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Abstract. We show that the Semistable conjecture of Fontaine-Jannsen is true for proper vertical

fine and saturated log-smooth families with reduction of Cartier type (for example proper schemes

with simple semistable reduction). We derive it from Suslin’s comparison theorem between motivic
cohomology and étale cohomology. This gives a new proof of the Semistable conjecture showing motivic

character of p-adic period maps.

1. Introduction

The purpose of this paper is to give a motivic proof of the Semistable Conjecture of Fontaine-Jannsen
[8] for proper vertical fine and saturated log-smooth families with reduction of Cartier type. Recall the
formulation of this conjecture. Let K be a complete discrete valuation field of mixed characteristic (0, p)
with ring of integers V and a perfect residue field k. Let X× be a fine and saturated log-smooth proper
vertical V ×-scheme, where V is equipped with the log-structure associated to the closed point, such that
the special fiber X×0 is of Cartier type. A scheme X over V with a simple semistable reduction would be
a standard example.

Conjecture 1.1. (Semistable Conjecture) There exists a natural Bst-linear period isomorphism

αst : H∗(XK ,Qp)⊗Qp
Bst ' H∗cr(X

×
0 /W (k)0)⊗W (k) Bst

preserving Galois action, monodromy, filtration and Frobenius.

Here K is an algebraic closure of K, W (k)0 is the ring of Witt vectors W (k) equipped with the
log-structure associated to (N → W (k), 1 7→ 0), and Bst is a certain ring of periods introduced by
Fontaine [8]. The ring Bst is equipped with Galois action, Frobenius and monodromy operators. The log-
crystalline cohomology groups H∗cr(X

×/W (k)0)[1/p] are also equipped with Frobenius and monodromy
operators. Moreover, the ring Bst maps into another ring of periods BdR, which is equipped with a
decreasing filtration. There is also a canonical isomorphism of K ⊗W (k) H

∗
cr(X

×
0 /W (k)0) with the de

Rham cohomology groups H∗dR(XK/K) which are equipped with the Hodge filtration. The base change
of the period isomorphism to BdR does yield an isomorphism on the filtrations. As a corollary, one gets
that the étale cohomology as a Galois representation can be recovered from the log-crystalline cohomology:

H∗(XK ,Qp) ' (H∗cr(X
×
0 /W (k)0)⊗W (k) Bst)

N=0,φ=1 ∩ F 0(BdR ⊗K H∗dR(XK/K)).

The Semistable Conjecture is now a theorem. It was first proved by Kato [21] and Tsuji [33] for
proper, vertical, log-schemes with semistable reduction. Their method is basically local and relies on a
comparison theorem between sheaves of p-adic vanishing cycles and log-syntomic sheaves (which relate
in a known way to étale and log-crystalline cohomology, respectively). This local comparison theorem is
proved by explicite computations of certain gradings of both sheaves via symbols. Later the conjecture
was proved by Faltings [6]. His method is based on the theory of almost étale extensions he has developed
applied to certain sheaves of coherent vanishing cycles.

These are two of the three currently existing methods of proving p-adic comparison theorems. The
third one is due to the author and was used before to prove the Crystalline Conjecture [25]. It relies on
the postulate that the étale cohomology of XK for high enough Tate twists realizes motivic cohomology
(understood as Bloch’s higher Chow groups or γ-graded pieces of K-theory). This is the Beilinson-
Lichtenbaum Conjecture. It follows from the Bloch-Kato Conjecture whose proof was recently announced
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by Voevodsky. Similarly, one could expect that the log-syntomic cohomology of X×
V

realizes yet-to-be-

defined log-motivic cohomology of X×
V

. The period morphism would then simply be a p-adic incarnation

of the localization map j∗ in motivic cohomology for the open immersion j : XK ↪→ X×
V

. The Semistable

Conjecture would then be equivalent to the map j∗ being an isomorphism. That in turn should follow
from the fact that mod p K-theory of varieties in characteristic p — that controls the kernel and cokernel
of j∗ — is ”stably” trivial (for an appropriate definition of ”stably”). This line of argument should
in particular imply a uniqueness statement for p-adic period morphisms: a p-adic period morphism is
uniquely determined by its values on higher cycle classes. We refer the reader to [27] for a survey of results
on the relationship between p-adic motivic cohomology and other cohomologies of arithmetic interest (in
the stable range).

Since the Beilinson-Lichtenbaum Conjecture is not yet fully proved and log-motivic cohomology is not
yet constructed we are forced to work here with some substitutes. They are though good enough to carry
out the above ideas to prove the Semistable Conjecture. They also give a uniqueness statement for p-adic
period morphisms that imply that the morphisms of Tsuji, Faltings and the author are equal [28].

We will now sketch our proof of the conjecture. Recall that, by a standard argument (see [9], [5]), it
suffices to construct a map

α : H∗(XK ,Qp) −→ H∗cr(X
×
0 /W (k)0)⊗W (k) Bst (1.1.1)

compatible with all the structures, and, in addition, with Poincaré duality and the trace map. Since there
is no monodromy action on étale cohomology, the image of α lies in the kernel of the monodromy [21]:

(H∗cr(X
×
0 /W (k)0)⊗W (k) B

+
st)

N=0 ' Q⊗ proj lim
n

H∗cr(X
×
V ,n

/Wn(k)),

where V is the integral closure of V in K and B+
st is a subring of Bst. Taking into account filtration and

Frobenius we see that we need to construct (at least for large enough i) a well-behaved family of maps
into log-syntomic cohomology

αna,i : Ha(XK ,Z/p
n(i))→ Ha(X×

V ,n
, s′n(i)).

The motivic proof can be summarized by the following diagram

griγ Kj(XV ; Z/pn)
∼−−−−→
j∗

griγ Kj(XK ; Z/pn)yccr
ij o

ycét
ij

H2i−j(X×
V ,n

, s′n(i))
αn2i−j,i←−−−− H2i−j(XK ,Z/p

n(i)),

where Kj(·; Z/pn) is the K-theory with coefficients and griγ Kj(·; Z/pn) is the γ-grading playing the role
of motivic cohomology. The term in the left upper corner stands for the limit of K-theory groups of
(global) regular resolutions of the log-schemes X×V ′ , for V ′ a finite extension of V , and is a substitute for

not-yet-defined log-motivic cohomology. The maps cét
ij and ccr

ij are the étale and the log-syntomic Chern

class maps, respectively. A priori, because of the nature of the term griγ Kj(XV ; Z/pn) the log-syntomic
Chern class lands in the log-syntomic cohomology groups of the regular resolutions of the log-schemes
X×V ′ . However, the map from the resolution to the original log-scheme X×V ′ is a log-blow-up and it follows
(Proposition 2.3) that the cohomology of these resolutions is isomorphic to the cohomology of the original
log-schemes X×V ′ .

We define the period map αn2i−j,i to make the above diagram commute. To do that, first we prove
(in Lemma 3.5) that for j > d + 1 the localization map j∗ is an isomorphism modulo some constants
depending only on the dimension d of XK and i, j. This follows from the fact that the K ′-theory with
mod-p coefficients of the special fiber vanishes for j > d (a theorem of Geisser-Levine [13]). The reader
will notice that this vanishing is entirely a p-type phenomena: it is not true for K ′-theory mod l, l 6= p.
Next, we show (Proposition 3.2) that, for j ≥ 2d, the étale Chern class map cét

ij is an isomorphism modulo
a constant depending only on d and i, j. This should be thought of as a K-theory incarnation of the
theorem of Suslin comparing higher Chow groups with étale cohomology [31]. Modulo some constants,
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we set αn2i−j,i = ccr
ij(j
∗)−1(cét

ij)
−1, take the projective limit over n, and after tensoring with Q we get our

map α2i−j,i. Our construction of the map α2i−j,i makes it now very easy to check its compatibility with
Poincaré duality and trace maps.

Notice that the above period map goes from étale cohomology to log-syntomic cohomology. That is in
the opposite direction than the period morphisms of Tsuji and Faltings. This has the nice consequence
that to prove that the map is an isomorphism we can simply use Poincaré duality and avoid all the
delicate local computations of the other two methods. On the other hand we do not get any information
about the sheaves of p-adic vanishing cycles like Tsuji does.

Acknowledgments. This paper was written during my stay at the Max-Planck Institut in Bonn and
at the Institut Henri Poincaré in Paris. I would like to thank these institutions for their support and
hospitality. I would also like to thank T. Geisser for many helpful and inspiring conversations. Special
thanks go to the referees for a very careful reading of the manuscript.

2. Preliminaries

Throughout the paper, let p be a fixed prime, let K denote a chosen algebraic closure of a field K,
and, for a scheme X, let Xn = X ⊗ Z/pn.

Let V be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field k of characteristic p. Let W (k) be the ring of Witt vectors with coefficients in k with fraction

field K0. Set GK = Gal(K/K), Cp = K̂, and let σ be the absolute Frobenius on W (k). For a V -scheme
X, let X0 denote the special fiber of X. We will denote by V , V ×, and V 0 the scheme Spec(V ) with
the trivial, canonical (i.e., associated to the closed point), and (N→ V, 1 7→ 0) log-structure respectively,
and, for a log-scheme X×, we will denote by X the underlying scheme. Unless otherwise stated, we work
in this paper in the category of fine log-schemes.

2.1. The rings of periods. Let’s recall the definitions of the rings Bcr, BdR, Bst of Fontaine [7], [8],
[9]. We have

B+
cr,n = H0

cr(Spec(V n)/Wn(k)), B+
cr = proj lim

n
B+

cr,n[1/p], Bcr = B+
cr[t
−1],

where V is the integral closure of V in K and t is a certain element of B+
cr (see [7] for a precise definition

of t). The ring B+
cr is a topological K0-module equipped with a Frobenius φ coming from the crystalline

cohomology and a natural GK-action. We have that φ(t) = pt and that GK acts on t via the cyclotomic
character.

The canonical morphism B+
cr,n → V /pn is surjective. Let Jcr,n denote its kernel. Let

B+
dR = proj lim

r
(Q⊗ proj lim

n
B+

cr,n/J
[r]
cr,n), BdR = B+

dR[t−1].

The ring B+
dR has a discrete valuation given by the powers of t. Its quotient field is BdR. We set

FnBdR = tnBdR. This defines a descending filtration on BdR.
Let π be a uniformizer of V . Choose a sequence of elements s = (sn) of V such that s0 = π and

spn+1 = sn. Fontaine associates to it an element us of B+
dR. Let B+

st denote the subring of BdR generated

by B+
cr and us. Fontaine shows that us is transcendental over B+

cr. Hence B+
st is a polynomial algebra in

one variable over B+
cr. The ring B+

st does depend on the choice of π but not of s. The action of GK on B+
dR

restricts well to B+
st . The Frobenius φ extends to B+

st by φ(us) = pus and one defines the monodromy
operator N : B+

st → B+
st as the unique B+

cr-derivation such that Nus = −1. We have Nφ = pφN . Let
Bst = Bcr[us]. Different choices of the uniformizer π yield isomorphic rings B+

st , so we can and we will
identify them via these isomorphisms. The dependence on π will then be encoded in the morphism
ιπ : B+

st ↪→ B+
dR.

We will need the following crystalline interpretation of the ring B+
st (see [21], [33]). Let R×n denote the

PD-envelope of the ring Wn[x] with respect to the closed immersion Wn[x]→ Vn, x→ π, equipped with
the log-structure associated to N→ Rn, 1→ x. Let

B̂+
st = proj lim

n
H0

cr(Spec(OV ,n)/R×n )[1/p].
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The ring B̂+
st has a natural action of GK , Frobenius φ, and a monodromy operator N . Kato [21, 3.7]

shows that the ring B+
st is canonically (and compatibly with all the structures) isomorphic to the subring

of elements of B̂+
st annihilated by a power of the monodromy operator N .

More generally, for any fine log-scheme X×, which is log-smooth and proper over V ×, set

Hi
cr(X

×
V
/W (k)) := proj lim

n
Hi

cr(X
×
V ,n

/Wn(k)), Hi
cr(X

×) := Q⊗Hi
cr(X

×
0 /W (k)0).

Assume now that the special fiber of X× is of Cartier type. Then Kato defines [21, 4.2,4.5] canonical
morphisms

Q⊗Hi
cr(X

×
V
/W (k))

hπ→ (B̂+
st ⊗K0 H

i
cr(X

×))N=0 ∼← (B+
st ⊗K0 H

i
cr(X

×))N=0.

It can be checked (cf. [33, 4.5.6-7]) that these morphisms are compatible with the product structure,
Galois action, and the Frobenius.

Moreover, Hyodo and Kato [18, 5.1] have constructed a canonical K-isomorphism

ρπ : K ⊗K0
Hi

cr(X
×)

∼−→ Hi
dR(X×K/K),

which is compatible with products [33, 4.4.13]. Hence the composition

ρπhπ : Q⊗Hi
cr(X

×
V
/W (k)) −→ B+

st ⊗K0
Hi
dR(X×K/K)

is functorial in X× and compatible with products and Galois action.
Let X× be any fine log-scheme, which is log-smooth and proper over V × with saturated log-structure

on the generic fiber. We will need the crystalline interpretation of B+
dR ⊗K Hi

dR(X×K/K) from [21] (see
also [33, 4.7]):

B+
dR⊗KH

i
dR(X×K/K)

∼−→ proj lim
s

(Q⊗Hi
cr(X

×
V
/V ×,O/J [s])) [33, 4.7.6], (2.2.1)

F r(B+
dR⊗KH

i
dR(X×K/K))

∼−→ proj lim
s≥r

(Q⊗Hi
cr(X

×
V
/V ×, J [r]/J [s])) [33, 4.7.13].

(2.2.2)

2.2. Syntomic regulators. We will recall now briefly the definition and properties of syntomic regula-
tors. For details we refer the reader to [16] and [25]. Let X be a scheme of finite type, separated and
flat over W (k). Recall the differential definition [19] of syntomic cohomology of Fontaine-Messing [9].
Assume first that we have an immersion i : X ↪→ Z over W (k) such that Z is a smooth W (k)-scheme
endowed with a compatible system of liftings of the Frobenius {Fn : Zn → Zn}. Let Dn = DXn(Zn) be
the PD-envelope of Xn in Zn (compatible with the canonical PD-structure of pWn(k)) and JDn the ideal
of Xn in Dn. Consider the following complexes

s′n(r)X := Cone(J
[r−·]
Dn

⊗ Ω·Zn/Wn(k)

pr−φ−−−→ ODn ⊗ Ω·Zn/Wn(k))[−1],

where φ is the Frobenius. The complexes s′n(r)X are, up to canonical quasi-isomorphisms, independent
of the choice of i and {Fn}.

In general, immersions as above exist étale locally, and one defines s′n(r)X ∈ D+(Xét,Z/p
n) by gluing

the local complexes. Finally, one defines s′n(r)X
V
∈ D+((XV )ét,Z/p

n) as the inductive limit of s′n(r)XV ′ ,

where V ′ varies over the integral closures of V in all finite extensions of K in K. Set

Hi(X, s′n(r)) := Hi
ét(X, s

′
n(r)X), Hi(XV , s

′
n(r)) := Hi

ét(XV , s
′
n(r)X

V
).

We have the long exact sequence

. . . −→ Hi(X, s′n(r)) −→ Hi
cr(X/W (k), J

[r]
Xn/Wn(k))

pr−φ−−−→ Hi
cr(X/W (k),OXn/Wn(k)) −→ . . .

There exists a well-behaved product

Hi(X, s′n(r))⊗Hj(X, s′n(r′)) −→ Hi+j(X, s′n(r + r′))

compatible with the crystalline products.
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Let now X× be a fine finite type and separated log-scheme over W (k). Then (see [33, 2.1]) we have
the logarithmic analog of the above complexes s′n(r)X× on Xét and the corresponding cohomology groups

Hi(X×, s′n(r)) := Hi
ét(X, s

′
n(r)X×), Hi(X×

V
, s′n(r)) := Hi

ét(XV , s
′
n(r)X×

V

).

We have a natural, compatible with products, map

ε : Hi(X, s′n(b)) −→ Hi(X×, s′n(b)).

For a scheme X, let K∗(X) denote the higher K-theory groups of X as defined by Quillen [29]. Simi-
larly, for a noetherian scheme X, let K ′∗(X) denote Quillen’s K ′-theory. For a prime p, the corresponding
groups with coefficients Z/pn [32], will be denoted by Ki(X; Z/pn) and K ′i(X; Z/pn). For p > 3 there
is a well-behaved product on the groups Ki(X; Z/pn). For p = 2, if n > 1 there is a product and it is
commutative and associative for n > 3. If p = 3, there is a product that is commutative and associative
for n > 1 ([3], [24]).

For a noetherian regular connected scheme X, we have the following γ-filtrations compatible with
products:

F kγK0(X) =

{
K0(X) if k ≤ 0,

〈γi1(x1) · · · γin(xn)|ε(x1) = . . . = ε(xn) = 0, i1 + · · ·+ in ≥ k〉 if k > 0,

F kγKq(X; Z/pn) = 〈γi1(x1) ∪ · · · ∪ γin(xn)|xi ∈ Kqi(X; Z/pn), qi ≥ 2,

i1 + · · ·+ in ≥ k〉,

FkγKq(X; Z/pn) = 〈aγi1(x1) ∪ · · · ∪ γin(xn)|a ∈ F i0γ K0(X), xi ∈ Kqi(X; Z/pn), qi ≥ 2,

i0 + i1 + · · ·+ in ≥ k〉,

where ε is the augmentation on K0(X) and pn > 2. We will also consider another γ-filtration: F̃ iγ =

〈γk(x)|k ≥ i〉, where 〈. . . 〉 denotes the subgroup generated by the given elements. These filtrations are
related: by [30, 3.4] and [15, 5.4], we have

M(d, i, 2j)F iγKj(X; Z/pn) ⊂ F̃ iγKj(X; Z/pn) ⊂ F iγKj(X; Z/pn), j ≥ 2, (2.2.3)

where d is the dimension of X and the integers M(k,m, n) are defined by the following procedure [30, 3.4].
Let l be a positive integer, and let wl be the greatest common divisor of the set of integers kN (kl − 1),
as k runs over the positive integers and N is large enough with respect to l. Let M(k) be the product of
the wl’s for 2l < k. Set M(k,m, n) =

∏
2m≤2l≤n+2k+1M(2l).

Using Illusie’s computation of the crystalline cohomology of B.GLm/W (k) [16, II], one can define
universal classes Ci,m ∈ H2i(B.GLm/W (k), s′n(i)). For any flat finite type scheme X over W (k), via the
method of Gillet [14, 2.22], [25, 2.3], they yield functorial and compatible families of Chern classes

csyn
ij : Kj(X) −→ H2i−j(X, s′n(i)) for j ≥ 0,

csyn
ij : Kj(X; Z/pn) −→ H2i−j(X, s′n(i)) for j ≥ 2,

which are also compatible with the crystalline Chern classes

ccr
ij : Kj(X) −→ H2i−j

cr (Xn/Wn(k),OXn/Wn(k))

via the canonical map H2i−j(X, s′n(i))→ H2i−j
cr (Xn/Wn(k),OXn/Wn(k)).

Recall the construction of the classes csyn
i,j . First, one constructs the universal classes Ci,m. Recall [16]

that

H∗cr(B·GLm/Wn(k)) ' H∗dR(B·GLm/Wn(k)) 'Wn(k)[x1, . . . , xm],

where the classes xi ∈ H2i
dR(B·GLm/Wn(k)) are the de Rham Chern classes of the universal locally free

sheaf onB·GLm/Wn(k) (defined via a projective space theorem). We have xi ∈ H2i
cr (B·GLm/Wn(k), J

[i]
B·GLm/Wn(k))

and φ(xi) = pixi. Since B·GLm/Wn(k) is smooth over Wn(k), it follows that we have the exact sequence

0→ H2i(B·GLm/W (k), s′n(i))→ H2i
cr (B·GLm/Wn(k), J

[i]
B·GLm/Wn(k))

φ−pi−→ H2i
cr (B·GLm/Wn(k)).
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For m ≥ i, we define Ci,m = xi ∈ H2i(B·GLm/W (k), s′n(i)). By construction these classes are compatible
with the crystalline classes.

The classes Ci,m ∈ H2i(B·GLm/W (k), s′n(i)) yield compatible universal classes (see [14, p. 221])
Ci,m ∈ H2i(X,GLm(OX), s′n(i)), hence a natural map of pointed simplicial sheaves onX, Ci : B·GL(OX)→
K(2i, s̃′n(i)X), where K is the Dold–Puppe functor of τ≥0s̃

′
n(i)X [2i] and s̃′n(i)X is an injective resolution

of s′n(i)X . The characteristic classes ci,j , j ≥ 2, are now defined [14, 2.22] as the composition

Kj(X,Z/p
n)→ H−j(X,Z×B·GL(OX)+,Z/pn)→ H−j(X,B·GL(OX)+,Z/pn)

Ci−→ H−j(X,K(2i, s̃′n(i)X),Z/pn)
f→ H2i−j(X, s′n(i)),

where B·GL(OX)+ is the (pointed) simplicial sheaf on X associated to the + - construction. Here, for
a (pointed) simplicial sheaf E· on X, H−j(X, E·,Z/pn) = πj(RΓ(X, E·),Z/pn) is the generalized sheaf

cohomology of E· [14, 1.7]: if we let PjX denote the constant sheaf of j-dimensional mod pn Moore spaces,

then H−j(X, E·,Z/pn) = [PjX , E·], where, for two pointed simplicial sheaves F·, F ′· on X, [F·,F ′· ] denotes
the morphisms from F· to F ′· in the homotopy category. The map f is defined as the composition

H−j(X,K(2i, s̃′n(i)X),Z/pn) = πj(K(2i, s̃′n(i)(X)),Z/pn))
hj→ Hj(K(2i, s̃′n(i)(X)),Z/pn))

→ Hj(s̃
′
n(i)(X)[2i]) = H2i−j(X, s′n(i)),

where hj is the Hurewicz morphism.
This gives mod pn Chern classes in H∗(X, s′n(∗)). The integral ones are defined in an analogous way.

Lemma 2.1. The syntomic Chern classes have the following properties.

(1) c syn
ij , for j > 0, is a group homomorphism.

(2) c syn
ij , for j ≥ 2 is a group homomorphism unless j = 2 and p = 2.

(3) c syn
ij are compatible with the reduction maps s′n(i)→ s′m(i), n ≥ m.

Moreover, if X is regular, then
(4) Let p be odd or p = 2, n ≥ 2 and l, q 6= 2. If α ∈ Kl(X; Z/pn) and α′ ∈ Kq(X; Z/pn), then

c syn
ij (αα′) = −

∑
r+s=i

(i− 1)!

(r − 1)!(s− 1)!
c syn
rl (α)c syn

sq (α′),

assuming that l, q ≥ 2, l + q = j, 2i ≥ j, i ≥ 0.
(5) If α ∈ F jγK0(X), j 6= 0, and α′ ∈ F kγKq(X; Z/pn), q ≥ 2, is such that c syn

lq (α′) = 0 for l 6= k,
then

c syn
j+k,q(αα

′) = − (j + k − 1)!

(j − 1)!(k − 1)!
c syn
j0 (α)c syn

kq (α′),

assuming that p 6= 2 or q > 2.
(6) The above multiplication formulas hold also for p = 2, n ≥ 4, q = 2 and α′ such that ∂α′ ∈ K1(X)

belongs to V ∗.
(7) The integral Chern class maps csyn

i0 restrict to zero on F i+1
γ K0(X).

(8) The Chern class maps csyn
ij restrict to zero on F i+1

γ Kj(X; Z/pn), j ≥ 2, unless j = 2, p = 2.

Proof. This lemma was proved by us in [25, 2.3] for p 6= 2. When p is even the situation is more
complicated because the Hurewicz map is not a group homomorphism for j = 2 (see property (2)). But
with this in mind the proof goes through assuming the restrictions listed in the lemma. Property (6)
follows by adding Weibel’s analysis [34, 3.5.1]. An interested reader will find all the necessary information
on behaving of the Hurewicz map, comultiplication, and primitivity for p = 2 in Weibel’s article [34]. �

Remark 2.2. For any K-scheme X, one can argue as above to show that the étale Chern class maps

cét
ij : Kj(X) −→ H2i−j(X,Z/pn(i)), cét

ij : Kj(X; Z/pn) −→ H2i−j(X,Z/pn(i))

have analogous properties to those of the syntomic Chern classes.
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2.3. Log-étale descent. The following proposition will be essential in our construction of the comparison
morphism; it will allow us to descent the syntomic cohomology of the regular resolution to that of the
original log-scheme. We are working in this section in the category of fine and saturated log-schemes.
Recall that a map of log-scheme is a log-blow-up if it is log-étale and blows-up some of the closed strata.
The reader will find a precise definiton in [26].

Proposition 2.3. For any n ≥ 1, r ≥ 0, any log-smooth separated scheme of finite type X× → V ×, and
any log-blow-up π : U× → X×, there is a natural isomorphism

H∗cr(X
×
n /Wn(k), J

[r]

X×n /Wn(k)
)
π∗−→
∼

H∗cr(U
×
n /Wn(k), J

[r]

U×n /Wn(k)
).

Proof. We know that log-blow-ups do not change de Rham cohomology. The proposition follows by some
flatness arguments.

By Zariski descent for log-crystalline cohomology, we may assume X to be affine. There is a commu-
tative diagram of maps of topoi

(U×n /Wn(k))cr

↙ π ↘ fU×

(X×n /Wn(k))cr
fX×−−−→ (V ×n /Wn(k))cr.

It suffices to show that the morphism RfX×∗J
[r]

X×n /Wn(k)

π∗−→ RfU×∗J
[r]

U×n /Wn(k)
is a quasi-isomorphism.

Let iT : S× ↪→ T× −→ Wn(k), ω : S× −→ V ×n , be a PD-thickening. Notice that the log-scheme T× is
saturated: S× is saturated (ω being étale), iT is a nilimmersion, and, since iT is an exact morphism, we
have i−1

T (MT×/O∗T×) 'MS×/O∗S× , where, for a log-scheme Y ×, MY × denotes its log-structure. We have

canonically (RfX×∗J
[r]

X×n /Wn(k)
)T× ' RfX×

S
/T×∗(J

[r]

X×
S
/T×

), where X×S = X×n ×V ×n S× and fX×
S
/T× is the

composition

fX×
S
/T× : (X×S /T

×)cr −→ (X×S )ét −→ T×ét .

We may assume that S× = V (k′)×n , where k′ is a finite field extension of k and V (k′) denotes the
unramified extension of V corresponding to k′. Let Y × := Wn(k′)[x]× be the scheme Spec(Wn(k′)[x])
equipped with the log-structure associated to the map N→ Wn(k′)[x], 1 7→ x. We have an exact closed
immersion iW : V (k′)×n ←− Wn(k′)[x]× given by sending x to a uniformizer of V (k′). Let I be the kernel
of iW . It is a principal ideal.

We may also assume that there exists a retraction h : T× → Wn(k′)[x]× such that hiT = iW
(Wn(k′)[x]× being log-smooth over Wn(k)). Notice that, since T× is equipped with divided powers,
the retraction h factors through a closed subscheme Y ×m of Wn(k′)[x]× given by Im.

Since X×S is affine and log-smooth over S×, it can be lifted to a (necessarily saturated) log-smooth

scheme X×S ↪→ XY ×m
over Y ×m . Let X×T denotes the pullback of XY ×m

via h to T×. Since π : U× → X× is
log-étale, we have the following cartesian diagram of maps of log-schemes

U×S −−−−→ U×T −−−−→ U×Ymyπ yπT yπYm
X×S −−−−→ X×T −−−−→ X×Ymy ygX y
S×

iT−−−−→ T×
h−−−−→ Y ×m ,

where πT , πYm are log-étale liftings of π. Due to the fact that the morphisms X×Ym → Y ×m and U×Ym → Y ×m
are integral it is a cartesian diagram of schemes as well.

The scheme X×T is flat over T× (as it is log-smooth and integral over T× – the monoid MT×/O∗T×
being generated by one element) thus J

[r]

X×
T

' J
[r]
T× ⊗OT× OX×T . Similarly, the scheme U×T is flat over T×
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and J
[r]

U×
T

' J [r]
T× ⊗OT× OU×T . Since there are isomorphisms

RfX×
S
/T×∗(J

[r]

X×
S
/T×

) ' RgX∗(J [r−·]
X×
T

⊗ Ω·
X×
T
/T×

), RfU×
T
/T×∗(J

[r]

U×
S
/T×

) ' RgU∗(J [r−·]
U×
T

⊗ Ω·
U×
T
/T×

),

where gU = gXπT . it suffices to show that the natural morphism

J
[s]

X×
T

⊗ Ωr
X×
T
/T×

π∗T−−→ RπT∗(J
[s]

U×
T

⊗ Ωr
U×
T
/T×

)

is a quasi-isomorphism.
By the above and [17, III.3.7]

RπT∗(J
[s]

U×
T

⊗ Ωr
U×
T
/T×

) = RπT∗Lπ
∗
T (J

[s]

X×
T

⊗ Ωr
X×
T
/T×

) = J
[s]

X×
T

⊗ Ωr
X×
T
/T×
⊗L RπT∗OUT× .

It follows that it suffices to show that the natural morphism OXT
π∗T−−→ RπT∗OUT is a quasi-isomorphism,

or, because the map XT −→ XYm is a homeomorphism of topological spaces, that the natural morphism

OXT
π∗Ym−−−→ RπYm∗OUT = RπYm∗Lπ

∗
Ym∗OXT = OXT ⊗LOYm RπYm∗OUY,m is a quasi-isomorphism (recall

that OXT and OUT are flat over OT ).

It suffices thus to show that OXY,m
π∗Ym−−−→ RπYm∗OUY,m is a quasi-isomorphism. We argue by induction

on m. Assume that the statement is true for m = 1. Since UY,m is flat over Ym, we have the following
exact sequence

0 −→ OUY,m−1
−→ OUY,m −→ OUY,1 −→ 0.

This and the induction hypothesis yield that the sequence

0 −→ Γ(UY,m−1,OUY,m−1
) −→ Γ(UY,m,OUY,m) −→ Γ(UY,1,OUY,1) −→ 0

is exact and that Hi(UY,m,OUY,m) = 0, for i > 0. Evoking once more the induction hypothesis, we get

that Γ(XY,m,OXY,m)
∼−→ Γ(UY,m,OUY,m). Since XY,m is affine, this gives us what we wanted.

It remains to show that OXS
π∗S−→ RπS∗OUS is a quasi-isomorphism. Since U× → X× is a log-blow-up,

this is just a Z/pn-version of Theorem 11.3 from [22]. �

Corollary 2.4. Let X× → V × be any log-smooth separated scheme of finite-type. Then for any n ≥ 1,
r ≥ 0, and any log-blow-up π : U× → X×, there is a natural isomorphism

H∗(X×, s′n(r))
π∗−→
∼

H∗(U×, s′n(r)).

Proof. Use the long exact sequence

. . . −→ Hi(X×, s′n(r)) −→ Hi
cr(X

×
n /Wn(k), J

[r]

X×n /Wn(k)
)
β−→ Hi

cr(X
×
1 /Wn(k),OX×1 /Wn(k)) −→ . . . ,

where β(x, y) = (prx− φ(x)) and Proposition 2.3. �

3. comparison theorem

We are now ready to construct the comparison morphism. First, let’s recall some facts about Bott
elements. Let Y be a scheme such that Γ(Y,OY ) contains a primitive pn’th root of unity. Let µpn(Y )
denote the group of pn’th roots of unity in Γ(Y,OY ). Recall [34, 2.7.2] that, for pn > 2, there are
compatible functorial Bott element homomorphisms

βY : µpn(Y )→ K2(Y ; Z/pn).

In what follows, choose a sequence of nontrivial p-power roots of unity ζ = (ζn), ζn ∈ Qp, ζ
pn

n = 1, ζpn+1 =

ζn, and take for t ∈ Bcr the element associated to this sequence. We have t ∈ H0(V , s′n(1)) ↪→ B+
cr,n. Let

K1 be a finite field extension of K imside K containing ζn and V1 its ring of integers. For pn > 2, define
the Bott classes βn ∈ K2(K1; Z/pn) and β̃n ∈ K2(V1; Z/pn) as βK1(ζn) and βV1(ζn), respectively. These
classes form a compatible sequence with respect to n.
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Lemma 3.1. We have

cét
i,2i(β

i
n) = (−1)i−1(i− 1)!ζ⊗in ∈ H0(K1,Z/p

n(i)); cét
j,2i(β

i
n) = 0, j 6= i;

csyn
i,2i(β̃

i
n) = (−1)i−1(i− 1)!ti ∈ H0(V , s′n(i)); csyn

j,2i(β̃
i
n) = 0, j 6= i.

Proof. The Chern class maps

csyn
i,2 : K2(V1; Z/pn) −→ H2i−2(V1, s

′
n(i))

are induced by the syntomic Chern classes Ci ∈ H2i(B.GL/W (k), s′n(i)) of the universal vector bun-

dle on B.GL/W (k) (see Lemma 2.1 in [25]). On β̃n they act via the universal Chern classes Ci,1 ∈
H2i(B.GL1/W (k), s′n(i)) [34, 2.7.2]. But those vanish for i > 1 giving that csyn

i,2 (β̃n) = 0, for i 6= 1. Simi-

larly we get the vanishing of the étale Chern classes. We computed in [25, Lemma 4.1] that csyn
1,2 (β̃n) = t

and cét
1,2(βn) = ζn. The rest follows from the product formulas in Lemma 2.1. �

We would like now to relate K-theory mod pn to étale cohomology. The following proposition shows that
we can invert étale Chern classes modulo some constants.

Proposition 3.2. Let Y be a smooth scheme of dimension d over K, and let pn ≥ 5. Let j ≥ max{2d, 2},
j ≥ 3 for d = 0 and p = 2, and 2i− j ≥ 0. There exists an integer T (d, i, j) depending only on d, i, and
j such that, the kernel and cokernel of the Chern classes

cét
ij : griγ Kj(Y ; Z/pn) −→ H2i−j(Y,Z/pn(i))

are annihilated by T (d, i, j). An odd prime p divides T (d, i, j) if and only if p ≤ d+ j + 1.

Proof. This proposition is a K-theory version of the following theorem.

Theorem 3.3. (Suslin [31]). The change of topology map

Hj(YZar,Z/p
n(i))→ Hj(Yét,Z/p

n(i)).

is an isomorphism for i ≥ d.

Here Z/pn(i) are the complexes of motivic sheaves Z/pn(i) := X 7→ zi(X, 2i − ∗) ⊗ Z/pn in the
Zariski and étale topology, respectively. Recall how the complex zr(X, ∗) is defined [2]. Denote by 4n
the algebraic n-simplex Spec Z[t0, . . . , tn]/(

∑
ti − 1). Let zr(X, i) be the free abelian group generated

by irreducible codimension r subvarieties of X × 4i meeting all faces properly. Then zr(X, ∗) is the
chain complex thus defined with boundaries given by pullbacks of cycles along face maps. We know that
Hj(X,Z/pn(i)) ' CHi(X,Z/pn(2i − j)) is the Bloch higher Chow group and the cycle class defines an
isomorphism of Hj(Xét,Z/p

n(i)) with the corresponding étale cohomology group (hence we will use the
same notation for both).

Remark 3.4. Suslin states this theorem for quasi-projective schemes but it is in fact true for any
separated scheme (see [12]).

Let’s start the proof. We know that the algebraic Chern class cét
ij is equal to the following composition

cij : Kj(Y ; Z/pn)
ρj−→ KTop

j (Y ; Z/pn)
cij−−→ H2i−j(Y,Z/pn(i)), j ≥ 2,

where KTop
j (Y ; Z/pn) is the étale K-theory of Dwyer and Friedlander [4], [10]. The natural map

ρj : Kj(Y ; Z/pn) −→ KTop
j (Y ; Z/pn)

from algebraic to étale K-theory is Thomason’s sheafified version [32, 4.15] of the map defined in [4]
for affine schemes and cij is the topological Chern class [30, 4.1.4]. The map ρj is compatible with
γ-operations. Recall [32, 4.11] that we have an isomorphism

Kj(Y ; Z/pn)[β−1
n ]

ρj−→
∼

KTop
j (Y ; Z/pn).

We will write K ét
j (Y ; Z/pn) for Kj(Y ; Z/pn)[β−1

n ] (or for the isomorphic cohomology of K-theory spectra
in étale topology).
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We have a Dwyer-Friedlander spectral sequence

Es,q2 =

{
Hs(Y,Z/pn(i)) if 0 ≤ s ≤ q = 2i,

0 otherwise

converging toKTop
q−s(Y ; Z/pn), q−s ≥ 3. Here the differential dr : Es,qr → Es+r,q+r−1

r . Let F sKTop
j (Y ; Z/pn)

denote the filtration on KTop
j (Y ; Z/pn) defined by this spectral sequence. We can prove, as in Soulé [30,

3.4], that

M(d, i, j)F 2i−jKTop
j (Y ; Z/pn) ⊂ F̃ iγK

Top
j (Y ; Z/pn) ⊂ F 2i−jKTop

j (Y ; Z/pn). (3.3.1)

We also know [30, 4.2] that cij restricts to zero on F 2i−j+1KTop
j (Y ; Z/pn). Hence, it induces a map

cij : F̃ iγ/F̃
i+1
γ KTop

j (Y ; Z/pn)
f−→ F 2i−j/F 2i−j+2KTop

j (Y ; Z/pn)
g−→ H2i−j(Y,Z/pn(i)).

We claim that the kernel of cij is annihilated byM(d, i+1, j)(i−1)! and its cokernel byM(d, i, j)M(2d)2(i−
1)!. Indeed, by the inclusions (3.3.1), the map f has kernel and cokernel annihilated by M(d, i + 1, j),
respectively M(d, i, j). Concerning the map g, notice that, by Soulé [30, 4.2], the image of cij in

H2i−j(Y,Z/pn(i)) = E2i−j,2i
2 lies in the kernel K2i−j,2i of all higher differentials dr, r ≥ 2, in the

Dwyer-Friedlander spectral sequence. Hence we have a factorization

g : F 2i−j/F 2i−j+2KTop
j (Y ; Z/pn) −→ K2i−j,2i ↪→ H2i−j(Y,Z/pn(i)).

Since [30, 3.3.2] M(2d)dr = 0 for any r ≥ 2, the cokernel of the inclusion K2i−j,2i ↪→ H2i−j(Y,Z/pn(i))
is annihilated by M(2d)d. Consider now the composition

E2i−j,2i
∞ =F 2i−j/F 2i−j+2KTop

j (Y ; Z/pn) −→ K2i−j,2i

φij−−→ F 2i−j/F 2i−j+2KTop
j (Y ; Z/pn) = E2i−j,2i

∞ ,

where φij is the natural projection (a surjection). This composition is proved in [30, 4.2] to be equal to
multiplication by (−1)i−1(i−1)!. Hence the kernel of g is annihilated by (i−1)!. Also, since M(2d)dr = 0
for any r ≥ 2, the kernel of φij is annihilated by M(2d)d. Hence the cokernel of g is annihilated by
M(2d)2d(i− 1)!.

Consider now the change of topology map

ψj : F̃ iγ/F̃
i+1
γ Kj(Y ; Z/pn)

ρ̃j−→ F̃ iγ/F̃
i+1
γ K ét

j (Y ; Z/pn).

We claim that it is surjective and its kernel is annihilated by M(d, i+1, 2j). This will follow from Suslin’s
theorem mentioned above (comparing Zariski and étale motivic cohomologies) via spectral sequences
relating motivic cohomology to algebraic K-theory. Recall that Levine [23, 12.2, 12.13] has constructed
compatible Zariski and étale Atiyah-Hirzebruch spectral sequences from motivic cohomology to K-theory:

Es,q2 = Hs(YZar,Z/p
n(q/2))⇒ Ks−q(Y ; Z/pn)

Es,q2 = Hs(Y,Z/pn(q/2))⇒ K ét
s−q(Y ; Z/pn).

Here the differential dr : Es,qr → Es+r,q+r−1
r .Denote by F iAH the filtration on K-theory groups defined

by these spectral sequences. Levine shows [23, 10.8, 11.6] that F̃ iγK
ét
j (Y ; Z/pp) ⊂ F iAHK ét

j (Y ; Z/pn) and
that

M(d, i, 2j)F iAHKj(Y ; Z/pn) ⊂ F̃ iγKj(Y ; Z/pn) ⊂ F iAHKj(Y ; Z/pn).

Consider the following diagram

F̃ iγ/F̃
i+1
γ Kj(Y ; Z/pn)

ψj−−−−→ F̃ iγ/F̃
i+1
γ K ét

j (Y ; Z/pn)y y
F iAH/F

i+1
AHKj(Y ; Z/pn)

∼−−−−→ F iAH/F
i+1
AHK

ét
j (Y ; Z/pn)
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By the above, the kernel of the left vertical map is annihilated by M(d, i+ 1, 2j). Using Suslin’s theorem
via an analysis of the above Atiyah-Hirzebruch spectral sequences Friedlander-Walker [11] show that the
natural map

ψj : Kj(Y ; Z/pn)→ K ét
j (Y ; Z/pn)

is surjective for j ≥ 2d and that the induced map

F iAH/F
i+1
AHKj(Y ; Z/pn)

∼−→ F iAH/F
i+1
AHK

ét
j (Y ; Z/pn)

is an isomorphism for i ≥ d, j ≥ 2d. Our claim follows now easily.
Finally, recall (2.2.3) that the cokernel of the natural map

F̃ iγ/F̃
i+1
γ Kj(Y ; Z/pn) −→ F iγ/F

i+1
γ Kj(Y ; Z/pn)

is annihilated by M(d, i, 2j).
Combining all of the above, we get that, for j ≥ 2d, the cokernel of

cét
ij : griγ Kj(Y ; Z/pn) −→ H2i−j(Y,Z/pn(i))

is annihilated byM(d, i, j)M(2d)2d(i−1)!, and its kernel is annihilated byM(d, i+1, 2j)M(d, i, 2j)M(d, i+
1, j)(i− 1)!. Take

T = T (d, i, j) = (i− 1)!M(d, i, j)M(d, i+ 1, j)M(d, i+ 1, 2j)M(d, i, 2j)M(2d)2d.

Since an odd prime p divides M(d, i, j) if and only if p < (j + 2d+ 3)/2, and divides M(l) if and only
if p < (l/2) + 1, we get the last statement of the proposition. �

We will show now that we can pass from the K-theory of the generic fiber to the K-theory of a regular
model. Let K1 denote a finite extension of K and let V1 be its ring of integers.

Lemma 3.5. Let X be a regular flat scheme over V1 and j : XK1 ↪→ X the open immersion. Then the
restriction

j∗ : Kj(X; Z/pn)
∼−→ Kj(XK1

; Z/pn), j > d+ 1,

is an isomorphism and the induced map

j∗ : griγ Kj(X; Z/pn)→ griγ Kj(XK1
; Z/pn), j > d+ 1

has kernel and cokernel annihilated by M(d, i+ 1, 2j) and M(d, i, 2j), respectively.

Proof. We have the localization sequence

→ K ′j(Xk1 ; Z/pn)→ K ′j(X; Z/pn)→ K ′j(XK1
; Z/pn)→ K ′j−1(Xk1

; Z/pn)→,

where k1 is the residue field of V1. Since X is regular, it suffices to show that K ′j(Xk1
; Z/pn) = 0 for

j > d. We will argue by induction on d. By devissage we may assume Xk1
to be reduced. Let S be the

singular locus of Xk1
and U the open complement. We have the associated localization sequence

→ K ′j(S; Z/pn)→ K ′j(X; Z/pn)→ K ′j(U ; Z/pn)→ K ′j−1(S; Z/pn)→ .

Since U is nonsingular, K ′j(U ; Z/pn) ' Kj(U ; Z/pn) = 0 for j > d by [13]. By induction K ′j(S; Z/pn) = 0
for j ≥ d, hence the claim.

It follows that we have an isomorphism

j∗ : F̃ iγKj(X; Z/pn)→ F̃ iγKj(XK1
; Z/pn), j > d+ 1, j > 1.

Take x ∈ F iγKj(XK1
; Z/pn). By 2.2.3, M(d, i, 2j)x ∈ F̃ iγKj(XK1

; Z/pn) giving the statement about

cokernel. For kernel, let x ∈ F iγKj(X; Z/pn) be such that j∗(x) ∈ F i+1
γ Kj(XK1

; Z/pn). Again by

2.2.3, M(d, i + 1, 2j)j∗(x) ∈ F̃ i+1
γ Kj(XK1

; Z/pn). Hence M(d, i + 1, 2j)j∗(x) = j∗(y) for some y ∈
F̃ i+1
γ Kj(X; Z/pn). By injectivity of j∗ we get that M(d, i+ 1, 2j)x = y giving injectivity on the grading.

�
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3.1. The comparison morphism. We are now ready to define our comparison map. Let X× be a
log-smooth vertical log-scheme over V × of pure relative dimension d and with Cartier type reduction.
Note that the log-structure of X×K is trivial and the base change X×V1

for any finite extension V1 of V is

saturated. In particular, the special fiber of X× is of Cartier type. Assume that pn ≥ 5 and b ≥ 2d+ 1,
and if d = 0, p = 2 assume that b ≥ 2. Define a transformation

αnab : Ha(XK ,Z/p
n(b)) −→ Ha

cr(X
×
V ,n

/Wn(k),OX×
V ,n

/Wn(k)){−b},

where {−b} denotes a twist of the filtration (Ha
cr(X

×
V ,n

/Wn(k),OX×
V ,n

/Wn(k)) is equipped with the natural

crystalline Hodge filtration) and the Frobenius, in the following way.
For x ∈ Ha(XK ,Z/p

n(b)), take (cét
b,2b−a)−1(x) ∈ F bγ/F

b+1
γ K2b−a(XK ; Z/pn) to be any element in

the preimage of T (d, b, 2b − a)x (this is possible by Proposition 3.2). Let x1 ∈ F bγK2b−a(XK ; Z/pn) be

a lifting of the element (cét
b,2b−a)−1(x). Take an extension V1 of V such that the class x1 comes from

x1 ∈ F bγK2b−a(XK1
; Z/pn), where K1 is the field of fractions of V1. Notice that the log-scheme X×V1

is log-regular. Hence, by [26], there exists a log-blow-up π : Y × −→ X×V1
such that the scheme Y is

(classically) regular.
By the proof of Lemma 3.5, we can now find a unique element x′1 ∈ F bγK2b−a(Y ; Z/pn) such that

j∗(x′1) = T (d, b, 2b − a)x1, where j∗ is the restriction j∗ : K2b−a(Y ; Z/pn) → K2b−a(YK1
; Z/pn) (note

that YK1
= XK1

). Set

αnab(x) := ψnµV1
(π∗)−1εcsyn

b,2b−a(T (d, b, 2b− a)x′1).

Here ψnµV1
(π∗)−1ε is the composition

Ha(Y, s′n(b))
ε−→ Ha(Y ×, s′n(b))

∼←−
π∗
Ha(X×V1

, s′n(b))
µV1−−→ Ha(X×

V
, s′n(b))

ψn−−→ Ha
cr(X

×
V ,n

/Wn(k),OX×
V ,n

/Wn(k)){−b}.

Lemma 3.6. The transformation αnab is a well-defined natural Galois equivariant group homomorphism
giving the following relationship between Tate twists

(−b)T (d, b, 2b− a)3αna,b+1(ζnx) = (−b)T (d, b+ 1, 2b+ 2− a)3αnab(x)t.

Proof. We have made several choices in our construction of αnab. We will analyze them. Let us first
assume that we have fixed the lifting x1 ∈ F bγK2b−a(XK ; Z/pn). By functoriality of Chern classes, the

choice of K1 and of the element x1 ∈ F bγK2b−a(XK1
; Z/pn) is of no importance. For two choices of a

regular model π : Y × → X×V1
, we know from [26] that we can find a third regular model that dominates

(via a log-blow-up) both of them. Functoriality of Chern classes now yields that the choice of the regular
model is of no importance.

The ambiguity introduced by the choice of the lifting x1 comes from an element y ∈ F b+1
γ K2b−a(XK ; Z/pn).

After perhaps passing to a finite extension of the base ring and changing the regular model Y ×, we
get that the ambiguity in the choice of the corresponding element x′1 comes from an element w of
F bγK2b−a(Y ; Z/pn) that maps to T (d, b, 2b − a)y ∈ F b+1

γ K2b−a(XK1
; Z/pn). Lemma 3.5 now yields that

T (d, b, 2b− a)w ∈ F b+1
γ K2b−a(Y ; Z/pn). Lemma 2.1 shows that this ambiguity disappears after we apply

the syntomic Chern class morphisms. Similarly, the ambiguity in the choice of (cét
b,2b−a)−1(x) disappears

after we multiply x′1 by T (d, b, 2b− a) and apply the syntomic Chern class morphisms.
For functoriality, use functoriality of Chern classes and K-theory with respect to pullbacks and the fact

that (saturated) base change of a log-blow-up is a log-blow-up [26]. Since all the genuine maps we used
were group homomorphisms (Lemma 2.1), so is the map αnab. That it is also Galois equivariant follows
from functoriality of Chern classes and functoriality of K-theory with respect to pullbacks.

For the last statement of the lemma, let x′1 ∈ F bγK2b−a(Y ; Z/pn) and x1 ∈ F bγK2b−a(XK1 ; Z/pn) be

the elements from the construction of αnab(x). Since cét
1,2(βn) = ζn (see Lemma 3.1), we have by Lemma

2.1
cét
b+1,2b+2−a(βnx1) = (−b)cét

1,2(βn)cét
b,2b−a(x1) = (−b)ζnT (d, b, 2b− a)x.
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It follows that

(−b)T (d, b,2b− a)3αna,b+1(ζnx) =

T (d, b, 2b− a)ψnµV1
(π∗)−1(csyn

b+1,2b+2−a(T (d, b+ 1, 2b+ 2− a)3β̃nx
′
1)) =

(−b)T (d, b+ 1, 2b+ 2− a)3ψnµV1
(π∗)−1(csyn

1,2 (β̃n)csyn
b,2b−a(T (d, b, 2b− a)x′1)) =

(−b)T (d, b+ 1, 2b+ 2− a)3αna,b(x)t,

as wanted. �

Let b ≥ 2d+ 1 and b ≥ 2 for d = 0, p = 2. Assume X to be proper over V . Define a morphism

αab : Ha(XK ,Qp(b)) −→ Ha
cr(X

×
0 /W (k)0,OX×0 /W (k)0)⊗W (k) Bst{−b}

as the composition of Q⊗ proj limn α
n
ab with the map (see section 2.1)

Q⊗ proj lim
n

Ha
cr(X

×
V ,n

/Wn(k),OX×
V ,n

/Wn(k))
hπ−→ Ha

cr(X
×
0 /W (k)0,OX×0 /W (k)0)⊗W (k) Bst

and with the division by T (d, b, 2b−a)3. The morphism αab is functorial in X×, preserves the Frobenius,
the action of Gal(K/K) and the monodromy operator, and, after extension to BdR, is compatible with
filtrations (use Lemma 4.8.4 from [33]).

We would also like to know how the map αab behaves with respect to finite base changes. In what
follows, we will add the subscript π to αab to underscore the fact that in the definition of this map we
made a choice of a uniformizer. Let V1 be a finite extension of V with fraction field K1 and residue field
k1. Let e be the ramification index of K1 over K and let π1 be a uniformizer of V1. Set X×1 := X×V1

.

Lemma 3.7. The following diagrams commute

Ha(XK ,Qp(b))⊗Qp Bst
αab,π−−−−→ Ha

cr(X
×)⊗W (k) Bst∥∥∥ o
y

Ha(X1,K1
,Qp(b))⊗Qp

Bst

αab,π1−−−−→ Ha
cr(X

×
1 )⊗W (k1) Bst,

Ha(XK ,Qp(b))⊗Qp BdR
αdRab,π−−−−→ Ha

dR(XK/K)⊗K BdR∥∥∥ o
y

Ha(X1,K1
,Qp(b))⊗Qp BdR

αdRab,π1−−−−→ Ha
dR(XK1/K1)⊗K1 BdR.

In particular, the maps αab and αdRab are independent of the choice of the uniformizer π.

Proof. Arguing exactly like Tsuji in his proof of a similar statement [33, 4.10.4], we reduce to showing
that the maps

αnab : Ha(XK ,Z/p
n(b)) −→ Ha

cr(X
×
V ,n

/Wn(k),OX×
V ,n

/Wn(k)),

ιπρπhπ : Ha
cr(X

×
V
/W (k)) −→ Ha

dR(XK/K)⊗K B+
dR

are compatible with our base changes.
In the case of the map αnab this is obvious from its construction.
In the case of the map ιπρπhπ, since from the definition [33, 4.7.3] of the isomorphism B+

dR ⊗K0

Ha
dR(XK/K)

∼−→ proj lims(Q⊗Ha
cr(X

×
V
/V ×,O/J [s])) it is easy to see that it is compatible with our base

change, it suffices to show that so is its composition with ιπρπhπ. Since this composition is equal [33,
4.8.4] to the natural map

Ha
cr(X

×
V
/W (k)) −→ proj lim

s
(Q⊗Ha

cr(X
×
V
/V ×,O/J [s])),

this is clear. �
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3.2. Main theorem.

Theorem 3.8. Let X× be a proper log-smooth saturated vertical V ×-scheme with Cartier type reduction
of pure relative dimension d. Then, assuming b ≥ 2d+1 and b ≥ 2 for d = 0, p = 2, the natural morphism

αab : Ha(XK ,Qp(b))⊗Qp
Bst −→ Ha

cr(X
×
0 /W (k)0,OX×0 /W (k)0)⊗W (k) Bst{−b}

is an isomorphism. Moreover, the map αab preserves the Frobenius, the action of Gal(K/K) and the
monodromy operator. It is independent of the choice of π, compatible with base changes and Tate twists,
and, after extension to BdR, induces an isomorphism of filtrations.

Proof. The listed compatibilities follow from Lemma 3.6 and Lemma 3.7. The line of the argument is
standard [9]. Namely, since both sides of αab have the same rank over Bst, it suffices to show that the
morphism αab has a Bst-linear left inverse. That, in turn, would follow – by Poincaré duality – from the
compatibility of αab with products and traces.

First, we have to check that the morphism αab is compatible with products. This follows from the fact
that the morphism hπ is compatible with products and from the following lemma

Lemma 3.9. Let x ∈ Ha(XK ,Z/p
n(b)), y ∈ Hc(XK ,Z/p

n(e)), 2b− a > 2, 2e− c > 2, and pn ≥ 5. Set
K(b, e) = −(b+ e− 1)!/((b− 1)!(e− 1)!). Then (assuming that all the indices are in the valid range)

K(b, e)T (d, b, 2b− a)3T (d, e, 2e− c)3αna+c,b+e(x ∪ y)

= K(b, e)T (d, b+ e, 2b+ 2e− a− c)3αnab(x) ∪ αnce(y).

Proof. Use Lemma 2.1. �

Next, by taking a finite unramified extension of K, we may assume that XK is geometrically irreducible.
The case of d = 0 is handled easily: we use Lemma 3.1. For d ≥ 1, since the domain and the target
satisfy Poincaré duality, to show that αa,b has a left inverse, it suffices to verify that the map

α2d,2b : H2d(XK ,Qp(2b))⊗Qp
Bst −→ H2d

cr (X×0 /W (k)0,OX×0 /W (k)0)⊗W (k) Bst{−2b}

is an isomorphism. Notice that

dimQp H
2d(XK ,Qp(2b)) = dimK0 H

2d
cr (X×0 /W (k)0,OX×0 /W (k)0)⊗W (k) K0 = dimK H

2d
dR(XK/K) = 1.

By taking a finite unramified extension of K, we may take a rational point P of the smooth locus of
X over V (note that the special fiber of X is reduced [33, 2.7.7]). Since H2d(XK ,Qp(2b)) is generated

by clét(PK)ζ2b−d, it suffices to show that α2d,2b maps clét(PK)ζ2b−d ⊗ t−2b+d to a nontrivial element of
H2d

cr (X×0 /W (k)0,OX×0 /W (k)0)⊗K0.

For that, we will first show that the extension of α2d,2b to BdR

ιπρπα2d,2b : H2d(XK ,Qp(2b))⊗Qp
BdR −−−−→ H2d

dR(XK/K)⊗K BdR

maps clét(PK)ζ2b−d ⊗ t−2b+d to cldR(PK). Or that, by BdR-linearity,

ιπρπα2d,2b(clét(PK)ζ2b−d) = cldR(PK)t2b−d.

Let π : Y × → X× be a (saturated) log-blow-up that does not modify the regular locus of X× and such
that Y is regular. Denote by P ′ the unique V -point of Y lying over P (note that YK ' XK and P ′K = PK).
Let [OP ′ ] and [OPK ] denote the class of OP ′ and OPK in K0(Y ) and K0(XK), respectively ( Y is regular
!). Recall (see the proof of Lemma 4.2 in [25]), that there exists a constant s(d) (depending only on the
dimension d) such that s(d)[OP ′ ] ∈ F dγK0(Y ) and that we have cét

d,0(s(d)[OPK ]) = s(d)cét
d,0([OPK ]). By

exactly the same argument, cdRd,0(s(d)[OPK ]) = s(d)cdRd,0([OPK ]). We also know that

cét
d,0([OPK ]) = (−1)d−1(d− 1)! clét(PK), cdRd,0([OPK ]) = (−1)d−1(d− 1)! cldR(PK).
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We now pass to torsion coefficients. Take a field extension K1/K containing ζn. We have the following
commutative diagram (not necessarily cartesian)

Y ×1
fY−−−−→ Y ×yπ1

yπ
X×
V

µV1−−−−→ X×V1

f−−−−→ X×,

where V1 is the ring of integers of K1 and π1 is a log-blow-up with regular model Y1.
Since s(d)f∗K [OPK ]β2b−d

n ∈ F2bK2(2b−d)(XK1
; Z/pn), inclusions 2.2.3 imply that

M(d, 2b, 4(2b− d))s(d)f∗K [OPK ]β2b−d
n ∈ F 2bK2(2b−d)(XK1

; Z/pn).

Set s(b, d) = M(d, 2b, 4(2b− d))s(d). It suffices to show that

ιπρπα2d,2b(c
ét
d,0(s(b, d)[OPK ])ζ2b−d) = cdRd,0(s(b, d)[OPK ])t2b−d.

Now, the product formulas for the étale and the syntomic Chern classes (see Lemma 2.1) yield that
for pn ≥ 5

(d− 1)!cét
2b,2(2b−d)(s(b, d)f∗K [OPK ]β2b−d

n ) = (−1)2b−d(2b− 1)!cét
d,0(s(b, d)f∗K [OPK ])ζ2b−d

n ,

(d− 1)!csyn
2b,2(2b−d)(s(b, d)f∗Y [OP ′ ]β̃2b−d

n ) = (−1)2b−d(2b− 1)!csyn
d,0 (s(b, d)f∗Y [OP ′ ])csyn

1,2 (β̃n)2b−d.

Since the class f∗Y [OP ′ ] restricts to f∗K [OPK ], we compute

(−1)2b−d(2b− 1)!αn2d,2b(c
ét
d,0(s(b, d)[OPK ])ζ2b−d

n )

= (−1)2b−d(2b− 1)!αn2d,2b(c
ét
d,0(s(b, d)f∗K [OPK ])ζ2b−d

n )

= T (d, 2b, 4b− 2d)3(d− 1)!ψnµ
∗
V1

(π∗1)−1εcsyn
2b,2(2b−d)(s(b, d)f∗Y [OP ′ ]β̃2b−d

n )

= (−1)2b−dT (d, 2b, 4b− 2d)3(2b− 1)!ψnµ
∗
V1

(π∗1)−1ε(csyn
d,0 (s(b, d)f∗Y [OP ′ ])csyn

1,2 (β̃n)2b−d)

= (−1)2b−dT (d, 2b, 4b− 2d)3(2b− 1)!ψnµ
∗
V1

(π∗1)−1εf∗Y (csyn
d,0 (s(b, d)[OP ′ ]))t2b−d

= (−1)2b−dT (d, 2b, 4b− 2d)3(2b− 1)!ψnµ
∗(π∗)−1ε(csyn

d,0 (s(b, d)[OP ′ ]))t2b−d,

where µ = fµV1
.

Passing to the limit and tensoring with Q we see that it suffices to show the following compatibility
of the crystalline and the de Rham Chern classes

ιπρπhπµ
∗(π∗)−1ccr

d,0(s(b, d)[OP ′ ]) = cdRd,0(s(b, d)[OPK ]),

where ccr
d,0 : K0(Y ) → H2d

cr (Y ×/W (k)) denotes the composition of the crystalline Chern class map

ccr
d,0 : K0(Y ) → H2d

cr (Y/W (k)) with the canonical map H2d
cr (Y/W (k)) → H2d

cr (Y ×/W (k)). Or that, for
any j ≥ 1, the following diagram commutes

K0(Y )
cdRj,0−−−−→ H2j

dR(XK/K) −−−−→ B+
dR ⊗K H2j

dR(XK/K)

ccr
j,0

y ιπρπhπ

x
Q⊗H2j

cr (Y ×/W (k))
∼←−−−−
π∗

Q⊗H2j
cr (X×/W (k))

µ∗−−−−→ Q⊗H2j
cr (X×

V
/W (k)).

Recall now [33, 4.7.6,4.8.4] that the composition

H2j
cr (X×

V
/W (k))

ιπρπhπ−−−−→ B+
dR ⊗K Hi

dR(XK/K)
∼−→ proj lim

s
(Q⊗H2j

cr (X×
V
/V ×,O/J [s]))

is equal to the natural map

H2j
cr (X×

V
/W (k)) −→ proj lim

s
(Q⊗H2j

cr (X×
V
/V ×,O/J [s])).
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Hence, using the canonical isomorphism

Q⊗H∗cr(X
×/V ×) ' H∗dR(XK/K)

proved by Kato (see Theorem 6.4 in [20]), the functoriality of the de Rham Chern classes, and the fact
that Y is proper, we just need to check that the following diagram commutes

K0(YK)
cdRj,0−−−−→ H2j

dR(YK/K)x o
x

K0(Y )
ccr
j,0−−−−→ Q⊗H2j

cr (Y ×/V ×).

Here the Chern class ccr
j,0 is defined as the composition

K0(Y )
ccr
j,0−→ Q⊗H2j

cr (Y/V )→ Q⊗H2j
cr (Y ×/V ×).

By the splitting principle (we have the projective space theorem in de Rham cohomology), it suffices to
check that the crystalline and the de Rham Chern classes of line bundles are compatible. The crystalline
Chern class ccr

1 : H1(Y,O∗Y )→ H2
cr(Y

×/V ×) is defined via the exact sequence

0→ 1 + JY ×/V × → O∗Y ×/V × → O
∗
Y × → 0

and the map log : 1 + JY ×/V × → JY ×/V × . Since Y ×/V × is log-smooth its compatibility with the de
Rham Chern class can be shown paraphrasing the proof of an analogous fact in the situation with trivial
log-structures due to Berthelot and Ogus ([1, Lemma 3.3]).

Now, to finish the proof of the fact that α2d,2b is an isomorphism, note that if

x = α2d,2b(clét(PK)ζ2b−d ⊗ t−2b+d),

then, by the above,

x ∈ (H2d
cr (X×0 /W (k)0,OX×0 /W (k)0)⊗W (k) Bst) ∩H2d

dR(XK/K)

⊂ (H2d
cr (X×0 /W (k)0,OX×0 /W (k)0)⊗W (k) Bst)

GK = H2d
cr (X×0 /W (k)0,OX×0 /W (k)0)⊗K0.

Hence x is a generator of the one dimensional vector space H2d
cr (X×0 /W (k)0,OX×0 /W (k)0) ⊗ K0 (it is

nontrivial since its image in H2d
dR(XK/K) is cldR(PK)), as wanted.

To finish the proof of the theorem, it remains to show that αdRab (αab extended to BdR) induces an
isomorphism on filtrations. Passing to the associated grading, one reduces to showing that the induced
map

αdR,lab : Cp(l)⊗Qp
Ha(XK ,Qp(b)) −→

⊕
j∈Z

Cp(b+ l − j)⊗K Ha−j(XK ,Ω
j
XK/K

), l ∈ Z,

is injective. Since the domain of αdR,lab satisfies Poincaré duality and αdR,lab is compatible with products,

for αdRab to be injective, it suffices to show that

αdR,02d,2b : Cp ⊗Qp
H2d(XK ,Qp(2b)) −→ Cp(2b− d)⊗K Hd(XK ,Ω

d
XK/K

) = Cp(2b− d)⊗K H2d
dR(XK/K)

is an isomorphism. Since both the target and the domain are one-dimensional and, by the above,

αdR,02d,2b(clét(PK)ζ2b−d) = cldR(PK)t2b−d 6= 0, we are done. �
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