xm. By devissage, the natural functor M(XZar, Hm) →
M(Xm,Zar, Hm) induces an isomorphism on K ′-theory groups. Here Hm acts trivially on K.

Consider now the functor
⊕

ξ∈P 1/m,gp/P gp

M(XZar)→M(XZar, Hm); {Fξ} 7→ ⊕Fξ ⊗ Lξ,

where Lξ is the invertible sheaf corresponding to the map K → K[P 1/n,gp/P gp], a 7→ aξ. Since Hm is
diagonalizable this is an equivalence of categories (cf. [33, Exp.I,Prop.4.7.3]). This yields the isomor-

phism
⊕

ξ∈P 1/m,gp/P gp K ′(KZar)
∼→ K(FmM(Xkfl)) and, by passing to the limit with respect to m, our

proposition. �

For a framed log-scheme (X,M) and a prime ideal p ofM , we write V (p) = {x ∈ X |p ⊂ θx((MX/O∗
X)x\

{1})}, where θx : M
θ→ Γ(X,MX)→ (MX/O∗

X)x. V (p) is a closed subset of X and we equip it with the
reduced subscheme structure. We write M(p) for the unique face of M such that M(p)⊕ (M \ p) = M ,
and set

Λ[p] = Z[(M(p)gp ⊗Q/Z) \ ∪q(p(M(q)gp ⊗Q/Z)].

We will denote by Λ′[p] the same group as Λ[p] but defined using (Q/Z)′ instead of Q/Z.

structure Theorem 4.13. Let X be a Noetherian M -framed log-scheme. Then

(1) if X is equicharacteristic then there is a natural isomorphism

β :
⊕

p, prime of M

K ′
∗(V (p)Zar)⊗ Λ′[p]→ K ′

∗(Xkét);

(2) there is a natural isomorphism

β :
⊕

p, prime of M

K ′
∗(V (p)Zar)⊗ Λ[p]→ K ′

∗(Xkfl).

Proof. Let us define the map β (in the second case). We fix ξ ∈M(p)gp ⊗Q/Z. The corresponding map
βξ : K ′

∗(V (p)Zar)→ K ′
∗(Xkfl) is induced by the functor

βξ :M(V (p)Zar)→M(Xkfl), F 7→ i∗(ε
∗F ⊗OV (p){ξ}),

where i : V (p) →֒ X is the natural closed immersion and OV (p){ξ} is the coherent sheaf on V (p)kfl (see
Example 3.19) associated to the locally free sheaf OV (p)(ξ) on V (p)kfl obtained as the image of ξ (or
rather of the minimal lifting of ξ) by the following map

M(p)div →Mdiv → Γ(XZar, (MX/O∗
X)div)→ Γ(V (p)Zar, (M/O∗)div)

∂→ Pic(V (p)kfl).

Note here that using OV (p)(ξ) instead of OV (p){ξ} would tend to give a zero map.
The functor βξ is exact (follow [14, 6.2] replacing Spec(k) by Spec(Z)). The rest of the argument goes

as follows. One proves that the map β is compatible with localization sequences and by a limit argument
reduces the proof to the case of a field. Then it suffices to evoke Proposition 4.12, and we are done.

Compatibility with localization sequences requires the following lemma (Lemma 9.4 in [14]) that we
have to reprove in our setting.

Lemma 4.14. Let N be a face of M and U an M -framed log-scheme. Assume that the frame of U comes
from a chart M → MU that maps N \ {1} to zero in Γ(U,OU ). Then for any exact closed immersion
i : V →֒ U with the induced M -frame and ξ ∈ Ndiv we have i∗OU{ξ} ≃ OV {ξ}.
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Proof. Write M ≃ Nm, N ≃ Nk,M = N ⊕Q for a face Q. Let ξ ∈ N1/n. Set M ′ = N1/n ⊕Q. We have
U ′ = U ⊗Z[M ]Z[M

′] = U ×Spec(Z)S, where S = Spec(Z⊗Z[N ]Z[N
1/n]). Similarly, V ′ = V ⊗Z[M ]Z[M

′] =
V ×Spec(Z) S. One easily computes

S = Spec(Z[x1, . . . , xk]/(x
n
1 , . . . , x

n
k ));

OS(xI)(S) = x−1
I (⊕JxJZ), xI = xi1

1 . . . xik
k , xJ = xj1

1 . . . xjk
k , 0 ≤ jl ≤ k − 1;

OS{xI}(S) = x−1
I (⊕JxJZ), xI = xi1

1 . . . xik
k , xJ = xj1

1 . . . xjk
k , il ≤ jl ≤ k − 1.

Hence, if we write ξ = xI , then OS{xI} is a direct factor of OS(xI) and the cokernel is a free Z-module.
It follows that

OU ′{xI} = OS{xI} ⊗Z OU , OV ′{xI} = OS{xI} ⊗Z OV .

Thus OV ′{xI} = i∗OU ′{xI}, as wanted. �

�

Example 4.15. Let A be a complete discrete valuation ring with residue field k and the log-structure
coming from the closed point. Then, by Theorem 4.13 (see the argument below), we have

K∗(Akfl) ≃ K∗(A)⊕K∗(k)⊗ Z[Q/Z \ {0}], K∗(Akét) ≃ K∗(A)⊕K∗(k)⊗ Z[(Q/Z)′ \ {0}].
When comparing this with Proposition 4.11 we get that [A(a)] = [k{a}]+[A] in K∗(A)⊕K∗(k)⊗Z[Q/Z\
{0}].
Example 4.16. More generally, let X be a regular, log-regular scheme with the log-structure associated
to a divisor D with strict normal crossing. Let {Di|i ∈ I} be the set of the irreducible (regular) compo-
nents of D. For an index set J ⊂ I denote by DJ the intersection of irreducible components indexed by
J and by Λ|J| (resp. Λ′

|J|) the free abelian groups generated by the set {(a1, . . . , a|J|)|ai ∈ Q/Z \ {0}}
(resp. the set {(a1, . . . , a|J|)|ai ∈ (Q/Z)′ \ {0}}).
Corollary 4.17. For any q ≥ 0 we have the canonical isomorphism

Kq(Xkfl) ≃
⊕

J⊂I

Kq(DJ )⊗ Λ|J|

Moreover, if D is equicharacteristic then canonically

Kq(Xkét) ≃
⊕

J⊂I

Kq(DJ )⊗ Λ′
|J|

Proof. The Kummer log-flat statement follows from Theorem 4.13. For the Kummer log-étale note that
we do have a localization sequence

→ K ′
q(Dkét)→ K ′

q(Xkét)→ K ′
q(Ukét)→ K ′

q−1(Dkét)→
where U = Xtr. This follows just like in the classical situation using the fact that Kummer log-étale
coherent sheaves on U are simply the Zariski coherent sheaves and those can be extended to the whole
of X . Now the proof of Theorem 4.13 goes through. �

Example 4.18. Again, all of the above holds for the K-theory groups with coefficients. For example,
let A be a complete discrete valuation ring of mixed characteristic (0, p). Let X be a smooth A-scheme
equipped with the log-structure coming from the special fiber X0. Then

K∗(Xkfl,Z/p
k) ≃ K∗(X0,Z/p

k)⊗ Z[N \ {0}]⊕K∗(X,Z/pk)

Since, by Geisser-Levine [13], Ki(X0,Z/p
k) = 0, for i ≥ dimX0, we get

Ki(Xkfl,Z/p
k) ≃ Ki(X,Z/pk) ≃ Ki(X [1/p],Z/pk), i ≥ dimX0.

5. Topological K-theory of log-schemes

In this section we initiate the study of topological K-theory of log-schemes.
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5.1. Homotopy theory of simplicial presheaves and sheaves. The formalism of cohomologies of
simplicial presheaves we use here is based on the closed model structures for the category of simplicial
presheaves and sheaves on an arbitrary Grothendieck site developed by Jardine [16], [17], [18], [19].

We begin by recalling basic facts about cohomology of simplicial presheaves. Let us start with some
definitions. A closed model category is a categoryM equipped with three classes of maps called cofibra-
tions, fibrations and weak equivalences, such that the following axioms are satisfied:

(1) M is closed under all finite limits and colimits.
(2) Given f : X → Y and g : Y → Z, if any of the two of f, g or gf are weak equivalences, then so

is the third.
(3) If f is a retract of g and g is a weak equivalence, fibration or cofibration, then so is f .
(4) Given any commutative diagram

U −−−−→ X

i

y p

y

V −−−−→ Y

in M, where i is a cofibration and p is a fibration, then an arrow V → X exists making this
diagram commute assuming that either i or p is a weak equivalence.

(5) Any map f : X → Y may be factored
• f = pi, where p is a fibration and i is a trivial cofibration, and
• f = qj, where q is a trivial fibration and j is a cofibration.

A trivial fibration is a map that is a fibration and a weak equivalence and a trivial cofibration is a map
that is a cofibration and a weak equivalence. A basic example of a closed model category is the category
S of simplicial sets: the cofibrations of S are the monomorphisms, the weak equivalences are the maps
which induce isomorphisms on all possible homotopy groups of associated realizations, and the fibrations
are the Kan fibrations.

A closed simplicial model category is a closed model categoryM which has a natural function complex
Hom(U,X) in the category S of simplicial sets for each pair of objects U,X inM. This simplicial set is
supposed to satisfy some adjointness properties as well as the following axiom:

• If i : A→ B is a cofibration and p : X → Y is a fibration, then the induced map of simplicial sets

Hom(B,X)
(i∗,p∗)−−−−→ Hom(A,X)×Hom(A,Y ) Hom(B,X)

is a Kan fibration, which is trivial if either i or p is trivial.

A closed model categoryM is called proper if it satisifes the following additional axiom:

• Given a commutative diagram

A
f−−−−→ C

i

y j

y

B
g−−−−→ D

(1) if the square is a pullback, j is a fibration and g is a weak equivalence, then f is a weak
equivalence.

(2) if the square is a push out, i is a cofibration and f is a weak equivalence, then g is a weak
equivalence.

The category S of simplicial sets is a proper closed simplicial model category.
Let C be a site and let T be the Grothendieck topos of sheaves on C. Denote by pT (resp. sT ) the

category of presheaves (resp. sheaves) of simplicial sets on C. When X is a presheaf, we denote by π0(X)
the sheaf on T associated to the presheaf

U 7→ π0(X(U)).



26 WIES LAWA NIZIO L

For an object U in C, we let X |U be the image of X in the site C|U . When n > 0 is an integer and
x ∈ X0(U), we denote by πn(X |U, x) the sheaf on C|U associated to the preasheaf

V 7→ πn(X(V ), x).

Here, for a simplicial set S, we take πn(S) = πn(|S|), where |S| is the geometric realization of S.

Definition 5.1. Let f : X → Y be a map of presheaves. Then

• f is called a weak equivalence if the induced map f∗ : π0(X) → π0(Y ) is an isomorphism, and
for all n > 0, all objects U in C, and all x ∈ X0(U), the natural maps

f∗ : πn(X |U, x)→ πn(Y |U, f(x))
are isomorphisms;

• f is called a cofibration if, for any object U from C, the induced map f(U) : X(U) → Y (U) is
injective;

• f is called a fibration if it satisfies the following lifting property: for any commutative diagram

A −−−−→ X

i

y
yf

B −−−−→ Y,

where i is a trivial cofibration, there exists a map B → X such that the resulting diagram
commutes.

For two simplicial presheaves X and Y , the simplicial set Hom(X,Y ) is defined by

n 7→ HompT (X ×∆n, Y ),

where ∆n is the standard n-simplex. We also have the simplicial presheaf Hom(X,Y ) defined by

U 7→ (n 7→ Homp(T |U)(X |U ×∆n, Y |U)).

Jardine proves (see Prop. 1.4 in [17]) the following

Theorem 5.2. With the above definitions the categories sT and pT are proper closed simplicial model
categories.

We can associate to sT and pT the homotopy categories Ho(sT ) and Ho(pT ) by formally inverting all
weak equvalences. We have (Prop. 2.8 from [16])

Theorem 5.3. The associated sheaf functor induces an equivalence

Ho(pT ) ≃ Ho(sT )
between the associated homotopy categories.

What we have just described is the (global) homotopy theory of simplicial presheaves. Recall that
there exists also a local theory (see [16]). A local fibration is a map p : F → G that satisfies the local
right lifting property, that is, p(U) has the lifting property of the Kan fibration up to a refinement of the
object U from C by a covering. An example of a local fibration is a pointwise Kan fibration, i.e., a map
p : F → G such that each p(U) : F (U) → G(U) is a Kan fibration. Not every local fibration is a global
fibration. For example, the Eilenberg-MacLane presheaves K(F, n) are not in general globally fibrant.
Note that if the site C has enough points than a map p is a local fibration if and only if it is a Kan
fibration on all the stalks. Local weak equivalence between locally fibrant simplicial presheaves is defined
by shififying the definition of weak equivalence of Kan complexes. If the site C has enough points, then a
map q : F → G of locally fibrant simplicial presheaves is a local weak equivalence if and only if it induces
weak equivalences on all the stalks. Jardine (see Prop. 2.8 in [16]) shows that the associated homotopy
category is equivalent to that of Ho(pT ).
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For simplicial presheaves X and Y , we denote by [X,Y ] the set of morphisms from X to Y in the
homotopy category. A simplicial presheaf X is called (globally) fibrant if the unique map X → ∗C is
a (global) fibration. Here ∗C is the final object of the category of presheaves on C. For any simplicial
presheaf X the canonical map X → ∗C admits a factorization X → Xf → ∗C , where X → Xf is a
trivial cofibration and Xf is fibrant. Such a map X → Xf is called a fibrant replacement of X . For two
simplicial presheaves X and Y , we have

[X,Y ] = [X,Y f ] = π0 Hom(X,Y f ),

where Y → Y f is a fibrant replacement of Y . That is, the set [X,Y f ] is given by morphisms X → Y f

modulo simplicial homotopy.

5.1.1. Cohomology of simplicial presheaves. Let F be a pointed simplicial presheaf . Define cohomology
of C with coefficients in F (see [16, 3]) by

H−m(C,F ) = [∗C ,ΩmF ] for m ≥ 0.

In the case the site C has a final object X we will write H−m(X,F ) for H−m(C,F ). Note that
H−m(C,F ) ≃ [Sm, F ]∗, where the subscript ∗ refers to morphisms in the pointed homotopy category.
Here Sm is the simplicial m-sphere ∆m/∂∆m. H−m(C,F ) is a pointed set for m = 0, a group for m > 0,
and an abelian group for m > 1.

5.1.2. Change of sites. This section is based on [19]. Let f : C → D be a morphism of sites given by
a functor f : D → C that preserves finite limits and sends covers to covers. We have the associated
presheaf functors

f∗ : C∧ → D∧, fp : D∧ → C∧,

where C∧ denotes the category of presheaves on C. The functor fp is left adjoint to f∗. Both functors are
exact and f∗ maps sheaves to sheaves. Both fp and f∗ preserve cofibrations and f∗ preserves fibrations.
In particular, the functor F 7→ F (U) preserves fibrations. Thus a global fibration is a pointwise fibration
hence a local fibration. The functor fp also preserves weak equivalences.

Jardine proves the following

jar Theorem 5.4. Let f : C → D be a morphism of sites. Let F be a pointed simplicial presheaf on the site
C. Take a global fibrant replacement F → F f of F . Then we have an isomorphism

Hm(C,F ) ≃ Hm(D, f∗F
f ),

for all m ≤ 0.

Proof. We start with the following lemma.

Lemma 5.5. Suppose that F is a globally fibrant simplicial presheaf on C. Then there is an adjointness
isomorphism

[∗D, f∗F ] ≃ [∗C , F ].

Proof. We know that f∗F is also globally fibrant. Hence we have the following sequence of isomorphisms

[∗D, f∗F ] ≃ π0 Hom(∗D, f∗F ) ≃ π0 Hom(fp∗D, F ) ≃ π0 Hom(∗C , F ) ≃ [∗C , F ],

as wanted. �

Since globally fibrant objects are preserved by the loop functor (Corollary 3.2 from [16]), the above
lemma gives us the following isomorphisms

Hm(C,F ) ≃ [∗C ,ΩmF ] ≃ [∗C ,ΩmF f ] ≃ [∗D, f∗Ω
mF f ].

Since the loop functor commutes with the direct image functor, we also get

[∗D, f∗Ω
mF f ] ≃ [∗D,Ωmf∗F

f ].

This proves our theorem. �

It will be useful for us to identify the homotopy group presheaves of the presheaf f∗F
f from the above

theorem.
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seq Proposition 5.6. We have
πkf∗F

f (V ) ≃ H−k(f(V ), F |f(V )).

Proof. This follows from the following sequence of isomorphisms

πkf∗F
f (V ) = πkF

f (f(V )) ≃ [∗f(V ),Ω
kF f |f(V )] ≃ [∗f(V ),Ω

kF |f(V )].

�

5.2. Topological K-theory. We base this section on Gillet and Soulé [9, 3.1]. Let (C,OC) be a ringed
site with enough points. We assume that OC is unitary and commutative. For any n ≥ 1, we consider
the following presheaves

GLn : U 7→ GLn(Γ(U,OU )), BGLn : U 7→ BGLn(Γ(U,OU )).

Here BGLn(Γ(U,OU )) is the classifying space of GLn(Γ(U,OU )).
Let F be a simplicial presheaf such that π0(F ) = ∗. We define its Bousfield-Kan integral completion

Z∞F to be the simplicial presheaf U 7→ Z∞F (U). The functor Z∞ for simplicial sets is defined in [4].
Its basic property gives us that if a map of simplicial presheaves f : F → G induces an isomorphism of
presheaves of integral homology groups f : Hn(F,Z)→ Hn(G,Z), then the map Z∞f : Z∞F → Z∞G is
a weak equivalence. We set BGL = inj limn BGLn and

K = Z× Z∞BGL,

where the constant presheaf Z is concentrated in degree zero and pointed by zero.
To compare the above definition with Quillen’s K-theory, take, for any ringed site (C,OC), the functor

U 7→ PC(U), where PC(U) is the category of locally free OC |U -modules of finite rank. Consider the
simplicial presheaf ΩBQPC : U 7→ ΩBQPC(U). Here Q is the Quillen Q-construction. Consider also a
related simplicial presheaf ΩBQP : U 7→ ΩBQP (OC(U)), where P (OC(U)) is the category of finitely
generated projective OC(U)-modules. There is a natural map ΩBQP → ΩBQPC and, by [8, 2.15], a
natural map (in the homotopy category) Z× Z∞BGL→ ΩBQPC . Gillet and Soulé [9, 3.2.1] prove the
following

GS Lemma 5.7. If C is locally ringed, then the natural maps of pointed simplicial presheaves

Z× Z∞BGL→ ΩBQP → ΩBQPC

are weak equivalences.

Let C be now the Zariski site of some scheme X . Choose a fibrant replacement Kf of ΩBQPZar. It
defines a map Km(X) = πm(ΩBQPZar(X))→ H−m(XZar,K). Gillet and Soulé show [9, 3.2.2] that the
Mayer-Vietoris property implies the following

Proposition 5.8. Suppose that X is a Noetherian regular scheme of finite Krull dimension. Then the
above map gives an isomorphism

Km(X)
∼→ H−m(XZar,K), m ≥ 0

5.2.1. Topological K/n-theory. For a scheme X , write

K(X) = K(XZar) = {K0(X),K1(X), . . . , }
for the Waldhausen spectrum associated to the category of Zariski locally free sheaves (cf. [35, 1.5.2]).
Write

K/n(X) = K/n(XZar) = {K0/n(X),K1/n(X), . . .}
for the corresponding mod-n spectrum. Both spectra are connective and contravariant in X . For a site
C built from schemes, denote by K and K/n the pointed simplicial presheaves K : X 7→ K0(X) and
K/n : X 7→ K0/n(X). Since, by the + = Q theorem, the map (of simplicial presheaves) Z×Z∞BGL→
ΩBQP is a weak equivalence and there exists a (local) weak equivalence ΩBQP → (U 7→ K0(U)) [35,
1.11.2] this notation is compatible with the one used above.

Set
KC

m(X) := H−m(XC ,K), KC
m(X,Z/n) := H−m(XC ,K/n), m ≥ 0.
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Corollary 5.9. Suppose that X is a Noetherian regular scheme of finite Krull dimension. Then we have
a natural isomorphism

Km(X,Z/n)
∼→ KZar

m (X,Z/n) = H−m(XZar,K/n), m ≥ 0

Proof. The fibration sequence

K0/n→ K1 n→ K1

gives compatible long exact sequences

H−m(XZar,K)
n−−−−→ H−m(XZar,K) −−−−→ H−m(XZar,K/n) −−−−→ H−m+1(XZar,K)

x≀

x≀

x
x≀

Km(X)
n−−−−→ Km(X) −−−−→ Km(X,Z/n) −−−−→ Km−1(X)

Our corollary easily follows. �

5.3. Topological log-étale K/n-theory. We show in this section that l-adic topological log-étale K-
theory of a log-regular scheme computes étale K-theory of the largest open set on which the log-structure
is trivial. As the reader will see the log-étale story presented here is very similar to the story of étale
K-theory. We will mainly work with schemes S such that

(*) S is separated, Noetherian and regular. The natural number n is invertible on S and
√
(−1) ∈ OX

if n is even. S has finite Krull dimension and a uniform bound on n-torsion étale cohomological dimension
of all residue fields. Each residue field of S has a Tate-Tsen filtration.

We quote from Jardine (Theorem 3.9 in [16])

Theorem 5.10. Suppose that X satisfies the above condition. Then, for n ≥ 0, we have an isomorphism

[∗Xét
,ΩmK1/n] ≃ KDF

m−1(X,Z/n), m ≥ 0,

where KDF
∗ (X,Z/n) is the étale K-theory.

This yields the following

Corollary 5.11. Suppose that X satisfies the above condition. Then there is an isomorphism

K ét
m(X,Z/n) ≃ KDF

m (X,Z/n), m ≥ 0.

Proof. The above theorem and the weak equivalence K0/n ≃ ΩK1/n give the following isomorphisms

H−m(Xét,K/n) = [∗Xét
,ΩmK0/n] ≃ [∗Xét

,Ωm+1K1/n] ≃ KDF
m (X,Z/n),

as wanted. �

We will now compute the homotopy groups of K-presheaves. Recall [36, 2.7, 2.7.2] that, for a scheme
Y satisfying condition (*) such that Γ(Y,OY ) contains a primitive n’th root of unity, there are compatible
functorial Bott element homomorphisms

βn : µn(Y )→ K2(Y,Z/n),

where µn(Y ) denotes the group of n’th roots of unity in Γ(Y,OY ).

sheaves Proposition 5.12. Suppose that X satisfies condition (*) and that for all x ∈ X, MX,x/O∗
X,x is iso-

morphic to a direct sum of N. Let n be invertible on X. Then the sheaves of homotopy groups of K/n
in the Kummer log-étale topology are given by

π̃q(K/n) ≃
{
Z/n(i) for q = 2i ≥ 0

0 for q ≥ 0, odd.
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Proof. We have a map of sheaves
Z/n(i)→ π̃2i(K/n)

induced locally by taking the product of the map βn → π2(K/n(Y )).
It suffices to show that this map is an isomorphism and that, for q odd, the sheaf π̃q(K/n) is trivial.

For that we need to compute the stalks of the presheaves K/n. For any point x ∈ X , consider the natural
chart P → OX,x, where P = MX,x/O∗

X,x. By assumption P ≃ Nr, for some r. We have

K/nx(log) = inj lim
U

K/n(U) = inj lim
k

K/n(OX,x,k),

where the first limit is over the Kummer log-étale neighbourhoods U of the log geometric point x(log) in
X , and the second limit is over the base changes OX,x,k = OX,x ⊗Z[P ] Z[P ] of OX,x by the k-power map
k : P → P , k being invertible in OX,x. Since P ≃ Nr, the ring OX,x,k is local.

By Gabber’s rigidity [7] we have the following commutative diagram

πq(K/n(OX,x))
∼−−−−→ πq(K/n(k))

y
y∼

πq(K/n(OX,x,k))
∼−−−−→ πq(K/n(k)).

Hence, inj limk πq(K/n(OX,x,k))
∼→ πq(K/n(k)). The proposition now follows from the computations of

K-theory of separably closed fields. �

The above computation yields the following

sp Proposition 5.13. Suppose that X satisfies condition (*) and that, for all x ∈ X, MX,x/O∗
X,x is iso-

morphic to a direct sum of N. Let n be invertible on X. Then there exists a cohomological spectral
sequence Ep,q

r , r ≥ 2, such that

Ep,q
2 =

{
Hp(Xkét,Z/n(q/2)) for q − p ≥ 0 and q even

0 for q − p ≥ 0 and q odd.

This spectral sequence converges strongly to Kkét
q−p(X,Z/n) for q− p ≥ 1. The differential dr in the above

spectral sequence maps Ep,q
r to Ep+r,q+r−1

r .

comp Theorem 5.14. Let X be a log-regular, regular scheme satisfying condition (*). Let n be a natural
number invertible on X. Then the open immersion j : U →֒ X, where U = Xtr is the maximal open set
of X on which the log-structure is trivial, induces an isomorphism

j∗ : Kkét
m (X,Z/n)

∼→ K ét
m(U,Z/n), m ≥ 0.

Proof. Let K/n→ Kf/n be a globally fibrant replacement. By Theorem 5.4,

H−m(Uét,Z/n) ≃ H−m(Ukét,Z/n) ≃ H−m(Xkét, j∗K
f/n).

It suffices to show that the natural map of presheaves on Xkét,

K/n→ j∗(K
f/n)

is a weak equivalence. Or that the induced map on all the log-geometric stalks is a weak equivalence. By
Proposition 5.13, πq(K/nx(log)) is trivial for q odd and isomorphic to Z/n(i) for q = 2i. From Proposition
5.6,

πq((j∗(K/n))x(log)) ≃ inj lim
Y

K ét
q (YU ,Z/n),

where the limit is over the Kummer log-étale neighbourhoods Y of x(log) in X . Consider now the
composition

πq((K
f/n)x(log)) = inj lim

Y
Kq(Y,Z/n)

j∗≃ inj lim
Y

Kq(YU ,Z/n)

ρ→ inj lim
Y

K ét
q (YU ,Z/n) ≃ πq((j∗(K

f/n))x(log)).
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By Proposition 5.15 below, the map j∗ is an isomorphism. By Thomason [34, 11.5], the map ρ is an
isomorphism after inverting the Bott element. This yields the isomorphism

π∗((K/n)x(log))[β
−1
n ]

∼→ π∗((j∗(K
f/n))x(log))[β

−1
n ].

Since the Bott element is invertible on both sides, we get the isomorphism

πq((K/n)x(log))
∼→ πq((j∗(K

f/n))x(log)),

as wanted. �

local Proposition 5.15. Let X be a log-regular, regular scheme. Let n be a natural number invertible on X.
For any point x ∈ X, the natural map

inj lim
Y

Kq(Y,Z/n)→ inj lim
Y

Kq(YU ,Z/n)

is an isomorphism. Here, the limit is taken over the Kummer log-étale neighbourhoods of x(log) in X.

Proof. Looking étale locally, we may assume that X = Spec(OX,x) (abusing notation a bit), and we have
a chart P → OX,x, for P = MX,x/O∗

X,x ≃ Nk. Consider the closed subscheme of X

Z = X ⊗Z[X1,...,Xk] Z[X1, . . . , Xk]/(X1 . . . Xk).

Up to reindexing, Z can be covered by closed subschemes

Zi = X ⊗Z[X1,...,Xk] Z[X1, . . . , Xk]/(X1, . . . , Xi).

We will need the following lemma

Lemma 5.16. Consider the cartesian diagram

Z ′
i −−−−→ Spec(Z[X1, . . . , Xk]/(X

r
1 , . . . , X

r
i ))ymr

ymr

Zi −−−−→ Spec(Z[X1, . . . , Xk]/(X1, . . . , Xi)),

where the map mr is defined by sending Xl to Xr
l . The pullback map m∗

r : K ′
∗(Zi,Z/n) → K ′

∗(Z
′
i,Z/n)

is trivial for r large enough and invertible on X.

Proof. We can filter the ring Z[X1, . . . , Xk]/(X
r
1 , . . . , X

r
i )) (as an Z[X1, . . . , Xk]/(X1, . . . , Xi) module)

with ri graded pieces isomorphic to Z[X1, . . . , Xk]/(X1, . . . , Xi) ≃ Z[Xi+1, . . . , Xk]. Now, we can do the
same for the ring OZ′

i
assuming that there is enough flatness, i.e., that

Tor
Z[X1,...,Xk]/(X1,...,Xi)
j (OZi ,Z[X1, . . . , Xk]/(X

a1

1 , . . . , Xai

i )) = 0, j > 0, a1, . . . , ai ≥ 1.

But that follows from the results of Kato [22, 6.1] in the following way

Tor
Z[X1,...,Xk]/(X1,...,Xi)
j (OZi ,Z[X1, . . . , Xk]/(X

a1

1 , . . . , Xai

i )) =

Tor
Z[X1,...,Xk]/(X1,...,Xi)
j (OX ⊗Z[X1,...,Xk] Z[X1, . . . , Xk]/(X1, . . . , Xi),Z[X1, . . . , Xk]/(X

a1

1 , . . . , Xai

i ))
∼→

Tor
Z[X1,...,Xk]
j (OX ,Z[X1, . . . , Xk]/(X

a1

1 , . . . , Xai

i )) = 0.

Hence we have a filtration ofOZ′

i
byOZi modules. This filtration has length ri and the graded pieces are

isomorphic to OZi ⊗Z[Xi+1,...,Xk] Z[Xi+1, . . . , Xk], where the tensor product is over the map mr (sending
Xl to Xr

l ). Since the map mr is flat, this yields (by devissage) that the map K ′
∗(Zi,Z/n)→ K ′

∗(Z
′
i,Z/n)

is zero for ri ≥ n. Clearly r = n will do. �

Mayer-Vietoris for K ′-theory and the above lemma yield that the map mr : X → X defined by
Xl 7→ Xr

l kills K ′
∗(Z,Z/n) for some r = nj. Since mr is Kummer log-étale, this gives the isomorphism

in our proposition (note that we can assume all the schemes Y in the limits to be regular). �
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logetale Corollary 5.17. Let X be a log-regular scheme satisfying condition (*). Let n be a natural number
invertible on X. Then the open immersion j : U →֒ X, where U = Xtr is the maximal open set of X on
which the log-structure is trivial, induces an isomorphism

j∗ : Kvét
m (X,Z/n)

∼→ K ét
m(U,Z/n), m ≥ 0.

Proof. By Theorem 5.4,

H−m(Uét,Z/n) ≃ H−m(Uvét,Z/n) ≃ H−m(Xvét, j∗K
f/n).

It suffices to show that the natural map of presheaves on Xvét,

K/n→ j∗(K
f/n)

induces a weak equivalence on the stalks at a conservative family of valuative log-geometric points. Recall
(section 2.2) that, for x ∈ U , U → Spec(Z[P ]), a valuative log-geometric point over x can be described
as a compatible system of log-geometric points of certain log-blow-ups UJ of U . Since X is log-regular,
all the log-blow-ups UJ can be assumed to be regular (see [30, Thm 5.5]). On each UJ , the computations
in the proof of Theorem 5.14, show that the map

πq(K/nx(log))→ πq((j∗(K
f/n))x(log))

is an isomorphism. This finishes our proof. �

Similarly, Proposition 5.12 implies the following two corollaries.

Corollary 5.18. Suppose that X is log-regular and satisfies condition (*). Let n be invertible on X.
Then the sheaves of homotopy groups of K/n in the log-étale topology are given by

π̃q(K/n) ≃
{
Z/n(i) for q = 2i ≥ 0

0 for q ≥ 0, odd.

spectral Corollary 5.19. Suppose that X is log-regular and satisfies condition (*). Let n be invertible on X.
Then there exists a cohomological spectral sequence Ep,q

r , r ≥ 2, such that

Ep,q
2 =

{
Hp(Xvét,Z/n(q/2)) for q − p ≥ 0 and q even

0 for q − p ≥ 0 and q odd.

This spectral sequence converges strongly to Kvét
q−p(X,Z/n) for q − p ≥ 1.

Remark 5.20. Let X∗ be one of the Kummer sites studied in this paper. Consider the presheaves
K0

∗ : X 7→ K0(X∗) and K0
∗/n : X 7→ K0/n(X∗). They are weakly equivalent to the presheaves K

and K/n. Choose their fibrant resolutions Kf ,Kf/n. For m ≥ 0 they define functorial maps from the
algebraic K-theory to topological K-theory

ρm : Km(X∗) = πm(K0
∗(X))→ πm(Kf (X)) = K∗

m(X),

ρm : Km(X∗,Z/n) = πm(K0
∗/n(X))→ πm(Kf/n(X)) = K∗

m(X,Z/n)

The above yields that for a log-regular regular scheme X satisfying condition (*), a number n invertible
on X , and m ≥ 0, the map

ρm : Km(Xkét,Z/n)→ Kkét
m (X,Z/n)

factors through the projection

π : Km(Xkét,Z/n)→ Km(Xkét,Z/n)/K
′
m(Zkét,Z/n),

where Z is the divisor at infinity. Indeed, we have the following commutative diagram

Km(Xkét,Z/n)
j∗−−−−→ Km(Uét,Z/n) = Km(U,Z/n)

yρm

yρm

Kkét
m (X,Z/n)

j∗−−−−→
∼

Kkét
m (U,Z/n),
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where j : U = Xtr →֒ X is the natural immersion. And our claim follows now from the localization
sequence and Theorem 5.14.

Remark 5.21. Corollary 5.17 is closely related to the following absolute log-purity conjecture (see [15,
3.4.2]).

Conjecture 5.22. Let X be a log-scheme, locally Noetherian. Assume that X is log-regular and let
j : U →֒ X be the open set of triviality of the log-structure of X. Assume that n is invertible on X. Then
the adjunction map

Z/n(q)→ Rj∗j
∗Z/n(q)

is an isomorphism for any q.

Indeed, the log-purity conjecture coupled with the spectral sequences 5.19 for X and U implies Corol-
lary 5.17. On the other hand, the usual computation with Adams operations on the spectral sequences
5.19 for X and U should imply their degeneration up to small torsion. Hence the absolute log-purity
conjecture (up to small torsion).

Since log-regular schemes can be desingularized by a log-blow-up, the absolute log-purity conjecture
follows easily from the following absolute purity conjecture in étale cohomology.

Conjecture 5.23. Let i : Y →֒ X be a closed immersion of Noetherian, regular schemes of pure codi-
mension d. Let n be an integer invertible on X. Then

Hq
Y (Xét,Z/n) ≃

{
0 for q 6= 2d

Z/n(−d) for q = 2d

This conjecture was proved by Gabber [11]. Thus to prove Corollary 5.17, we could have used spectral
sequences 5.19 and evoke the purity conjecture in étale cohomology.

References

SGA32 [1] M. Artin, J. E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud, J.-P. Serre Schémas en groupes.
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Scientifiques, Paris 1964.

SGA33 [2] M. Artin, J. E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud, J.-P. Serre Schémas en groupes.
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Astérisque No. 223 (1994), 269–293.
K1 [22] K. Kato, Toric singularities, Amer. J. Math. 116 (1994), 1073–1099.
K5 [23] K. Kato, Logarithmic degeneration and Dieudonné theory, preprint.
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