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ABSTRACT. A classical Borel Cantelli Lemma gives conditions for deciding whether
an infinite number of rare events will happen almost surely. In this article, we propose
an extension of Borel Cantelli Lemma to characterize the multiple occurrence of events
on the same time scale. Our results imply multiple Logarithm Laws for recurrence and
hitting times, as well as Poisson Limit Laws for systems which are exponentially mixing
of all orders. The applications include geodesic flows on compact negatively curved
manifolds, geodesic excursions on finite volume hyperbolic manifolds, Diophantine
approximations and extreme value theory for dynamical systems.
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1. INTRODUCTION

The study of rare events constitutes an important subject in probability theory. On
one hand, in many applications there are significant costs associated to certain rare
events, so one needs to know how often those events occur. On the other hand, there
are many phenomena in science which are driven by rare events including metastability,
anomalous diffusion (Levy flights) and traps for motion in random media, to mention
just a few examples.

In the independent setting there are three classical regimes. For the first two, consider
an array {QF}7_, of independent events such that p, = P(2*) does not depend on k.
Let N,, be the number of events from the n-th array which have occurred. The first
two regimes are:

(i) CLT regime: np, — oo. In this case N, is asymptotically normal.

(ii) Poisson regime: np, — A. In this case N,, is asymptotically Poisson with param-
eter \.

For the third, Borel Cantelli regime we consider a sequence (£2,,) of independent events
with different probabilities. The classical Borel Cantelli Lemma says that infinitely

many €2,s occur if and only if ZIP’(Qn) = 0.

n

A vast literature is devoted to extending the above classical results to the case where
independence is replaced by weak dependence. In particular, there are convenient
moment conditions which imply similar results for weakly dependent events. One im-
portant distinction between the Poisson regime and the other two regimes, is that the
Poisson regime requires additional geometric conditions on close-by events to extend
the statement to the dependent case. Without such conditions, one can have clusters of
rare events where the number of clusters has Poisson distribution while several events
may occur inside each cluster. We refer the reader to [4] for a comprehensive discussion
of Poisson clustering.

1.1. The multiple Borel Cantelli Lemma. In the present paper, we consider a
regime which is intermediate between the Poisson and Borel Cantelli. Namely, we
consider for the moment a family of events (27 which are nested: (27 < Q7 for p; < pa,
and that independently of n, P(€2]) = o(p) for some function o. (We will see later how
these conditions could be slightly weakened to accomodate several applications.) For
p > 0, we define

N”zﬁ{k: 1<k<n, Qlfjoccurs}.

p
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The main subject of this paper is to assess, for a sequence (p,,) such that no(p,) — 0
as n — o0, and r € N, whether the event
Ny =71
occurs infinitely many times or not. Even if the events 27 are independent for different
n, the variables N; o and N p, Are strongly dependent if n; and ny are of the same
order. On the other hand, if ny » n; then the variables are weakly dependent since,
conditioned on N/?fQ # 0, it is very likely that all the events Q’;nQ actually occur for

k > ny. Using this, one can show under appropriate monotonicity assumptions (see
[131]) that N > r infinitely often if and only if

ZIP N2, =) =,

Under the condition no(p,) — 0, it follows that in the independent case

P(N; =71)~ —(na(pn))T.

rl

Therefore, under independence, infinitely many N} > r occur if and only if

(1.1) >22M7 (g (pour))" = 0.

M

This multiple Borel Cantelli Lemma was extended to the dependent setting in [1].
However, the mixing assumptions made in [1] are quite strong requiring good symbolic
dynamics which limits greatly the applicability of that result. In the present paper we
present an abstract extension of the multiple Borel Cantelli Lemma to the dependent
variable setting. The dynamical versions that can be extracted from our abstract result
use more flexible mixing conditions which open up many interesting applications. Our
conditions are similar to the assumptions typically used to prove Poisson limit theorems
for dynamical systems.

The precise statements of our abstract results will be given in Sections 2 and 3.

Let us describe in a nutshell the setting for dynamical applications. We will give
exponential mixing and regularity conditions on a dynamical system (f, X, ) and on
a family of target sets {Q,},p € R% so that given a (decreasing) sequence (p,), and
defining the sets Q’;n =f _kan, we get the validity of the dichotomy described in (1.1)
for the number of hits N . More precisely, when a point y is randomly distributed
according to i, we view Qk as an event, and saying that infinitely many N}’ > r occur
almost surely just means that for p-a.e. y € X, there are infinitely many n so that
y € QF for at least 7 distinct k € [1,n].

Let us now describe some sample applications to dynamics, geometry, and number
theory that will be developed in separate sections after the abstract results are stated
and proved.
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1.2. MultiLog Law for recurrence. Let f be a map preserving a measure g on a
metric space (M, d). Given two points z, y let d (x,y) be the r closest distance among

d(z, f*y) for 1 < k < n. In particular, d;l)(x,y) is the closest distance the orbit of y

comes to x up to time n. It is shown in [69] that for systems with superpolynomial
o CmdP(z, ) 1

decay for Lipschitz observables, for all  and p-almost all y lim ——— = —

. . : . . omeo o Inn d’
where d is the local dimension of p at x provided that it exists.

Under some additional assumptions, one can prove a dynamical Borel Cantelli Lemma
which implies in particular that, if p is smooth then for all x and almost all y we have

i s [Indi(z,9)| = flon _ 1
. Inlnn d

In Section 4 we extend this result to r > 1, for systems that have multiple exponential
mixing properties. For example, if f is an expanding map of the circle, we shall show
that for Lebesgue almost all (z,y) € T x T we have

‘ \lndﬁfﬂ)(:v,yﬂ —Inn 1
1.2 1 = —.
(1.2) 12n_)sslolp Inlnn r

We sketch briefly the reduction of (1.2) to the multiple Borel Cantelli lemma leaving
the details to Section 4. Given z € M, let €, , = {y : d(x,y) < p}. We use the notation
QF  for the event 1q, , o f*. We let o(p) = Leb(£2,).

For s = 0, we let p, = n~" (Inn)~*, and for y € T, we denote by N7 (y) the number
of times k € [1,n] such that y € QF .

Thus (1.2) is equivalent to the following :

(a) If s > %, then for Lebesgue almost all (z,y) € T x T, we have that for large n,
Ny <.

(b) If s < %, then for Lebesgue almost all (z,y) € T x T, there are infinitely many
n such that N > .

0
With the notation S, = Z 275 (py)", we see that S, = o0 if and only if s < 1. Hence
j=1
(1.2) would follow from an extension of the Multiple Borel Cantelli Lemma of §1.1 to
the case of expanding maps of the circle.

The smoothness assumption on the invariant measure, the Lebesgue typicality as-
sumption on z and the hyperbolicity assumption on f are all essential. Namely, if p is
an invariant Gibbs measure which is not conformal, A is the Lyapunov exponent of p,
then we show in Section 6 that for p almost all z and y and for all r € N,

Ind" —1
hmsup!n (z,y)|—Inn _ o

non 4/2(Inn)(Inlnlnn)  dvdr
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for some o > 0 which will be given in (6.4). We shall also show that there is Gs—dense
set ‘H such that for all z € H, Lebesgue almost all y and all » > 1, we have
IInd (z,y)| — Inn

lim sup =1
n—00 Inlnn

Finally if the expanding map is replaced by a rotation 7, then we have (see Theorem
4.7 below) that for almost all (z,y, «) it holds that

Hndg)(:r,yﬂ—lnni 1 ifr=1,
B if 7> 1.

lim sup

o0 Inlnn %

1.3. Records of geodesic excursions. Consider a hyperbolic manifold Q of dimen-
sion d+ 1 which is not compact but has finite volume. Such manifold admits a thick-thin
decomposition. Namely Q is a union of a compact part and several cusps (see §7.1, in
particular, formula (7.3) for more details on think-thin decomposition). A cusp excur-
siton is a maximal time segment such that the geodesic stays in a cusp for the whole
segment. Let

HY(T) = HO(T) > ... H(T) > ...

be the maximal heights achieved during the excursions which occur before time T" placed
in the decreasing order. Sullivan’s Logarithm Law is equivalent to saying that for almost
every geodesic
HO(T) 1

1.3 li = —.

(13) WL T4
The proof of (1.3) relies on Sullivan’s Borel-Cantelli Lemma and it actually also shows
that for almost every geodesic

y HO(T)-imT 1
Hr;l_igp InlnT d

Extending the Multiple Borel Cantelli Lemma of §1.1 to the cusp excursions, we obtain
a multiple version of Sullivan’s law by showing that for almost every geodesic

. HO(T) - 1InT 1
S S N N T

1.4. Multiple Khinchine Groshev Theorem. Let 1) : R — R be a positive function
(in dimension 1 we also assume that ¢ is monotone). The classical Khinchine Groshev
Theorem ([77, 104, 150]) says that for almost all o € R? there are infinitely many
solutions to

(1.4) |k, a) +m| < ¥(|k|w) with ke Z4meZ
if and only if

(1.5) Dt () = o
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In particular the inequality
1

||k S
IRk @)+ ml < e T

where |k| = 4/> k%, has infinitely many solutions for almost every « if and only if
s < 1. This is one of Kintchine Groshev 0 — 1 laws for Diophantine approximations of
linear forms that can all be obtained from suitable dynamical extensions of the classical
Borel Cantelli Lemma to cusp excursions in the space of lattices of appropriate diagonal
actions.

One goal of this paper is to extend the Kintchine Groshev 0 — 1 laws to multiple
Diophantine approximations. For example, we can replace (1.4) by

1

d < -

and say that « is (r,s) approximable if there are infinitely N for which (1.6) has r
positive solutions (that is, solutions with k3 > 0). (Our interest in smallness of

(1.7) K[|k, @) +m]

is motivated by [50] where the discrepancy of Kronecker sequences with respect to
convex sets is studied. Indeed the set of k& where (1.7) is small are small denominators
of the discrepancy and they determine its growth rate.)

In Section 9, we give several versions of the Multiple Borel Cantelli Lemma for
cusp excursions in the space of lattices of diagonal actions, and obtain in one of the
applications that almost every a € R? is (r, s) approximable if and only if s < %

1.5. Plan of the paper. The layout of the paper is the following. In Section 2 we
describe an abstract result on an array of rare events in a probability space which ensures
that for a given r, r events in the same row happen for infinitely many (respectively,
finitely many) rows. In Section 3 this abstract criterion is applied in the case of rare
events that consist of visits to a sublevel set of a Lipschitz function by the orbits of
a smooth exponentially mixing dynamical system. The results of Section 3 are then
used to obtain MultiLog Laws in various settings. Namely, Section 4 studies hitting
and return times for multi-fold exponentially mixing smooth systems. Section 8 treats
similar problems in the configuration space for the geodesic flows on compact negatively
curved manifolds. Geodesic excursions are discussed in Section 7, and Diophantine
approximations are treated in Section 9. The MultiLog Law for non-conformal measures
is discussed in Section 6.

As it was mentioned, the regime we consider is intermediate between the Poisson
and Borel-Cantelli. Section 5 contains an application of our results to the Poisson
regime. Namely we derive Poisson distribution for hits and mixed Poisson distribution
for returns for exponentially mixing systems on smooth manifolds. Section 10 describes
the application of our results to the extreme value theory for dynamical systems. Each
section ends with some notes where the related literature is discussed.

Some useful auxiliary results are collected in the appendices.
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2. MuLTIPLE BOREL CANTELLI LEMMA.

2.1. The result. The classical Borel Cantelli Lemma is a standard tool for deciding
when an infinite number of rare events occur with probability one. However in case
an infinite number of events do occur, the Borel Cantelli Lemma does not give an
information about how well separated in time those occurrences are. In this section we
present a criterion which allows to decide when several rare events occur on the same
time scale. The criterion is based on various independence conditions between the rare
events.

Definition 2.1. Consider a probability space (2, F,P). Given r € N*  a sequence (p,
and a family of events (Q];n)(n,k)eN2;1<k<2n: we let Ny, be the number of times k < n
such that Q’;n occurs, i.e.,

—Ij{k 1<k<n, Qk occurs}

Definition 2.2 (Shrinkmg targets). When the sequence (p,) is decreasing and
we say that the sequence of targets (Q];n)(n7k)€N2;1gk<2n 15 shrinking.

Remark 2.3. In all our applications, the targets will be shrinking. However, part of
our results will not require this condition.

Our goal is to give a criterion that allows to tell exactly when almost surely Nji > r
will hold for infinitely many n. For this, we introduce several conditions quantifying
asymptotic independence between the events Q’;n. The statement of the conditions
requires the existence of:

e an increasing function o : R, — R,

e a sequence €, — 0,

e a function s : N © such that s(n) < (Inn)?,

e a function § : N © such that en < 5(n) < n(l —q)/(2r) for some 0 < ¢ < 1, and
some 0 < e < (1 —gq)/(2r),

for which the following holds.
For an arbitrary r-tuple 0 < k; < ky--- < k. < n we consider the separation indices

Sep,(k1, ..., k) = Card{j € {0,...7 — 1} : kjp1 — k; = s(n)}, ko:=0,
Sep, (k1. ... k) = Card {j € {0,...r — 1} s kjp1 — k; = 5(n)}, ko := 0.
(M1), If 0 < ky < kg < ...k, <n are such that Sep,,(ki1,...,k,) = r then

o(pn)" (1 —¢e,) <P (ﬂ Qﬁi) < o(pn) (14 ¢e,).

(M2), There exists K > 0 such that if 0 < k; < ks < ...k, < n are such that
Sep,,(k1, ..., k) =m < r, then

k; Ko(pn)™
(o)
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(M3), TO< ky <kg< -+ <k, <l <ly<--- <l aresuch that 2° < k, < 2" 2/ <
lg <29t for 1 < a,B <r,j—i>0for some constant b > 1, and such that

Sepyicr (kiy . k) =7, Sepgier(ly... ) =7, I —ky = &(20F),

then
P ([ﬂ 9';;] N [ﬂ QD < o(pz) o(pw) (1 + &),

Definition 2.4. For r € N* and a sequence (p,), we say that the events of the family
(Ql;n>(n7k)€N2;1<k<2n are 2r—almost independent at a fized scale if (M1); and (M2); are
satisfied for every v € [1,2r]. We say that (Q’;n)(mk)eNz;Kan are 2r—almost independent
at all scales if (M1)z, (M2)z are satisfied for every 7 € [1,2r], and (M3); is satisfied
for every 7 € [1,r].

Theorem 2.5. Given a sequence (p,) and a family of events (Q’;n)(mk)eNQ;nggn, define

S, = Z (QjU(PZJ‘))T-

(a) If S, < o0, and (Q )(nkyeNzi<k<on are shrinking as in Definition 2.2 and are
2r—almost mdependent at a fized scale, then with probability 1, we have that for large
n, Ny <.

(b) ]f S, = o, and (Q ) (nk)eNzi<k<on 0r€ 2r—almost independent at all scales then
with probability ] there are infinitely many n such that Ny > r.

Remark 2.6. An analogous statement has been obtained in [1| under different mixing
conditions.

Observe that if the targets are shrinking, we have that

21+l 27 -1

Z O_T(pn)nr—1<(2j+10(p2j))r<22r Z Or(pn)nr_l,

n=2J n=27i—-1
e 6}

in which case the convergence of S, is equivalent to the convergence of Z o (pp)n" L.

n=1

2.2. Estimates on a fixed scale. For m € N let

Up = {(k1,. .., k) such that 2" < ky < ky < -+ < k, < 2™ and Sepyms1 (1, .. ky) = 1},
Ap i={30 <k < <k, <2™ st Qk“ happens for any « € [1,r]},

Dy, :=A{3(k1,..., k) €Uy s.t. Q’;;*mH happens for any a € [1,r]}.

The goal of this section is to prove the following estimates from which it will be easy
to derive Theorem 2.5.
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Proposition 2.7. Suppose
(2.2) no(p,) >0 as n— .

If( ) keN?1<k<en @€ 2r—almost independent at a fized scale, then there exist con-
stcmts C’T, C’T, ¢ > 0 such that for all sufficiently large m

(2.3) P(A,) < C, (270 (pom)” +m™1)

(2.4) P(D,,) = ¢,2" o (pym+1)" — Com ™1,

If (2 pn>(nk eN2i<k<2n Or€ 2r—almost independent at all scales, then there exists a
sequence 0, — 0 such that if m" —m = b (recall that b is a constant from (M3),) then
for all sufficiently large m

(2.5) P(D,, n D) < (P(D,,) + Com ') (P(D,y) + Com/~ ) (1 + 6,,).

We start with some notations and a lemma. For n € N*, for ky, ..., k. < n, define

'
Akl,...,kr — ﬂ ij'
Pn n
j=1

With these notations

k b b
(2.6) A, = U Abteke
O<ki<ko<--<k,<2m+l
(2.7) D,= | Apk
(klv--nkr)eum

Lemma 2.8. Fiz 0 < a1 < as < 2. If (M1), and (M2), hold then there exist two
sequences 0, — 0, n, — 0 such that

Eiyokr\ ((az — ar)no(pn))” —10
(28) a1n<k1<k; <kr<aan ]P)(Ap“ ) - r! (1 ! 5n) o (1n n> .

Foray —ay = 5, there exists constant ¢, such that

(2.9) S B > o (nolpn)

ajn<k)<ko<--<kr<agn

Sep,, (k1,...kr)=r

Proof. For m < r, denote

Spy 1= > P(Ak1 k)

ajn<k]<kg<--<kr<agn

Sep,, (k1,...kr)=m

Note that S, includes %(1 + 07) terms for some sequence 0, — 0 as n — 0.
Hence (M1), yields

(2.10) g, = a2 = alr)'m(p”)) (1+0).
where 6 — 0 as n — c0.
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For m < r, S,, includes O (n™ (s(n))" ™) terms. Hence (M2), gives

r—m KO'(pn)m
(In ) 1007
for some sequence 7, — 0. Combining (2.10) with (2.11) we obtain (2.8). The proof
of (2.9) is similar to that of (2.10), except that the number of terms is not anymore
equivalent to £n"(1+0,,) but just larger than = (% —ré(n))" Lon’,
due to the hypothesis 5(n) < n(1 —¢)/(2r). O

Proof of Proposition 2.7. First, (2.3) follows directly from (2.6) and (2.8). Next, define
In= >, PARLY)
(kl,...kr)eum
ho= X B4,

(K ek ) €Um
(ot o} (K] ookl )

(2.11) Sm < O™ (s(n) = nu(no(py))" (Inn) '

From (2.7) and Bonferroni inequalities we get that

(2.12) Ly, — Jm < P(Dp,) < L.
Now, (2.9) implies that
(2.13) Ly = 62" ™ V6 (pomar ).

On the other hand, since
ARt ﬂAkg ..... Ko AU R bO (R R )

Pom+1 Pom+1

we get that

<63 Y B,

l=r+1ki<---<k

and (2.8) then implies that
(214) é (2(T+1 (p2m+l>T+1 + milo).

Combining (2.12), (2.13) and (2.14), and using the assumption (2.2) we obtain (2.4).
Finally, observe that

]P)(Dm M Dm’) < Z (Akl ..... kr A All,m/,lr )

But since m/ > m + 1 implies that I, — k, > §(2™+!

P(AgLr 0 Ap et ) S P(A )P(Al vvvvv )( + Em);

Pom+1 Pom+1

=
=
@
=
=.
@,
Q.
w0

Pom
so that using (M1), and summing over all (ki,...,k.) € Up, (l1,...,1,) € U we get
that

P(D,, A Dyr) < LI (1 + £1,).
Now (2.5) follows from (2.12), (2.13) and (2.14). O
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2.3. Convergent case. Proof of Theorem 2.5(a). Suppose that S, < co. Then by
monotinicity of o(p,), we have that no(p,) — 0. By (2.3) of Proposition 2.7 we have
that >, P(A,,) < . By Borel-Cantelli Lemma, with probability one, 4,, happen
only finitely many times. Observe that for n e (2™,2™*'] {N? > r} c A,, because
Q’;n c Q’;Qm for n = 2™ due to (2.1). Hence with probability one {N} > r} happen
only finitely many times. O

2.4. Divergent case. Proof of Theorem 2.5(b). Suppose that S, = o0. We give a
proof under the assumption (2.2). The case where (2.2) does not hold requires minimal
modifications which will be explained at the end of this section.

n Zn
Claim 2.9. Let Z,, = Z 1p,, . There is a subsequence {Z,, } such that a.s. 1.

m=1

Since E(Z,,) — o0, due to (2.4), the claim implies that, almost surely, Z,, — o0. That

is, with probability one infinitely many of D,, happen. Noting that D,, < {N mell >r}
completes the proof of Theorem 2.5(b) in case (2.2) holds.
Proof of Claim 2.9. We first prove that (2.4) and (2.5) imply that
Z
n__ 1i L2
E(Z) in L7,
or equivalently that
Var(Z,)
2.15 — 0.
Note that
(2.16)  Var(Z,) = ) P(Dy) — >, P(Dy)’ +2) [P(D; 0 D;) — P(D,)P(D;)] .
m=1 m=1 1<j

By (2.5) for each § there exists m(J) > b such that if i = m(d), j —i = m(d) then
(2.17) ~ ~ ~
P(D; N D;) — P(D;)P(D;) < 6P(D;)P(D;) + 2C,i "'P(D;) + 2C,j ''P(D;) + 2C2(ij) .

Split (2.16) into two parts:
(a) Due to (2.17), the terms where i = m(d), j — = m(J) contribute at most

> [0P(D;)P(D;) + 2C,i "P(D;) + 2C,j~'P(D;) + 2C2(ij) "]

i=zm(0),j—i=m(d)
< O(E(Z,))? + 8C,E(Z,) + 8C2.
(b) The terms where i < m(J) or j — i < m(d) contribute at most

[2m(0) + 1] i m(d) + 1]E(Z,).

Since E(Z,,) — 0, the case (a) dommates for large n giving

, Var(Z,)
lim sup ——"" < §,
s (E(Z,))?



MULTIPLE BOREL CANTELLI LEMMA IN DYNAMICS 13

Since 0 is arbitrary, (2.15) follows.
Let ny, = inf{n : (E(Z,))? = k*Var(Z,)}. Then by Chebyshev inequality

1
P (12, ~ E(Z)| > 0E(Z0) < 5.
0 a0
Th P(|Z,, — n E(Z . Therefore, by Borel-Cantelli
uskz1 (| Zn, — E(Zy,)| > ;5 < 0. Therefore, by Borel-Cantelli
Lemma, with probability 1, for large k, | Z,,, —E(Z,, )| < 6E(Z,, ). Hence E(ZZ% — la.s.,
"k
as claimed. H

It remains to consider the case where (2.2) fails. After passing to a subsequence, we
choose a decreasing sequence v, such that &(p,) := v,0(p,) satisfies lim na(p,) = 0
n—0

a0
and > (275(py))" = .
j=1
Next, we define for each n € N and for each k < n, a sequence of events {Ql;n}k‘Sn
as follows: If Q’;n does not occur then Q’;n does not occur and, conditionally on Q’;n

occurring, Q’;ﬂ occurs with probability v, independently of all other events (all other
QF with different & or different n).

The events (Q’;n)(mk)eNz;lgkgzn thus satisfy (M1),, (M2),, and (M3), the same way
as the events (Q];n)(nyk)eNQ;lgk<2n, with this difference that o(p,) is now replaced with

7(pn). Since condition (2.2) is satisfied by &(p,), and since Z(Qj&(py))r = 00, we
j=1

get that, with probability one, more than r events among the events {Q’;n}kgn occurs

for infinitely many n. By definition, this implies that with probability one, more than

r events among the events {QF }.<, occurs for infinitely many n. The proof of Theo-

rem 2.5(b) is thus completed. O

2.5. Prescribing some details. In the remaining part of Section 2 we describe some

extensions of Theorem 2.5(b).
P

Namely, we assume that 2 = U QZ’i and there exists a constant £ > 0 such that for
i=1
each i, P(Q2") > £P(Q}). We also assume the following extension of (M1),: for each
(k1, ..., k) with Sep,,(k1,..., k) = r and each (iy,...,i,) € {1,...,p}"

(), [ﬁ P(ﬂﬁz‘ﬁ)] (1—c) <P (ﬁ ﬂ) < [ﬁ P(ﬂﬁz‘;"j)] 1+ e

j=1
and the following extension of (M3),: for each 0 there is b = b(J) such that letting
§(n) = dn we have that for each (k1,..., k), (I1,...,1,) with

Sepyisi (ki ..o k) =7, Sepyir(li,... b)) =7, L —k =527, j—i=b

INote that the events {Q’;n} will not satisfy (2.1) even if the events {QF } satisfy it, but in this part
of the proof of Theorem 2.5 (b) condition (2.1) is not needed.
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and for each (iy,is,...,4.), (j1,72--.Jr) €{1,...,p}"
N~—— r Z r l 7'
(M3), IP( ﬂ e ] N [ﬂ Qpi]?ﬁ])
[ a=1 -1
1a l )
< | [Tret| | TTrte |0

Theorem 2.10. ? If S, = o, and (Ml)k, (M2) as well as (%)k fork=1,...,2r
are satisfied, then for any iy,is...4, and for any intervals Iy, Iy ... 1. < [0, 1], with

probability 1 there are infinitely many n such that for some ki(n), ka(n) ... k.(n) with
ki)

e 1, Q)7 occur.

The proof of Theorem 2.10 is similar to the proof of Theorem 2.5(b). Without the
loss of generality we may assume that ; does not contain 0. Then we fix a large constant
[ and consider the following modification of D,,

) ko
D, = {azlm <k <<k < 207D guch that —2 e T,
2l(m+1)

Q’;;’éjﬂ) happens and ko1 — ko = 5(21") 0 < a < r — 1}.

Arguing as in Proposition 2.7 we conclude that ﬁml and ﬁmQ are asymptotically
independent (in the sense of (2.5)) if mg > my + p and p is so large that 277 ¢ I, for
a =1,2...7. The rest of the proof is identical to the proof of Theorem 2.5(b).

2.6. Poisson regime.

Theorem 2.11. Suppose that (M1), and (M2), hold for all r and that lim no(p,) = .
n—o0

Then N converges in law as n — o0 to the Poisson distribution with parameter .
Proof. We compute all (factorial) moments of the limiting distribution. Let X denote

the Poisson random variable with parameter \. Below ( T ) denotes the binomial

|
coefficient 'L Since (see e.g. [140] formula (3.4) in section 7.3)

rl(m —r)!
N’I’Z
(%)= % e,
ki1<ko<--<kr<n

Lemma 2.8 implies for each r

b (1) 5-5(())

Since this holds for all r we also have that for all 7, lim E((N,)") = E(X"). Since the
n—00

Poisson distribution is uniquely determined by its moments the result follows. O

2This result is not used in the present paper, so it can be skipped during the first reading. In a

followup work, we shall use Theorem 2.10 to obtain some analogues of the Functional Law of Iterated
Logarithm for heavy tailed random variables.
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Similarly to Borel-Cantelli Lemma, we also have the following extension of Theo-
rem 2.11 in the setting of §2.5. Denote N;"* the number of times event Q%% occurs with

k/n e 1. Write N™ := Nji*,.

Theorem 2.12. Suppose that (ﬂ]\/ff)r and (M2),. hold for all r and that
lim nP(Q)) = A;.

n—0o0
Then {N}*}7_, converge in law as n — oo to the independent Poisson random variables
with parameter \;. ‘
Moreover if I, 1, ...1, are disjoint intervals then {NZ’Z}, i=1...p, j=1...s
converge in law as n — oo to the independent Poisson random variables with parameter

il

Proof. 1t suffices to prove the second statement. The proof is similar to the proof of
Theorem 2.11. Namely, similarly to (2.18) we show that for each set 7;; € N we have

s (10 )) =TT <112 ()

,] 2]

where &;; are independent Poisson random variables with parameters \;|[;|. O

2.7. Notes. The usual Borel Cantelli Lemma is a classical subject in probability. There
are many extensions to weakly dependent random variables, see e.g. [158, §12.15], [153,
§1]. The connection between Borel-Cantelli Lemma and Poisson Limit Theorem is
discussed in [56, 63]. The multiple Borel Cantelli Lemma for independent events is
proven in [131]. [1] obtains multiple Borel Cantelli Lemma for systems admitting good
symbolic dynamics. Extending multiple Borel Cantelli Lemma to more general systems
allows to obtain many new applications, see Sections 4-10 of this paper. Separation
conditions similar to our have been used in [44, 147] to obtain the Poisson Law.

3. MuLrriPLE BOREL CANTELLI LEMMA FOR EXPONENTIALLY MIXING
DYNAMICAL SYSTEMS.

3.1. Good maps, good targets. Let f be a transformation of a metric space X
preserving a measure p. Given a family of sets 0, < X, p € RY, we will, in a slight
abuse of notations, sometimes call €2, the event lgp and Q’; the event lg,© fF. We will

take o(p) = p(%)-
To deal with multiple recurrence and not just multiple hitting of targets, we need to

consider slightly more complicated events.
Given a family of events 2, in X x X let Q’; c X be the event

={z: (z, ffr) e Q,}.
We will take 5(p) = (u x p)(Q,).

From now on we will always assume that if p’ < p, then

Qpl c Qp, Qp/ c Qp.
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For ¢ : X* — R, k e N*, we denote

(3.1) (@) = ¢(x1, o) dp(e) - dpe).

Given a sequence {p,}, we recall that N denotes the number of times k < n such
that Q’;n (or Q’;) occurs. We want to glve conditions on the system (f, X, u) and
on the family (Q’;n)(mk)eNz;Kkgzn or (Q’;n)(n,k)eNQ;Kan, that imply the validity of the
dichotomy of Theorem 2.5 for the number of hits N . For this, we take

oo
Z 2JV]

where v; = o(pys) if we are considering targets of the type Q’; and v; = d(py) if we
are considering targets of the type Q';.

The independence conditions (M1),, (M2),, (M3), will be satisfied due to mixing
conditions on the dynamical system (f, X, u), and to some regularity and shrinking
conditions on the targets that we now state.

Definition 3.1 ((r + 1)-fold exponentially mixing systems for r > 1). Let B be a space
of real valued functions defined over X", with a norm | - ||g. Forr = 1, we say that
(f, X, 1, B) is (r + 1)-fold exponentially mizing, if there exist constants C > 0,L > 0
and 0 < 1 such that ¥V A, Ay, Ay € B,

(Prod) [A1As|s < C|| A1 A2z,

(Gr) Ao (ff,..., f7)]s < OL¥"
(EM), If 0 = ky < /{:1 < ... <k, are such that ¥j € [0,7 — 1], kj11 — kj = m, then

J A(‘Ta fklxv T 7fer)d/j’(x) - #T—i_l(A) < Co™ ”AHIB :
X

Given a system (f, X, u,B), we now define the notion of simple admissible targets.

Definition 3.2 (Simple admissible targets). Let {2}, p € R%, be a decreasing collection
of sets in X for which there are positive n, T such that for all sufficiently small p > 0:
(Appr) There are functions A, AT : X — R such that A;)i € B and
(i) A7 ]l <2 and |AS e < p77;

(i) A <1, < A}
(ifi) (A7) — u(Ay) < o(p)*,
where o(p) = 11(£2,).

Let (py) be a decreasing sequence of positive numbers. We say that the sequence (£2,,)
is a simple admissible sequence of targets for (f, X, u,B) if there exists uw > 0 such that

u

(Poly) pn=n"" olpn) =n",

and

(Mov) VR,3C : Yke (0,RInn), u(Q,, n f*Q,) < Co(p,)(Inn)~00r,
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Remark 3.3. Note that properties (Appr)(ii) and (iii) imply that
p(AY) = () < ()7, ul(Q,) — u(A;) < u(Q,).
A useful situation where one can verify these properties is the following.

Lemma 3.4. Suppose that f is Lipschitz and B is the space of Lipschitz functions. We
have that (Prod) and (Gr) hold with L being the Lipschitz constant of f. Moreover, if
there exist constants £,& > 0 and ® : X — R a (uniformly) Lipschitz function® such
that for any interval J € R,

ulfa = () € J}) € [1I15, 1]
and two (uniformly) Lipschitz functions ay and as : R — R such that for some o, o’ > 0
we have

as(p) — ar(p) € [, ]

then (Appr) holds for the targets

2, = {®(2) € [a1(p), a2(p)]} -
The same result holds if B is the space of C*° functions or the space of compactly sup-
ported C*® functions with s > 0 arbitrary.

The proof of Lemma 3.4 relies on simple approximation of characteristic functions
by Lipschitz functions.

Proof. We will construct A} that satisfies (i), (ii) of (Appr) and

(i1i) p(Ay) = u(Q) < o(p)*.

The construction of A7 is similar. Note that o(p) = u(€2,) € [p*¢, p*¢].

Define a family of smooth function ¢+ : R* — [0, 2] such that for v > v and € > 0
and x € R (we are not interested in the form of )™ outside this domain) we have

N |1, forzeu,v]
Y (u,U,&l’)—{Q forx ¢ [u—e(v—u),v+e(v—u)l

and for which there exist constants n > 0 and C' > 0 such that that for any 1 and for
R*>R,, :={v—u=uvye > 1y}, we have that
| er(r,y) < Cryg ",

where C''(R,,) refers to the C' norm in the region R,,.
Define now At : X — R :x— 9" (a1(p), az(p), p°, ®(2)), where b > 1 will be chosen
later. It is clear that A} is Lipschitz and that 1o, < A}. On the other hand [A} [, < 2

and [Af |z < C(®)p~"*", and (i) holds for 7 = ban+1. We turn now to (i41). We observe

that with Ji = [a1(p)—p’(as(p)—a1(p)), a1(p)] and Jz = [a2(p), az(p)+p°(az(p)—ar(p))],
W(AY) = 1(9,) < 2p({®(x) € Ty U o)) < 4p” 7).

Hence, if b is chosen sufficiently large we have p > 0 sufficiently small that (A7) —

u(Q,) < ().

3The typical situation for using Lemma 3.4 will be with ® () defined by some distance d(zq, z).
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The fact that the same results hold if B is the space of C* functions or the space of
compactly supported C® functions with s > 0 arbitrary, is a simple consequence of the
approximation of Lipschitz functions by smooth functions. 0

To deal with recurrence, the following definition is useful.

Definition 3.5 (Composite admissible targets). Let {Q,},p € R% be a decreasing col-
lection of sets in X x X satisfying the following conditions for some positive constants
C,n,7 and for all sufficiently small p > 0,
(Appr) There are functions /_1;, fl; : X x X — R such that fl;i € B and
(1) 1A% <2 and |Af s < p~;
(i) A7 <1g, < AJ;
(iii) For any fized x,

5(p) — a(p)" < f A (2, y)duy) < ffl; (z.y)duy) < 7(p) + 7(p)"*".

(iv) For any fized v, JA;(x,y)du(x) < 05 (p).

For a decreasing sequence of positive numbers (p,), the sequence (Q,,) is said to be
composite admissible if

(Poly) pnzn", O(pn) =07,
and there is a constant a > 0 such that for any ki < ks
(Sub) Qi A Q2 e frRQRR

and

(Mov) Vk # 0, u(Qipn) < C(Inn) 10007,

Observe that integrating condition (Appr)(iii) with respect to x we obtain for each
n # 0,

62 () < u (A ) < (A, f0) < Cu (@)

Typical composite targets we deal with are of the type d(z,y) < p or d(z,y) < v(x)p,
where y(z) is related to the density of p at the point x. We state here a general Lemma
that guarantees the admissibility of such targets. The statement is a bit technical but
if we keep in mind that the function ®(z,y) is usually defined by a distance, then the

hypothesis of the Lemma become natural. The proof of the Lemma is very simple and
follows a similar scheme of the proof of Lemma 3.4 for simple targets.

Lemma 3.6. Suppose that [ is Lipschitz and B is the space of Lipschitz functions.

Suppose there exists constants C,&,£," > 0 and ® : X x X — R a (uniformly)
Lipschitz function such that

(hl) V(z,y) e X x X, ®(x

(h2) For any interval J €

[T, T ,,

(h3) Foranyze X, p({ye X : ®(z,y) e J}) = a(J)(1 + O(|J|%)).

y) < CO(y, x).
R, a(J) == (uwx p)({(z,y) e X x X : ®(z,y) € J}) €
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If two (uniformly) Lipschitz functions a1 and as : R — R are such that for some
a, o >0
ax(p) — ax(p) € [p*, p* ]
then (Appr) holds for the targets
Q, = {@(2,y) € [a1(p). a2(p)]}
The same result holds if B is the space of C*° functions or the space of compactly sup-
ported C° functions with s > 0 arbitrary.

Proof. The proof is very similar to that of Lemma 3.4. We just explain the differences.
Note that 7(p) = (u x 1)(,) € [p°, p*¢].
We introduce A : X x X — R : (x,y) — ¢ (a1(p), az(p), p*, ®(2,y)), where 17 is as
in the proof of Lemma 3.4. Properties (7) and (i) hold as in the proof of Lemma 3.4.
We turn now to (ii7). We fix 2 € X, and observe that with I = [a;(p), az(p)] and

Jﬁ = [a1(p) = p*(az2(p) — a1(p)), ar(p)], Jo = [a2(p), az(p) + p*(az(p) — ar(p))] we have
that

fﬁﬂmyﬂMw—tueX:M%welb<%N@€X¥¢@wﬁahubb

<a(p)?
if b is sufficiently large due to (h2) and (h3). Applying (h2) and (h3), we also see that
u({y € X : (x,y) € I}) — (p)| = O(@(p)"")
for some 7 > 0. This proves (Appr)(iii).
Finally, fix y € X and observe that (h1) implies
| 25 @wuta) < € [ A oduto) < 2000,

which proves (Appr)(iv). O

3.2. Multiple Borel-Cantelli Lemma for admissible targets. The goal of this sec-
tion is to establish the following Theorem that gives conditions on the system (f, X, u)
and on the family (Q’;n)(mk)eNz;Kkgzn (or (Qﬁn)(n7k)eN2;1<k<2n), that imply the validity
of the dichotomy of Theorem 2.5 for the number of hits N . Recall that

oo
Z 2]VJ

where v; = o(py;) if we are considering targets of the type QF and v; = &(po) if we
are considering targets of the type Q';.

Theorem 3.7. Assume a system (f, X, pu,B) is (2r + 1)-fold exponentially mizing.*
Then

(a) If (Q,,) is a sequence of simple admissible targets as in Definition 3.2, then the
events of the family (Q];n)(n’k)eNZ;lgk-an are 2r—almost independent at all scales.

“Part (a) holds for 2r-fold exponentially mixing systems, as shown by the first part of Proposition 3.9.
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(b) If (Q,,) is a sequence of composite admissible targets as in Definition 3.5, then the

events of the family (Q’;n)(n,k)eNQ;lstn are 2r—almost independent at all scales.

Hence, Theorem 2.5 implies

Corollary 3.8. If the system (f, X, u,B) is (2r + 1)-fold exponentially mizing, and if

(Q,,) (or (2,,)) are as in Definition 3.2 (or Definition 3.5), then

(a) If S, < o, then with probability 1, we have that for large n N} <.
(b) If S, = oo, then with probability 1, there are infinitely many n such that Ny =

Theorem 3.7 is a direct consequence of Proposition 3.9 below. We accept a convention
that (EM); for k < 0 is always satisfied.

Proposition 3.9. Given a dynamical system (f, X, u,B) and a sequence of decreasing
sets (Q,,) such that (Prod), (Poly), and (Appr) hold, then with the function o(-) :=
p(€), and

(i) If (EM),_1 holds, then (M1), is satisfied with the function s : N ©O: s(n) = Rlnn,
where R is sufficiently large (depending on r, the system and the targets).

(i1) If (Gr), (Mov) and (EM),_o hold, then (M2), is satisfied.

(tii) If (Gr) and (EM), hold, then for arbitrary e > 0, (M3), is satisfied with 5(n) =
EN.

Similarly, given a dynamical system (f, X, u,B) and a sequence of decreasing sets
{Q,.} such that (Prod), (Poly) and (Appr) hold, then, with the function &(-) := p x
p(S2.):

(i) If (EM), holds, then (M1), is satisfied with the function s : N ©: s§(n) = Rlnn,
with R sufficiently large (depending on r, the system and the targets).

(i3) If (Gr), (Mov), (Sub) and (EM),_, hold, then (M2), is satisfied.

(111) If (Gr) and (EM), hold, then for arbitrary e > 0 (M3), is satisfied with 5(n) =

En.

Proof of Proposition 3.9. We use C' to denote a constant that may change from line to

line but that will not depend on p,, €, , Qpn, the order of iteration of f, etc.

Proof of (i) For Q, , we prove (M1), in case k;41 —k; > VRInn, where R is a sufficiently
large constant. Indeed, using (Appr) and (EM), , we get

r

r (H I, (f’“"@) <n (H A;n<f%>) <[ Tw(az) + Cprrremmn
1=1 =1 =1
< (1(Q,) + Cp(Q,,) )" + Cp7oVEIEn

which yields the RHS of (M1),, due to (Poly) if R is sufficiently large. The LHS is
proved similarly. B
For €,,, we approximate 1o, by A;—Fn, apply (Appr), (EM), to the functions

B;n(QJO? e 71;7") = A;rn('r07 xl) e A;n(x(b .1:7.),

B;n(x07 e 7137") = A;n('/l"07 Il) e A;n(x(]a x?")y
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and get
u (ﬂ Qki) < (5(pa) + C5(pa)*")" + Cp, 7oV RN,
j=1

which yields the RHS of (M1), due to (Poly) if R is taken sufficiently large. The LHS
is proved similarly.

Proof of (ii). For Q,, , it is enough to consider the case Sep(ky, ..., k,) = r—1 otherwise
we can estimate all 1o, o f*% with k; — k;_1 < s(n), except the first, by 1.
So we assume that 0 < k; — k;_; < Rlnn and k; — k;—; > Rlnn for ¢ # j. Since

(M1), was proven under the assumption that min;(k; —k;_;) > v/RInn we may assume
that k; — k;_1 < v/RInn. Note that by (Appr) and Remark 3.3

,LL (A;_n (A;_n © fk)) - /'L (1Qf7n (1QPn © fk)) < 4,[,L (A;_n o 1QPn) < 40/"L(Qpn)1+n'
Therefore (Mov) implies :
i (A, (A5, 0 f5787)) < Cpa(Q, ) (Inm) =100
Take B = Ar (A o fhi=ki-1) “we get using (EM),_, and (Poly) that
H (H Lo, (f’“"x>> <4 (H 4, <f’“x)) =n ( [T 4% () B(f’w))
=1 i=1 i#j—1,j
<u (A;n)r—l ,LL(B) + Cpnfr-rL\/ElnneRlnn < C,U(Qpnyil(ln n)*lOOOT

proving (M2),. B
For €,,, we approximate 1g by A> . Consider

Br(on, o Lj—1, L1, 7~’17r)

= 1(2,,”(900, T1)- - 1Qpn (o, il?j_1)101;%;kj,1 (xj_l)lgpn (o, xj+1) s 1Qpn (o, zp),

~

Br(x()y oy Lj—1, L1, 7xr)
= A;n (w0, 1) -~ ‘A;n (o, 33j—1)f_1;rpn(xj—1, fkj_kjflxj—l)/_l;n (z0, Tj41) - /_1;” (w0, 77).

Since (Appr), (Mov) and (Sub) hold, we obtain from (EM), ,
N R
j=1

< u (Bl foma, o o)
< p'(B,) + Cp, "mLYVEmngRInn,

Integrating with respect to all variables except for zy and z;_;, then using (Appr)(iv)
when integrating along z, for any fixed value of z;_;, then finally integrating along
Tj—1, we get

1 (By) < (3(pn) + 6(pa) ) p (AL (x, ff0-12))
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which by (3.2) gives

W (By) < ((pa) +a(pa)*7) ™ Ol 1)
Therefore, (M2), follows from (Mov), provided R is sufficiently large.
Proof of (iii) Fix a large constant b that will be given below. Consider first simple
targets Q,, . Denoting B(x H A+ (fFex) for 20 < ky < - < k, < 2"*!, we obtain

from (Prod), (Gr), (Appr), (Poly) and (EM)_, that | Bl|p < CL™"". Thus

’ ((H In,, (f’“%c)) (g ln,, (flﬁx>> )
o (I10) ([az0))

= p (B(fv) (H AL (fl%)>> < u(B)p (A;y) + CL™" prm o 6%

Applying already established (M1), to estimate u(B), and observing that the second

term is smaller than C(L™ ¥ 2276%¢ which is thus much smaller than the first
when b is sufficiently large, we finally get (M3),.
Next, we analyze €, . Consider

B*(z,x1, 9. .. (H 1Qz;a ) <H lg, (z,75 )
y (Appr) and (EM), and the already established (M1),, we get

p( ) @95 < (B @ fra,. . fra)

1<a, B<r

<p (H A5 (w, f’“aw)> (@(p2) + G (po) ™)+ CL™™ py " pp 707
a=1

Using (M1), again we observe that

(HA+ fka) C(a(p2) +7(p2)"™")"

which allows to conclude the proof of (M3), in the case of Q,, . O
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Remark 3.10. In fact, analyzing the proof of Theorem 3.7 we see that the composite
targets (Appr)(iil) could be replaced by a weaker condition: there is a function o,(p)
such that C~to"(p) < o,.(p) < Co"(p) and

” < A+<x,yj>du<yj>> da() = 0, (p)(1 + O(a™(p)),

J=1

(3.3a) J .

[

<

fl_(w,yj)du(yj)> du(z) = o,(p)(1 + O(a"(p))-

(3.3b) f. o <

We shall call the composite targets satisfying (Mov), (Sub), (Poly) as well as (Appr)
with condition (iii) replaced by (3.3a)—(3.3b) weakly admissible.

J=1

3.3. Notes. There is a vast literature on Borel-Cantelli Lemmas for dynamical systems
starting with [138]. Some representative examples dealing with hyperbolic systems are
[5, 37, 62, 76, 79, 83, 84, 90, 99, 115] while [31, 32, 99, 107, 108, 109, 121, 154] deal with
systems of zero entropy. The later cases are more complicated as counterexamples in
[61, 72] show. Survey [7] reviews the results obtained up to 2009 and contains many
applications, some of which parallel the results of Sections 4-9 of the present paper.

Examples of systems with multiple exponential mixing include expanding maps, vol-
ume preserving Anosov diffeomorphsims [24, 134], time one maps of contact Anosov
flows [125], mostly contracting systems [29, 47|, partially hyperbolic translations on ho-
mogeneous spaces [113], and partially hyperbolic automorphisms of nilmanifolds [75].

The limit theorems for smooth systems which are only assumed to be multiply ex-
ponentially mixing (but without any additional assumptions) are considered in [22, 35,
151]. [69] obtains a Logarithm Law for hitting times under an assumption of super-
polynomial mixing which is weaker than our exponentially mixing assumption. We note
that in our approach the exponential rate of mixing is crucial for verifying the condi-
tion (M3), pertaining to interscale independence. Therefore it is an open problem to
ascertain if similar results hold under weaker mixing assumptions.

4. MurTiLOoG LAWS FOR RECURRENCE AND HITTING TIMES

In this section we apply the results of Section 3 to obtain MultiLog Laws for multiple
exponentially mixing diffeomorphisms and flows. We assume that f is a smooth diffeo-
morphism of a compact d—dimensional Riemannian manifold M preserving a smooth®
measure . From now on, we take B in Definition 3.1 to be the space of Lipschitz
observables defined over M+,

4.1. Results. Let (f, M, ) be a smooth dynamical system. Let d (x,y) be the r-th
minimum of

d(l’,fy), e ,d(l‘,fny)

5In this paper a smooth measure means a measure which has a Lipschitz density with respect to the
Riemannian volume.
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The following result was obtained for a large class of weakly hyperbolic systems as a
consequence of dynamical Borel-Cantelli Lemmas

ndP(z,z) 1

(4.12) limsup = == = 5

. mdV(z,y) 1
4.1b 1 —_— 7 =
(4.1b) imsup —— = J

In particular, the following results are known.

Theorem 4.1. (a) If a smooth system (f, M, ) has superpolynomial decay of correla-
tions for Lipschitz observables, that is,

1(A(z) B(f"2)) = i(A)p(B)| < a(n) | Al Lip| By where Vs lim n*a(n) =0,
then for all x (4.1b) holds for a.e. y. If in addition, f has positive entropy, then (4.1a)

holds for a.e. x.
(b) 1If, in addition, f is partially hyperbolic then for all x and a.e. y

_ \lndsll)(m,y) —Llnn 1
4.2 1 d = .
(42) lin_?ololp Inlnn d

In part (a), (4.1a) is proven in [144, Theorem 1] and (4.1b) is proven in [69, Theorem
4]. Part (b) is proven in [48, Theorem 7].

Question 4.2. If (f, u) is exponentially mixing then (4.2) holds for all = and a.e. y.

MuLTILOG LAW FOR RECURRENCE AND FOR HITTING TIMES. The goal of this section
is to obtain an analogue of (4.2) for multiple hits as well as for returns for multiple
exponentially mixing systems as in Definition 3.1.

Definition 4.3. Given a smooth system (f, M, p), define

md(z,y)| — ilnn 1
g, = {x: for a.e. vy, limsup‘ (r.9)] 4 = ,

N0 Inlnn rd

00 Inlnn rd

_ Ind? (z,z) — L1 1
g,nz{ac:limsup|n (z,2)] a1 }

Theorem 4.4. Suppose that (f, M, p1,B) is (2r + 1)-fold exponentially mizing.® Then

(a) w(Gr) = 1; (b) u(G,) = 1.

FAILURE OF THE MULTILOG LAWS FOR GENERIC POINTS. Naturally, one can ask if
in fact, G, equals to M. If r = 1 the answer is often positive (see Theorem 4.1(b)). It
turns out that for larger r the answer is often negative.

6As seen from Proposition 3.9, part (a) holds for 2r-fold exponentially mixing systems.
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Definition 4.5. Given a function ¢ : N — N* | define

, |Ind (z,y) —<Inn 1
H=<x: forae y, forallr>=1:limsup = -7,
0 Inlnn d

_ 1 gz”)
He = x:forallr)l:limsupwzoo )
n— ¢(n)

Theorem 4.6. Suppose that the periodic points of f are dense. Then
(a) If Gy = M, then H contains a Gs dense set.
(b) For any ¢ : N — N*, H, contains a G5 dense set.

Thus for r > 2 topologically typical points do not belong to G, or G,.

FAILURE OF THE MULTILOG LAWS FOR NON MIXING SYSTEMS. THE CASE OF TORAL
TRANSLATIONS.

Theorem 4.6 emphasizes the necessity of a restriction on = in Theorem 4.4.

In a similar spirit, we show that the mixing assumptions made in this paper are
essential. To this end we consider the case when the dynamical system is (T, T¢, \)
where T}, is the translation of vector av and \ is the Haar measure on T¢.

Define

|lnd,(f)(:1c,y) —lnn 1
00 Inlnn 2d |’

E = {a: : for a.e. y, limsup = —

n—oo 11’1 11’1 n d

, Indy’ ~ 1
E,n:{a::hmsup| ndn (@ 2)| ~ 5 nnzl}.

Theorem 4.7. For A-a.e. o€ T?, the system (T,, T¢, \), satisfies
(a) M(G1) =1 and X\(&,) = 1 forr > 2;
(b) & =M for allr = 1.

The proof requires different techniques from the rest of the results of this section.
Namely, it is related to the Borel Cantelli Lemmas in the context of homogeneous
dynamics on the space of lattices, and we will therefore give it in Section 9 after we
introduce the necessary tools.

Take for example part (b) in the simple case of a circle rotation and r = 1. Clearly,
£ = M is equivalent to the fact that A, = {k € [1,n] : [|ka| < n~*(Inn)~*} is not
empty for infinitely many n, if and only if s < 1. Using the theory of continued fraction
this problem could be reduced to a problem on the growth of partial quotients. Recall
([105, Theorem 16]) that for all @ we have max(k € [1,n] : |ka| = |gna| where ¢, is
the largest denominator of the continued fractions which does not exceed n. In addition,

we have ([105, Theorems 9 and 13))

; < @ullgma| < . Next by a theorem
m+1 m+1

of Paul Levy (see [42, Theorem 7.4]) for almost every a we have
2

. Ingy s
43 1 - .
(4.3) Moo M 12In2
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From the above fact it follows easily that there is a constant K such that for almost all

a (in particular for « satisfying (4.3)) the following holds
(Inn)®

(a) If @ € A,, and n is sufficiently large then MAX  ay, > 7 and
m<Klnn
(b) If max a,, = K(Inn)® and n is sufficiently large then « € A,,.

m<lnn/K
Using exponential mixing of the Gauss map, one immediately sees from a classical
dynamical Borel Cantelli Lemma that for each K7, K, for Lebesgue almost every «, the

events { max dm > K, M?} happen infinitely often iff s < 1. Thus s = 1 is critical
mshi

value for the infinite occurrence of the inequality max |ka| < n(lnn)~>.
<n

We note that the growth of the partial quotients for continued fractions is intimately
related to the geodesic excursions on the modular surface (see e.g. [146]). Due to the
so called Dani correspondance principle (see §9.2 and the notes of Section 9), extending
(b) in the case r = 1 to higher dimensions can be done by the use of a dynamical Borel
Cantelli Lemma for cusp excursions of appropriate diagonal actions on the space of
lattices instead of the continued fraction algorithm. Similarly the inhomogenuous case
of Theorem 4.7(a) for 7 = 1 and 2 can be reduced to a dynamical Borel Cantelli Lemma
for an appropriate diagonal actions on the space of affine lattices. (The case r = 2 for
returns and r = 3 for visits could be reduced to the case of smaller r by elementary
means). The details will be given in §9.10.

THE CASE OF FLOWS. Here we describe the analogue results of Theorems 4.4 and 4.6
for flows. Let ¢ be a smooth flow on a (d + 1) dimensional Riemannian manifold M
preserving a smooth measure . ~

Observe that if ¢'(y) is close to x for some ¢, then the same is true for ¢'(y) with
t close to t. Thus we would like to count only one return for the whole connected
component lying in the neighborhood of x. Namely, for some fixed p > 0, for ¢ > 0, let
[t ,¢]] denote the consecutive time intervals such that ¢'(y) € B(z, p) for t € [t;,t]].
Let t; be the argmin of d(x, ¢'(y)) for ¢ € [t ,t;]. Let d (x,y) be the r—th minimum
of

(4.4) d(z, 0" (y)), ..., d(z, 0" (y)), th <N <tgs.

Theorem 4.4 and Theorem 4.6 have the following counterpart in the case of flows.
Note that the dimension of the manifold in the case of flows is d + 1. Let us recall the
definition of (r 4+ 1)-fold exponentially mixing flows, which is similar to Definition 3.1.

Definition 4.8 ((r + 1)-fold exponentially mixing flows for r» > 1). We say that a flow
¢ is (r + 1)-fold exponentially mizing if there exist constants C' > 0,0 < 1 such that for
each (r+ 1) tuple 0 =ty <ty < ... <t, such thatVje[0,r —1],t;.1 —t; =T, then

VAeB,

| At o adut) - i) < Comal,
X
where B is the space of Lipschitz functions on M"™ 1.

Theorem 4.9. Suppose that the smooth system (¢, M, pu, B) is (2r+1)-fold exponentially
maxing. Then
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(a) u(G,) = 1
(b) u(G.) = 1.

If, in addition, periodic points of ¢ are dense then
(c)If G1 = M then H contains a Gs dense set;
(d) For any ¢ : N — N*, H, contains a G5 dense set.

4.2. Slow recurrence and the proof of Theorem 4.4. Since p is a smooth measure,
there is a smooth function y(z) such that

(4.5) 1 (B(z,p)) =y(x)p” + O (p™),

where the constant in O (p?*!) is uniform in z.
Given x € M, let

(4.6) Qup = {y: d(z,y) < p}
and”
(4.7) Q, = {(x,y) Hd(x,y) < Wp))w}

We use the notation QF , for the event 1o, , o f*. We also recall the notation Q’; =
{z: (z, fFz) € Q,}. We also keep the notation o(p) = (), and 5(p) = (1 x p)(€2,).
For s > 0, we let p, = n~Y?In"*n, and recall that N} denotes the number of times

k < n such that QF ~(or QF ) occurs.
By compactness, there exists a constant ¢ > 0 such that

{(@,y) 1d(z,y) <c7'p} = Q, < {(z,y) 1 d(,y) < cp}.
Thus the statement of Theorem 4.4 becomes equivalent to the following:
(a) If s > L, then for p-a.e. x (and for pra.e. y in the case of QF ), we have that
for large n, N <.
(b) If s < -5, then for p-a.e. x (and for p-a.e. y in the case of QF ), there are
infinitely many n such that N > r.

With the notation S, = Z;O=1 (29v;)" where v; = o(py;) (in the €, case) or v; =
(pas) (in the Q,, case), we see from (4.5) that S, = oo if and only if s < .

Hence Theorem 4.4 follows from Corollary 3.8, since (f, M, pu,B) is (2r + 1)-fold
exponentially mixing, provided we establish the following.

Proposition 4.10. (a) For p-a.e. x the targets (€, ,,) are simple admissible targets.

(b)The targets (2,,) are composite admissible targets.

The rest of this section is devoted to the
Proof of Proposition 4.10.

Observe first that with the definition of p, and (4.5), we have that (Poly) and (Poly)
hold for every x for the target sequences (£, ,,) as well as for the sequence (€2,,).

We proceed with the proof of (Appr) and (Appr) and (Sub) properties.

"In the definition of the composite target ©,, we include the factor (y(x))~ /% because we want that
for every z, Slgp (z,y)du(y) be essentially the same number to be able to check (Appr)(iii) for these
targets.
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Lemma 4.11. For each x, the targets Q. , satisfy (Appr). The targets Q, satisfy (Appr)
and (Sub).

Proof. For the targets 2, ,, the statement follows from Lemma 3.4 by taking ®(y) =
d(z,y) (that is a Lipschitz function), a;(p) = 0 and as(p) = p.

For the targets 2,, we use Lemma 3.6. We take ®(x,y) = d(x,y)y(z)Y?, ai(p) = 0
and ag(p) = p. We check (h1) since y(z)/v(y) is bounded for (x,y) € X x X. Property
(h2) is obvious. As for (h3) it follows from the definition of v(x) in (4.5).

Finally, for any kq, ko, when z € Q’;l N Q’;Q, we have

2p _ _ ap
(@) = (a7

for some a > 0. Hence Q' ~ QF2 < f=MQk=M which is (Sub). Lemma 4.11 is proved.
0

d(ffra, ff2r) < d(z, ff2) + d(z, ff22) <

Next we prove the (Mov) (for a.e. x) and (Mov) properties. For this we state a
lemma on recurrence for the multiple mixing system (f, M, p1) that is of an independent
interest. We first introduce two definitions.

Definition 4.12 (Slowly recurrent points). Call x slowly recurrent for the system
(f, M, p) if for each A, K > 0, there 3pg such that for all p < po for alln < K|lnp| we
have

p(B(x, p) 0 f " B(x, p)) < p(B(z, p))|Inp| .

Definition 4.13 (Slowly recurrent system). Call the system (f, M, u) slowly recurrent
if for each A > 0 3py such that for all p < po for all n € N* we have

p{z s d(z, f'z) < p}h) < |Inp|~

Lemma 4.14. Suppose that (f, M, u,B) is 2-fold exponentially mixing. Then

(1) (f, M, p) is slowly recurrent.
(i7) Almost every point is slowly recurrent.

As a consequence, we have that

(a) For p-a.e. x, the targets €, ,. satisfy (Mov).
(b) The targets Q,, satisfy (Mov).

Proof. Take B = A% If k = Bln|Inpl, take p = | In p|~*. By 2-fold exponential mixing,
we get
(4.8) p(x:d(z, ffr) < p) < ple - d(z, ffz) < p)

< p(Af (2, fra)) < C (p7+ p™ ¥ + p70%) < [Inp| >4,

provided p is sufficiently small.
Now fix any 1 < k < Bln|lnp|. Denote |f|i = max,en |Df(x)|. Assume that x
satisfies d(z, f*z) < p, then for any [ we have that

d(f(l_l)k(l'),flkx) < Hngl—l)kp
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If we take L = [4BIn|Inp|/k] + 1 we find that
d(x, f"x) < Y IfIFp

I<L-1

provided p is sufficiently small. But kL > Bln|In/p|, hence (4.8) applies and we get

pla :d(z, ffr) < p) < ple: d(z, o) < yp) < [np[~,

proving (i).
We proceed now to the proof of (ii). Define for j, k € N*

Hp(x) = p(B(2, 1/27) o [ Bla,1/27)),
Note that

ij,k(I)dN(x) = ff 1[0,1/2j]d($7 y)l[o,l/zj]d(xu fky)dﬂ@)d/i(y)
fj Ljo,1/on1d(@, y) o1 /2-11d(y, fFy)dp(z)dp(y)

CulBla,1/2) [ Tzl Fy)duty)
where we used that u(B(y,1/27)) < Cu(B(x,1/27)) for any z,y € M. Part i) then
implies that for sufficiently large j it holds that

Jvak(ﬂf)d#(x) < p(B(x,1/27))j =47,
For such j we get from Markov inequality
pla:3ke (0,K)]: Hip(e) > p(B(x,1/2)j™") < Kj~°

Hence Borel Cantelli Lemma implies that for almost every x there exists j such that
H;x(z) < p(B(x,1/27))j~4 for every j > j and every k € (0, K 4], which implies (ii).
Finally, (a) and (b) clearly follow from (ii) and (i) respectively. Lemma 4.14 is thus

N

N

proved. [l

With Lemmas 4.11 and 4.14, the proof of Proposition 4.10 is finished. ]
Proof of Theorem 4.4. Theorem 4.4 directly follows from Proposition 4.10 and Corol-
lary 3.8. U

4.3. Generic failure of the MultiLog Law. Proof of Theorem 4.6.

Proof. To prove part (a), we first prove that periodic points belong to H,.. By assump-
tion, for any x € M and almost every v,

. IndP(z, y)| — ilnn 1
4. 1 =-.
(49) Hff;lp Inlnn d

Since d\ (x,y) = d,(l)( y), it follows that for any z € M, any r > 1, and a. e. y

() 1
|Indy’(z,y)| — 3Inn _

~

(4.10) lim sup

n—00 Inlnn

SHN
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To prove the opposite inequality let

\lndgﬁ)(a:,yﬂ—%llnm 1 1
Inlnm d 1

1
Honir = {x:ﬂy-open, n(Y) >1—7 D Vye), i
We have that

. Ind (z,y)| — ilnn 1
{:c : for a.e. y, for all r > 1: limsup = i~ ﬂ U Honl,r-

n—00 Inlnn 12151 Ml

But H,,;, is an open set. Hence we finish if we show that for any fixed r and [,
\U,, Hm,ir contains the dense set of periodic points.

Let Z be a periodic point of period p. Take U to be some small neighbourhood of z
and denote by A the Lipschitz constant of f? in U.

By (4.9), there exists n > exp oexp(A + pr) and Y such that 1(Y) > 1 — ;, such that
for every y € ), there exists k € [1,n] satisfying

e (2) (o)

1
. . . 1\¢ 1
d(j’kaery) — d(fqu—;’fk+l)]y> < Ar <_) (_) : O < j <r— 1

1

21

=

Then

n Inn

Hence for y € Y and m = n + p(r — 1), we have that

1
[

1 1 1 1 1
1\ @ 1 \d = 1\d 1 i
d'g;)(juy) < AT - < - y
n Inn m lnm

because we took n = exp o exp(A+pr). Hence & € H,, 1, and the proof of (a) is finished.
We now turn to the proof of (b). Given any function ¢ : N — N* | define
Ay = {z | nd(z,2)] > m¢(m)}.
Observe that He < (),U,, Ami. But A, is open and | J,, A, clearly contains the
periodic points. Part (b) is thus proved. O

4.4. The case of flows. Proof of Theorem 4.9. The proof proceeds in the same
way as for diffeomorphisms with minimal modifications that we now explain. First, we
need to modify the targets

Q,, ={y:3s€[0,1],d(z, ¢°y) < p},

and

Qﬂ - {(m,y) tdse [O’ 1]’d(33, ngy) < W}

where y(z) = liH(l) 11(Qs.,)/p". Consider the targets
p—
Q=07 p, QZ ={x: (z,0"x) € Qp}
for n € N* and let o(p) = u(Q,.), 5(p) = (1 x p)(Q,).
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To prove (a) and (b) of Theorem 4.9 we can apply Corollary 3.8 to the smooth system
(¢, M, i, B) and to the targets Q7 and Q). For this, we just need to see that these

Z,p
targets are admissible. This can be checked as in the proof of Proposition 4.10, with

very minor differences. Let us check for instance that (Sub) holds for QZ. Note that
when x € le N Q;W for ny < ng, we have some s, sy € [0, 1] such that

ni+si p ng+S2 p

Hence
U, ) < e |79, )
se[—1,
2p _ ap
(Y(@)YE T~ (y(gma))/d
for some a > 0. It follows that Q7' n Q2 < ¢~ Qr2=™  which is (Sub). ® As for the

proofs of (Mov) and (Mov), they are obtained as in the case of maps via the notion
of slow recurrence. We say that a point x is slowly recurrent for the flow if for each
A, K > 0, there 3pg such that for all p < py for all n < K|In p| we have

% (Qx,p N QZ,p) < M(Qx,p” lnp|_A-

Similarly we say that the flow is slowly recurrent if for each A > 0 3py such that for
all p < pg for all n € N* we have

< max [¢°]cr
se[—1,1]

n () <| In p|~.

The same proof of Lemma 4.14 then shows that if the system (¢, M, u, B) is exponen-
tially mixing, it holds that p-a.e. point is slowly recurrent for the flow, and that the
flow is slowly recurrent. Properties (Mov) and (Mov) are immediate consequences.
The proof of part ¢) and part d) also proceeds in the same way as for maps. Namely
we first see that periodic orbits of the flow belong to H, and #, and then use the
genericity argument. o

4.5. Notes. Many authors obtain Logarithm Law (4.1b) for hitting times as a conse-
quence of dynamical Borel-Cantelli Lemmas. See [37, 48, 68, 90] and references wherein.
[69] also studies return times. We note that [69] works under much weaker conditions
than those imposed in the present paper, however, his results are valid only for r =1
(the first visit).

[95, 99, 106, 112] study the recurrence problem when the lim sup in (4.1b) is replaced
by liminf. In particular, [112] proves that for several expanding maps the

(1)
lim inf L (@Y)
n—wo Inlnn
exists for almost all y.

8When sy — s1 < 0, we modify Q, by Qp = {(x,y) :3se[-1,1],d(z, ¢°y) < ,y(;;l/d} and get

Q;” ) QZQ c ¢>*"1Qg;*"1, which gives (M2), by the argument of Proposition 3.9(ii).
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Theorem 4.7 shows that some systems may satisfy logarithmic laws for » = 1 that
are the same as in the exponentially mixing case, but fail to do so for r > 2. Logarithm
Laws for unipotent flows were obtained in [10, 11, 73, 99]. It is not known which kind
of MultiLog Laws hold for such flows.

5. POISSON LAW FOR NEAR RETURNS.

In this section we suppose that p is a smooth measure and that (f, M, u,B) is an r-
fold exponentially mixing system for all r. In the previous section we verified properties
(M1), and (M2), for the targets €, , given by (4.6), for almost every x, and for the
targets (2, given by (4.7). Moreover, we have Fl)i_r)r(l) p~%o(p) = y(r) and ll)i_r}ré pta(p) =1,

where o(p) = u(Qp2), 5(p) = (Lxp)(€2,). Accordingly Theorem 2.11 gives the following.

Theorem 5.1. (a) For almost all x the following holds. Let y be uniformly distributed
with respect to . The number of visits of {f*(y)}repirp-a) to Bz, p) converges to a
Poisson distribution with parameter 7y(z) as p — 0. Moreover letting n = 7p~¢ we

have the sequence

51) d(@,y) ey d(xy)
p Y p ) Y p )

converges to the Poisson process with measure y(x)Tdt'dt.
(b) Let x be chosen uniformly with respect to p. Then the number of visits of { f*(2)}repi rp-a

to B <:U, %) converges to a Poisson distribution with parameter T as p — 0.
~yld(x

Proof. All the results except for Poisson limit for (5.1) follows from Theorem 2.11. To
prove the Poisson limit for (5.1) we need to check that for each choice of 17 < r{ <ry <
ry <---<ry <r} the number of times k € [1,7p~%] where d(z, f*y) € [r; p,r] p] are
converging to independent Poisson random variables with parameters

+

) [ Yttt = (@) [ — (7).

"
—

But this follows from Theorem 2.12. The latter theorem can be applied since (M1),
follows from Property (Appr) of the targets

O = {y = d(x, ffy) € [ry p,r pl}
that holds due to Lemma 3.4. O

There are two natural questions dealing with improving this result. In part (a)
we would like to specify more precisely the set of x where the Poisson limit law for
hits holds. In part (b) we would like to remove an annoying factor v¢(z) from the
denominator. Regarding the first question we have

Conjecture 5.2. If f is r-fold exponentially mizing for all r then the conclusion of
Theorem 5.1(a) holds for all non-periodic points.

Regarding the second question we have the following.
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Theorem 5.3. Let x be chosen uniformly with respect to p. Then the number of visits
of {fk(x)}ke[up_d] to B(x,p) converges to a mizture of Poisson distributions. Namely,

for each |

(5.2) /1}3(1) p(Card(n < 7p % :d(z, frr) <p)=1) = JM eV(Z)T@du(z).

In other words to obtain the limiting distribution in Theorem 5.3 we first sample
z € M according to the measure p and then consider a Poisson random variable with
parameter 7y(z).

Corollary 5.4. If f preserves a smooth measure and is r-fold exponentially mixing for
Lipschitz observables for all v = 2 then
(a) For almost all x we have that if T-(y) is the first time an orbit of y enters B(z,¢)
then for each t
lim u(y : 7.(y)e? > t) = e 7@
(b) If T.(x) is the first time the orbit of x returns to B(x,e) then

lim p(x : To(z)e? > t) = J e Y Ddpu(z).
M

Proof. This is a direct consequence of Theorems 5.1(a) and 5.3. For example to get
part (b), take [ = 0 in (5.2). O
Proof of Theorem 5.3. Consider the targets

Qﬂ($ay) = {($7y) € M X M : d(l’,y) < p}

and let Q’; ={z: (v, ffx) e Qp}. Note that (M2), for QF implies (M2), for Q’; However,
(M1), is false for targets Q’; We now argue similarly to the proof of Theorem 3.7 to
obtain that for separated tuples ki, ko, ..., k,,

(5.3) " (ﬂ Q) — g fM 7 (2)dpa(z)(1 + o(1)).

Namely, note that

Jlﬂp (@0, 1) ... 1g (%o, 7, )dp(zo)dp(zy) . . . dpu(zr)

— [ Blanpnten) = 51+ 00)) [ o)atao).

M
Thus approximating 1, by A satisfying (Appr), and applying (EM), to the functions

B:(x07 T ) = A;(%, xl) (9007%)

E;($07"' 7'T7") = _<$0, ) A_(x07x7”>a
we get that if ;1 —k; > R|Inp| for all 0 < j <r — 1, then

H (ﬂ Q?) S (B:(%; fFrag, -, fFrag ) ( (g, - ,xr)) + Cproghilnel
j=1
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< (o' + de(””))rf v (2)du(z) + Cprogimel
M

and, likewise,

M <ﬂ Qi]) > <pd _ Opd(1+n))TJ ’y’"(z)d,u(z) N C«p—raeR\lnp\.

M

Taking R large we obtain (5.3).
Summing (5.3) over all well separated couples with k; < 7p~% and using that the
contribution of non-separated couples is negligible due to (M2), we obtain

,l,l_rf}) } ( Nﬁ;lm— )d,u(x) _ JM IYTT(!Z)d,u(Z)

Nyra Card{k o~ d(z, ffa) p}

Since the RHS coincides with factorial moments of the Poisson mixture from (5.2), the
result follows. O

where

5.1. Notes. Early works on Poisson Limit Theorems for dynamical systems include
[39, 46, 91, 92, 93, 139]. [33, 85, 89, 137] prove Poisson law for visits to balls centered
at a good point for nonuniformly hyperbolic dynamical systems and show that the
set of good points has a full measure. [48] obtains Poisson Limit Theorem for partially
hyperbolic systems. Some of those papers, including [30, 48, 85, 88] show that in various
settings the hitting time distributions are Poisson for all non-periodic points (cf. our
Conjecture 5.2). The rates of convergence under appropriate mixing conditions are
discussed in [2, 3, 86]. The Poisson limit theorems for flows are obtained in [129, 133].
Convergence on the level of random measures where one records some extra information
about the close encounters, such as for example, the distance of approach is discussed in
[48, 64, 65]. A mixed exponential distribution for a return time for dynamical systems
similar to Corollary 5.4(a) have been obtained in [41, 142]. See also review papers
[81, 145] and the references therein. Corollary 5.4(b) appears to be the first result
establishing the mixture of exponential distributions as a limiting distribution for close
returns in dynamical systems.

For more discussion of the distribution of the entry times to small measure sets we
refer the readers to [40, 98, 145, 161] and references wherein. We also refer to Section 10
for related results in the context of extreme value theory.

6. GIBBS MEASURES ON THE CIRCLE: LAW OF ITERATED LOGARITHM FOR
RECURRENCE AND HITTING TIMES

6.1. Gibbs measures. The goal of this section is to show how absence of the hy-
pothesis of smoothness on the invariant measure p may also alter the law of multiple
recurrence and hitting times.

For simplicity we consider the case where f is an expanding map of the circle T and
i is a Gibbs measure with Lipschitz potential g. Adding a constant to g if necessary
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we may and will assume in all the sequel that the topological pressure of g is 0, that is

(6.1) Plo) = [ g + b = .

This means (see [149] for background on Gibbs measures) that for each ¢ > 0 there
is a constant K. such that if B,(x,¢) is the Bowen ball

B,(z,¢) = {y : d(f*y, f*z) < e for k =0,...,n— 1},

then
K< FBu(me)
exp [ (3320 9(f*2))]
We denote
(6.2) fu=n|f",
A = A(p) the Lyapunov exponent of
1 ’I'L
A= limn|(f— qud,u>0
n—0o0

and by d the dimension of the measure p
d = lim 2AB@,0))
0—0 Iné

We know from [123] that the limit exists for p-a.e. = and
§gdp
= h(f)/\ = —
3= =2
where the last step relies on (6.1).

We say that p is conformal if there is a constant K such that for each z and each
0<r<l,

p(B(z, 7))

-1
K <
S rd

< K.

It is known (see e.g. [134]) that p is conformal if and only if g can be represented in
the form

g:tfu_P(tfu)+g_gof
for some Holder function g and ¢ € R.
Denote

(6.3) (x) = g(z) + dfulz),

then we have {¢dp = 0 under the assumption P(g) = 0. Define 0 = o(u) by the
relation

(6.4) o= wdwzg [vwera

The goal of this section is to prove the following
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Theorem 6.1. (a) If pu is conformal then Theorems 4.4 and 4.6 remain valid with d
replaced by d.

(b) If u is not conformal then for p almost every x and p x p almost every (x,y), it
holds that

(6.5) lim sup [Ind (e, 2)| — gln o
' nsw /2(Inn)(Inlnlnn) dvd\’
(6.6) lim sup [Indy (z,y)| — LInn _ 0

n-x 4/2(Inn)(Inlnlnn) dvdx

6.2. Preliminaries on expanding circle maps and their Gibbs measures. Here
we prepare for the proof of Theorem 6.1 by collecting some facts on expanding maps of
the circle and their Gibbs measures.

We first check multiple mixing for such maps.

Recall we take B = Lip. Let us denote by | - ||, the Lipschitz norm

| Slip = j i+ sup <d>(x— 5@\

for ¢ € B.

Proposition 6.2. For each Gibbs measure i, the system (f, T, u,B) is r-fold exponen-
tially mixing for any r = 2.

This fact is well known but for the reader’s convenience we provide the argument in
in §A.2.

In the rest of the argument it will be important that if x4 is a Gibbs measure then
there are positive constants a, b such that for all sufficiently small p and for all x,

(6.7) p* < p(B(z,p)) < p’

We also need the fact that Gibbs measures are Alhfors regular, that is there is a
constant R such that for each x, p we have

(6.8) 1 (B(x,4p)) < Ru(B(z, p)).

We recall the proofs of (6.7) and (6.8) in §B.2.
We also need a lemma on the fluctuations of the local dimension of Gibbs measures
for expanding circle maps.

Lemma 6.3.
(a) o(p) = 0 if and only if pu is conformal.
(b) If 0 > 0 then for u almost every x
, |Inp (B(z,9)) | —d|Ind| o .. o |Inp(B(z,0)) | —d|1Ind] o
lim sup = —, limin = ——.
50 \/2\ln(5\(lnln|ln5\) VA 6—0 \/2]ln(5|(lnln\ln5]) VA

The proof of this lemma is also given in Appendix B.
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6.3. The targets. Given x € M, let
Qp={y: dz.y) <p}, Q={(z,y):dz.y) <p}.

We use the notation Qf , for the event lg, , o f*. We also recall the notation Qf =
{x : (z, fFx) € Q,}. In the sequel we will always assume that (p,) is a sequence such
that p, > n™" for some u.

We caution the reader that the targets 0, are not admissible targets in the non-
conformal case, so we need to use a roundabout approach, different from Section 4, for
proving Theorem 6.1(b).

On the other hand, we will need a modification of the argument of Lemma 4.14
to show that for any Gibbs measure p and for p-a.e. = € M, the targets ., are
admissible for (f, M, u,B). The difference with the case of smooth measures, is that
it does not hold anymore that pu(B(y,1/27)) < Cu(B(z,1/27)) for any x,y € M, while
this was used in the proof of Lemma 4.14.

Lemma 6.4. For any Gibbs measure i, for p-a.e. x € M, the targets Q, ,, are admis-
sible for (f, M, u,B).

Proof. Due to (6.7) and (6.8), all the properties of admissible targets except for (Mov)
are obtained exactly as in the smooth measure case. To prove (Mov), we modify the
argument of Lemma 4.14 to overcome the fact that it does not hold anymore that
w(B(y,1/27)) < Cu(B(z,1/27)) for any z,y € M.

In fact we can prove more than (Mov) in this context of expanding circle maps.
Namely we can show that for a.e. z and all &

(6.9) p(B(x,p) 0 fEB(x, p)) < p(B(z, p)*".

We consider two cases.

(I) k > ¢|Inp| where ¢ is sufficiently small (see case (II) for precise bound on ¢).
Take A} such that AT = 1 on B(z,p), § Ardp < 2u(B(z, p)) and |Af| L, < Cp™™ for
some 7 = 7(p). Let p = p” where o is a small constant. Then (A.3) gives

H(Ba.p) 0 £ Blap)) < [ 4] (AL o P

< 4(B(w, p)p(B(w,p)) + 200" u(B(x, p)) < Cu(B(x, p)) (™ + p1 7~

for some 0 < § < 1. Taking o small we can make the second term smaller than prné'/ 2

which is enough for (Mov) in view of already established (Poly). Note that no restric-
tions on x are imposed in case (I).

(IT) k < g|Inpl. In this case for a.e. z the intersection B(z,p) n f~*B(x, p) is empty
for small p due to the Proposition 6.5 below. 0J

Proposition 6.5. ([16, Lemma 5]) Let T : X — X be a Lipschitz map with Lipschitz
constant L > 1 on a compact metric space X. If ju is an ergodic measure with h,(T") > 0.
Then for almost every x, there ezists po(x) > 0 such that for all p < po(x), and all
0 <k < &|lnp|, we have T""B (z,p) n B (z,p) = &.
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The case of composite targets (2, is more complicated, except for the conformal case.
In the conformal case, the following Lemma is obtained exactly as in Proposition
4.10 that dealt with the smooth measure case, so we omit its proof.

Lemma 6.6. If u is conformal, then the targets 0, defined by (4.7) are weakly admis-
sible in the sense of Remark 3.10.

6.4. The conformal case.

Proof of Theorem 6.1 (a). We take p,, = n~Y/4 (Inn)~°. Due to Lemmas 6.4 and 6.6, the
targets targets Q, ,. are admissible for p-a.e. x € M and the targets 2, are composite
weakly admissible. Consequently, the proof of Theorem 6.1 (a) follows exactly as that
of Theorems 4.4 and 4.6 corresponding to the smooth measure case. O

6.5. The non conformal case. Proof of Theorem 6.1(b). The proof of Theorem
6.1(b) relies on the liminf in Lemma 6.3(b).

6.5.1. The iterated logarithm law for hitting times: Proof of (6.6) of Theorem 6.1 (b).
For € > 0 and ¢ > 0 arbitrary let

(6.10) Pn = pulc) = nl%exp (—C\/Q(lnn)(ln Inln n)) :

IE(0) = 6% exp ((1 + ¢) \—ﬂ\/2|1n5| (lnln|1n5|)> ,

I2e(n) = 02 (pulc)).

then

IE,(n) = %exp ((—cd +(1+ e)\/% + m) V2Inn(lnlnln n))

for some n,, — 0 as n — 0.
The liminf in Lemma 6.3, has the following straightforward consequences, for any
e > 0 and for p almost every x:

There exists n(x) such that for n = n(z), we have
(6.11) () < Of(n).

For a subsequence n; — o0 we have

0

Now it follows that for any r > 1, S, = Z (2ku(Qx,p2k))r is finite if ¢ > (1 + ¢) v
k=1

and is infinite if ¢ < (1 —¢) G- Hence (6.6) follows from Proposition 6.2, Lemma 6.4

and Corollary 3.8. 0J
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6.5.2. The iterated logarithm law for return times: Proof of the upper bound in (6.5).
Now we turn to the proof of

(6.13) lim sup nd ()| - ilnn g

now /2(Inn)(Inlnlnn) T dyda

Since d\’ (x,z) = dg)(a:, x), we only need to show (6.13) for r = 1.
Denote

1 o
Tn = —7q ©XD {—(1 + 26)m\/2(1nn)(1nlnlnn)} .

Let N, = 2%, Similarly to Section 2 it is enough to show that for almost all z, for all
sufficiently large k£ we have that

d(z, f"z) = ry, form=1,..., Nj.

Proposition 6.5 allows us to further restrict the range of m by assuming m > £1n N,
where ¢ is sufficiently small.
We say z € T is n—good if u (B(x,r,)) <97 (r,). Fix ky and let

A = {x : x is n—good for n = Ny but d(x, f"x) < ry, for some m = Eln Ny, ..., Ni}.

Let &), = {ZL‘j7k}é-k:1 to be a maximal ry, separated set of Ny;—good points. Thus if  is
N, good then there is j such that x € B(z;4,7n,). Therefore if f™x € B(x,ry,) then
f"x € B(xj,2ry,). Fix a large K, for m < K'In N, (6.9) is telling us that

1 (B, 2rn,) 0 f "By, 2ry,)) < Kp(B(aje, 2ry,)) "
while for m > K In N, we get by exponential mixing that
1 (B, 2rn,) 0 f"B(xjn, 2ry,)) < Kp(B(zjk, 2rn,))>.
Summing those estimates, we obtain

Ny
2 1 (B, 2rn,) 0 f" Bk, 2ry,)) < Ku(B(a:j7k,2rNk))e_“\/E

m=¢&ln Nj

for some k = k(€) > 0. Since B(xj,n,/2) are disjoint for different j, by (6.8) we
conclude that

D (B(ip, 2ry,)) < R i (B(xjnrn,/2)) < R.
j j
It follows that

pu(Ay) < KRe "VE,

Now the result follows from the classical Borel Cantelli Lemma.
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6.5.3. The law of iterated logarithm for return times: Proof of the lower bound in (6.5).
Here we prove that

Hnd,(f)(:v,xﬂ —<lnn L0

6.14 lim su = )
(6.14) o /2(nn)(Inlnlin)  dydx

Suppose p to be a fixed point of f. Take the Markov partition P, of T such that if
P, € P,, then f*(0F,) = p. Denote P,(z) = {P, € P, : © € P,}, two sequences (k;(z))
and (n;(z)), j € N such that ko(x) = no(z) =0,

nj(x) = min {n > k;_1(2)* : p(Pa(2)) = 92 (|Pa(2)])}

and 5
ki(x) = —————.
1) = @)
Let
Aj = {.CE : Card{kj_l(a:) <k < k'j<$) : fk-r € Pnj(x)} = 7’} .
Then

- |1ndg)(x,:r)|—élnn o
lim sup =
n-x 4/2(Inn)(Inlnlnn) dvdA
if « belongs to infinitely many A;s.
Denote by P (-|-) the conditional probability and F; = B (Py,, -+, Px,) be the o
algebra generated by the itineraries up to the time k;. We will use the following Lévy’s
extension of the Borel-Cantelli Lemma.

Theorem 6.7. ([158, §12.15]) [fZ]P’(AjH\]:j) = 0 a.s. then A, happen infinitely

(1—2¢)

J
many times almost surely.

Hence (6.14) follows from the lemma below.

Lemma 6.8. There exists ¢* > 0, such that for almost all x there is jo = jo(x) such
that P (Aj1|F;) = ¢* for all j = jo.

Proof. For any Q < T, P, € Py,

p(fF@QaP)) _ (@0 R
o (f5(P)) 1(Fr)
by bounded distortion property. Note that
1 (Aji1 0 Py (7))
i (Piy ) (7))

p(ffQnPR)) =

P (A F;) () =

> C7 (99 (Ajir 0 Pryay (7)) -

By construction
P (Ajr 0 Py (@)

is the set of points y € T which visit P, () at least r times before time

kj+1<$) = j+1($) - /{:](x)
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By Lemma 6.4 for almost all = the targets P, () satisfy (M1), and (M2), for all 7.
Since by construction lim p(P,,(z))k;(z) = 2 we can apply Theorem 2.11 to get
j—®

_ . O ,2F
P (Al Fy) () = CHu (f79 (Ajra 0 Pyy)) = Cokz 2 QH =c.
proving the lemma. 0

6.6. Notes. The fact that return times for the non-conformal Gibbs measures are dom-
inated by fluctuations of measures of the balls has been explored in various settings
[25, 26, 34, 41, 87, 96, 132, 143, 155]. In particular, [80] obtains a result similar to
our Lemma 6.3 in the context of symbolic systems. The papers mentioned above deal
with either one dimensional or symbolic systems. In higher dimensions even the leading
term of In p(B(z,r)) is rather non-trivial and is analyzed in [15], while fluctuations are
determined only for a limited class of systems [124]. Thus extending the results of this
section to higher dimension is an interesting open problem.

7. GEODESIC EXCURSIONS.

7.1. Excursions in finite volume hyperbolic manifolds. Let Q be a finite vol-
ume non-compact (d + 1)-dimensional manifold of curvature —1. Let SQ denote the
unit tangent bundle to Q. For (¢,v) € SQ, let v(t) = ~(q,v,t) be the geodesic
such that v(0) = ¢, (0) = v. We call g' the corresponding geodesic flow, defined
by ¢'(7(0),%(0)) = (v(¢),4(t)). ¢' preserves a smooth measure p which is called the
Liouville measure. This measure is given by restricting the volume form defined by
the symplectic structure to the energy surface. Fix a reference point O € Q and let
D(q,v,t) = dist(O,~(t)). According to Sullivan’s Logarithm Law for excursions [153]
for p-a.e. (gq,v) € SQ, it holds that
D(q,v,T) 1

1 I CACUIE DS
(7.1 myr T T a

In fact, the Borel Cantelli Lemma of [153] also shows that
D(q,v,T) -+ InT 1
2 li d ==
2 . 7

Here we present a multiple excursions version of (7.2). Recall ([18, Proposition D.3.12])
that @ admits a decomposition

73 o-x|J <U cj)

where IC is a compact set and C; are cusps. Each cusp is isometric to V; x [L;, o0)
endowed with the metric

dx? + dy?
Y2
where V; is a compact flat manifold and dz is the Euclidean metric on V;. Cusps
are disjoint, so that a geodesic cannot pass between different cusps without visiting

ds® = , xeV;, ye[Ljo)
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the thick part IC in between. To simplify the notation we assume throughout this
section that the time between consecutive visits to the cusps is at least 1. (This can
always be achieved by decreasing slightly the cusps and increasing the compact part.
Alternatively, if the minimal time between the cusp visits is smaller than some k < 1 one
can repeat the argument given below replacing g" action by g"*). We note that” for each
do = (0, yo) € C; there is a unique geodesic ({x = z(}) which remains in the cusp for all
positive time. We will call this geodesic the escaping geodesic passing through (z¢, yo).
Let h(q,v,t) = 0 if v(q,v,t) € K and h(q,v,t) = Iny(t) if v(q,v,t) = (z(t),y(t)) € C;.

It is easy to see using the triangle inequality that there exists a constant C' such that
’D<Q7U7t) - h(cbv?t)‘ <C.

A geodesic excursion is a maximal interval I such that +(¢) belongs to some cusp C; for
all t € I. Then, h(l) = max h(q,v,t) is called the height of the excursion I. For every
€

triple (q,v,T) we can order the heights of the excursions that correspond to maximal
excursion intervals included inside (0,7") starting from the highest one

HY(q,v,T7) = HY(¢,v,T) = --- = H(q,v,T). ..
Note that (7.2) is implied by

HY(qv,T) -+ InT 1
(7.4) limTSEE)O (4 lnln)T d ==
Here we prove the following multiple excursions version of (7.4).
Theorem 7.1. For a.e. (q,v) and all v we have
lim sup H"(g,0,T) - é InT — i
T—o InlnT rd

We also have the following byproduct of our analysis.

Corollary 7.2. There are constants a;, i = 1,...,p such that for each b the following
holds. Suppose that (q,v) is uniformly distributed on SQ. Then the number of excur-
sions in the cusp C; which finished before time T and reached the height lnT + b s

asymptotically Poisson with parameter a;e”®.
In other words, for every r > 1, we have
7‘—1 —dh
(r) 1 T . —dy
(7.5) Yll_r)rgou (H (q,v,T) < ) Z exp( ae” )

=0

where HZ-(T) is the r-th highest excursion to the cusp C;. In particular, taking » = 1 in
(7.5) we obtain

9We identify hereafter each cusp C; with V; x [L;, ).
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Corollary 7.3. (Gumbel distribution for the maximal excursion) If (q,v) is uniformly

distributed on SQ. Let Hl-(l)(q, v,T) denote the maximal height reached by v(q,v,t) up
to time T inside cusp C;. Then

. InT 3
Th_r}gou (Hi(l)(q,v,T) - < h> = exp (—aie dh) )
7.2. Height and angle. We start with discussing the conditions for a geodesic which
just entered a cusp to reach a certain height before exiting. This information will be
important in describing the geometry of the targets we will use to establish the MultiLog
for excursions.

Let II be the plane passing through v and the escaping geodesic. In this plane the
geodesics are half circles centered at the absolute {y = 0}. The half circle (geodesic)
given by (z —x0)? + y* = R? reaches the maximum height of In R+ O(1). Let n* be the
first integer moment of time after the beginning of the excursion. Then the y coordinate
of v(n*) is uniformly bounded from above and below so the radius of the circle defining
y(n®)

sin
follows that the condition R > Ry is equivalent to the condition sin 6 < %:).

the geodesic is given by R = where 6 is the angle with the escaping geodesic. It

Definition 7.4. Given H we consider the set A; g which consists of points (q,v) € C;
such that

(i) The first positive time t(q,v) such that the backward geodesic v(q,v, —t) exits the
cusp satisfies t(q,v) € [0,1];

(ii) The angle v makes with the escaping geodesic at q is less than e,

The above discussion implies that for (¢,v) € C; satisfying (i) and (ii), the geodesic
starting at (¢, v) will exit the cusp in backward time less than 1 and will do an excursion
in future time up to height h = H + O(1), consuming for this a time comparable to h.
Conversely, there is a constant C' such that any excursion reaching height H + C' in C;
satisfies (i) and (ii).

We also introduce

(7.6) A = Ain.

It is a basic fact (e.g. see the proof of Theorem 6 in [153])
(7.7) w(Aigr) = aie” (1 + o(1)).

To prove Theorem 7.1 we define for every k = 0
(78) QI; = g_kA—lnp'

By a slight abuse of notation, we still denote the event 191,g by Q’;. We also keep the
notation o(p) = p(£2,).

For s = 0,¢ > 0, we let p, = cn™?In"*n. Recall that N7 (g,v) denotes the number
of times k € [1,n] such that QF occurs (i.e. (¢,v) € QF ). Theorem 7.1 becomes
equivalent to showing that for each c

(a) If s > %p then for p-a.e. (g,v), we have that for large n, N} <.
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(b) If s < -4, then for p-a.e. (g, v), there are infinitely many n such that N%n >

We introduce a factor 1/2 in (b) to make sure the last excursion that starts before
n/2 finishes before n. Here, we are using the control on the excursion time that is
comparable to the excursions height Inn « n/2. Moreover, if K is a large constant, we
can take in part (a) p, = Kn~Y¢(Inn)~*. Then A_j,,, contains all geodesics reaching
the height n'/?(Inn)®. Similarly, if we take p, = 1/ (Kn'¥(Inn)*) in part (b) then all
geodesics in A_y, ,, reach the height n'/¢(Inn)*.

7.3. MultiLog law for geodesic excursions. In this section we reduce Theorem 7.1
to a statement about the quasi independence of different excursions (Lemma 7.6 below).
Observe that by (7.7), we have that

(7.9) 1(,,) € [C_ln_l(lnn)_Sd,On‘l(lnn)—sd]

0
Hence with the notation S Z 27v;)" where v; = o(py;) we sce from (7.9) that
-1
S, = oo if and only if s < id We want thus to apply Corollary 3.8, but first we need
to verify its conditions.

The system (g*, SQ, 1, B) is r-fold exponentially mixing for every r > 2 in the sense
of Definition 3.1. Indeed (Prod) an (Gr) are clear, while (EM), follows from Theo-
rem 1.1 of [20] (see also Theorem 1.2 of [116]) and Remark A.1 and Theorem A.2 of
our appendix.

To apply Corollary 3.8, we also need the admissibility of the targets.

Proposition 7.5. The family of targets {§2,,} is admissible as in Definition 3.2.
Before we prove Proposition 7.5, we first complete the

Proof of Theorem 7.1. From the equivalence stated in (a) and (b) above, and since by
Proposition 7.5 the targets {€2,,} are admissible, the limsup of Theorem 7.1 follows
from Corollary 3.8 and the fact that S, = oo if and only if s < %l. O

Proof of Proposition 7.5. First, the definition of p, and (7.9) imply (Poly). Next, the
first time #(q,v) = 0 such that (g, v, —t) exits the cusp is Lipschitz in (g, v). Also, the
angle W(q,v) that v makes with the escaping geodesic at ¢ is also a Lipschitz function
of (g,v). We conclude that (Appr) for the targets {€2,} follows from Lemma 3.4 with
O(q,v) = VU(q,v), a1(p) = 0 and az(p) = p, modulo a very simple modification in the
proof of Lemma 3.4 to account for the extra condition that #(q,v) € [0, 1].

It remains to prove (Mov). We denote A}, = g7 Ay. (Mov) is an immediate conse-
quence of the quasi-independence result on the excursions given in Lemma 7.6 below.
Similar quasi-independence results are obtained in [153, 135]. For completeness we will
give a proof adapted to our setting in §7.4.

Lemma 7.6. There is a constant K such that for each H > 0 and each ny < ns,
WA o A3R) < K (An).
Up to proving Lemma 7.6, we finished the proof of Proposition 7.5. 0
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7.4. Quasi independence of excursions. Here we prove Lemma 7.6.

The idea of the proof is the following. Fix numbers Hy, Ho,t; + 1 < t5. We want to
show that the event that a point has an excursion which ends during the time interval
[t1,t1 + 1) and reaches the height of H; or higher, and the event that a point has an
excursion which starts during the time interval [t5, £+ 1] and reaches the height of Hy or
higher, are quasi independent. Since p is invariant by the geodesic flow we may assume
that ¢t; < —1, to > 0. Since the points on the same geodesic experience excursions of
the same height, we can take a section transversal to the flow direction. Note that if
x has an excursion in the future, then all points in its local stable manifold also have
an excursion in the future, while if x had an excursion in the past, then all points in
its local unstable manifold also had an excursion in the past. Thus the required quasi
independence comes from the local product structure of .

The formal proof given below is more complicated since we have to address several
technical issues including the following:

(a) We know the starting time of both excursions, rather than an ending time of the
first excursion as described above.

(b) Points in the same stable (unstable) manifold do not have excursion of exactly
the same height;

(c) Excursions for points on the same orbit happen at different times.

Proof of Lemma 7.6. Let Ay = I Ay where I denotes the involution I(g,v) = (¢, —v).
Given nq,n define
Bigs=1{z:g"ze Ay, g"ve Ay, gz ¢ K for ny <n < n}.

Thus By n, » consists of points which enter a cusp at time n;, reach the height H, and
then exit the cusp at time n. We have that A} = U B n, 7 Note that n —ny > H.
n>ni
Fix a small § and let By, » = U%BH’nlﬁ W (z,0e"™), where W" (z, p) denotes the
local unstable cube containing x of length p. Note that if y € By, » then g™y e Ay,
for some 1y € [ny —1,n; 4+ 1] and g™y € Ay_; for some 75 € [ — 1,72+ 1]. In particular
for each ny the sets {By n, i }a=n, have intersection multiplicity at most 3. Hence

oe]

(7.10) > 1B n) < 3u(An).

n=ni

Since l’;’Hmﬁ N Ay = J if n = ng, we have for ny > ny

(7.11) A 0 A < D i (B 0 Al
ni<n<ng

We claim that there exists a constant C' > 1 such that for each n; < n < ny we have
(7.12) 2 (BHm,ﬁ N AT}?) < CM(BHm,ﬁ)HJ(AH)-
Now, (7.7), (7.10), (7.11) and (7.12), imply Lemma 7.6. B

It remains to establish (7.12). To this end, fix a large H and partition a small

neighborhood U of Aj into unstable cubes of size 0. (Note that since the points
in U are not too far from the compact part, we can take § much smaller than the
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injectivity radius of any point from ¢/. Then unstable cubes of size ¢ are nice embedded
submanifolds with a boundary). For H > H, let

BH,nl,ﬁ = U Wu(gn% 6)
2€BH nyn
where W¥(y, §) denotes the element of the above partition containing y. Note that
(7.13) Bt © 9 " Binn © B, a-
Thus
(B 0 AR < o (g_ﬁBH,m,ﬁ N A?f) = <BH,n1,ﬁ N AZ*)

where n* = ny — n > 0. We thus finish if we show that
(7.14) (B 0 AR ) < C(Big, )it Ar).

Indeed (7.13) and (7.14) imply (7.12). By construction, By, » is partitioned into nice
unstable cubes of size §. It suffices to show that for any such cube W we have

(7.15) (A% W) < Cem

where p(-|-) denotes the conditional expectation. Let @ = U U W?(g'x,§), where
zeW |t|<é

W# (y,0) denotes the local stable leaf containing y of length §. Note that if § is suf-

ficiently small then due to the local product structure, for each point y € @) there is

unique € W and t € [—4, 6] such that y € W*(g'z, §). In addition if ¢"*z € Ay then

¢y € Ay_1. Since the measure of @ is bounded from below uniformly in W < U, it

follows that

) = p( ?{*—1 N Q) < N(A?I*—Q
Q) Q)

where ¢ = 1/u(Q). This establishes (7.15) and, hence (7.14) completing the proof of
Lemma 7.6. O

(AL W) < (AL |Q < eu(Ap_y) < ée™

7.5. Poisson Law for excursions. Proof of Corollary 7.2. Here we take

Pn 1= nVe,

We fix h € R and fix a cusp index ¢. With the sets A; i defined as in Definition 7.4,
consider the targets
Q,ﬁpn = g_kAi,—lnpn—fy
As in the proof of Theorem 7.1, we have that {€2f , } satisfies the assumptions (M1),
and (M2), for all r. Moreover, by (7.7)

lim np(Q,,) = ae®.

n—ao0

Therefore Corollary 7.2 follows from Theorem 2.11. ]
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7.6. Notes. The logarithm law for the highest excursion was proven in [153]. The
extensions for infinite volume hyperbolic manifolds are studied in [152]. Corollary 7.3
for surfaces is obtained in [97] where the authors also consider infinite volume surfaces.
Papers [13, 57] obtain stable laws for geodesic windings on hyperbolic manifolds. Those
papers are relevant since the main contribution to windings comes from long excursions,
so the proofs of stable laws and of the Poisson laws for excursions are closely related,
see e.g. [52, 55]. In case the hyperbolic manifold under consideration is the modular
surface, the length of the n-th geodesic excursion is approximately equal to the size of
the n-th convergent of the continued fraction expansion of the geodesic endpoint [78],
therefore the multiple Borel-Cantelli Lemma in that case follows from the results of [1].

Several authors discussed extended Logarithm Law for excursion to other homoge-
neous spaces. Namely, [115] studies partially hyperbolic flows on homogenous spaces
and presents applications to metric number theory. Logarithm Law for unipotent flows
is considered in [10, 11, 73, 99]. In Section 9 we obtain MultiLog Law for certain
diagonal flows on the space of lattices.

8. RECURRENCE IN CONFIGURATION SPACE.

8.1. The results. In this section we return to the study of compact manifolds, but we
treat targets which have more complicated geometry than the targets from Section 4.
We will see that a richer geometry of targets leads to stronger results.

Let Q be a compact manifold of a variable negative curvature and dimension d + 1.
Denote by SO the unit tangent bundle over Q, 7w : SQ — Q the canonical projection,
g the geodesic flow on SQ preserving the Liouville measure .

Fix a small number p > 0. Given a point a € Q and (¢,v) € SQ, let t; be consecutive
times where the function ¢ — d(a,7(¢*(¢,v))) has a local minima such that d; :=

d(a,m(g' (¢q,v)) < p. Let dg)(a, (g,v)) be the r-th minima among the numbers {d;}; <n.
Theorem 8.1. (a) For each a € Q and almost every (q,v) € SQ,

.~ md(a, (q)|—tln 1
lim sup = —.
n—00 Inlnn rd

(b) For almost every (q,v) € SQ,
[Indy(q,(q,0)| — YInn 1
D _

li —.
Hff;l Inlnn rd

Note that in contrast with Section 4 there are no exceptional points for hitting. We
also obtain a Poisson limit theorem. Denote

B,(a) = {qge Q:d(a,q) <p}, Byla)={(q,v)eSQ:d(a,q) < p,veS,Q}
Q= | ¢'Bola), 2, ={((a,u),(q,v)) € SQ x 5Q: 35 € [0,¢],d (a,m(g°(g,v))) < p} -

te[0,e]
The following fact proven in Appendix C will be helpful in our argument.

Lemma 8.2. The following limit exists and does not dependent on a € Q:
(8.1) Y = lim e (Qa,) / (207) -
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The following will be a byproduct of our analysis and the proof will be given in §8.3.

Corollary 8.3. For each a € Q, for every T > 0, for every r = 1, we have

r—1

i g —y (07)
0 g (0e 50 0 <) - 3 O

r—1 l
8) limp((q.0) € SQ:df) u(a (g,0)) < p) = ;) ¢ —W;) |

8.2. MultiLog Law. Proof of Theorem 8.1. We fix r € N and consider the sys-
tem (f,SQ,u,Lip), where f = ¢° for a small ¢ > 0. We note that it follows from
[125][Theorem 2.4], [48][Theorem 2], Remark A.1 and Theorem A.2 that (f, SQ, p, Lip)
is r-fold exponentially mixing for every r > 2 as in Definition 3.1.

For &k # 0, we keep the notations Q’Cf,p for the event 1g, , o f*, and Q’; for the

event {(¢,v) : ((¢,v), f*(¢q,v)) € Q,}. We also keep the notation o(p) = 1(Qq,,) and
a(p) = (ux 1)(S2).
For s > 0, we let p, = n~"/¢In"*n, and recall that N}, denotes the number of times
k < n such that QF (or QF ) occurs.
The statement of Theorem 8.1 becomes equivalent to the following:
(a) If s > %p then for p-a.e. (g,v), we have that for large n, NJ! <.
(b) If s < -5, then for p-a.e. (g,v), there are infinitely many n such that N' > r.
With the notation S, = D2 (27v;)" where v; = 0(py) (in the Q, ,, case) or v; =
(poi) (in the ©Q,, case), we see from (8.1) that S, = co if and only if s < 1.
Hence Theorem 8.1 follows from Corollary 3.8, provided we establish the following.

Proposition 8.4. (a) For any a € Q, the targets {Q, ,,} are simple admissible targets
as in Definition 3.2.

(b) The targets (§2,,) are composite admissible targets as in Definition 3.5.
The rest of this section is devoted to the

Proof of Proposition 8.4. Properties (Prod) and (Gr) are clear. Note that €,, is a
sublevel set of a Lipschitz function

h(g,v) = min d(a,7g°(q,v))
s€[0,e]
so (Appr) follows as in Lemma 3.4. To prove the first part of Proposition 8.4, it only
remains to check (Mov). That is, we need to prove the following Lemma.

Lemma 8.5. There existsn > 010 and to > 0 such that for any a € Q and p sufficiently
small,

(82) ,U(Qa,p M gitQa,p) < M(Q%P)Pﬂ??
for all t > t,.

101y fact, it can be seen from the proof that 1 can be taken to be d, that is, we have quasiindependence
in Lemma 8.5 1(Qa, N g7 '0,,) < Cu(Qa,p)?
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Recall that S, Q is the unit tangent bundle at the point ¢. Denote A.(q) = U 9°549,
s€[0,e]

which is an embedded submanifold with boundary in SQ of dimension d + 1.

Lemma 8.6. We let v be the restriction of u on A.(q). For each a € Q
(8.3) v (A(q) 0 g7 Qayp) < Cp'v(A(q)).

Lemma 8.5 follows from Lemma 8.6 by integration on ¢ € B,(a).

Introduce X(t,q,¢) := g*A-(q). Note that (¢, q,¢) is an embedded submanifold on
SQ of dimension d + 1.

The proof of the following result is given in the Appendix C.

Lemma 8.7 (Geometry of expanded spheres in the configuration space). We have that
7w :X(t,q,e) = Q is a local diffeomorphism. Moreover for the inverse map
dn=t: SQ — S%(t,q,¢) the norm ||dn~"|| is uniformly bounded.

Proof of Lemma 8.6. By elementary geometry and the bounded distortion property
(8.4) V(A(@) 0 g7',) < Cp (St 0,2) 0 Boy(a)).

By Lemma 8.7, ||dr~!|| is uniformly bounded. Note that 7%(#,¢,¢) is an annulus
whose boundaries are spheres of radii ¢ and ¢ + ¢ respectively. Note those spheres are
perpendicular to the geodesics emanating from ¢. Since the width of annulus is equal
to € and does not depend on ¢, taking a maximal 1-separated set in the sphere of radius
of t + (¢/2) and considering associated Voronoi cells we see that (¢, ¢, ¢) can be cut
into several disjoint pieces ¥;(t) satisfying that for each j, 73;(¢) is contained in a ball
of radius e (independent of ¢ and ¢) and contains a ball of radius £/2. Decreasing e if
necessary we obtain that the intersection 7¥;(t) N By,(a) has only one component and
since dr~! is bounded we get that

v(Z5(t) 0 Byy(a)) < Cler)p™ v (Z5(1)) -
Summing over j in (8.4) we obtain (8.3) which finishes the proof of Lemma 8.6. O

The proof of Proposition 8.4(a) is thus completed.
Now we turn to the proof of Proposition 8.4(b). The task is to verify the conditions

(Appr), (Mov) and (Sub) for the targets €2, defined in Section 8.1. The proof of (Appr)
and (Sub) is obtained from Lemma 3.6 exactly as in the proof of Lemma 4.11 that

FIGURE 1. Proof of Lemma 8.6
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treats the case of the composite targets of Section 4.2. Tt is left to verify (Mov). Take
z; € Q, B, = B(x;,p), 1 <1< k such that Q = OBi and k = O(p~%). By (8.2), for
t >t -

W) < N0 ese:3se ol d (e @) < - fipae b}

Z {(g,v) € SQ:3s€0,e],d (z;,m(g°"(q,v))) < cp,q € B;}

N

< Zu(Qxi,Cp)H” < Z Cpd+n < Cpn.

This completes the proof of Proposition 8.4 and finishes the proof of Theorem 8.1. [J

8.3. Poisson regime. Proof of Corollary 8.3. Part (a) follows from Theorem 2.11,
since conditions (M 1), and (M2), are satisfied for all r, due to the results of §8.2.
The proof of part (b) follows the same argument as the proof of Theorem 5.3 except
that now (M1), is satisfied since the RHS of (5.3) takes form p?\ because A defined by
(8.1) does not depend on a. O

8.4. Notes. In [130], Maucourant proved that for all a € Q and almost every (g,v) €
SQ

t
lim sup [Ind(a,7(g"(¢,v)))| _ 1
t——+00 lnt d

[119] generalized Maucourant’s result to the shrinking target problem for time h map.

The shrinking target problems for sets with complicated geometry is discussed in
[70, 71, 73, 99, 100, 101, 136, 141].

Concerning Poisson Limits we note that visits to sets with complicated geometry
naturally appear in Extreme Value Theory, see Section 10 for details. [27, 88, 66, 159]
provide general conditions for the number of visits to a small neighborhood of arbitrary
submanifold to be asymptotically Poisson.

9. MuLTIPLE KHINTCHINE-GROSHEV THEOREM.

9.1. Statements.

HOMOGENOUS APPROXIMATIONS. For z € R?, we use the notation |z| = 4/ 22,

Definition 9.1 ((r,s)-approximable vectors). Given a = (aq,...,aq) € RY, s > 0,
c> 0, let Dy(a, s, c) be the set of k = (ki, ..., kq) € Z¢ such that
c
k| < N andIm e Z : ged(ky, ... kqym) = 1 and |k|? |(k, a) + m| < NI N

Call o (1, s)-approximable if V¢ > 0, Card(Dy(«, s,¢)) = 2r for infinitely many N s.

Theorem 9.2. If s < 1/r, then the set of (r,s)-approzimable vectors o € T¢ has full
measure. If s > 1/r, then the set of (r, s)-approzimable numbers has zero measure.
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Remark 9.3. Observe that an equivalent statement of Theorem 9.2 is to replace 2r
with r in the definition of (r,s)-approzimable vectors provided we restrict to k € 74
such that ki > 0. This will be the version that we will prove in the sequel.

INHOMOGENEOUS APPROXIMATIONS.

Definition 9.4 ((r, s)-approximable couples). Given o = (ay, ..., a4) € R? and z € R,
s> 0 andc >0, let Dy(a, z,,c) be the set of k = (ky, ..., ky) € Z such that
c
1 k| <N andIme Z: |k|* k < — .
O1) <N and3m e Z ke + o)+l <

Call the couple (o, z) (r, s)-approzimable if for any ¢ > 0, Card(Dy(a, 2, s,¢)) = 1 for
finitely many Ns.

Theorem 9.5. If s < 1/r, then the set of (r,s)-approzimable couples (o, z) € R4 x R

has full measure. If s > 1/r, then the set of (r,s)-approximable couples (ca, z) € R4 x R
has zero measure.

Remark 9.6. Notice that we do not require ged(ky,. .., kq,m) = 1 in Definition 9.4.
This is because, in the inhomogeneous setting, when a vector k € Z¢ contributes to the
Diophantine approzimation counting problem there is no reason for the multiples of k
to contribute.

EXTENSIONS. One can extend the above results to general Kintchine Groshev 0 — 1
laws for Diophantine approximations of linear forms. For example

Definition 9.7 ((r, s)-simultaneously approximable vectors). Given a = («,...aq) €
R, 5= 0, ¢c> 0, let Dy(a, s,c) be the set of k € Z* such that
k| < N and Im e Z% : ged(k,m1,...,mg) =1
c
(InN)a(Inln N)a
Call v (r, s)-simultaneously approximable if for any ¢ > 0, Card(Dn(, s,¢)) = 2r
for infinitely many Ns.

and for alli =1,...,d, |k|7 [kai +my| <

Theorem 9.8. If s < 1/r then the set of (r,s)-simultaneously approximable vectors
a € T? has full measure. If s > 1/r then the set of (r, s)-simultaneously approzimable
numbers has zero measure.

We omit the proof of Theorem 9.8 since it is obtained by routine modification of the
proof of Theorem 9.2.

9.2. Reduction to a problem on the space of lattices. Let M be the space of
(d + 1)-dimensional unimodular lattices. We identify M with SLg1(R)/SLgi1(Z).
Denote by u the Haar measure ' on M. Define

~(1dg 0
Aa—(a 1>,

the Haar measure is the unique left—translation invariant probability measure on M.
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For t € R, we consider g; € SLq.1(R)
2—t
(9.2) gt = 9t
2dt
For a lattice £L € My, 1, we say that a vector in £ is prime if it is not an integer

multiple of another vector in L.
Given a function f on R4*! its Siegel transform S(f) : M — R is defined by

(9.3) SHL) = D fle).

eeL, e prime
For a > 0, let ¢, be the indicator of the set!?
Ey:={(z,y) e R x R | 21 > 0, |z| € [1,2],]z|*|y| € [0, al} .

Fix s = 0,¢ > 0. For M € N*| define
c
(9.4) V= M) O, :=S(¢,).
For t > 0, we define
A(M) = {aeT: d,(gAy) = 1}.

It is readily checked that a € A,(M) if and only if there exists k = (ki, ..., kq) with
ki =0, and 2! < |k| < 2! such that
c

M(n M)*’

If a is such that ®,(gAn) < 1 for every t € N, then we get that a is (r,s)-
approximable if and only if there exists infinitely many M for which there exists
0<ty <ty<...<t, <M satisfying a € ﬂ;zl Ay (M).

But in general, for o and ¢ < M such that o € A;(M), there may be multiple solutions
k to inequality (9.1) such that 2 < |k| < 2!*! for the same ¢. Since in Theorem 9.2 we
are counting all solutions we have to deal with this issue.

The following proposition which will be proved in §9.3 shows that for a.e. «, multiple
solutions do not occur.

(9.5) Im, ged(ky,.. . kaym) =1, [k|*k, a) +m| <

Proposition 9.9. For almost every «, we have that for every M sufficiently large, for
every t € [0, M], it holds that ®,(g:\,) < 1.

Hence, Theorem 9.2 is equivalent to the following.

Theorem 9.10. If rs < 1, then for almost every o € T?, there exists infinitely many
M for which there exists 0 <t <ty <...<t, <M satisfying

ae ) Ay, (M)
j=1

12We added 21 > 0 in the definition of E, since we will restrict to vectors k € Z% with k; > 0.
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If rs > 1, then for almost every a € T?, there exists at most finitely many M for
which there exists 0 <ty <ty <...<t. <M satisfying

ae () Ay(M).
j=1

9.3. Modifying the initial distribution: homogeneous case. We transformed our
problem into a problem of multiple recurrence of the diagonal action ¢g; when applied
to a piece of horocycle in the direction of A, : @ € T This horocycle is exactly the
full strong unstable direction of the rapidly mixing partially hyperbolic action g;. It is,
however, more convenient to work with Haar measure on M instead of Haar measure
on A, for a € T?. Hence, we define

Bi(M):={LeM:d,(q:L) = 1},

where @, is given by (9.4).
Our goal becomes to prove the following.

Proposition 9.11. For pu-almost every L € M, we have that for every M sufficiently
large, for every t € [0, M], it holds that ®,(g:L) < 1.

Theorem 9.12. Ifrs < 1, then for u-almost every L € M, there exists infinitely many
M for which there exists 0 <t <ty <...<t, <M satisfying

Le()B,(M).
j=1

If rs > 1, then for p-almost every L € M, there exists at most finitely many M for
which there exists 0 < t; <ty <...<t,. < M satisfying

Le()B,(M).
j=1

Proof that Proposition 9.11 and Theorem 9.12 imply Proposition 9.9 and Theorem 9.10.
Recall that for M e N we defined v = 75557+ Fix 7> 0 and define dF asin (9.4)

but with (1 +n)c and (1 —n)c instead of c. Next, define for 3 € R? and B € SLy(R)

_ (Idq B (B 0
Aﬁ‘(o 1)’ DB_(O 1)‘
Aapp = DpAgA,.

Fix 0 < ¢ « n. If B is distributed according to a smooth density with respect to
Haar measure on SLy(R) in an e neighborhood of the Identity, (5 is distributed in some
e neighborhood of 0 in R? with a smooth density according to Haar measure of T¢, and
a is distributed according to any measure with smooth density with respect to Haar

measure on T?, then the lattice A, g p is distributed according to a smooth density in M
with respect to the Haar measure p. Moreover, because Aj forms the stable direction

Finally let
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of g; and because Dpg forms the centralizer of g;, we have that if M is sufficiently large,
then 3 3

®, (ghapn) =1 = Cu(g:ha) =1 = ) (g:hap) > 1.
This shows that Proposition 9.9 and Theorem 9.10 follow from Proposition 9.11 and
Theorem 9.12 respectively. ]

9.4. Rogers identities. The following identities (see [127, 157]) play an important
role in our argument. Denote

0
c,=Cd+1)7" cy=((d+1)"2 where ((d+1)= Z n—(@+D)
n=1

is the Riemann zeta function.
Let f, fi, f» be piecewise smooth functions with compact support on R4+
Define the following Siegel transforms

SHL) =D, [fle), S, L)L) = > fi(er) fa(ea).

eeL, prime e1#+egel, prime

Lemma 9.13. We have

(a) st<f><£>du<£>=cl j f(z)de,
0 st<f1,f2><£>du<£>:c2 f@de [ folo)da.

Rd+1 Rd+1

9.5. Multiple solutions on the same scale. Proof of Proposition 9.11. Recall

that v = m

Lemma 9.14. There exists a constant C' > 0, such that for every M, for everyt e R,
it holds that
p(®, (L) > 1) < CAM *(In M) ™%,

For K > 0, apply the lemma for M = 25 and sum over all ¢ € [0, M], then
p (3t <25, @4,(q:£) > 1) < 160727 K.

The straightforward side of Borel Cantelli lemma gives that for almost every L, for K
sufficiently large, for any t < 25 ®,,(g;:£) < 1. For the same L, it then holds that for
M sufficiently large, for any t < M, ®,(¢g;L) < 1.

To finish the proof of Proposition 9.11 we give

Proof of Lemma 9.1/. Since g; preserves Haar measure on M it suffices to prove the
lemma for t = 0. But the condition k; > 0 implies that

P2(L) - D, (L) = 2 Pv(e1)gu(e) = Z Pv(e1)gu(e2).
e #eg€L prime e1#teg€eL prime

It then follows from Rogers identity of Lemma 9.13(b) that

1 (®,(L) >1) <E (L) — D,(L)) < ¢y ( gby(u)du)Q <CAM 2 (InM)™%. O

Ra+1
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9.6. Proof of Theorem 9.12.

We want to apply Corollary 3.8. For the system (f, X, u) we take (g1, M, ), where
p is the Haar measure on M. For the targets, we take 2, = {£ : ®,(L£) > 1} and
QZ = g-+{2,. Note that by the invariance of the Haar measure by g, we have that
1(€2,) = u(§2,) for any t.

For s € N, we define the sequence py; := . The conclusions of Theorem 9.12

M(lnC M)*
will then follow from the conclusion of Corollary 3.8 applied to N é‘l/{l , where N7 is the
number of times ¢ < n such that Q) occurs.

Indeed, recalling the definition of

[oe}
S, =Y (2v))", vi=0lpw), olp) = ()
j=1
we see that S, = oo if and only if rs < 1.

Hence, to apply Corollary 3.8 and finish the proof, we only need to check the con-
ditions of Definition 3.1 and Definition 3.2 for the system (g;, M, u,B) and for the
family of targets given by €2, and the sequence pj;. The multiple exponential mixing
condition (EM), follows from Theorem 1.1 of [20], Remark A.1 and Theorem A.2. The
approximation condition (Appr) can be checked as follows:

CrLAIM. There exists o > 0 such that, for every p > 0 sufficiently small, there exists
A, AT e Lip(M) such that

(i) A7 e < 2 and | A ||Lyp < p7%
( ) A < 1Q \ A+;

(ii) (A b))~ (A;) < p?
Clearly the claim implies (Appr) since u(£2,) = O(p).

Proof of the claim. Recall that ®, = S(¢,), where ¢, is the indicator of the set
E, = {(z,y) e R x R | & > 0, |z] € [1,2],]z[*y| € [0, p]}. We will construct Af that
satisfies (i), (i) and
(117) n(AF) — p(lg,) < p*.
The construction of A7 is similar.
Pick f* € Lip(R4*1 [0, 2]) such that for some o > 0
o [/ ip <7,
o For ze E,, f*(2) =1,
o For z¢ E, 0, f*(2) = 0.
As the consequence S(f*) € Lip(M) and &, < S(f"), and using Rogers identity of
Lemma 9.13(a) (applied to the Siegel transform of the characteristic function of the set
E,. 0 — E,) we get for p sufficiently small an open set £, © M such that u(€,) < p?
(P1) For L ¢ &,,if S(f*) > 0, then &, > 1.
(P2) If M, :={L:S(f") <2}, then [S(f")|Lipm,) < p 7"
Let now u : R — [0, 1] be an increasing C* function such that u(z) = 0 for z < 0
and u(x) =1 for x > 1.
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Finally, introduce A} : M — R such that for £ e M
AZ(L) = u (S(f7)(L)) -

We now check that A7 satisfies the requirements of the claim.

Since u € C*(M,[0,1]) we get that A¥ € Lip(M) and |A} |, < 2. To prove the
Lipschitz bound, observe that for £ ¢ M, we have that AF(L) = 1, while for £ € M,
we have (P2). Hence ||AY |y, < p~>7. This proves (i) of the claim. To see (i7), just
observe that

P (L)=1 = S(fM)L)=1 = AJ(L) =1
We turn to (ii4). If £ ¢ &,, then by (P1)
AT(L)>0 = S(fM)L)>0 = Q,(L) =1 = AJ(L) =1
Since u(&,) < p® and A} | < 2, we get u(AY) — pu(lg,) < p?, and (i44) is proved. [
Next we show how Rogers identity of Lemma 9.13(b) implies (Mov). Define
E} = {(z,y) e R xR |z > 0,27 7|z| € [1,2], |z|"]y| € [0, 1]}
and let @7, be the indicator function of £]. Then

H(Qy 0 g ,) <E@,9,04,) f S Gule)dea)du(L),

ea#tel€L prime

where the contribution of e = —e; vanishes because the contribution of any pair (ey, e)
where not both e;; and ey are positive is zero. Applying Lemma 9.13(b) we get

1y N g-1Qp) < Cu(Q,)?

which is stronger than the required (Mov).

Finally, (Poly) holds for the sequence py; = due to Lemma 9.13(a). O

lnM

9.7. The argument in the inhomogeneous case. The proof of Theorem 9.5 is very
similar to that of Theorem 9.2, and below we only outline the main differences.

Let M be the space of d + 1 dimensional unimodular affine lattices. We identify M
with SLqy1(R) x R /SLy 1 (Z) x Z4!, where the multiplication in SLg;(R) x R4*!
is defined as (A, a)(B,b) = (AB,a + Ab). We denote by fi the Haar measure on M.

For o € R? and z € R, we define

(9.6) Ao = (An, (0,...,0,2)).
For a > 0, let gga be the indicator of the set'®

E, = {(z,y) e R xR | |z] € [1,2], |z|%|ly| € [0,a]}.

13Note that we do not ask in this affine setting that 1 > 0 in the definition of E, since the symmetric
contributions of —k for every k € Z¢ that contributes to the Diophantine approximation counting
problem in the homogenous case of Theorem 9.2 do not appear in the inhomogeneous Diophantine
approximation problem of Theorem 9.5.
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Fix s > 0,¢ > 0. For M € N*, define

C

= D, :=S5(¢)),
YT M M) (¢)
where the Siegel transforms in this affine setting are defined as follows for f, fi, fo
piecewise smooth functions with compact support on R4 :

(9.7) Zf fl,f2 2 fier) fa(ea).

el #626[:

Note that, unlike our definition of the Siegel transform in the case of regular lattices,
we do not require in the affine setting that the vectors e in the summation be prime.
On one hand, the notion of prime vectors is not defined for affine lattices since the
origin is not fixed. On the other hand, unlike the homogeneous setting, the multiples
of one solution of the inhomogeneous inequality, does not satisfy a similar inequality,
(see Remark 9.6). For ¢ > 0, we then define

Ay(M) := {(a,2) e RE xR : D, (gA,.) = 1}.

It is readily checked that (o, z) € A;(M) if and only if there exists k = (ki,..., kq)
such that 2¢ < |k| < 2! and that

C

3 d < —.
m, |k|z + {k,a) + m| M (In M)

If a is such that ®,(gA,.) < 1 for every t € N, then we get that (a,2) is (r,s)-
approximable if and only if there exists inﬁnitely many M for which there exists 0 <

thh <ty < .. < M satistying («, 2) ﬂ At

But in general, for a and ¢ < M such that (v, 2) € A;(M), there may be multiple
solutions % such that 2! < |k| < 2¢*! for the same t. As in the case of Theorem 9.2 we
have to deal with this issue.

The following proposition shows that almost surely on («, z), multiple solutions do
not occur. Its proof is based on Rogers identity for the second moment of the Siegel
transforms in the affine lattices setting that we will recall in Section 9.9.

Proposition 9.15. For almost every (a, z) € Rfl x R, we have that for every M suffi-
ciently large, for everyt € [0, M], it holds that ®,(g:As.) < 1.

Hence, Theorem 9.5 is equivalent to the following.

Theorem 9.16. [frs < 1, then for almost every (o, z) € T¢ x T, there exists infinitely
many M for which there exists 0 < t; <ty < ... <t, < M satisfying

€ h fltj(M
j=1
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If rs > 1, then for almost every (o, z) € T¢ x T, there exists at most finitely many
M for which there exists 0 <t <ty <...<t, < M satisfying

ae () Ay, (M).
j=1

9.8. Modifying the initial distribution: inhomogeneous case. Since the horo-
cycle directions of A, ., (a,2) € T¢ x T account for all the strong unstable direction

of the diagonal flow ¢; acting on M , we can transform the requirement of Proposition
9.15 and Theorem 9.16 into a problem of multiple recurrence of the diagonal action g,
when applied to a random lattice in M.

We define
Bu(M) :={LeM:,(g.L) >1}.
Our goal becomes to prove the following.

Proposition 9.17. For ji-almost everyNE~ € ./\?i, we have that for every M sufficiently
large, for every t € [0, M], it holds that ®,(g:L) < 1.

Theorem 9.18. Ifrs < 1, then for ji-almost every L € ./W, there exists infinitely many
M for which there exists 0 < t; <ty < ... <t,. < M satisfying

Le()B,(M).
j=1

Ifrs > 1, then for fi-almost every L € ./\7, there exists at most finitely many M for
which there exists 0 <ty <ty < ... <t, < M satisfying

Le()B,(M).
j=1

9.9. Proofs of Proposition 9.17 and Theorem 9.18. Again, the proofs of Propo-
sition 9.17 and Theorem 9.18 are very similar to the proofs of their counterpart in the
homogeneous case, Proposition 9.11 and Theorem 9.12.

Similarly to the homogeneous case, we want to apply Corollary 3.8. For the system
(f, X, 1) we take (gl,ﬂ, i), where [i is the Haar measure on M. For the targets, we
take Q, = {£ : ®,(£) = 1}. Observe that from the invariance of the Haar measure by
g¢ we have that i(Q2) = fi(€Q,) for any ¢.

The only difference in the proof of Proposition 9.17 and Theorem 9.18 compared to
that of Proposition 9.11 and Theorem 9.12, is in the application of Rogers identities
to prove Proposition 9.17 as well as in the proof of (Mov) that is part of the proof of
Theorem 9.18.

Before explaining the differences and concluding the proofs we recall Rogers identities
for affine lattices. Recall the definition of Siegel transforms in the affine setting given
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in (9.7). The following can be found in [8, Lemma 4] (see also [59, Appendix 2]):

(9.8) E(5(f)) = f(u)du

Rd+1
(9.9) E(S(f1, f2)) = " fi(z)dx " folx)dz.
(9.9) implies that

(0.8 > 1) < B (8248) - 8,(0) =BG = ([ dwan) <1508

Proposition 9.17 then follows by a Borel Cantelli argument exactly as in the regular
lattices case.
For the proof of (Mov) in the affine case we write for 7 > 1

Ej = {(z,y) e R x R | 277|a| € [1,2], |2|’|y| € [0, ]}
and denote by ¢7 the indicator function of E7. We then have
(9 0 g-2) <E (&, (3,09.)) = E(5(6,, 7).
Next, (9.9) implies

EGG.) = [ dpwdu é,c(u)du:( ¢3p<u>du) < CR(O,)2

]R‘i+ 1 Rd+ 1 Rd+ 1

which is stronger than the required (Mov). O

9.10. Multiple recurrence for toral translations.

Proof of Theorem 4.7. PROOF OF PART (a). We begin with several reductions. Let
z =z —y. Then d(z,y + ka) = d(z, ka)). Accordingly denoting dgf)(z, a) to be the r-th
smallest among {d(z, ka)}}Z5 we need to show that for almost every (z,a) € (T?)? we
have

|lnd§11)(z,a)|—élnn 1

9.10 li =
( ) mm :EEO Inlnn d’

, Indy(z,0) —ilmn 1
9.11 1 d— — — forr>2.
(0.11) 1m :EE)O Inlnn A

Next we claim that it suffices to prove (9.11) only for r = 2. Indeed, since d¥ is non
decreasing in r, (9.11) with r = 2 implies that for r > 2,
|lnd,(f)(z,a)|—élnn 1

li < —.
m :EE)O Inlnn 2d

To get the upper bound, suppose that 02512)(2, a) < e. Then there are 0 < k; < ky <n
such that k;a € B(z,¢). Let k = ky — k;. Then

(k1 + sk)a € B(z, (1 + 2s)e)
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for s =0,---,r — 2. Thus cfE:)_l)n(z,a) < (2r — 1)d? (2, «). Taking limit superior, we
obtain that if (9.11) holds for r = 2 then it holds for arbitrary r. In summary, we only
need to show (9.10) and

. ]lnczg)(z,aﬂ—llnn 1
12 1 T
(5.12) o :El; Inlnn 2d
The proofs of (9.10) and (9.12) are similar to but easier than the proof of Theorem

9.5 so we only explain the changes. First, it suffices to take limit superior, for n of the
form 2™ since for 2M -1 < n < 2M we have

cig\)d (z,0) <dV(z,a) < (fg\)l_l(z, a).

Define for v > 0,
(9.13) E,={e=(,¢)eRIxR: ||| <v,e" e (0,1]},

and denote by ¢, the indicator function of E,. Let &, = S (gzMS,,) A direct inspection
shows that

A

dyi(z,0) < var = S(8)(Guhaz) = 1,
where S is defined by (9.7), ga = g—nma for g given by (9.2), and f\mz is defined by

Mgz = (Mg, (2,0)) for
A Idd (0]
- ().

Recall that M denotes the  space of d + 1 dimensional unimodular affine lattices
and [i the Haar measure on M. As in the proof of Theorem 9.5 one can show that
®,(garAq:) = r infinitely often for almost every (z,a) if and only if ®,(gyL) = 7
infinitely often for almost every £ € M. Thus, to prove (9.10) and (9.12), we need to
show that for almost every L € M and for vy = M~ , s > 0 that

- 1
(9.14) ®,,,(§pL) = 1 infinitely often if s < <5
- ~ 1
(9.15) ®,,, (g L) = 1 finitely often if s > 7
. ~ 1
(9.16) ®,,, (g L) = 2 infinitely often if s < oYL
. 1
(9.17) ®,,, (G L) = 2 finitely often if s > 50

To prove (9.14)—(9.17), we need the following fact.
Lemma 9.19. (a) ji (&)V - 1) — el + O()),
(b) ey 2d <(i)y > 2) < c//VZd
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Before we prove the lemma, we see how it allows to obtain (9.14)—(9.17) and finish
the proof of Theorem 4.7(a).
Indeed, taking v = M % Lemma 9.19 shows that

Sa(ba)=1) =0 = s< g V(b 22) =0 = s<g,

From there, (9.14)—(9.17) follow from the the classical Borel Cantelli Lemma, that
is, from the case r = 1 in our Theorem 2.5.!* For this, observe that the verification of
the conditions of Definition 3.1 and Definition 3.2 for the targets

Q—{E (IJ() 1} and Q—{E CID() 2}
is very similar to the proof of Theorem 9.5 so we omit it.
Proof of Lemma 9.19. We get by Rogers identities (9.8) and (9.9) that
E(®,) = cqv?, E(P%2-,) = (cdud)Q.
It follows that

i(®, = 2) < E(éi —~d,)/2 < Cv™
rt

proving the upper bound of par
In addition

so that
(9.18) fi(®, =1) =E(d,) —E(D,15 _,) = ca’ + O (v*).

This proves part (a).
To prove the lower bound in part (b) we need the following estimate. Denote Ly ime
the set of prime vectors in £ for L€ M = SLy1(R)/SLg1(Z). Let

_ 1
E, = {(e’,e”) eRIxR: || e [i,z], le"| < —},

1075 10
_ 1
EQZ{(G eNeRxR: || < %|6”|<E}’

A= {E e M : Card (ﬁpm-me N El) = Card (ﬁpm-me A EQ) — 1}.
CrAM. We have
(9.19) (A = .

Assume the claim holds. For £ € A, the fundamental domain of R¥"!/L can be
chosen to contain

_ 1
E _ rn Rd R: /<L " < — 4.
’ {(e’e)e < R:lel < 755017 100}

14We note that in case 7 = 1 Theorem 2.5 is a minor variation of standard dynamical Borel Cantelli
Lemmas such as e.g., the Borel Cantelli Lemma of [115].
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Note that if £ € A then £ n E; contains a non-zero vector w and hence if 7 € F5 then
(2+ L) n E, contains at least two vectors: Z and Z + w. We thus have

i ((E + 2) : Card ((/3 +2)n E,,) > 2) > (A) p (Card ((ﬁ +2)n E,,) > 2|A>

> pu(A)u(z € Bs) = v
This gives the lower bound in part (b) of Lemma 9.19. To complete the proof, we now

give the

Proof of the claim. We consider the cases d > 1 and d = 1 separately.
In case d > 1, denote ¥; = S(1p,) for j = 1,2. By Rogers identities,

1 1 ?
E (V) = 1—Ocdyd, E (07— 1,) = (Tocd”d) :
Thus arguing as in the proof of (9.18) we conclude that
1
(9.20) vy =1) = Ecdyd +0 (V).

Rogers identities also give
E(W1(Uy — 0y)) = O ().
Hence
(9.21) 1 (Card(ﬁpmme N Ey) = 1 and Card (Epm-me N (EQ\El)) > 1) =0 (1/2‘1) .

Combining (9.20) and (9.21) we obtain (9.19) for d > 1.

In case d = 1 we still have E(¥;) = cv + O(v?). On the other hand, for d = 1 we
have Card (Lyime N E») < 1 since £ is unimodular. Thus

E(V) =pu(¥; =1) =p(¥; =1and ¥y — ¥ =0) = cv. O

This completes the proof of Lemma 9.19 and thus of Theorem 4.7(a). O

PROOF OF PART (b). It is clear that for any 7, if £ is not empty then it is equal to
M. The proof that £& = M implies that & = M for all r is exactly similar to the
implication of (9.11) from (9.12), so we just focus on showing that £ = M. Adapting
the beginning of the proof of part (a) to the current homogeneous setting, we see that
the proof boils down to showing that for almost every £ € M, and for vy, = M™%,
s > 0, it holds that

(9.22) S(1g,, )(9.£) = 1 infinitely often if s <

Y

SN

1
(9.23) S(1g,, )(GnL) = 1 finitely often if s > 7

where E, is as in (9.13), and S designates the Siegel transform as in (9.3). By Rogers
identity of Lemma 9.13(a) we have that E (5(1EVM)) = cM—*?. Hence (9.22) and (9.23)
follow by classical Borel Cantelli Lemma (see for example the Borel Cantelli Lemma of
[115]) or by the case r = 1 of our Theorem 2.5.

This completes the proof of Theorem 4.7. 0
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9.11. Notes. A classical Khintchine-Groshev Theorem is given by (1.4)—(1.5). A lot
of interest is devoted to extending this result to « lying in a submanifold of R? (see e.g.
(14, 19]). In particular, [114] discusses Khintchine-Groshev type results on manifolds
using dynamical tools. Surveys on applications of dynamics to other problems in metric
Diophantine approximations include [17, 21, 51, 58, 60, 74, 111, 117, 128]. These
applications are based on Dani correspondence [43].

The use of Siegel transform as a convenient analytic tool for applying Dani correspon-
dence can be found in [127]. Limit Theorems for Siegel transforms and applications to
number theory are discussed in [9, 12, 23, 52, 53].

The Diophantine results presented in our paper require the rotation angle to be
random. Much less is known in the case for fixed rotation angle, but some results are
available for the circle. Namely, consider the rotation 7, by the irrational angle «.
Suppose 1 to be the Diophantine type of the rotation, that is,

n = sup{ : liminf j7|ja| = 0}.
j—o0

For p > 0, let 7,(x, y) the first time of the trajectory {T%(y)}r=o visiting p-neighborhood
of x. [38] proved that for almost every z € T,

1 1
(9.24) liming BT g D)
=0 [lnp| p—0 |Inpl
[110] proved that for almost every = and y,
1 1
(9.25) i inf 27 g g RO Y)
p—0 |Inp| p—0  |Inpl

More general Diophantine approximation results valid for a fixed o and almost all x
could be found in [61, 107, 109, 121, 148] and references therein.

10. EXTREME VALUES.

10.1. From hitting times to extreme values. Here we describe applications of our
results to extreme value theory.

Let (f, M, u) be as in Definition 3.1. Recall that the sets G, and H are introduced
in Definition 4.3 and Definition 4.5 respectively. Recall also that under the conditions
of Theorem 4.4 and Theorem 4.6 1(G,) = 1 and H contains a residual set.

Given a C? function ¢ and a point y € M, let ¢\ (y) be the r-th minimum among
the values {@(f7y)}7_,.

Theorem 10.1. (a) Suppose f is (2r+1)-fold exponentially mixing preserving a smooth
measure (1. Then

(i) There is a set G of full measure in M such that if ¢ is a C? function with a unique
non degenerate minimum at x € G, then for almost every y € M,

_ ‘ln (9055) (y) - s@(w))( —iln 4
lim sup = —

o Inlnn rd
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(i) If Gi = M and the periodic orbits of f are dense, then there is a dense Gs set
H < M, such that if p is a C? function with a unique non degenerate minimum at
x € H, then for almost every y € M,

’1n (gog)(y) — go(x))‘ — glnn 9

li = —.
lgl_igp Inlnn d

(b) If f is an expanding map of T and u is a non-conformal Gibbs measure of dimen-
sion d, X is the Lyapunov exponent of u, then there is a set G, with u(G,) = 1, such
that if ¢ is a C* function with a unique non degenerate minimum at x € G, then for
p—almost every y € M,

y )ln (soﬁf’(y) - w(@)‘ —ailn 9
1m su = )

s v/2(Inn)(Inlnlnn) dvdA
where o given by (6.4).

(¢) Part (a) remains valid for the geodesics flow on a compact (d + 1)—dimensional
manifold Q and C? function ¢ : @ — R which has unique non-degenerate minimum at
some point on Q. (In this case gog)(y) is the r-th local minimum of the map t — ¢(q(t))
where (q(t),v(t)) is the geodesic starting at q with velocity v.)

(d) For toral translations we have that for almost all o and almost all y we have

e i (67 () = o)) | - 21mn ) {

ifr =1,
if r = 2.

Qv

n—s00 Inlnn

Proof. At a non-degenerate minimum x we have that for y close to z
(10.1) K7 (2,y) < p(y) — p(z) < Kd*(2,y)

so part (i) of (a) holds for x € G, and part (i7) of (a) holds for x € H as defined
in Theorems 4.4 and 4.6. Part (b) follows from Theorem 6.1. Part (c) follows from
Theorem 8.1, and part (d) follows from Theorem 4.7. O]

Theorem 10.2. Under the assumptions of Theorem 10.1(a) or Theorem 10.1(d) there
1s a set of points x of full measure such that if p has a non-degenerate minimum at x
then the process

o' (y) — (@) o) o) el (y) — )

with n = [Tp~% converges as p — 0 to the Poisson process on RY with measure
W(SO)T%ltg_ldt, where y(¢) > 0 depends on x and .

Proof. Note that (10.1) does not provide enough information to deduce the result from
(5.1) of Theorem 5.1. However, for any choice of |7 <71y <ry <ry <---<r; <rt,
consider the targets

(10.2) O = {y:o(y) —p(x) e [ryp%rfp°]}
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that satisfy

rt d
)ZTW(SO)J §t%‘1dt-

liny T () = (o) ((r})

r.
J

—~——

Conditions (M1), and (M2), from §2.5 can easily be checked for the targets Q™7 using
the results of Section 3. Since (Mov) for targets (10.2) follows from (Mov) for balls,
only (Appr) needs to be checked but the latter follows immediately from Lemma 3.4.
We can thus apply Theorem 2.12 and conclude the Poisson limit. O

Next, we consider functions of the form
c
(10.3) V() = 52
[d(x,y)]®
Theorem 10.3. Let f be (2r + 1)-fold exponentially mixing. Then
(a) There is a set G or full measure such that if 1 satisfies (10.3) with z € G then for
almost all y

+4(y), where ¢<0 and ¢ e Lip(M).

i In |@/)£Lr)(y)| —slnn s
im sup = —.
N0 Inlnn rd

(b) There is a G5 set H such that if ¢ satisfies (10.3) with x € H then for almost all y

b P @) — g
1im sup 1 = —.
n—0o0 nlnn d

(c) If x € G then

P (y) poul (y) | P ()

9 P

... where n=r7p ¢
c c c

converges as p — 0 to the Poisson process on R with measure me(m)t_(d/S)_ldt.

The proofs of the above results are similar to the proofs of Theorem 10.1 and 10.2
so we will leave them to the readers.
The next result is an immediate consequence of Theorems 10.2 and 10.3(c).

Corollary 10.4. (a) (FRECHET LAW FOR SMOOTH FUNCTIONS) If f is (2r 4+ 1)-fold
exponentially mizing, @ is a smooth function with non-degenerate minimum at some
x € G then there is 0 = o(x) such that for each t > 0
lim pu(y : o (y) > n %) = e
—00

n

—otd/2

(b) (WEIBULL LAW FOR UNBOUNDED FUNCTIONS) If f is (2r+1)-fold exponentially
mizing, @ is given by (10.3) with x € G then there is o = o(x) such that for each t > 0
—d/s

lim pu(y = o3 (y) > —n~*%) = e~

n
n—0o0
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10.2. Notes. A classical Fisher—Tippett—Gnedenko theorem says that for independent
identically distributed random variables the only possible limit distributions of nor-
malized extremes are the Gumbel distribution, the Fréchet distribution, or the Weibull
distribution. Corollaries 7.3 and 10.4(a) and (b) provide typical examples where one can
encounter each of these three types. We refer to [122] for the proof of Fisher-Tippett—
Gnedenko theorem as well as for extensions of this theorem to weakly dependent random
variables. The weak dependence conditions used in the book have a similar sprit to
our conditions (M1), and (M2),. More discussions about relations of extreme value
theory to Poisson limit theorems in the context of dynamical systems can be found in
[64, 67]. The book [126] discusses extreme value theory for dynamical systems and lists
various applications. One application of extreme value theory, is that for non-integrable
functions, such as described in Theorem 10.3 above, the growth of ergodic sums are
dominated by extreme values, see [1, 28, 45, 102, 103, 131] and references wherein.

APPENDIX A. MULTIPLE EXPONENTIAL MIXING.

A.1. Basic properties. Let f be a smooth map of a compact manifold M preserving
a smooth probability measure p. In the dynamical system literature, for r > 1, f is
called (r + 1)-fold exponentially mixing if there are constants s, C' and § < 1 such that
for any C* functions Ag, Ay, ..., A, for any r tuple ky < ky < --- < k,

lejo(Ajofkj)dﬂ_jlj)JAjdﬂ

where m = min(k; — k;_1) with ky = 0.
J

(A1)

Cs,

<com[]14;)
=0

In this paper we need to consider a larger class of functions, namely we need that
there are constants s, C' and 6 < 1 such that for any B € C*(M"!) we have

(A.2) UB(:BO, oz, frrag)du(zo) — pf"“(B)‘ < C,0m|B|

where p" ! is defined by (3.1).
In this section we show equivalence of (A.1) and (A.2). We use the following fact.

Remark A.1. If (A.1) holds for some s then it holds for all s (with different §). The
same applies for (A.2).

Cs

Indeed suppose that (A.2) holds for some C*® functions. Pick some o < s. We claim
that it also holds for C'* functions. Indeed pick a small € and approximate a C* function
B with |Bl|ce = 1 by a C* function B, so that (assuming that m is large)

|B—Blco <e=™, |B

gsm

Cs < 6
Then

JB(xO, forag, - frag)du(ag) = JB(xo,fklxo, oo frag)dp(ag) + O (e=*™)

_ ur+1(B) + O (efaam) + O (emessm) _ /LTJrl(B) + O (efsam) + O (emessm) ]
and the second error term is exponentially small if € is small enough. The argument
for (A.1) is identical.
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We now ready to show that (A.1) implies (A.2).

Theorem A.2. Suppose that (A.1) holds and s is sufficiently large. Then (A.2) holds.

Proof of Theorem A.2. Since B € C*(M"™!) it also belongs to Sobolev space H*(M"+1).
Hence we can decompose
B =) by
A

where ¢, are eigenfunctions of Laplacian on M"*! with eigenvalues \* and [¢y[z2 = 1.
The eigenfunctions ¢, are of the form

(/b)\(‘fo,ﬂfl, s 7‘7:7“) = ij(xj)
=0

where Apq); = (715 and A* = 3 (7. Recall that by Sobolev Embedding Theorem for
compact manifolds, H*(M) < C*~2=17¢(M) for any ¢ > 0. Since [[¢);]

ms = (; we have
d
[Vjller < CuGf < C A" if u>1+ 3

It follows from (A.1) that if ¢ % 1 then

‘J\ﬁ«x,fhx,n.,fmaﬂdu6r>—-fi~f¢qdu < CArHIgr,
j=0

Therefore
'J‘B<x,fk%a...,f“a»du<x>——J’B(xm---,xrﬁnwxo>~-dy<xa
< CO™ D byX Y < CO™(|B|| rutrsn agrsy.-
Y
This proves the result if s > (1 + %) (r + 1). O

A.2. Mixing for Gibbs measures.

Proof of Proposition 6.2. The proof consists of three steps.
Step 1. By the same argument as in [156, Proposition 3.8], we have that for ¢ €

Lip(T), s € L' (1),
(A3) J%wwwwm—f%mqﬁm4<0w1mdmpmm>o

Step 2. We proceed to show inductively that for each r > 0 and v; € Lip(T) for
1=1,...,r

(A4) L[ijOﬁﬁdu—£U@mu

where m = min (k;41 — k;), ko = 0.
léigrfl( 1+ z)7 0

< Cém H le| ’Lip?
=1
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By invariance of p we may assume that k; = 0. Applying (A.3) with U = 1,
@Z)Q = ij o fFi7k2 we get

) G )

<H (S fki)
i=2 I

| (Hwi o f’“) dp
i=2
we obtain (A.4).

Step 3. Applying the same argument as in proof of Theorem A.2 we get (EM),. O

< Cémel HLip

i=1

Applying inductive estimate to

A.3. Examples of exponentially mixing systems. There are many results about
double (=2-fold) exponential mixing. Many examples of those systems are partially
hyperbolic. §3.3 describes the the main examples of smooth exponentially mixing sys-
tems. In particular, they expand an invariant foliation W?° by unstable manifolds. The
next result allows to promote double mixing to r fold mixing.

Theorem A.3. (|48, Theorem 2]) Suppose that for each subset D in a single unstable
leaf of bounded geometry'® and any Hélder probability density p on D we have

| Ao - | g

for A e C?. Then f is r-fold exponentially mixing for all r > 2.

Cs

< C0"| Al

plca

We also note the following fact.
Theorem A.4. A product of exponentially mizing maps is exponentially mixing.

The proof of this theorem is very similar to the proof of Theorem A.2 so we leave it
to the reader. We also note that instead of direct products one can also consider certain
skew products such that both base and fibers are exponentially mixing and the skewing
function satisfies suitable growth conditions. We refer the reader to [49, Section 4] for
precise statements and to [54, Section 10] for examples of the skew products satisfying
the conditions of [49].

Another source of exponential mixing is a spectral gap for transfer operators (cf. §A.2
as well as [134, 156]). This allows to handle non-uniformly hyperbolic systems admitting
Young tower with exponential tails [160] as well as piecewise expanding maps [156].

We note that the maps described in the last paragraph do not fit in the framework of
the present paper due to either lack of smoothness or lack of smooth invariant measure.

I5We refer the reader to [48] for precise requirements on D since those requirements are not essential
for the present discussion.
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It is interesting to extend the result of the paper to cover those systems as well as some
slower mixing system and this is a promising direction for a future work.
APPENDIX B. GIBBS MEASURES FOR EXPANDING MAPS ON THE CIRCLE

B.1. Some notation. Recall that we assume P(g) = 0, so we have

(B.1) Inp(B 2

Denote

rn =sup{r | B(x,r) € B,(x,e)}, 7, =inf{r| B(z,r) D B,(z,¢)}.

r>0 r>0

By bounded distortion property, there exist constants Cy > 0 and o > 0 such that if
d(f™y, f"x) < e then

_ Dl

(Coexp=)™" < 5 i) <

< Chexpe®.

Recalling (6.2)

oo (5808 |20 <y < () =t

Hence

n—1
eCy texp [( Z fulfla ) —50‘] T < Tp < eCyexp [(—Z fu(fjx)> —i—aa] .
=0

It follows that

(B.2) 1m%=§—h“@+0@%1m%=§—h“@+og)

=0 =0
Next define
N(r) = max (n : B(z,7) < By(z,¢)), N(r)=min(n: B(z,7) > B,(z,¢)).
Then, similarly to (B.2) we obtain

N(r)—1 N(r)—1
(B.3) Inr = Z]—hu%g+ou): Z]—hﬁ%ﬂ+0@)
B.2. Proof of (6.7) and (6.8). Note that
<B4) M(BN(T)(:E75>) < /L(B(I’,T)) < M(BN(T) (l’, 5))

Since f is uniformly expanding, there is a positive constant C' such that for each =

1/C < fu(z) < C. Accordingly
N{(r)
C

(B.5) <imrf<oNE), Y <l < oN ().
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On the other hand, since P(g) = 0, [134, Chapter 3] shows that there is a function a
Holder function g(z) such that g = g+ h — ho f for a Hélder function A and moreover

A}: W) — 1.

fly)=z

In particular, §(y) is negative and, since it is continuous, there are constants Ci>é>0
such that for any x € T we have g(x) € (—Cy, —¢). Using the estimate

we conclude that for some constant Cy > 0 we have for every z € T,

(B.6) ~CIN—-C,y < < —éN +Cy

:MZ

Combining (B.1), (B.4), (B.5) and (B. 6) we obtain (6.7).
Next (B.3) shows that N(4r)—N(r) = O(1). Now (6.8) follows from (B.1) and (B.4).

B.3. Proof of Lemma 6.3(b). Observe that (B.1) (B.2) give

Inpu(By(z,e))—dInr, = Z_] Y(f72)+01), Inp(Bp(v,e))—dln7, = Z_: Y(fr)+0(1)

J=0 J=0

where 9 is defined by (6.3).
By Law of Iterated Logarithm [94],

S v (fix) S U(fin)

lim sup —=——— = 7, liminf 22202 °2 — 5

n—>oo V2nlnlnn n—w  4/2nlnlnn

Since B(x,r,) < By(z,¢) € B(x,,)
1 Bz, —d|In7r 1 B —d|l

g A BE@E) [ dlra] _ g (Ba,r,) |~ dilar|

n—00 V2nlnlnn n—00 V2nlnlnn

Using (B.2) again, we conclude that for every sufficiently small ¢, there exists n(d) and
k independent of ¢ and n(d) such that 7, < 6 < r,. Then

1 o)) = dlnr, _
s <t DB )] i), I (B2 0)1 =l
50 v/2n(8) In1nn(d) §—0 1/2n(8) In1nn(J)

< ey B T~ dllnrge]
5—0 £/2n(8) In1nn(d)

It follows that all inequalities above are in fact equalities. In particular,

lim sup B (E0))| — d|Ind|
§—0 v/2n(8) In1nn(d)
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On the other hand by (B.2) and the ergodic theorem we see that for py-a.e. x € T,

1 1 Inln |1
it holds that lim M = \. For such = we have lim [Inro|(nin |Inrn]) _ A. Since
n—o n—0o ninlnn
r,/C <0 <1, we have
9) Inlnn(d) 1
5—»0 |ln(5| (Inln|Ind|) NG
Multiplying the last two displays we obtain for u-a.e. x € T
: |Inp(B(x,0))| —d|Ind| o
lim sup = —,
50 4/2/Ind|(JInln[Ind]) VA
and likewise | 5 A0 s
lim in f| nﬂ( (IL‘, ))| B | n | _ _i
60 4/2[Ind|(|Inln|Iné]) VA
This proves part (b) of Lemma 6.3. O

B.4. Proof of Lemma 6.3(a). Suppose that o = 0. Since we also have that {¢du = 0
[134, Proposition 4.12] shows that 1 is a coboundary, that is, there exists a Holder

function n such that ¢ (z) = n(x) —n(fz). Thus 2 U(fFx) = n(z)—n(f"2) is uniformly

bounded with respect to both n and =z. Recalhng the definition of ¥ we see that in this
case

n—1 n—1
Yg(ffr) =—|d ) fu<f%>] +0(1).
k=0 k=0
Now (B.1) and (B.2) show that p is conformal. O

APPENDIX C. GEODESIC FLOWS: GEOMETRY OF TARGETS IN THE
CONFIGURATION SPACE. PROOF OF LEMMA 8.2 AND LEMMA 8&.7.

C.1. Geometry of spheres. Proof of Lemma 8.7.
Denote v(t) = ¢'(q,v). The Jacobi field of v are defined by the solution of the linear

equation
J'(t) + R(J(1),7'(£)7'(t) = 0,
where J' = £.J and R(X,Y)Z denotes the curvature tensor, which is equivalent to

(J"(t +ZA1 Ot =1,i=1,...,n,

where the matrix A(t) = (A} (t))i,jzl » 1s symmetric. Since Q has negative curvature,

77777

the spectrum of A(t) lies between —K? and — K3 for some K; and K.
Recall the following fact (see [Lemma 1.1][120]).

Proposition C.1. The differential
D¢t(v) : TTI"UQ X Tm)Q - Tﬂqﬁt(v)Q X T7r¢>t(v)Q
is given by D¢t (v)(x,y) = (J(t), J'(t)), where J(0) = z, J'(0) = y.
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We are interested in the case
(C.1) J(0) =0, [J(0)] =1.
Now Lemma 8.7 follows combining Proposition C.1 with Lemma C.2 below.

Lemma C.2. If (C.1) holds then for each ty there is a constant C > 0 such that

(C.2) |71 < ClI@)]  fort > to.

Proof. Denote S(t) = (J(t), J'(t)), N(t) = |J'(t)|* and |||J|||* = |J|* + |J'||*. Then
(C.3) %S(t) =[O + <T@, J"(t)) = | O + I (X), =K () I (1)) = Cull|J]]]*
for some C} > 0. It follows that S(¢) > 0 for ¢ > 0. Once we know that S(t) is positive
we can also conclude from (C.3) that %S (t) > Clg(t), whence

(C4) S(t) > S(u)e“r =2 for t > u.

Next N(t) = N(0)e K3t = ¢=%3t which together with (C.3) gives

(C.5) S(t) = e % for te0,1].

Combining this with (C.4) we get

(C.6) S(t) > e FEeO D2 for ¢ > 1.

Combining (C.5) and (C.6) with a trivial bound

(C.7) N(t) < [[IT@)]]] < N(0)e"" = !

proves (C.2) for small t. To prove this estimate for large ¢ we shall use the fact, proven
in [6, Lecture 6] that J can be decomposed as J = ¢, J, + ¢_J_, where

max(|ey |, [e-[) < Cs,  [||J-]|]| < Cae™™
and
() Ty = R()J, (1)
where R is a symmetric matrix with spectrum between K; and Ks. It follows that
(C.9) IO < exlllTe @l + CsCae™ < Af1+ K3 Jlew Ty (8)] + C3Cae™™
On the other hand (C.6) gives a uniform lower bound
(C.10) |[J]]] = 2 53/2C1 =D/,

Combining (C.9) and (C.10) we obtain

2
1+ K32
which proves (C.2) for large t. O

IO = e " (O = c- [T @) = e MR 90y Cye !
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C.2. Volume of the targets in the configuration space.
Proof of Lemma 8.2. 1f (q,v) € Bp(a), denote
L(g,v) = L™ (q,v) + L™ (¢q,v) where L*(q,v) = sup{t : ¢=*(q,v) € Bp(a) for0 < s < t}.

Then we have the following estimate

H(Q,) = < Lp(a) Faydn ) (1+000)

(see e.g. [36]). Note that u is of the form du(q,v) = % where A is the Riemann
volume on Q and o is normalized volume on the d dimensional sphere. If p is small

then the integral in parenthesis equals to p?y(1 + O(p)) where

(C.11) v = )\(1Q) L’xsd ﬁ(;’v)dxda(v)

where B is the unit ball in R4 and £(-) is defined similarly L(-) with geodesics in
Q replaced by geodesics in R¥*!. Specifically, an elementary plane geometry gives
L(z,v) =4+/1 =12, where r,,, is the minimal distance between the line 2+ tv and the
origin. Thus r,,;, = rsinf where r is the distance from x to 0, # is the angle between
v and the segment from x to 0. This proves (8.1) with v given by (C.11). O]
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