SEMISTABLE CONJECTURE VIA K-THEORY

WIESLAWA NIZIOL

ABSTRACT. We show that the Semistable conjecture of Fontaine-Jannsen is true for proper vertical
fine and saturated log-smooth families with reduction of Cartier type (for example proper schemes
with simple semistable reduction). We derive it from Suslin’s comparison theorem between motivic
cohomology and étale cohomology. This gives a new proof of the Semistable conjecture showing motivic
character of p-adic period maps.

1. INTRODUCTION

The purpose of this paper is to give a motivic proof of the Semistable Conjecture of Fontaine-Jannsen
[8] for proper vertical fine and saturated log-smooth families with reduction of Cartier type. Recall the
formulation of this conjecture. Let K be a complete discrete valuation field of mixed characteristic (0, p)
with ring of integers V' and a perfect residue field k. Let X* be a fine and saturated log-smooth proper
vertical V' *-scheme, where V' is equipped with the log-structure associated to the closed point, such that
the special fiber X is of Cartier type. A scheme X over V with a simple semistable reduction would be
a standard example.

Conjecture 1.1. (Semistable Conjecture) There exists a natural Bgi-linear period isomorphism
s H' (X5, Qp) ®q, Bsy = HL(X /W (K)°) @w (r) Bt
preserving Galois action, monodromy, filtration and Frobenius.

Here K is an algebraic closure of K, W (k)" is the ring of Witt vectors W (k) equipped with the
log-structure associated to (N — W (k),1 — 0), and By is a certain ring of periods introduced by
Fontaine [8]. The ring By is equipped with Galois action, Frobenius and monodromy operators. The log-
crystalline cohomology groups H (X /W (k)°)[1/p] are also equipped with Frobenius and monodromy
operators. Moreover, the ring By maps into another ring of periods Bygr, which is equipped with a
decreasing filtration. There is also a canonical isomorphism of K @y ) Hi (X /W (k)°) with the de
Rham cohomology groups H (X /K) which are equipped with the Hodge filtration. The base change
of the period isomorphism to By does yield an isomorphism on the filtrations. As a corollary, one gets
that the étale cohomology as a Galois representation can be recovered from the log-crystalline cohomology:

H* (X, Qp) = (HL(Xg /W (K)®) @w ) Bst)" ="~ N FO(Bar ®x Hjp(Xk/K)).

The Semistable Conjecture is now a theorem. It was first proved by Kato [21] and Tsuji [33] for
proper, vertical, log-schemes with semistable reduction. Their method is basically local and relies on a
comparison theorem between sheaves of p-adic vanishing cycles and log-syntomic sheaves (which relate
in a known way to étale and log-crystalline cohomology, respectively). This local comparison theorem is
proved by explicite computations of certain gradings of both sheaves via symbols. Later the conjecture
was proved by Faltings [6]. His method is based on the theory of almost étale extensions he has developed
applied to certain sheaves of coherent vanishing cycles.

These are two of the three currently existing methods of proving p-adic comparison theorems. The
third one is due to the author and was used before to prove the Crystalline Conjecture [25]. It relies on
the postulate that the étale cohomology of X3 for high enough Tate twists realizes motivic cohomology
(understood as Bloch’s higher Chow groups or y-graded pieces of K-theory). This is the Beilinson-
Lichtenbaum Conjecture. It follows from the Bloch-Kato Conjecture whose proof was recently announced
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by Voevodsky. Similarly, one could expect that the log-syntomic cohomology of Xé realizes yet-to-be-
defined log-motivic cohomology of X%. The period morphism would then simply be a p-adic incarnation

of the localization map j* in motivic cohomology for the open immersion j : X7 < Xé. The Semistable
Conjecture would then be equivalent to the map j* being an isomorphism. That in turn should follow
from the fact that mod p K-theory of varieties in characteristic p — that controls the kernel and cokernel
of j* — is ”stably” trivial (for an appropriate definition of ”stably”). This line of argument should
in particular imply a uniqueness statement for p-adic period morphisms: a p-adic period morphism is
uniquely determined by its values on higher cycle classes. We refer the reader to [27] for a survey of results
on the relationship between p-adic motivic cohomology and other cohomologies of arithmetic interest (in
the stable range).

Since the Beilinson-Lichtenbaum Conjecture is not yet fully proved and log-motivic cohomology is not
yet constructed we are forced to work here with some substitutes. They are though good enough to carry
out the above ideas to prove the Semistable Conjecture. They also give a uniqueness statement for p-adic
period morphisms that imply that the morphisms of Tsuji, Faltings and the author are equal [28].

We will now sketch our proof of the conjecture. Recall that, by a standard argument (see [9], [5]), it
suffices to construct a map

a: H* (X7, Qp) — HiH(XS /W (K)°) @w iy Byt (1.1.1)

compatible with all the structures, and, in addition, with Poincaré duality and the trace map. Since there
is no monodromy action on étale cohomology, the image of « lies in the kernel of the monodromy [21]:

(HE (X5 /W (R)°) @y BE)V=" = Q& proj lim HE, (X2 /Wa(k),

where V is the integral closure of V in K and B is a subring of By. Taking into account filtration and
Frobenius we see that we need to construct (at least for large enough i) a well-behaved family of maps
into log-syntomic cohomology

o HY (X3, Z/p" (i) — Ha(Xén s (1)).

ren
The motivic proof can be summarized by the following diagram

gr’, K;(X: Z/p") % gl K (X7 Z/p™)

—or ot
l(/ij zlc”

H (X s, (0)) €2 B39 (Xgz, 2/ (i),

where K;(-;Z/p™) is the K-theory with coefficients and grfY K;(-;Z/p") is the y-grading playing the role
of motivic cohomology. The term in the left upper corner stands for the limit of K-theory groups of
(global) regular resolutions of the log-schemes X7, for V' a finite extension of V, and is a substitute for
not-yet-defined log-motivic cohomology. The maps Efjt and ¢;; are the étale and the log-syntomic Chern
class maps, respectively. A priori, because of the nature of the term gr,iY K (X5 Z/p") the log-syntomic
Chern class lands in the log-syntomic cohomology groups of the regular resolutions of the log-schemes
Xy,. However, the map from the resolution to the original log-scheme X7, is a log-blow-up and it follows
(Proposition 2.3) that the cohomology of these resolutions is isomorphic to the cohomology of the original
log-schemes X7,

We define the period map aj;_;; to make the above diagram commute. To do that, first we prove
(in Lemma 3.5) that for j > d + 1 the localization map j* is an isomorphism modulo some constants
depending only on the dimension d of Xg and ¢,j. This follows from the fact that the K’-theory with
mod-p coefficients of the special fiber vanishes for j > d (a theorem of Geisser-Levine [13]). The reader
will notice that this vanishing is entirely a p-type phenomena: it is not true for K’-theory mod I, I # p.
Next, we show (Proposition 3.2) that, for j > 2d, the étale Chern class map E‘f; is an isomorphism modulo
a constant depending only on d and 4,j. This should be thought of as a K-theory incarnation of the
theorem of Suslin comparing higher Chow groups with étale cohomology [31]. Modulo some constants,



SEMISTABLE CONJECTURE VIA K-THEORY 3

we set ay; ;= Ef;(j*)_l(éf;)_l, take the projective limit over n, and after tensoring with Q we get our
map as;—j;. Our construction of the map ax;_;; makes it now very easy to check its compatibility with
Poincaré duality and trace maps.

Notice that the above period map goes from étale cohomology to log-syntomic cohomology. That is in
the opposite direction than the period morphisms of Tsuji and Faltings. This has the nice consequence
that to prove that the map is an isomorphism we can simply use Poincaré duality and avoid all the
delicate local computations of the other two methods. On the other hand we do not get any information

about the sheaves of p-adic vanishing cycles like Tsuji does.
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2. PRELIMINARIES

Throughout the paper, let p be a fixed prime, let K denote a chosen algebraic closure of a field K,
and, for a scheme X, let X,, = X @ Z/p".

Let V' be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field k of characteristic p. Let W (k) be the ring of Witt vectors with coefficients in k& with fraction

field Ko. Set Gx = Gal(K/K), C, = K, and let o be the absolute Frobenius on W (k). For a V-scheme
X, let X, denote the special fiber of X. We will denote by V, V>, and V° the scheme Spec(V) with
the trivial, canonical (i.e., associated to the closed point), and (N — V,1 — 0) log-structure respectively,
and, for a log-scheme X *, we will denote by X the underlying scheme. Unless otherwise stated, we work
in this paper in the category of fine log-schemes.

2.1. The rings of periods. Let’s recall the definitions of the rings B, Bqgr, Bst of Fontaine [7], [8],
[9]. We have

Bct,n = ng(SpeC(Vn)/Wn(k))a B:; = proj lim B(j;,n[l/p]? B, = B:;[t_lL
n
where V is the integral closure of V in K and ¢ is a certain element of B (see [7] for a precise definition
of t). The ring BZ is a topological Ky-module equipped with a Frobenius ¢ coming from the crystalline
cohomology and a natural G g-action. We have that ¢(t) = pt and that Gk acts on t via the cyclotomic
character.
The canonical morphism B, — V/p" is surjective. Let Je, denote its kernel. Let

cr,n
B;R = proj lim(Q ® proj lim B;’;’n/Jg]n), Bar = B:{R[t_l}.
T n
The ring B;R has a discrete valuation given by the powers of t. Its quotient field is Byr. We set
F"Bgr = t"Bggr. This defines a descending filtration on Byg.

Let m be a uniformizer of V. Choose a sequence of elements s = (s,) of V such that sy = 7 and
s 11 = Sn. Fontaine associates to it an element u, of B;R. Let B:{ denote the subring of By generated
by B and us. Fontaine shows that u, is transcendental over BZ.. Hence B} is a polynomial algebra in
one variable over BJ.. The ring B} does depend on the choice of 7 but not of s. The action of G on B}y
restricts well to BJ. The Frobenius ¢ extends to B by é(us) = pu, and one defines the monodromy
operator N : BY — B as the unique BJ-derivation such that Nu, = —1. We have N¢ = ppN. Let
By = Be|us]. Different choices of the uniformizer 7 yield isomorphic rings Bst , so we can and we will
identify them via these isomorphisms. The dependence on 7 will then be encoded in the morphism
tr: Bf — Bl

We will need the following crystalline interpretation of the ring B (see [21], [33]). Let RX denote the
PD-envelope of the ring W, [z] with respect to the closed immersion W, [x] — V,,, x — 7, equipped with
the log-structure associated to N — R, 1 — z. Let

B = projlim HY, (Spec(Og,,)/R)[1/p].
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The ring E:g has a natural action of Gk, Frobenius ¢, and a monodromy operator N. Kato [21, 3.7]
shows that the ring B is canonically (and compatibly with all the structures) isomorphic to the subring
of elements of ES‘: annihilated by a power of the monodromy operator N.

More generally, for any fine log-scheme X *, which is log-smooth and proper over V>, set

HE (X /W (k) = projlim HL(XE Wa(K), HA(X™) = Q@ HE(X /W (b)),

Assume now that the special fiber of X* is of Cartier type. Then Kato defines [21, 4.2,4.5] canonical
morphisms

Q® HL(X2/W (k) ™3 (BY @, HL(XX)V=0 & (BF @, Hi, (X )N

cr Ccr

It can be checked (cf. [33, 4.5.6-7]) that these morphisms are compatible with the product structure,
Galois action, and the Frobenius.
Moreover, Hyodo and Kato [18, 5.1] have constructed a canonical K-isomorphism

Prt K ® K H(Z:r(XX) = HQR(XIE/K)V
which is compatible with products [33, 4.4.13]. Hence the composition
prhr : Q@ He (X35 /W (k) — By @k Hyp(X/K)

is functorial in X* and compatible with products and Galois action.

Let X* be any fine log-scheme, which is log-smooth and proper over V' * with saturated log-structure
on the generic fiber. We will need the crystalline interpretation of B}, ®x Hin(X/K) from [21] (see
also [33, 4.7]):

Blp®@k Hip(X 7 /K) = projlim(Q ® H., (X%/V*,0/J¥)) [33,4.7.6], (2:2.1)

F'(Bip@xHin(X 5/ K)) = proj lim(Q ® H (X2 /V*,JU/J0)  [33,4.7.13).
s=r (2.2.2)

2.2. Syntomic regulators. We will recall now briefly the definition and properties of syntomic regula-
tors. For details we refer the reader to [16] and [25]. Let X be a scheme of finite type, separated and
flat over W (k). Recall the differential definition [19] of syntomic cohomology of Fontaine-Messing [9].
Assume first that we have an immersion ¢ : X < Z over W (k) such that Z is a smooth W (k)-scheme
endowed with a compatible system of liftings of the Frobenius {F, : Z, — Z,}. Let D,, = Dx,(Z,) be
the PD-envelope of X, in Z,, (compatible with the canonical PD-structure of pW,,(k)) and Jp, the ideal
of X,, in D,,. Consider the following complexes

S - .
sp(r)x = Cone('][Dn 'e QW k) % Op, ® Q. w1

where ¢ is the Frobenius. The complexes s/ (r)x are, up to canonical quasi-isomorphisms, independent
of the choice of ¢ and {F)}.

In general, immersions as above exist étale locally, and one defines s/,(r)x € DT (X¢, Z/p™) by gluing
the local complexes. Finally, one defines s, (r) x_. € D*((Xy7)e, Z/p™) as the inductive limit of s7,(r) x,,,,

where V' varies over the integral closures of V in all finite extensions of K in K. Set
Hi(X> S;(T)) = Héz;t(X7 S’II’L(T>X)7 Hi(va S;Z(T)) = Hgt(va S/TL(T)XV)'
We have the long exact sequence

i i T "= pyi
..—H (Xa S;L(T)) — Hcr(X/W(k)7 J)[(l/W,,(k)) p—> Hcr(X/W(k)7 OXn/Wn(k)) — ..
There exists a well-behaved product
H'(X, s,,(r)) @ H (X, s,,(r")) = H™(X, s}, (r +717))

compatible with the crystalline products.
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Let now X* be a fine finite type and separated log-scheme over W (k). Then (see [33, 2.1]) we have
the logarithmic analog of the above complexes s/, (1) xx on X¢ and the corresponding cohomology groups

HY (X", s7,(r) o= Hy (X, 5, (r)x =), H'(X55,50,(r)) == He (X, SZ(T)Xg)-

n V’ n
We have a natural, compatible with products, map

e: HY(X, s, (b)) — H (X, s, (b)).

n

For a scheme X, let K,(X) denote the higher K-theory groups of X as defined by Quillen [29]. Simi-
larly, for a noetherian scheme X, let K. (X) denote Quillen’s K’-theory. For a prime p, the corresponding
groups with coefficients Z/p™ [32], will be denoted by K;(X;Z/p™) and K[(X;Z/p™). For p > 3 there
is a well-behaved product on the groups K;(X;Z/p"). For p = 2, if n > 1 there is a product and it is
commutative and associative for n > 3. If p = 3, there is a product that is commutative and associative
for n > 1 ([3], [24]).

For a noetherian regular connected scheme X, we have the following ~v-filtrations compatible with
products:

Ko(X if k<0
FFEy(X) = o(X) . ) .
(Vi (1) i, (xn)|e(xr) = ... =¢e(xn) = 0,01+ -+ iy, > k) k>0,
FFK(X3Z/p") = (i, (@1) U+ Ui, () |2 € Ko, (X3Z/p"), 4 > 2,
A4 in > k),
FEK(X;Z/p") = (avi, (x1) U+ Ui, (2n)la € FIPKo(X),2; € Ko, (X Z/p"), qi > 2,
io i1+ +in > k),

where ¢ is the augmentation on Ky(X) and p™ > 2. We will also consider another v-filtration: ﬁ; =

(v*(z)|k > i), where (...) denotes the subgroup generated by the given elements. These filtrations are
related: by [30, 3.4] and [15, 5.4], we have

M(d,i,2))F.K;(X;Z/p") C FIK;(X;Z/p") C FIK;(X:Z/p"), j > 2, (2.2.3)

where d is the dimension of X and the integers M (k, m,n) are defined by the following procedure [30, 3.4].
Let [ be a positive integer, and let w; be the greatest common divisor of the set of integers k™ (k! — 1),
as k runs over the positive integers and N is large enough with respect to {. Let M (k) be the product of
the w;’s for 21 < k. Set M(k,m,n) =[]y, <or<nioni1 M(20).

Using Illusie’s computation of the crystalline cohomology of B.GL,,/W (k) [16, II], one can define
universal classes C; , € H*(B.GL,,/W (k),s,(i)). For any flat finite type scheme X over W (k), via the
method of Gillet [14, 2.22], [25, 2.3], they yield functorial and compatible families of Chern classes

eyt Kj(X) = H* (X, s,(i)) for j >0,
E?;-'n C K (X;Z/p") — H*7I(X, s, (i) for j > 2,
which are also compatible with the crystalline Chern classes
i K(X) — HE (X0 /Wi (), Ox, jw (k)
via the canonical map H* (X, s} (i)) — H29 (X, /Wy(k),Ox, jw.(k))-

Recall the construction of the classes Ejyjn First, one constructs the universal classes C; ,,,. Recall [16]

that
H;.(B.GLp, /Wy (k) ~ Hijp(B.GLy /Wy (k) = Wy (k)[z1,- .., Tm],
where the classes x; € H3%(B.GLy,/W,(k)) are the de Rham Chern classes of the universal locally free

sheaf on B.GL,, /W, (k) (defined via a projective space theorem). We have x; € H2(B.GL,, /W, (k), Jg]_GLm/Wn(k))

and ¢(x;) = p'z;. Since B.GL,,/W, (k) is smooth over W, (k), it follows that we have the exact sequence

0 = H2(B.GLy/W(K), 53,(i)) = H2(B.GLu/Wa(R), /3

4 ¢—p' i
B,GL,,L/W,L(I@)) _p> ng (B-GLm/Wn(k))~
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For m > i, we define C; ., = ¥; € H*(B.GL,,/W (k), s.,(i)). By construction these classes are compatible
with the crystalline classes.

The classes C;,, € H*(B.GLy,/W (k), s, (i)) yield compatible universal classes (see [14, p. 221])
Cim € H*(X,GL,(0Ox), s,,(i)), hence a natural map of pointed simplicial sheaves on X, C; : BGL(Ox) —
K(2i,5],(4) x ), where K is the Dold-Puppe functor of 708, (i) x[2¢] and &, (i) x is an injective resolution
of s/,(i) x. The characteristic classes ¢; ;, j > 2, are now defined [14, 2.22] as the composition

K;(X,Z/p") - H(X,Z x BGL(Ox)",Z/p") — H (X, BGL(Ox)",Z/p")
Gy HI(X, K (21,8, (D)%), Z/p") L HY1(X, 8!, (i)),

where B.GL(Ox)* is the (pointed) simplicial sheaf on X associated to the +- construction. Here, for
a (pointed) simplicial sheaf £ on X, H77(X,€.,Z/p") = m;(R[(X,E&.),Z/p™) is the generalized sheaf
cohomology of £. [14, 1.7]: if we let Pg; denote the constant sheaf of j-dimensional mod p™ Moore spaces,
then H7(X,&,Z/p") = [P%,E], where, for two pointed simplicial sheaves F., F’ on X, [F., '] denotes
the morphisms from F. to F’ in the homotopy category. The map f is defined as the composition

H (X, K20, 5, (1)), Z/p") = (K20, 5, () (X)), Z/p™)) 4 H, (K (20, 5,() (X)), Z/p")
— H,;(5),(1)(X)[2d]) = H* 7/ (X, 5,,(i)),

where h; is the Hurewicz morphism.
This gives mod p™ Chern classes in H*(X, s} (x)). The integral ones are defined in an analogous way.

Lemma 2.1. The syntomic Chern classes have the following properties.

(1) cisjyn, for j >0, is a group homomorphism.
(2) @Sjyn, for 7 > 2 is a group homomorphism unless j =2 and p = 2.
(3) ¢;;" are compatible with the reduction maps s;,(i) — s, (i), n > m.
Moreover, if X is regular, then
(4) Letp be odd orp=2,n>2andl,q#2. Ifa € Kj(X;Z/p") and o' € Ko(X;Z/p"), then

Cayn, i~ D! _am, s eyny s
¢y (@) = — Zﬁ,_(l)!(s)_l)!cri (a)esy™ (o),

r+s=1
assuming that l,q > 2,l+q=7,2i>j,1>0.
(5) If « € FIK((X), j #0, and o/ € FFK (X;Z/p"), q > 2, is such that Gy () =0 for I # K,
then
(.7 + k — 1)' syn —syn,/ 7/
G =Dk = 1)1 (a)egy (o),

—syn

hglae’) =

assuming that p # 2 or q > 2.

(6) The above multiplication formulas hold also forp =2,n >4, ¢ =2 and o' such that 0o/ € K;(X)
belongs to V*.

(7) The integral Chern class maps iy restrict to zero on FIT Ko(X).

(8) The Chern class maps €3 restrict to zero on FST Ki(X5Z/p™), j > 2, unless j =2, p = 2.

Proof. This lemma was proved by us in [25, 2.3] for p # 2. When p is even the situation is more
complicated because the Hurewicz map is not a group homomorphism for j = 2 (see property (2)). But
with this in mind the proof goes through assuming the restrictions listed in the lemma. Property (6)
follows by adding Weibel’s analysis [34, 3.5.1]. An interested reader will find all the necessary information
on behaving of the Hurewicz map, comultiplication, and primitivity for p = 2 in Weibel’s article [34]. O

Remark 2.2. For any K-scheme X, one can argue as above to show that the étale Chern class maps
¢ Ki(X) = H* (X, Z/p" (1), o K;(X;Z/p") — H*79(X,Z/p"(i))

have analogous properties to those of the syntomic Chern classes.
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2.3. Log-étale descent. The following proposition will be essential in our construction of the comparison
morphism; it will allow us to descent the syntomic cohomology of the regular resolution to that of the
original log-scheme. We are working in this section in the category of fine and saturated log-schemes.
Recall that a map of log-scheme is a log-blow-up if it is log-étale and blows-up some of the closed strata.
The reader will find a precise definiton in [26].

Proposition 2.3. For anyn > 1, r > 0, any log-smooth separated scheme of finite type X* — V>, and
any log-blow-up 7 : U* — X, there is a natural isomorphism
[r] * r]
Proof. We know that log-blow-ups do not change de Rham cohomology. The proposition follows by some
flatness arguments.
By Zariski descent for log-crystalline cohomology, we may assume X to be affine. There is a commu-
tative diagram of maps of topoi

(U /Wi (k))ex
TN\ fux

(X /W (k) )er 2255 (V2 W (k) er-

* [r] . .
*) — Rfo*JU X /W (k) is a quasi-isomorphism.

Let ip : S* — T — W,(k),w : S* — V.* be a PD-thickening. Notice that the log-scheme T is
saturated: S* is saturated (w being étale), ir is a nilimmersion, and, since i7 is an exact morphism, we
have i}l(MTx /Oy ) =~ Mgx /O%, , where, for a log-scheme Y, My x denotes its log-structure. We have

It suffices to show that the morphism Rfxx., X] W

canonically (Rfxx, L(] Wk ))Tx ~ RfX;/TX*(J_[);]g(/TX)’ where XJ = X Xyx S and fXSX/TX is the

composition
fX;f/TX : (X,;/Tx)cr — (Xg)ét — Téf.
We may assume that S* = V(k)X, where £’ is a finite field extension of k£ and V (k') denotes the

unramified extension of V' corresponding to k’. Let Y := W, (k)[x]* be the scheme Spec(W,, (k')[z])
equipped with the log-structure associated to the map N — W,,(k')[z], 1 — 2. We have an exact closed
immersion iy : V(K') < « W, (K')[z]* given by sending x to a uniformizer of V(k'). Let I be the kernel
of iy . It is a principal ideal.

We may also assume that there exists a retraction h : T — W, (K)[z]* such that hir = iy
(W (K")[x]* being log-smooth over W, (k)). Notice that, since T is equipped with divided powers,
the retraction h factors through a closed subscheme Y, of W,,(k')[z]* given by I™.

Since X g is affine and log-smooth over S*, it can be lifted to a (necessarily saturated) log—smooth
scheme X§ — XYX over Y. Let X} denotes the pullback of XYX via h to T™. Since 7 : U* — X* i

log-étale, we have the following cartesian diagram of maps of log—schemes

Us Ur Uy,
[
X3 X7 Xy
l I
Sx iT TX h Y X

m?

where 7, wy,, are log-étale liftings of . Due to the fact that the morphisms X;m — Y, X and U;m —YX
are integral it is a cartesian diagram of schemes as well.
The scheme X7 is flat over T (as it is log-smooth and integral over T — the monoid My« /O%.

being generated by one element) thus J )[;}; o~ Jg]x O X5 Similarly, the scheme U} is flat over T

TX
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"l gl
and JU;

~ Jrx @0, (’)U%. Since there are isomorphisms

[r] ~ [r—] : [7] ~ [r—] :
RfX;f/TX*(JXg/TX) —RQX*(JX; ®QX’1>§/T><)7 RfU,;/TX*(JUg/TX) _RgU*(JU;f ®QU,}</T><)7
where gy = gx 7. it suffices to show that the natural morphism
r T [s] r
® 0 x *—)R?TT*(JU’; ®QU%/T><)

is a quasi-isomorphism.
By the above and [17, 111.3.7]

RWT*(JI[% ® Q) = RWT*LW;(J)[‘;]% ® e ) = J)[(]T & Uy ©F Brr, O,

It follows that it suffices to show that the natural morphism Ox,. LN Rrmr. Oy, is a quasi-isomorphism,
or, because the map X1 — Xy, is a homeomorphism of topological spaces, that the natural morphism

Ox, SALN Rmy, .Ou, = Ry, Ly, Ox, = Ox, ®%, Rry, Oy, is a quasi-isomorphism (recall
that Ox,. and Oy, are flat over Or).

ot
It suffices thus to show that Ox,, . S Rmy,, «Oyy.,, is a quasi-isomorphism. We argue by induction

on m. Assume that the statement is true for m = 1. Since Uy, is flat over Y,,,, we have the following
exact sequence
0 — Ovy,ns — Ovuy.,, — Ovy, — 0.

This and the induction hypothesis yield that the sequence
00— F(Uy,m,h OUY,m—l) — F((]an7 OUy,m) — F(Uy,l, OUY,I) — 0

is exact and that H'(Uy,n, Ouvy.,.) = 0, for i > 0. Evoking once more the induction hypothesis, we get
that I'(Xy,m, Oxy...) — T'(Uy,m,Ouy.,.). Since Xy, is affine, this gives us what we wanted.

It remains to show that Ox SEN R7s.Oypy is a quasi-isomorphism. Since U* — X * is a log-blow-up,
this is just a Z/p"-version of Theorem 11.3 from [22]. O

Corollary 2.4. Let X* — V= be any log-smooth separated scheme of finite-type. Then for any n > 1,
r >0, and any log-blow-up 7 : U* — X*, there is a natural isomorphism

H*(X*,s),(r)) WT*) H*(U*, s, (r)).

n rn
Proof. Use the long exact sequence

. . r IB .
oo HUX () = HE (X Wak), T0L ) 5 HE (G Wak), O iy, ) = -

where B(z,y) = (p"z — ¢(z)) and Proposition 2.3. O

3. COMPARISON THEOREM

We are now ready to construct the comparison morphism. First, let’s recall some facts about Bott
elements. Let Y be a scheme such that I'(Y, Oy ) contains a primitive p™’th root of unity. Let p,n(Y")
denote the group of p™’th roots of unity in I'(Y,Oy). Recall [34, 2.7.2] that, for p™ > 2, there are
compatible functorial Bott element homomorphisms

By : ppn (Y) — Ko (Y Z/p").
In what follows, choose a sequence of nontrivial p-power roots of unity ¢ = (), s € Qp, Cﬁn =1,¢ 1=

Cn, and take for t € B, the element associated to this sequence. We have t € H°(V, s/, (1)) — B, ,,. Let

K be a finite field extension of K imsideNF containing ¢, and V; its ring of integers. For p™ > 2, define
the Bott classes 8, € Ko(K1;Z/p") and B, € Ka(V1;Z/p™) as Bk, (Cn) and By, (¢,), respectively. These
classes form a compatible sequence with respect to n.
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Lemma 3.1. We have
Gi(B) = (1) TN - DIGY € HY (K Z/p™ (D) €ai(B) =0, # s
ani(By) = ()= D e HOV,s,(0); &%i(B) =0, 75 i.
Proof. The Chern class maps
an  Ka(VisZ/p") — H 72 (Vi s, (1))
are induced by the syntomic Chern classes C; € H*(B.GL/W (k),s!,(i)) of the universal vector bun-

dle on B.GL/W (k) (see Lemma 2.1 in [25]). On fj, they act via the universal Chern classes C;; €
H*(B.GL1/W (k), s,,(i)) [34, 2.7.2]. But those vanish for i > 1 giving that ¢;5'(3,) = 0, for i # 1. Simi-
larly we get the vanishing of the étale Chern classes. We computed in [25, Lemma 4.1] that ¢}y (Bn) =t
and Ei’f2(ﬁn) = (p. The rest follows from the product formulas in Lemma 2.1. O

We would like now to relate K-theory mod p™ to étale cohomology. The following proposition shows that
we can invert étale Chern classes modulo some constants.

Proposition 3.2. Let Y be a smooth scheme of dimension d over K, and let p™ > 5. Let j > max{2d, 2},
j>3 ford=0 andp=2, and 2i — j > 0. There exists an integer T'(d,,j) depending only on d, i, and
j such that, the kernel and cokernel of the Chern classes

ey K (Y3 Z/p") — HY (Y, Z/p" (i)
are annihilated by T'(d,i,7). An odd prime p divides T(d,4,j) if and only if p < d+j+ 1.
Proof. This proposition is a K-theory version of the following theorem.

Theorem 3.3. (Suslin [31]). The change of topology map
HY (Yzar, Z/p" (1)) — H? (Yer, Z/p"(0)).
s an isomorphism for i > d.

Here Z/p™(i) are the complexes of motivic sheaves Z/p™(i) := X +— 2%(X,2i — %) ® Z/p" in the
Zariski and étale topology, respectively. Recall how the complex 2"(X, *) is defined [2]. Denote by A™
the algebraic n-simplex Spec Z[tg, ... ,t,]/(O_t; —1). Let 2"(X,4) be the free abelian group generated
by irreducible codimension r subvarieties of X x A? meeting all faces properly. Then 2" (X, *) is the
chain complex thus defined with boundaries given by pullbacks of cycles along face maps. We know that
HI(X,Z/p"(i)) ~ CHY(X,Z/p"(2i — j)) is the Bloch higher Chow group and the cycle class defines an

isomorphism of H7 (X, Z/p"(i)) with the corresponding étale cohomology group (hence we will use the
same notation for both).

Remark 3.4. Suslin states this theorem for quasi-projective schemes but it is in fact true for any
separated scheme (see [12]).

Let’s start the proof. We know that the algebraic Chern class ¢ *et is equal to the following composition
s K (V32 /") 2 KIP(YV2/07) S5 BV, 200, 522,
where KjTOp(Y; Z/p™) is the étale K-theory of Dwyer and Friedlander [4], [10]. The natural map
K;j(Y;Z/p") — K°P(Y;Z/p")

from algebraic to étale K-theory is Thomason’s sheafified version [32, 4.15] of the map defined in [4]
for affine schemes and ¢;; is the topological Chern class [30, 4.1.4]. The map p; is compatible with
~v-operations. Recall [32, 4.11] that we have an isomorphism

K;(Y;Z/p") (8, ] —> K; (Y1 Z/p").

We will write K¢*(Y;Z/p™) for K;(Y;Z/p™)[B,"] (or for the isomorphic cohomology of K-theory spectra
in étale topology).
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We have a Dwyer-Friedlander spectral sequence

e _ H:(Y,Z/p" (1)) if0<s<q=2i,
2 = .
0 otherwise

converging to K;FSP(Y; Z/p™), qg—s > 3. Here the differential d,. : E$9 — E3+tma9t7=1 Let FSKjTOp(Y; Z/p™)

denote the filtration on K;FOP(Y; Z/p™) defined by this spectral sequence. We can prove, as in Soulé [30,
3.4], that

M(d, i, j)F*=IK[P(Y; Z/p") C FIK*P(Y;Z/p") € FH=IK (Y Z/p"). (3.3.1)
We also know [30, 4.2] that ¢;; restricts to zero on F%_jHK;FOp(Y; Z/p™). Hence, it induces a map
Gy ¢ F3 /PR (YVs 2 fpt) L P20 PR KT (Y 2/ S HE (Y, 27 ().

We claim that the kernel of ¢;; is annihilated by M (d, i+1, j)(i—1)! and its cokernel by M (d, 4, j) M (2d)?(i—
1)!. Indeed, by the inclusions (3.3.1), the map f has kernel and cokernel annihilated by M(d,i + 1, j),
respectively M (d,4,j). Concerning the map g, notice that, by Soulé [30, 4.2], the image of ¢;; in
H2=i(Y,Z/p"(i)) = E3 7% lies in the kernel K2~72 of all higher differentials d,, r > 2, in the
Dwyer-Friedlander spectral sequence. Hence we have a factorization

g P29 [P IGER (Y 2 p) — K292 HBZI(Y, 2/p" ().

Since [30, 3.3.2] M(2d)d, = 0 for any r > 2, the cokernel of the inclusion K?=7% — H2=i(Y Z/p™(i))
is annihilated by M (2d)¢. Consider now the composition
2i—4,2i _ p2i—j / p2i—j+2 poTop (y7. 2i—j,2i
BT H = [ PRI PP (Y2 ") — KT
&) F2i—j/F2i—j+2KjTop(Y; Z/p") = Egé—j,2i7
where ¢;; is the natural projection (a surjection). This composition is proved in [30, 4.2] to be equal to
multiplication by (—1)*1(i—1)!. Hence the kernel of g is annihilated by (i —1)!. Also, since M (2d)d, = 0
for any r > 2, the kernel of ¢;; is annihilated by M (2d)?. Hence the cokernel of g is annihilated by
M(2d)?3(i — 1)
Consider now the change of topology map

i 7 ny Pig i il o n
Wy FLJFSTVKG (Y Z/p") = FLJFEST K (Y Z/p").

We claim that it is surjective and its kernel is annihilated by M (d,i+1,25). This will follow from Suslin’s
theorem mentioned above (comparing Zariski and étale motivic cohomologies) via spectral sequences
relating motivic cohomology to algebraic K-theory. Recall that Levine [23, 12.2, 12.13] has constructed
compatible Zariski and étale Atiyah-Hirzebruch spectral sequences from motivic cohomology to K-theory:

E3" = H*(Yzar, Z/p"(¢/2)) = Ks—q(Y;Z/p")

EyY = H*(Y,Z/p"(q/2)) = K*,(Y; Z/p").

Here the differential d,. : E$9 — EST9t7=1 Denote by FY the filtration on K-theory groups defined
by these spectral sequences. Levine shows [23, 10.8, 11.6] that F};Kft(Y; Z/p?) C FIE\HKft(Y; Z/p") and
that

M(d,i,2))Fyp K; (Y Z/p") C PYE; (Y Z/p") C Fagk;(Y;Z/p").
Consider the following diagram

fn ) . n Y nUE Al 3 . n
F’y/F'y+1Kj(Y7 Z/p ) — F’y/F'y+1Kj€‘:t(Y7 Z/p )

! l

Fiay/Fig K;(Y Z/p") —— Fig/Fig K& (Y Z/p")
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By the above, the kernel of the left vertical map is annihilated by M (d, i+ 1,25). Using Suslin’s theorem
via an analysis of the above Atiyah-Hirzebruch spectral sequences Friedlander-Walker [11] show that the
natural map

by K (Y;Z/p") = KSY(Y;Z/p")
is surjective for j > 2d and that the induced map
Fan/Fiq K (Y Z/p") = Fig /Fiy K5 (Y Z/p")

is an isomorphism for i > d, j > 2d. Our claim follows now easily.
Finally, recall (2.2.3) that the cokernel of the natural map

FIJFK (Y Z/p") — FLJFS K (Y Z/p)

is annihilated by M (d,1,27).

Combining all of the above, we get that, for j > 2d, the cokernel of

o) e K (Y3 Z/p") — H*7 (Y, Z/p" (1))
is annihilated by M (d, i, )M (2d)??(i—1)!, and its kernel is annihilated by M (d, i+1,2)M (d, i,25)M (d, i+
1,7)(i — 1)!. Take
T=T(d,i,5)=06(—-1)IM(d,i,j)M(d,i+1,5)M(d,i+ 1,25)M(d, 7, 2j)M(2d)2d.

Since an odd prime p divides M (d, i, ) if and only if p < (§ + 2d + 3)/2, and divides M () if and only

if p < (1/2) + 1, we get the last statement of the proposition. O

We will show now that we can pass from the K-theory of the generic fiber to the K-theory of a regular
model. Let K7 denote a finite extension of K and let V; be its ring of integers.

Lemma 3.5. Let X be a reqular flat scheme over Vi and j : Xk, — X the open immersion. Then the
restriction

]*KJ(XaZ/pn)l>KJ(XK1aZ/pn)7 ]>d+1a
18 an tsomorphism and the induced map
5t erl Ki(X;Z/p") — el K ( Xk, Z/p"),  j>d+1
has kernel and cokernel annihilated by M (d,i+ 1,2j) and M(d,i,2j), respectively.

Proof. We have the localization sequence
— K;(Xkl;Z/p”) — KJ/»(X; Z/p") — KJ/»(XKI;Z/p") — Kg/‘fl(Xkﬁ Z/p") —,

where ki is the residue field of V1. Since X is regular, it suffices to show that K’ (Xy,;Z/p") = 0 for
j > d. We will argue by induction on d. By devissage we may assume Xy, to be reduced. Let S be the
singular locus of X}, and U the open complement. We have the associated localization sequence

= Kj(S:Z/p") = K{(X;Z/p") — KU Z/p") — K 4(S;Z/p") — .

Since U is nonsingular, K (U;Z/p") ~ K;(U;Z/p") = 0 for j > d by [13]. By induction K’ (S;Z/p") =0
for j > d, hence the claim.
It follows that we have an isomorphism

§ PR (X;Z/p") = FIK; (X Z/p"),  j>d+1,5> 1.
Take 2 € F!K;(Xk,;Z/p"). By 2.2.3, M(d,i,2j)z € f‘;Kj(XKl;Z/p") giving the statement about
cokernel. For kernel, let z €~F§KJ(X;Z/p”) be such that j*(z) € FiT'K;(Xg,;Z/p"). Again by
2.2.3, M(d,i+ 1,2j)j*(x) € FIM'K;(Xk,;Z/p"). Hence M(d,i+ 1,25)j*(z) = j*(y) for some y €

ﬁ§+1Kj (X;Z/p™). By injectivity of j* we get that M(d, i+ 1,2j)x = y giving injectivity on the grading.
O
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3.1. The comparison morphism. We are now ready to define our comparison map. Let X* be a
log-smooth vertical log-scheme over V* of pure relative dimension d and with Cartier type reduction.
Note that the log-structure of X is trivial and the base change X\>/<1 for any finite extension V; of V is
saturated. In particular, the special fiber of X* is of Cartier type. Assume that p™ > 5 and b > 2d + 1,
and if d = 0, p = 2 assume that b > 2. Define a transformation

agy + H* (X7, Z/p" (b)) — ng(X%n/Wn(k), OX% /W,L(k)){_b}?

where {—b} denotes a twist of the filtration (Hg,(Xé /Wi(k),Oxx . (1) is equipped with the natural
T V.n "

crystalline Hodge filtration) and the Frobenius, in the following way.

For z € H*(X7, Z/p"(b)), take (¢'y,_,) " () € F5/FS Koy o(X%;Z/p") to be any element in
the preimage of T'(d, b, 2b — a)z (this is possible by Proposition 3.2). Let 21 € F2Koy_o( X7 Z/p™) be
a lifting of the element (Elé)f%_a)_l(x). Take an extension V; of V' such that the class z; comes from
T € F,?Kgb,a(XKl; Z/p™), where K, is the field of fractions of V;. Notice that the log-scheme X‘Z
is log-regular. Hence, by [26], there exists a log-blow-up 7 : Y* — X‘ﬁl such that the scheme Y is
(classically) regular.

By the proof of Lemma 3.5, we can now find a unique element z} € FSKQb,a(Y; Z/p"™) such that
7*(z}) = T(d,b,2b — a)x1, where j* is the restriction j* : Kop_o(Y;Z/p") = Kop—o(Yi,;Z/p™) (note
that YKl = XKl)- Set

ol () = npv, (1)~ Ty, (T(d,b,2b — a)z)).

l¢ is the composition

Here )y, (7)™
H(Y,5,(b) 5 HO (Y, 5, (b)) < H (X, (0) =2 HY (XX, 50,(0))

ren n V7 n
wn a
- Hcr(Xém/Wn(k% OX% /Wn(k)){_b}

Lemma 3.6. The transformation o, is a well-defined natural Galois equivariant group homomorphism
giving the following relationship between Tate twists

(=b)T(d,b,2b — a)®all 1 (Caw) = (=b)T(d,b+1,2b+ 2 — a)*ally (2)t.

Proof. We have made several choices in our construction of af,. We will analyze them. Let us first
assume that we have fixed the lifting x; € F,?Kgb_a(X?; Z/p™). By functoriality of Chern classes, the
choice of K7 and of the element x; € Ff;bi,a(XKl; Z/p™) is of no importance. For two choices of a
regular model 7 : Y* — Xy, we know from [26] that we can find a third regular model that dominates
(via a log-blow-up) both of them. Functoriality of Chern classes now yields that the choice of the regular
model is of no importance.

The ambiguity introduced by the choice of the lifting x; comes from an element y € F. f;“K 2b—a( X753 Z/p").
After perhaps passing to a finite extension of the base ring and changing the regular model Y, we
get that the ambiguity in the choice of the corresponding element )} comes from an element w of
FYKoy_o(Y;Z/p™) that maps to T(d,b,2b — a)y € FS" Koy o(Xk,;Z/p™). Lemma 3.5 now yields that
T(d,b,2b—a)w € Fs"‘lKgb,a(Y; Z/p™). Lemma 2.1 shows that this ambiguity disappears after we apply
the syntomic Chern class morphisms. Similarly, the ambiguity in the choice of (E‘ifzb_a)_l(m) disappears
after we multiply «} by T'(d, b,2b — a) and apply the syntomic Chern class morphisms.

For functoriality, use functoriality of Chern classes and K-theory with respect to pullbacks and the fact
that (saturated) base change of a log-blow-up is a log-blow-up [26]. Since all the genuine maps we used
were group homomorphisms (Lemma 2.1), so is the map «f,. That it is also Galois equivariant follows
from functoriality of Chern classes and functoriality of K-theory with respect to pullbacks.

For the last statement of the lemma, let 2} € FUKa,_o(Y;Z/p") and 21 € FoKoy_o(Xk,;Z/p™) be
the elements from the construction of a7, (z). Since 5% (8,) = (n (see Lemma 3.1), we have by Lemma
2.1

C12b42-a(Bnt1) = (—0)T 2 (Bn)Cap—a (1) = (=0)CaT(d, b, 2b — a)a.
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It follows that
(=D)T(d, b,2b — a)’ag 41 () =
T(d,b,2b — a)ibnpiv, () " (5 2y oo (T(d, b+ 1,20+ 2 — a)?Bnat)) =
(=0)T(d, b+ 1,20 +2 — a)*u v, (1) (@3 (Ba )Ty ap o (T(d, 1,26 — a)ary)) =
(=b)T(d,b+1,2b+ 2 — a)*ay ,(2)t,
as wanted. ]
Let b>2d+1and b > 2 for d =0, p=2. Assume X to be proper over V. Define a morphism
aap : H (X5, Qp(b)) — HE(Xg /W (K)°, Oxx winy) ©w k) Bse{—b}
as the composition of Q ® projlim,, %, with the map (see section 2.1)

c 1. a hx a
Q & proglhm Hcr(Xém/Wn(k)? OX% /Wn(k)) — I_Icr()((;< /W(k)ov OX(? /W(k)o) ®W(k) Bst

and with the division by T(d, b, 2b— a)3. The morphism ay, is functorial in X ¥, preserves the Frobenius,
the action of Gal(K/K) and the monodromy operator, and, after extension to Bgg, is compatible with
filtrations (use Lemma 4.8.4 from [33]).

We would also like to know how the map «,; behaves with respect to finite base changes. In what
follows, we will add the subscript @ to agp, to underscore the fact that in the definition of this map we
made a choice of a uniformizer. Let V; be a finite extension of V' with fraction field K; and residue field
k1. Let e be the ramification index of K7 over K and let 7y be a uniformizer of V;. Set X| := Xél.

Lemma 3.7. The following diagrams commute

Qab,

H(X%,Q,(b) ®q, By ——— HL(X*) w ) Bst

H |

Qab,mq

Ha(Xl,?vap(b)) ®QP Byy —— ng(Xlx) ®W(kl) Bsts

Oth

H(X%,Qp(b)) ®q, Ban —— Hip(Xx/K)®k Bar

H |

dR
aab,wl

HY(X, %,,Qp(0)) ®q, Bair —— Hjp(Xk, /K1) ®k, Bar.
In particular, the maps aq, and agf are independent of the choice of the uniformizer .

Proof. Arguing exactly like Tsuji in his proof of a similar statement [33, 4.10.4], we reduce to showing
that the maps

gy H* (X7, Z/p" (b)) — ng(X%n/Wn(k), OX% /W,L(k))v

nprhn + HA (X2 /W (K)) — Hip(Xx/K) @ Bl

are compatible with our base changes.

In the case of the map «, this is obvious from its construction.

In the case of the map trphr, since from the definition [33, 4.7.3] of the isomorphism B;R ® K,
H3n (XK /K) = projlim,(Q® H(?T(Xé/vX ,0/J1) it is easy to see that it is compatible with our base
change, it suffices to show that so is its composition with ¢;p h,. Since this composition is equal [33,
4.8.4] to the natural map

HE (X2 /W (k) — projlim(Q © HE(X7/V*,0/9)),

this is clear. 0O
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3.2. Main theorem.

Theorem 3.8. Let X* be a proper log-smooth saturated vertical V> -scheme with Cartier type reduction
of pure relative dimension d. Then, assuming b > 2d+1 and b > 2 for d =0, p = 2, the natural morphism

aap : H* (X, Qp(b)) ®q, Bst — HE(XG /W (K)", Oxx jyyrr0) @w(r) Bs{ —0}

is an isomorphism. Moreover, the map gy preserves the Frobenius, the action of Gal(K/K) and the
monodromy operator. It is independent of the choice of w, compatible with base changes and Tate twists,
and, after extension to Bggr, induces an isomorphism of filtrations.

Proof. The listed compatibilities follow from Lemma 3.6 and Lemma 3.7. The line of the argument is
standard [9]. Namely, since both sides of ag,;, have the same rank over By, it suffices to show that the
morphism g, has a Bg-linear left inverse. That, in turn, would follow — by Poincaré duality — from the
compatibility of ag,, with products and traces.

First, we have to check that the morphism «,; is compatible with products. This follows from the fact
that the morphism h, is compatible with products and from the following lemma

Lemma 3.9. Let x € H* (X3, Z/p" (b)), y € H (X%, Z/p"(e)), 2b —a > 2, 2e —c > 2, and p™ > 5. Set
K(b,e)=—=0b+e—DI/((b—1Dl(e—1)). Then (assuming that all the indices are in the valid range)
K (b,e)T(d,b,2b — a)*T(d,e,2e — c)sagﬂybﬂ(:ﬂ Uy)
= K(b,e)T(d,b+e,2b+2e — a — c)*a” (z) U™ (y).
Proof. Use Lemma 2.1. O
Next, by taking a finite unramified extension of K, we may assume that X is geometrically irreducible.

The case of d = 0 is handled easily: we use Lemma 3.1. For d > 1, since the domain and the target
satisfy Poincaré duality, to show that o, has a left inverse, it suffices to verify that the map

azaon : H* (X7, Qp(2b) ®q, Bsw — HE(Xo /W (k)" Oxx jyy(iyo) ©w (i) Boe{ —2b}
is an isomorphism. Notice that
dimq, H**(Xz, Qp(20)) = dimg, HE(Xo" /W (k)°, O x jyy(iyo) @w sy Ko = dimge Higp(Xpc/K) = 1.

By taking a finite unramified extension of K, we may take a rational point P of the smooth locus of
X over V (note that the special fiber of X is reduced [33, 2.7.7]). Since H?¥(X%, Q,(2b)) is generated
by clét(PK)Czb_d, it suffices to show that agq 2, maps clét(PK)C%_d ® t~2b+d 44 a nontrivial element of
}Ichd()(O>< /W(k)07 Ox[? /W(k)o) ® KO.

For that, we will first show that the extension of asq 2, to Byr

Leproday t H* (X7, Qp(2b)) ®q, Bar — HZ4(Xk/K) @k Bar
maps clét(PK)C%*d ® 2t to cldR(PK). Or that, by Bgg-linearity,
Lr 2,26 (1 (P ) (20 4) = (P )t

Let m: Y* — X* be a (saturated) log-blow-up that does not modify the regular locus of X* and such
that Y is regular. Denote by P’ the unique V-point of Y lying over P (note that Yx ~ Xy and P, = Pg).
Let [Op/] and [Op, ] denote the class of Ops and Op,, in Ky(Y) and Ko(X k), respectively ( Y is regular
1). Recall (see the proof of Lemma 4.2 in [25]), that there exists a constant s(d) (depending only on the
dimension d) such that s(d)[Op/] € FIKo(Y) and that we have ¢ (s(d)[Opy]) = s(d)c¥o([Op,]). By
exactly the same argument, cg%(s(d) [Op,]) = s(d)cgf)([OpK]). We also know that

co([Ope]) = (1) Hd = DI (P),  cgf((Op,]) = (=1)*H(d — 1)1l (Py).
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We now pass to torsion coefficients. Take a field extension K; /K containing (,. We have the following
commutative diagram (not necessarily cartesian)

Y1>< fy y x

ok

Xy —L x>

Hvy

X><
v

)

where V7 is the ring of integers of K7 and m; is a log-blow-up with regular model Y;.
Since s(d) f5[Op, 1824 € F?* Kyop—a)(Xk,; Z/p"), inclusions 2.2.3 imply that

M(d, 2b,4(2b — d))s(d) fic|Op, |37~ € F* Kan—a)(Xk,: Z/p").
Set s(b,d) = M(d,2b,4(2b — d))s(d). It suffices to show that
tapre2a,2s(Co (5(0, d)[Op, ])C*7Y) = i (s(b, d)[Op, )t~

Now, the product formulas for the étale and the syntomic Chern classes (see Lemma 2.1) yield that
for p™ > 5

(d = )15} 52p—ay (s(b, ) Fic [Op, 182" ™) = (=1)*7(2b — Do (s(b, d) fi [Op, ]G ™,
(d = D)1 0y gy (3(0, ) FH[Op] 57 ~) = (=1)%074(2b — 11T (s(b, d) f[Op )5 (Ba) >~
Since the class fy [Op/] restricts to fj[Op.], we compute
(=1)%79(2b — 1)lagg (cdio (s(b, DO G ™)
—1)%7(2b — 1)lag, 5 (cao(s(b,d) fc [Opic )G ™)
T(d, 26, 4b — 2)*(d — 1)l sl (1) Ty ) (506, ) i[O B2
1)*=T(d, 20,4b — 2d)°(2b — 1)y, () e (e (s(b, ) f [Op )Ty (Ba) )
1)*79T(d, 20, 4b — 2d)*(2b — )Woupiyy (77) e f3 (55 (s(b, D) [Op]) )12~

19T (d, 26, 4b — 2)° (20 — g (7°) (s (5(b, ) Opr )12,

(

(_
(,
(,

where = fuy,.
Passing to the limit and tensoring with Q we see that it suffices to show the following compatibility
of the crystalline and the de Rham Chern classes

taprhap (1) o (s(b, )[Op]) = cili(s(b, )[Op,c]),

where ¢y : Ko(Y) — HZY(Y* /W (k)) denotes the composition of the crystalline Chern class map
iy o Ko(Y) — HZH(Y/W (k)) with the canonical map HZ(Y/W (k)) — HZH(Y* /W (k)). Or that, for
any j > 1, the following diagram commutes

dR

Ko(Y) — HJL(Xk/K)  —— B ®x Hjh(Xk/K)
c;fol pr«h«T
Q@ H(Y*/W(k) +—— Q& HH (X /W (k) —L— Q& HZ (XZ/W (k).
Recall now [33, 4.7.6,4.8.4] that the composition
HE (X)W (k) 25 Bl @k Hig(Xie/K) = projlim(Q® HEY (X7 /v, 0/I¥))

is equal to the natural map

H2 (X2 /W (k)) = projlim(Q ® HZ (XX /V*,0/7%)).
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Hence, using the canonical isomorphism
Q®HL(X™/V™) ~ Hip(Xk/K)

proved by Kato (see Theorem 6.4 in [20]), the functoriality of the de Rham Chern classes, and the fact
that Y is proper, we just need to check that the following diagram commutes

dR
€5,0

Ko(Yx) —=  Hh(Yi/K)

T

Ko(Y) —2% Qe HH(YX/V>).

Here the Chern class ¢ is defined as the composition

Ko(Y) 2% Q@ HY(Y/V) - Q@ HY (Y /V¥).

By the splitting principle (we have the projective space theorem in de Rham cohomology), it suffices to
check that the crystalline and the de Rham Chern classes of line bundles are compatible. The crystalline
Chern class ¢ : HY(Y,03%) — HZ(Y*/V*) is defined via the exact sequence

0= 1+ Jyxyx = Opxjyx = Oy =0

and the map log : 1+ Jyx yx — Jyx, yx. Since Y*/V* is log-smooth its compatibility with the de
Rham Chern class can be shown paraphrasing the proof of an analogous fact in the situation with trivial
log-structures due to Berthelot and Ogus ([1, Lemma 3.3]).

Now, to finish the proof of the fact that asgq 2p is an isomorphism, note that if

T = g o (P (P ) (P @ 2,
then, by the above,
z € (HE( X5 /W (K)°, Oxx jyyiayo) ®wry Bst) N Hig( Xk /K)
C (HZ(XG /W (K)®, O jayr o) @iy Bet) % = HEH (X /W (K)®, Oxcx iy ry0) © Ko

Hence x is a generator of the one dimensional vector space HZ24(X /W(k)O,OXOX Jwky) ® Ko (it is
nontrivial since its image in H%(X g /K) is cl™(Pg)), as wanted.

To finish the proof of the theorem, it remains to show that 04;15 (aap extended to Bygr) induces an
isomorphism on filtrations. Passing to the associated grading, one reduces to showing that the induced
map

__dR,l . —j j
Ty Cpll) @q, H (X, Qp(b) — €D Cp(b+1—j) ©x H* I (Xi, U, ) 1E€Z,
JjE€Z
is injective. Since the domain of ajf“ satisfies Poincaré duality and asz’l is compatible with products,
for aﬁf to be injective, it suffices to show that

agng : Cp®q, H* (X, Qp(20)) — Cp(20 — d) @k H(Xi, 0%, /x) = Cp(2b — d) @ Hih(Xic/K)

is an isomorphism. Since both the target and the domain are one-dimensional and, by the above,
aggéob(CICt(PK)Czb_d) = CldR(PK)th_d # 0, we are done. 0
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