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Abstract. The first part of this report describes the class of representations of Galois groups of num-
ber fields that have been attached to automorphic representations. The construction is based on the
program for analyzing cohomology of Shimura varieties developed by Langlands and Kottwitz. Using
p-adic methods, the class of Galois representations obtainable in this way can be expanded slightly;
the link to cohomology remains indispensable at present. It is often possible to characterize the set of
Galois representations that can be attached to automorphic forms, using the modularity lifting meth-
ods initiated by Wiles a bit over 20 years ago. The report mentions some applications of results of
this kind. The second part of the report explains some recent results on critical values of automorphic
L-functions, emphasizing their relation to the motives whose ! -adic realizations were discussed in the
first part.
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1. Introduction

Algebraic number theory has benefited immeasurably over the past four decades from the
applications of the methods and results of the Langlands program to the study of Galois
representations attached to automorphic forms. Yet Galois representations do not figure
prominently in Langlands’s original conjectures, apart from the complex Galois representa-
tions that are the object of the Artin conjecture. There seems to be no completely precise
statement in the literature of a Langlands reciprocity conjecture– a bijection between rep-
resentations of Galois groups with values in the ! -adic points of reductive groups, subject to
certain natural restrictions (including a version of irreducibility), and of automorphic repre-
sentations of related reductive groups – although number theorists believe there should be
such a conjecture and have a general idea of how it should go. The best general account of
this question is still contained in the expanded version [69] of Taylor’s 2002 ICM talk.

The first objective of the present survey is to describe the results in the direction of
reciprocity obtained since the publication of [69]. Construction of the correspondence in
one direction – from automorphic representations to Galois representations – has progressed
considerably, even in directions that could not have been expected ten years ago. All of
the Galois representations associated to automorphic representations have been constructed,
either directly or by p-adic interpolation, using the cohomology of Shimura varieties. This
source of Galois representations has been or soon will be exhausted, and new methods will
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need to be invented in order to Þnd the Galois representations attached to automorphic rep-
resentations that cannot be related in any way to cohomology of Shimura varieties, notably
the representations of Galois groups of number Þelds that are not totally real nor CM.

Little was known at the time of [69] regarding the converse direction, the problem of
proving that a given Galois representationρ is attached to automorphic forms, whendim ρ >
2. Now there is a mature theory ofautomorphy lifting theorems, in the spirit of the results
developed by Wiles for his proof of FermatÕs Last Theorem, applying in all dimensions.
The attempt to complete this theory represents one of the most active branches of algebraic
number theory, and is largely responsible for the rapid growth of interest in thep-adic local
Langlands program.

Let K be a number Þeld. The Galois group! K := Gal(Q/K ) acts on thep-adic Žtale
cohomology of an algebraic variety or motiveM deÞned overK , and this action determines
theL-functionL(s, M ). Theoretical considerations guarantee that thep-adic Galois repre-
sentations on the cohomology of most algebraic varieties cannot be realized in the cohomol-
ogy of Shimura varieties; for example, the cohomology of a generic hypersurface cannot be
obtained in this way. Present methods, therefore, cannot prove the analytic continuation of
L (s, M ) for most motives arising from geometry. When the Galois representation is attached
to an automorphic form, on the other hand, then so isL (s, M ), and this implies analytic (or at
least meromorphic) continuation of the latter. Moreover, the conjectures concerned with the
values at integer points ofL (s, M ) (of Deligne, Beilinson, or Bloch-Kato) can be studied
with the help of automorphic forms. Everything one knows in the direction of the Birch-
Swinnerton-Dyer Conjecture, for example, has been proved by means of this connection.
There has been a great deal of activity in this direction as well, especially in connection with
the growth of the ÒrelativeÓ theory of automorphic forms (the relative trace formula and con-
jectures of Gan-Gross-Prasad, Ichino-Ikeda, and Sakellaridis-Venkatesh). The second part
of this paper reviews some of the recent results on special values ofL -functions.

The conjectures on special values of complexL-functions are accompanied by conjec-
tures on the existence ofp-adic analytic functions interpolating their normalized special
values. The article concludes with a few speculative remarks about automorphicp-adicL -
functions.

2. Automorphic forms and Galois representations

2.1. Construction of automorphic Galois representations.Class Þeld theory classiÞes
abelian extensions of a number ÞeldK in terms of the the structure of the id•le class group
GL(1, K )\ GL(1,AK ). In doing so it also identiÞes1-dimensional representations of! K

with continuous characters of the id•le class group. Non-abelian class Þeld theory can be
traced back to the 1950s, when Eichler and Shimura realized that2-dimensionalℓ-adic Ga-
lois representations could be attached to classical cusp forms that are eigenvalues of the
Hecke algebra. A conjectural classiÞcation ofn-dimensionalℓ-adic Galois representations,
in terms of the Langlands program, was formulated in TaylorÕs 2002 ICM talk (cf. [69]). We
review this conjecture quickly. For any Þnite setS of places ofK , let ! K,S be the Galois
group of the maximal extension ofK unramiÞed outsideS. Taylor adopts the framework
of Fontaine and Mazur, who restrict their attention in [25] to continuous representations
ρ : ! K ! GL(n, Q! ) satisfying the following two axioms:
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1. ! factors through! K,S for some Þnite setS of places ofK (usually containing the
primes dividing");

2. For all primesv of K of residue characteristic", the restriction of! to a decomposition
groupGv ! ! K at v is de Rhamin the sense of Fontaine.

A ! satisfying these two conditions is either calledgeometricor algebraic, depend-
ing on the context. Condition (1) guarantees that, at all but Þnitely many primesv of
K , the restriction! v of ! to a decomposition groupGv is determined up to equivalence,
and up to semisimpliÞcation, by the characteristic polynomialPv (! , T) of the conjugacy
class! (F robv ) " GL(n, Q! ). One of the Fontaine-Mazur conjectures implies that there
is a number ÞeldE such that allPv (! , T) have coefficients inE ; by choosing an embed-
ding # : E $# C we may thus deÞnePv (! , T) as a polynomial of degreen in C[T] with
non-vanishing constant term. The set of such polynomials is in bijection with the set of
(equivalence classes of) irreducible smooth representations" v of GL(n, K v ) that arespher-
ical: the space of vectors in" v that are invariant under the maximal compact subgroup
GL(n, Ov ) ! GL(n, K v ), whereOv is the ring of integers inK v , is non-trivial and nec-
essarily one-dimensional. We let" v (! ) be the spherical representation corresponding to
Pv (! , T).

An irreducible representation" v (! ) of GL(n, K v ) can be attached to! for primesv " S
as well. Ifv is not of residue characteristic", the restriction of! to Gv gives rise by a simple
procedure to ann-dimensional representationW D(! , v) of the Weil-Deligne groupW Dv

at v. The local Langlands correspondence [41, 43] is a bijection betweenn-dimensional
representations ofW Dv and irreducible smooth representations ofGL(n, K v ), and we ob-
tain " v (! ) using this bijection. Ifv divides", condition (2) allows us to deÞneW D(! , v)
by means of FontaineÕsDpst functor. FontaineÕs construction also provides a set of Hodge-
Tate numbersHT (! , v) for each archimedean primev. This datum, together with the action
of a complex conjugationcv in a decomposition groupGv whenv is a real prime, deÞnes
an n-dimensional representation! v of the local Weil groupWv , and thus an irreducible
(gv , Uv )-module" v (! ), wheregv is the (complexiÞed) Lie algebra ofG(K v ) and Uv is
a maximal compact subgroup ofG(K v ). We let " (! ) denote the restricted direct product
(with respect to theGL(n, Ov )-invariant vectors at Þnite primes outsideS) of the" v (! ), as
v ranges over all places ofK .

If v is an archimedean place ofK , the Harish-Chandra homomorphism identiÞes the
centerZ (gv ) with the symmetric algebra of a Cartan subalgebratv ! gv . The maximal
ideals ofZ (gv ) are in bijection with linear mapsHom(t, C). TheinÞnitesimal characterof
an irreducible(gv , Uv )-module" v is the character deÞning the action ofZ (gv ) on " v ; its
kernel is a maximal ideal ofZ (gv ), and thus determines a linear map%! v " Hom(tv , C). In
[17], Clozel deÞnes an irreducible(gv , Uv )-module" v to bealgebraicif %! v belongs to the
lattice inHom(tv , C) spanned by the highest weights of Þnite-dimensional representations.
Denote by| ¥ |v thev-adic absolute value,| ¥ |A the adele norm. The following corresponds
to Conjectures 3.4 and 3.5 of [69].

Conjecture 2.1.

(1) Let ! : ! K # GL(n, Q! ) be an irreducible geometric Galois representation. Then
the local component

" v (! )
!

1 $ n
2

"
:= " v (! ) %| ¥ |

1! n
2

v &det
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is algebraic at each archimedean primev of K , and the representation! v (! ) of
GL(n, A K ) occurs in the space of cusp forms onGL(n, K )\ GL(n, A K ).

(2) Conversely, let! be a cuspidal automorphic representation ofGL(n, A K ). Suppose
! v ( 1! n

2 ) is algebraic for every archimedean placev of K . Then for each prime",
there exists an irreducible geometricn-dimensional representation

! ! ,Π : " K ! GL(n, Q! )

such that

!
!

1 " n
2

"
:= ! # | ¥ |

1! n
2

A $ det ""! ! (! ! ,Π).

The Galois representations! ! ,Π are calledautomorphic.1 Quite a lot is known about
this conjecture whenK is either a CM Þeld or a totally real Þeld, almost exclusively in
theregular case, when#Π is the inÞnitesimal character of an irreducible Þnite-dimensional
representation ofG(K v ) for all archimedeanv. Let S be a Þnite set of primes ofK , let !
be ann-dimensional"-adic representation of" K , and say that! and! ! correspond away
from S if ! v = ! v (! ) for v /% S. The following theorem represents the current state of
knowledge regarding part (b) of Conjecture 2.1; part (a) will be treated in the next section.
In its details it may already be obsolete by the time of publication.

Theorem 2.2. Let K be a CM Þeld or a totally real Þeld. Let! be a cuspidal automorphic
representation ofGL(n, A K ). Suppose! v is algebraic and regular for every archimedean
placev of K .

(a) LetS be the set of Þnite primes at which! is ramiÞed. If" is a rational prime, letS(")
denote the union ofS with the set of primes ofK dividing ". For each prime", there
exists a completely reducible geometricn-dimensional representation

! ! ,Π : " K ! GL(n, Q! )

such that! ( 1! n
2 ) and! ! ,Π correspond away fromS(").

(b) Suppose! is polarized, in the following sense:

(1) If K is a CM Þeld,
! # ""! ! c,

wherec denotes the action of complex conjugation acting onK
(2) If K is totally real,

! # ""! ! # $

for some Hecke character$ of GL(1, A K ).

Here # denotes contragredient. Then there is a compatible family ofn-dimensional
representations! ! ,Π satisfying (b) of 2.1. Moreover,! ! ,Π is de Rham, in the sense of
Fontaine, at all primesv dividing ".

1WhenG is a reductive algebraic group, Buzzard and Gee have conjectured a correspondence between auto-
morphic representations ofG that satisfy an algebraicity condition at archimedean places and compatible systems
of ! -adic representations with values in the LanglandsL -group of G [9]. The relation of this conjecture with
Conjecture 2.1 is a bit subtle; two di! erent algebraicity conditions are relevant to the conjecture.
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2.1.1. p-adic approximation. To forestall certain kinds of cognitive dissonance, we switch
from ! -adic top-adic representations in this section. Part (b) of Theorem 2.2 has been proved
over the course of several decades by a number of people. For generaln-dimensional repre-
sentations, the most relevant references are [17, 41, 48] for work before the proof by Laumon
and Ng™ of the Fundamental Lemma; and [16, 19, 20, 51, 56, 62, 64] for results based on the
Fundamental Lemma. I refer the reader to the discussion in [35], and take this opportunity to
insist on the centrality of LabesseÕs results in [51] and earlier papers, which are inexplicably
omitted from some accounts.2

Under the polarization hypothesis of case (b), most" p,! are realized in the cohomol-
ogy of Shimura varietiesS(G) attached to appropriate unitary groupsG. Some important
representations are nevertheless missing whenn is even. To complete the proof of (b), the
missing representations are constructed byp-adic approximation. One needs to show that!
is in some sense the limit of a sequence of! i that do satisfy the strong regularity hypothe-
sis3For n = 2 two approximation methods had been applied: Wiles used the ideas due to
Hida, while Taylor obtained the most complete results by adapting ideas of Ribet. In the
intervening years, the theory ofeigenvarieties, which originated in the work of Coleman and
Mazur, had been developed to deÞnep-adic famiies of automorphic forms in a very general
setting. ChenevierÕs thesis [14] generalized the approximation method of Wiles to attach
p-adic Galois representations of dimensionn > 2 to non-ordinary! , using eigenvarieties.
Its extension in the book [6] with Bella•che, and the subsequent article [15] were almost
sufficient to construct the missing" p,! as the limit of" p,! i as above. The Þnal steps in the
construction, and the proofs of most of the local properties of 2.1, were carried out in [16],
using a descent argument introduced by Blasius and Ramakrishnan in [8] and extended by
Sorensen in [65]. The remaining local properties Ð determination of local! -adic andp-adic
monodromy of" p,! were not known when [35] was written; they were obtained in most
cases in [4] and completed in [12, 13].

Part (a) of Theorem 2.2 is much more recent. The Þrst result of this type was obtained
for GL(2) over imaginary quadratic Þelds by Taylor in [67], following his joint work [40]
with Soudry and the author; this was extended to general CM Þelds by Mok [54]. The proof
of part (a) in [38] starts with an old idea of Clozel. LetK be a CM Þeld and letK + ! K be
the Þxed Þeld under complex conjugation. LetGn be the unitary group of a2n-dimensional
hermitian space overK , and assumeGn is quasi split. ThenGn , viewed by restriction of
scalars as an algebraic group overQ, contains a maximal parabolic subgroupPn with Levi
factor isomorphic toRK/ QGL(n)K . Let S(n, K ) be the locally symmetric space attached
to GL(n, A K ). SinceK is a CM Þeld,S(n, K ) is not an algebraic variety, and therefore its
! -adic cohomology does not carry a representation of any Galois group. If! is a cuspidal
automorphic representation ofGL(n, A K ) that is polarized, then the twisted trace formula
attaches to! a collection (anL-packet) of automorphic representations of the unitary group
G mentioned above; thus! transfers to the cohomology of theS(G), and this is where the
Galois representation is realized (in nearly all cases).

When! is not polarized, one uses the theory of Eisenstein series for the parabolic group

2Although complete base change from unitary groups remains to be established (the quasi-split case has recently
been treated in [55]), Labesse proved the basic properties in the case of cohomological representations, without
which the proof of Theorem 2.2 would have been impossible.

3Strictly speaking, the limits discussed here are taken relative to the Zariski topology on appropriate eigenva-
rieties, so the term Òp-adic limit" would not be quite appropriate. In many cases the missing representations can
indeed be obtained as actual limits in thep-adic topology, but as far as I know these cases have not been given an
intrinsic characterization.
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Pn to attach a familyE(s, ! ) of automorphic representations ofGn , with s ! C. Up to
twisting ! by a positive integral power of the norm, we may assumeE(s, ! ) is regular at0
and writeE(! ) = E(0, ! ). ThenE(! ) is also cohomological and (for nearly all positive
integral twists) deÞnes a non-trivial class in the cohomology of the Shimura varietyS(Gn )
attached to (the unitary similitude group of)Gn . The realization inp-adic Žtale cohomology
of this Eisenstein class then deÞnes ap-adic Galois representation. However, it is easy to see
that the semisimpliÞcation of this representation is a sum of abelian characters, and therefore
it cannot be used to construct the desired! p,! .

Some years later, Skinner (and independently Urban) revived ClozelÕs idea by suggest-
ing thatE(! ) might be realized as the limit in ap-adic family of a sequence ofcuspidal
cohomological automorphic representations"i of Gn . One then considers the collection of
2n-dimensional representations! p,! i . The symbol#E (! ) = lim i tr ! p,! i then makes sense
as aQp-valued function on" K,S for appropriateS, and because it is the limit of traces of
genuine representations it deÞnes a2n-dimensionalpseudorepresentation. The latter notion
is an abstraction of the invariance properties of the character of a representation, Þrst con-
structed in the2-dimensional case by Wiles, then deÞned by Taylor in general using results
(especially results of Procesi) from invariant theory. TaylorÕs theory implies that#E (! ) is
the character of a unique2n-dimensional representation, and by varying! among its abelian
twists it can be shown by elementary methods that#E (! ) breaks up as the sum of twon-
dimensional pieces, one of which is the! p,! of Theorem 2.2.

The hard part is to obtainE(! ) as the limit of cuspidal" i . What this means is that the
eigenvalues of Hecke operators at primes at which! is unramiÞed arep-adic limits of the
corresponding Hecke eigenvalues on"i . In [38] this is achieved by realizingE(! ) in a p-
adic cohomology theory that satisÞes a short list of desirable properties. The most important
properties are (i) the global cohomology is computed as the hypercohomology in the (rigid)
Zariski topology of the de Rham complex and (ii) the cohomology has a weight Þltration,
characterized by the eigenvalues of an appropriate Frobenius operator. The cohomology
theory chosen in [38] is a version of BerthelotÕs rigid cohomology (generalizing Monsky-
Washnitzer cohomology). This is calculated on the complement, in theminimal (Baily-
Borel) compactiÞcationS(Gn )∗ of S(Gn ), of the vanishing locus of lifts (modulo increasing
powers ofp) of the Hasse invariant. This complement is affinoid and therefore by (i) the
cohomology can be computed by a complex whose terms are spaces ofp-adic modular forms,
in the sense of Katz. By analyzing the Þniteness properties of this complex, and using the
density of genuine holomorphic modular forms in the space ofp-adic modular forms, [38]
writesE(! ) as the limit of cuspidal" i , as required.

About a year after the results of [38] were announced, Scholze discovered a more ßexible
construction based on a very different cohomology theory, thep-adic Žtale cohomology of
perfectoid spaces. The topological constructions in [38] can in principle also lift torsion
classes in the cohomology of the locally symmetric space attached toGL(n, A K ) to torsion
classes in the cohomology ofS(Gn ), but rigid cohomology cannot detect torsion classes.
Thep-adic Žtale cohomology of perfectoid spaces does not have this defect, and ScholzeÕs
article [61] not only gives a new and more conceptual proof of the results of [38] but applies
to torsion classes as well. Thus Scholze proved a long-standing conjecture, Þrst formulated
by Ash in [2], that has greatly inßuenced subsequent speculation onp-adic representations of
general Galois groups. The reader is referred to ScholzeÕs article in the current proceedings
for more information about his results.
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Restrictions on Galois representations on the cohomology of Shimura varieties.In part
(b) of 2.2 the proof of the deepest local properties of the (polarized)! p,! at primes dividing
p were proved by Þnding representations closely related to! p,! (the images under tensor
operations) directly in the cohomology of Shimura varieties. When! is not polarized, the
! p,! are still constructed in [38] and [61] by a limiting process , starting from a family of
! p,! i of geometric origin, but there is every reason to believe (see below) that the! p,! and its
images under tensor operations will almost never be obtained in the cohomology of Shimura
varieties, and although they are expected to be geometric no one has the slightest idea where
they might arise in the cohomology of algebraic varieties.

Room for improvement. The inÞnitesimal character" ! ! Hom(tv , C) is regular provided
it is orthogonal to no roots oftv in gv ; in other words, if it is contained in the interior of a
Weyl chamber. The regularity hypothesis in Theorem 2.2 can sometimes be relaxed to allow
non-degenerate limits of discrete series, whose inÞnitesimal characters lie on one or more
walls of a Weyl chamber. The Þrst result of this type is the Deligne-Serre theorem which
attaches (Artin) representations of" Q to holomorphic modular forms of weight1. This has
recently been generalized by Goldring [28] to representations ofGL(n) obtained by base
change from holomorphic limits of discrete series of unitary groups.

2.2. Reciprocity. Number theorists canÕt complain of a shortage of Galois representations.
The Žtale cohomology of algebraic varieties over a number ÞeldK provides an abundance of
#-adic representations of" K satisfying the two Fontaine-Mazur axioms. One of the Fontaine-
Mazur conjectures predicts that any irreducible representation of" K satistying these axioms
is equivalent to a constituent of#-adic cohomology of some (smooth projective) varietyV
overK . The reciprocity Conjecture 2.1 (a) has been tested almost exclusively for! arising
from geometry in this way. The paradigmatic case in whichK = Q andV is an elliptic curve
was discussed in the ICM talks of Wiles (in 1994) and Taylor (in 2002).4 The Fontaine-
Mazur conjecture itself has been solved in almost all2-dimensional cases whenK = Q for
! that take complex conjugation to a matrix with determinant" 1. Two di! erent proofs have
been given by Kisin and Emerton; both of them take as their starting point the solution by
Khare and Wintenberger of SerreÕs conjecture on2-dimensional modular representations of
" Q. All of these results are discussed in a number of places, for example in [24, 46, 47]. I
will therefore concentrate on results valid in any dimensionn.

Let ! : " K # GL(n, O) be a continuous representation with coe" cients in an#-adic
integer ringO with maximal idealm and residue Þeldk; let ø! : " K # GL(n, k) denote
the reduction of! modulom. We say! is residually automorphicif ø! !"# ø! ! ,! for some
cuspidal automorphic representation! of GL(n, A K ). The method for proving reciprocity
initiated by Wiles consists in proving theorems of the following kind:

Theorem 2.3(Modularity Lifting Theorem, prototypical statement).Supposeø! is residually
automorphic. Then every lift ofø! to characteristic zero that satisÞes axioms (1) and (2) of
Fontaine-Mazur, as well as

(1) a polarization condition;

(2) conditions on the size of the image ofø! (typically including the hypothesis thatø! is

4The nomenclature associated with the conjecture in this particular case, which predates the Fontaine-Mazur
conjecture, is a matter of considerable sociological and philosophical interest.
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absolutely irreducible); and

(3) ramiÞcation conditions at primes dividing! (typically including a regularity hypothe-
sis)

is automorphic. In particular, if" itself satisÞes conditions(1), (2), and (3), then " is
automorphic.

The method for proving such theorems is called the Taylor-Wiles methodor the Taylor-
Wiles-Kisin method, depending on context, and is named after its inventors in the setting
when n = 2 . The first theorems of this kind for arbitrary n were proved in [21, 70]. Together
with the results of [39] they imply the Sato-Tate theorem for elliptic curves over Q with non-
integral j -invariant (see below). Subsequent improvements have allowed for less restrictive
conditions in (2) and (3). The following theorem of Barnet-Lamb, Gee, Geraghty, and Taylor
[3] represents the current state of the art.

Theorem 2.4(Modularity Lifting Theorem). Let K be a CM Þeld with totally real subÞeld
K +, and letc ! Gal(K/K +) denote complex conjugation. Let" be as in 2.3. Suppose
! " 2(n + 1) andK does not contain a primitive! -th root of1. Suppose" satisÞes axioms
(1) and (2) of Fontaine-Mazur, as well as

(1) " c ∼#$ " ∨ % µ, whereµ is an ! -adic character of! K + such thatµ(cv ) = # 1 for
every complex conjugationcv ;

(2) The restriction ofø" to ! K (! ! ) is absolutely irreducible; and

(3) For any primev of K dividing ! the restriction" v of " to the decomposition group
! v is potentially diagonalizable and isHT -regular: " v has n distinct Hodge-Tate
weights.

Suppose" is residually automorphic. Then" is automorphic.

Remark 2.5. This is not the most general statement – there is a version of this theorem when
K is totally real, and condition (2) can be replaced by adequacy.

Remark 2.6. The first novelty is the simplification of condition (2) on the image of ø" :
Thorne showed in [72] that the Taylor-Wiles-Kisin method works when the image of ø" is
what he called adequate, and this condition is implied by the irreducibility condition (2) as
long as ! " 2(n + 1) . The second novelty in 2.4 is the notion of potential diagonalizabil-
ity. This is roughly the requirement that, after a finite base change, " v , for v dividing ! , is
crystalline and can be deformed in a moduli space of crystalline representations to a sum of
characters. It is known that " v in the Fontaine-La! aille range (the setting of [21, 70]) and
ordinary " v (the setting of [5, 27]) are potentially diagonalizable, but the condition is more
general. In particular, it is preserved under finite ramified base change, which allows for
considerable flexibility.

2.3. Potential automorphy. The need to assume residual automorphy places important re-
strictions on the application of theorems on the model of 2.3 to reciprocity. For some appli-
cations, however, it is enough to know that a given " is potentiallyresidually automorphic:
that " becomes residually automorphic after base change to an unspecified totally real or CM
Galois extension K ′/K . One can then often use a modularity lifting theorem to prove that
" | ΓK ! is automorphic, in other words that " is potentially automorphic. If " is attached to



Automorphic Galois representations and the cohomology of Shimura varieties 375

a motive M , then L (s, ! ) = L (s, M ) is given by an Euler product that converges absolutely
in some right half-plane. An application of Brauer’s theorem on induced characters then
implies that L (s, ! ) has a meromorphiccontinuation to the entire plane, and moreover (by a
theorem due to Shahidi and to Jacquet-Piatetski-Shapiro-Shalika) that L (s, ! ) has no zeroes
down to the right-hand edge of the critical strip.

Potential automorphy was introduced by Taylor in [68] in order to prove a potential
version of the Fontaine-Mazur conjecture for 2-dimensional Galois representations. The
method was generalized to higher dimensions in [39] and in subsequent work of Barnet-
Lamb. The idea is the following. A theorem of the form 2.3 can be applied to an "-adic
! that is residually automorphic. But it can also be applied if ! = ! ! is a member of a
compatible family { ! ! ! } of "!-adic representations, where "! varies over all primes, provided
at least one ! ! 1 in the family is known to be residually automorphic. It thus su! ces to find a
motive M of rank n such that

Hypothesis 2.7. !̄ ! ,M ! !̄ and !̄ ! 1 ,M is known a priori to be residually automorphic for
some"1 "= ".

Typically one assumes !̄ ! ! ,M is induced from an algebraic Hecke character. The motives
used in [39] are the invariants M t , under a natural group action, in the middle-dimensional
cohomology of the n # 1-dimensional hypersurfaces X t with equation (depending on t , with
tn+1 $ P1 \ { 0, 1, %} )

f t (X 0, . . . , X n ) = (X n+1
0 + á á á+ X n+1

n ) # (n + 1)tX 0 . . . X n = 0 (2.1)

This Dwork familyof hypersurfaces was known to physicists for their role in the calculations
that led to the formulation of the mirror symmetry conjectures [11]; and they were known
to number theorists because Dwork had studied their cohomology in connection with p-adic
periods.

The isomorphism class of X t depends on tn+1 and one sees that their cohomology de-
fines a hypergeometric local system over P1 \ { 0, 1, %} . Properties of this local system
proved by a number of people, are used, together with a “local-global principle" due to
Moret-Bailly, to find a t over a totally real (or CM) Galois extension K !/K such that M t

satisfies Hypothesis 2.7.
Applying the method of potential automorphy is not always automatic. One has to satisfy

the conditions of Moret-Bailly’s theorem as well as conditions (1), (2), and (3) of 2.3. More
details can be found in [35] (which was written, however, before the simplifications of [72]
and [3]). Here are a few applications:

Theorem 2.8. LetK = Q and letΠ be a cuspidal holomorphic automorphic representation
of GL (2)Q (attached to an elliptic modular form of weightk & 2, say) to which one can
associate a compatible family of2-dimensional"-adic representations! ! ,Π. SupposeΠ is
not obtained by automorphic induction from a Hecke character of an imaginary quadratic
Þeld. ThenSymn ! ! ,Π is potentially automorphic for alln & 1.

This theorem was proved first when k = 2 in [21, 39, 70], assuming Πv is a Steinberg
representation for some v. This hypothesis was dropped, and was generalized to all k in [5].
It follows from the arguments of Serre in [63] and from the non-vanishing of L (s, Symn ! )
mentioned above, that this implies the Sato-Tate conjecturefor elliptic modular forms [5, 21,
39, 70]:
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Theorem 2.9. Let f be an elliptic modular newform of weightk for ! 0(N ) (for someN ),
and assume the! -adic Galois representations" ! ,f attached tof are not dihedral. For any
primep not dividingN , let ap(f ) denote the eigenvalue of the normalized Hecke operator
at p on f . Let ÷ap(f ) = ap(f )/2p

k−1
2 , which is known to be a real number in the interval

[! 1, 1]. Asp varies, the÷ap(f ) are equidistributed in[! 1, 1] for the measure
"

1 ! t2dt.
In particular, ifE is an elliptic curve overQ without complex multiplication, and1+ p !

ap(E) is the number of points ofE overFp, then the numbersap(E)/2p
1
2 are equidistributed

in in [! 1, 1] for the measure
"

1 ! t2dt.

The hypothesis that f has trivial nebentypus (is a form for ! 0(N )) is unnecessary and
was only included to allow for a simple statement. A version of 2.8 for Hilbert modular
forms was proved by Barnet-Lamb, Gee, and Geraghty, and they derived the corresponding
version of Theorem 2.9. All of these results were subsumed in the following theorem of
Patrikis and Taylor [59], a strengthening of one of the main theorems of [3]:

Theorem 2.10. Let K be totally real (resp. CM) and let{ r" } be a weakly compatible
family of #-adic representations of! K (where# runs over Þnite places of a number Þeld
M ). Assume ther" are pure of Þxed weightw (the Frobenius eigenvalues at an unramiÞed
place of normq are Weilq

w
2 -numbers); that they areHT -regular; and that they satisfy an

appropriate polarization condition. Then there is a Þnite totally real (resp. CM) Galois
extensionK !/K over which the family becomes automorphic.

The Hodge-Tate multiplicities of n-dimensional ! -adic representations realized on the
cohomology of the Dwork family are at most 1; moreover, n has to be even, and each Hodge-
Tate weight between 0 and n ! 1 occurs. Gri! ths transversality implies that such a condition
is inevitable when Hodge structures vary in non-trivial families. This appears to restrict
the applicability of the Dwork family to proving potential automorphy. However, it was
observed in [34], and more generally in [5], that it su! ces to prove that a given " ! ,! becomes
automorphic after tensoring with the Galois representation obtained by induction from an
automorphic Galois character attached to a Hecke character of an appropriate cyclic CM
extension K !/K. This observation was applied in the proof of 2.9 and more systematically
in [3], in both cases in order to replace the given Hodge-Tate weights of " by the set of
weights adapted to the cohomology of the Dwork family.

Remark 2.11. Let f be as in Theorem 2.9 and " the associated automorphic representation.
Theorem 2.9 is equivalent to the assertion that, as p varies over primes unramified for " ! ,! ,
the conjugacy classes of " ! ,f (Frobp), normalized so that all eigenvalues have complex ab-
solute value 1, are equidistributed in the space of conjugacy classes of SU (2). A version of
the Sato-Tate conjecture can be formulated for a general motive M ; SU (2) is replaced by
the derived subgroup of the compact real form of the Mumford-Tate group MT (M ) of M .
In order to prove this conjecture for more complicated MT (M ) one would have to be able to
prove the corresponding generalization of Theorem 2.8, with the symmetric powers replaced
by the full set of equivalence classes of irreducible representations $ of MT (M )der . But
even if the ! -adic representation " ! ,M attached to M is HT -regular, $ # " ! ,M is generally
not HT -regular, and thus cannot be obtained by Theorem 2.2. Thus one has no way to start
proving potential automorphy of $ # " ! ,M once MT (M )0,der is of rank greater than 1.

2.3.1. p-adic realization of very general Galois representations.It was mentioned above
that the proof of 2.2 is completed by a p-adic approximation argument. One says more gen-
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erally that ap-adic representationρ : ΓK,S ! GL(n,Qp) for someS is p-adically auto-
morphic if ρ = limi ρi (for example, in the sense of pseudo-representations, where the limit
can be in the Zariski or in thep-adic topology), where eachρi is an automorphic Galois rep-
resentation ofΓK,S . The theory of eigenvarieties shows thatp-adically automorphic Galois
representations vary inp-adic analytic families. The representationsρp,Π of 2.2 areHT -
regular becauseΠ is cohomological, but analytic families ofp-adically automorphic Galois
representations can specialize to representations that are Hodge-Tate but not regular, and to
representations that are not Hodge-Tate at all.

One can ask whether a givenρ isp-adically automorphic. There are discrete obstructions;
for example the set of ramiÞed primes is Þnite in anyp-adic family. There are also sign
obstructions. The2-dimensional Galois representationsρ! ,f attached to an elliptic modular
form f are odd: det ρ! ,f (c) = " 1 when c is complex conjugation. In other words, no
representationρ for whichdet ρ! ,f (c) = 1 can be obtained in the cohomology of a Shimura
variety. The signature of complex conjugation is constant onp-adic analytic families of
Galois representations, and therefore represents an obstruction to realizing such aneven
representation as ap-adically automorphic representation.

However, the direct sum of two even representations does not necessarily have such
a sign obstruction. Similar discrete invariants characterizep-adically automorphic Galois
representations in higher dimension, but they can be made to vanish upon taking appropriate
direct sums. Sayρ is p-adically stably automorphic if ρ # ρ! is p-adically automorphic for
someρ! . One knows what this means ifK is a totally real or CM Þeld. If not, letK0 $ K be
the maximal totally real or CM subÞeld, and say ap-adic representationρ is p-adically stably
automorphic if ρ # ρ! is the restriction toΓK of a p-adically automorphic representation of
ΓK 0 .

Question 2.12. Is every p-adic representation of ΓK that satisfies the Fontaine-Mazur ax-
ioms stably p-adically automorphic?

The main theorem of [30] states, roughly, thatevery p-adic representation ofΓK is
Òstably potentially residually automorphic,Ó where the reader is invited to guess what that
means.

One can often deÞne analytic or geometric invariants ofp-adic families by interpolation
of their specializations to automorphic points. Thus one deÞnesp-adicL-functions or Galois
cohomology (Selmer groups) ofp-adic families. Specializations to points not known to be
automorphic (e.g., because they are notHT -regular) deÞne invariants of the corresponding
Galois representations.

2.3.2. Prospects for improvement.

(a) Condition (1) in Theorem 2.4 corresponds to the polarization condition in (b) of The-
orem 2.2. At present no one knows how to remove this condition and thus to prove the
reciprocity conjecture for all representations constructed in Theorem 2.2 (see, how-
ever, the articles [10] of Calegari and Geraghty and [31] of Hansen). Removing con-
dition (1) is sufficient, and probably necessary, to show that theρ! ,Π of Theorem 2.2
are irreducible for (almost) allℓ.

(b) Although we have seen that substitutes can be found for residual irreducibility in ap-
plications to compatible families, it remains a major obstacle for many applications. In
addition to the argument applied in Skinner-Wiles for2-dimensional representations
of ΓQ, Thorne has recently found a new method based on level raising [73].



378 Michael Harris

(c) The article [70] replaces the very deep questions regarding congruences between au-
tomorphic forms of different levels (“level-raising”, which an earlier version of [21]
proposed to solve by generalizing Ihara’s Lemma on congruences between elliptic
modular forms) by a careful study of the singularities of certain varieties of tame rep-
resentations of local Galois groups. But this comes at the cost of losing control of
nilpotents in the deformation rings. In particular, current methods cannot classify lift-
ings of ρ̄ to rings in which ℓ is nilpotent. This may be important if one wants to extend
the results of this section to the torsion representations constructed by Scholze.

(d) Dieulefait has expanded on the ideas used by Khare and Wintenberger to prove the
Serre conjecture and has proved some astonishing results. For example, he has proved
base change of elliptic modular forms to any totally real extension [23]. The methods
of [46] and of [23] do not assume residual automorphy but actually prove it in the
cases they consider. It is not yet known whether or not these methods can be applied
in higher dimension.

(e) The authors of [3] ask whether every potentially crystalline representation is poten-
tially diagonalizable. An affirmative answer would expand the range of their methods.
The regularity hypothesis of Condition (3) seems insuperable for the moment. At
most one can hope to prove reciprocity for representations like those constructed in
[28], with Hodge-Tate multiplicities at most 2. The recent proof by Pilloni and Stroh
of the Artin conjecture for (totally odd) 2-dimensional complex representations of ! K ,
when K is totally real, is the strongest result known in this direction. As long as one
has no method for constructing automorphic Galois representations with Hodge-Tate
multiplicities 3 or greater, the reciprocity question for such representations will remain
inaccessible.

3. Critical values of automorphic L -functions

3.1. Critical values and automorphic motives. Let M be a (pure) motive of rank n over
a number field K , with coefficients in a number field E . By restriction of scalars we can
and will regard M as a motive of rank n[K : Q] over Q. The values at integer points of
the L -function L (s, M ) are conjectured to contain deep arithmetic information about M .
If, for example, M = M (A) is the motive attached to the cohomology in degree 1 of an
abelian variety A , then the value, or more generally the first non-vanishing derivative, of
L (s, M (A)) at s = 1 is predicted by the Birch-Swinnerton-Dyer conjecture. This is the only
critical value of L (s, M (A)), in the sense of Deligne (the importance of critical values had
previously been noted by Shimura). Deligne formulated his conjecture on critical values in
one of his contributions to the 1977 Corvallis conference. We follow Deligne in working
with motives for absolute Hodge cycles; thus M is by definition a collection of compatible
realizations in the cohomology of smooth projective algebraic varieties. The realization in
ℓ-adic cohomology gives the Galois representation ρ! ,M on an ℓ-adic vector space M ! , and
therefore determines L (s, M ). Extension of scalars from Q to C makes M a motive over
C, whose cohomology is thus a direct factor of the cohomology of a complex manifold,
whose topological cohomology is a Q-vector space called M B (Betti realization). Complex
conjugation on the points of M (C) acts on M B as an involution F! . As a motive over Q,
M also has the algebraic de Rham cohomology, a Q-vector space M dR with a decreasing
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Hodge filtration . . . F qM dR ! F q! 1M dR . . . by Q-subspaces. For any integer m let M (m)
denote the Tate twist M " Q(m). Hodge theory defines comparison isomorphisms

I (m)M, " : M (m)B " C ##$ M (m)dR " C.

This isomorphism does not respect the rational structures on the two sides. By restricting
I (m)M, " to the +1 -eigenspace of F" in M (m)B and then projecting on a certain quotient
M (m)dR /F qM (m)dR " C, one defines an isomorphism between two complex vector spaces
of dimension roughly half that of M , provided M (m) is critical in Deligne’s sense. The
determinant of this isomorphism, calculated in rational bases of the two sides, is the Deligne
periodc+

Q (M (m)) . It is a determinant of a matrix of integrals of rational di! erentials in M dR

over rational homology cycles, and is well defined up to Q$ -multiples. More generally, if
M is a motive with coe! cients in a number field E – in other words, if there are actions of E
on each of the vector spaces M B , M dR , M ! , compatible with the comparison isomorphisms
– then there is a Deligne period c+

E (M (m)) well-defined up to E $ -multiples; moreover,
L(s, M ) then defines an element of E " C, as in [22]. In the following discussion we will
drop the subscript and just write c+ (M (m)) for the Deligne period with coe" cients.

We call s = m a critical valueof L(s, M ) if M (m) is critical. The set of critical m can
be read o! from the Gamma factors in the (conjectural) functional equation of L(s, M ) ([22],
Definition 1.3). When M = M (A), s = 1 is the only critical value. Deligne’s conjecture is
the assertion that

Conjecture 3.1([22]). If m is a critical value of the motiveM with coe! cients inE , then

L(m, M )/c + (M (m)) %E $ .

Beilinson’s conjectures express the non-critical integer values of L(s, M ) at non-critical
integers in terms of the motivic cohomology (higher algebraic K -theory) of M . Automor-
phic methods give very little information about non-critical values of the L -functions of
motives that can be related to automorphic forms, and this survey has nothing to say about
them. On the other hand, the de Rham realizations of the motives that arise in the coho-
mology of Shimura varieties are given explicitly in terms of automorphic forms. One can
therefore state versions of Deligne’s conjecture for certain of these motives entirely in the
language of automorphic forms.5The literature on special values of L -functions is vast and a
book-length survey is long overdue. Automorphic versions of Deligne’s conjecture represent
a relatively small segment of the literature that is still too extensive for treatment in the space
of this article. The proofs are generally quite indirect, not least because one can rarely write
down M B in terms of automorphic forms. When M is realized in the cohomology (with co-
e" cients) of a Shimura variety S(G), one can occasionally define non-trivial classes in M B

by projecting onto M the cycles defined by Shimura subvarieties S(G%) ! S(G). Integrating
di! erential forms on S(G) & S(G) over the diagonal cycle S(G) amounts to computing a

5Strictly speaking, Deligne’s conjecture only makes sense in the setting of a theory of motives that is the sub-
ject of very di" cult conjectures. For example, one expects that if M and M ! are motives such that the triples
(M B , M dR , I (m)M, " ) and (M !

B , M !
dR , I (m)M ! ," ) are isomorphic, then M and M ! are isomorphic as mo-

tives. This would follow from the Hodge conjecture. Similarly, one assumes that L (s, M ) = L (s, M ! ) implies
that M ! M ! ; this would follow from the Tate conjecture.

Blasius’s proof of Deligne’s conjecture for L -functions of Hecke characters of CM fields is carried out within
the framework of motives for absolute Hodge cycles. It is practically the only authentically motivic result known in
this direction.
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cohomological cup product. In this brief account we limit our attention to a class of motives
whose Deligne periods can be factored as products of cup products of this kind.

SupposeK is a CM Þeld. As explained in 2.1.1, most of the representations! ! ,! of
! K are realized in the cohomology of a Shimura varietiesS(G) attached to unitary groups
G. Along with then-dimensional Galois representation this construction yields a candidate
for the rankn motive M (" ). Originally M (" ) is deÞned overK ; one obtains a motive
RM (" ) = RK/ QM (" ) by restriction of scalars toQ, taking into account the theorem of
Borovoi and Milne on conjugation of Shimura varieties (the Langlands conjecture). The
spacesRM (" )dR andRM (" )B satisfy analogues of conditions (1) and (3) of Theorem
2.4. The regularity condition (3) implies there is a set of integersq1 < q2 < · · · < qn

such thatdimE F qRM (" )dR /F q+1 RM (" )dR = 1 if and only if q = qi for somei , and
the dimension is0 otherwise. HereE = E (" ) is the Þeld of coe! cients ofRM (" ) (more
precisely,E is a Þnite product of number Þelds). We choose a non-zeroQ-rationalE -basis
" i of F qi RM (" )dR /F qi +1 RM (" )dR , view " i as a (vector-valued) automorphic form on
G(Q)\G(A), and letQi (" ) =< " i , " i > denote its appropriately normalizedL 2 inner
product with itself.

Conjecture 3.2. Up to multiplication byE ! , eachQi (" ) depends only on the automor-
phic representation" of GL (n) and not on the realization in the cohomology of a Shimura
variety.

This conjecture is implied by the Tate conjecture. It has been veriÞed in many cases for
the (holomorphic) periodQ1(" ). The author has partial results for generalQi (" ).

Given any motiveM of rank n satisfying conditions (1) and (3) of 2.4 we can deÞne
invariantsQi (M ) in the same way, and a determinant factorq(M ) (for this and what follows,
see [32, 36], and section 4 of [29]). For any integer0 ! r ! n we write

P" r (M ) = q(M )# 1 ·
!

i " r

Qi (M ).

Let M $ be a second motive of rankn$, satisfying conditions (1) and (3) of 2.4. Then for any
integerm critical for RK/ Q(M " M $) there is a factorization (cf. [29] (4.11)):

c+ (R(M " M $)(m)) # (2#i )c(m,n,n ! )
n!

r =1

P" r (M )ar

n !
!

r ! =1

P" r ! (M $)br ! (3.1)

where# means that the ratio of the two sides lies in the multiplicative group of the co-
e! cient Þeld,c(m, n, n $) is an explicit polynomial inm and the dimensions,0 ! ar :=
a(r, M, M $), br ! := b(r $, M, M $) and

"

r

ar ! n$;
"

r !

br ! ! n.

DeÞning" as above, there is an (ad hoc) determinant factorq(" ), and we let

P" r (" ) = q(" )# 1 ·
!

i " r

Qi (" ).

An automorphic version of DeligneÕs conjecture is



Automorphic Galois representations and the cohomology of Shimura varieties 381

Conjecture 3.3. Let ! and ! ! be cuspidal automorphic representations ofGL(n)K and
GL(n!)K , satisfying the hypotheses of Theorem 2.2 (b). Letm be a critical value of

L(s,RK/ Q(M(! ) ! M(! !)) = L(s "
n+ n! " 2

2
, ! # ! !).

Then

L(m,RK/ Q(M(! ) ! M(! !))) $ (2πi)c(m,n,n ′)
n " 1∏

r =1

P# r (! )ar

n " 2∏

r ′=1

P# r ′(! !)br′ ,

with ar , br ′ as in(3.1).

The integersar and br ′ of (3.1) are determined purely by the relative position of the
Hodge decompositions ofMdR ! C andM !

dR ! C (and donÕt depend onm). Suppose
M = RM(! ), M ! = RM(! !), with ! and ! ! as in (3.3). The regularity hypotheses
imply that there are Þnite-dimensional representationsW (! $ ) andW !(! !

$ ) of GL(n)K

andGL(n!)K , respectively, such that! $ andW (! $ ) (resp. ! !
$ andW !(! !

$ )) have the
same inÞnitesimal characters. Theai and bi ′ can be computed explicitly in terms of the
highest weights ofW (! $ ) andW !(! !

$ ). For example, supposen! = n " 1 and

HomGL (n " 1,K %C) (W (! $ ) ! W (! !
$ ),C) %= 0. (3.2)

Thenai = bi ′ = 1, 1 & i & n " 1; 1 & i! & n " 2; an = bn " 1 = 0.

Theorem 3.4. SupposeK is an imaginary quadratic Þeld. Let! and! ! be as in 3.3. Sup-
pose moreover that the inÞnitesimal characters of! $ and! !

$ satisfy 3.2 and are su! ciently
regular. Then there are constantsc!(m, ! $ , ! !

$ ) such that

L(m,RK/ Q(M(! ) ! M(! !)))/[c!(m, ! $ , ! !
$ )

n " 1∏

r =1

P# r (! )
n " 2∏

r ′=1

P# r ′(! !)] ' Q (3.3)

for every critical valuem.

This is a reinterpretation of Theorem 1.2 of [29]. There the invariantsP# r (! ) are re-
placed by complex numbersP ( r ) (! ), which are Petersson square norms ofholomorphic
automorphic forms on unitary Shimura varieties of di! erent signatures (and it is shown that
the quotient in (3.3) lies in a speciÞc number Þeld). Naturally one expects the constants
c!(m, ! $ , ! !

$ ) to be powers of2πi. The Tate conjecture implies an identity between the
two kinds of invariants, and this has been proved (up to unspeciÞed archimedean factors, and
up toQ-multiples) in [33] (and subsequent unpublished work).

The methods of [29] are based on interpreting the Rankin-Selberg integral forGL(n) #
GL(n " 1) as a cohomological cup product. Such arguments have been used previously
by Mahnkopf and Raghuram; see [60] for the most general results in this direction. Earlier
results on this problem were conditional on the conjecture that certain archimedean zeta inte-
grals did not vanish identically. SunÕs recent proof of this conjecture [66] has revived interest
in the problem and one can expect rapid progress in the next few years. For general number
Þelds one does not have the analogues of the invariantsP# r (! ) and the results of [60] are
expressed in terms of period invariants obtained by comparing the cohomological rational
structure of! with one deÞned by Whittaker models. The (mild) regularity hypothesis of 3.4
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is required in the comparison of these Whittaker period invariants with the motivic invariants
P! r (! ). Similar arguments should su! ce to treat the cases of Conjecture 3.3 forn" ! n " 1
that satisfy an analogue of (3.2), for general CM Þelds. (The case wheren" = 1 was treated
by the author in a series of papers, starting with [32], and is used crucially in the proof of
Theorem 3.4.) The full scope of the methods of [29] is not yet clear, but it is certain that it is
not limited to the situation of (3.2). The identiÞcation ofc"(m, ! # , ! "

# ) with the invariant
(2! i)c(m,n,n $ 1) is likely to follow from these methods as well.6

3.2. How general are these results? Only a restricted class of Galois representations can
be obtained using the cohomology of Shimura varieties, and only those that can be realized
directly in the cohomology are associated to motives that admit an automorphic interpreta-
tion. The Rankin-SelbergL-functions described in the previous section, along with a few
related constructions (symmetric and exterior squares and adjointL-functions), seem to be
the only ones whose critical values can be analyzed by automorphic methods. RaghuramÕs
results in [60] apply only under the hypothesis (3.2). It should be straightforward to gen-
eralize his methods to pairs! , ! " where! is cuspidal and! " is an essentially tempered
cohomological Eisenstein series, as in [29] (or earlier work of Mahnkopf). If RaghuramÕs
results could be extended to cases where neither! nor ! " is cuspidal, then the hypothesis
(3.2) would be superßuous (in Theorem 3.4 as well).

A motivic analysis of critical values of Rankin-SelbergL-functions, as in Theorem 3.4,
has thus far only been carried out for CM Þelds. Bhagwat has proved an analogue of the
relation (3.1) whenK = Q, following earlier work of Yoshida (see the appendix to [60])
and similar factorizations must hold for totally real Þelds. As far as I know, no one has
proposed automorphic interpretations of the terms that occur in BhagwatÕs factorization.
For ! satisfying the polarization condition as in (b) of Theorem 2.2 it should be possible to
interpret some of them as periods of motives realized in the cohomology of Shimura varieties
attached to special orthogonal groups of signature(2, n). In the absence of a polarization
condition, Shimura varieties seem to be of no help.

3.3. Exact formulas for the central critical value. The conjectures of Bloch-Kato and
Fontaine-Perrin-Riou give exact formulas for special values of motivicL-functions. The
algebraic quotientsL(m,M )/c+ (M (m)) and their generalizations to non-critical values
are expressed explicitly as products of local and global algebraic factors deÞned in terms
of Galois cohomology. For the central critical value these expressions generalize the Birch-
Swinnerton-Dyer conjecture for the value ats = 1 of L(s,M (A)) , in the notation of the
previous section.

Beginning with the thesis of Waldspurger, exact formulas have also been found for cer-
tain central values of automorphicL-functions. The conjecture of Ichino-Ikeda, and its
version for unitary groups formulated by N. Harris, [42, 45] give exact formulas for central
values in the framework of the Gan-Gross-Prasad conjectures [26]. In what followsK is
a CM Þeld. We change notation and let! denote a cuspidal automorphic representation
of GL(n)K that descends to a (cuspidal)L-packetP! ,V of a givenG = U (V ), viewed
as group overK+ , with dim V = n. Similarly, ! " is an automorphic representation of
GL(n " 1)K obtained by base change from a (cuspidal)L-packetP! ! ,V ! of G" = U (V "). It

6Note added in proof. This has now been carried out, at least when the coe! cients are su! ciently regular, by
Lin Jie.
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is assumed thatV ′ embeds inV as a non-degenerate hermitian subspace of codimension1.
For anyπ ∈ P! ,V andπ′ ∈ P! ′,V ′ , the pairing

I = π ⊗ π′ → C : f ⊗ f ′ $→
∫

G′(K+)\G′(A)
f (g′)f ′(g′)dg′, f ∈ π, f ′ ∈ π′ (3.4)

is invariant under the diagonal action ofG′(A). One of the Gan-Gross-Prasad conjectures
asserts that the space of such invariant pairings is of dimension1 for exactly one pair(V, V ′)
and one pair(π,π′) ∈ P! ,V × P! ′,V ′ , and that the lucky pair is identiÞed by a compli-
cated formula involving root numbers. The non-archimedean part of this conjecture has
been proved by R. Beuzart-Plessis, following the method used by Waldspurger to solve the
analogous conjecture for special orthogonal groups [7, 74]. Thus if one Þxes a non-trivial
pairingB : π ⊗ π′ → C, the pairingI deÞned in 3.4 is a multiple ofB. The Ichino-Ikeda
Conjecture can be seen as a determination of this multiple. In the statement of the conjecture,
the superscript∨ denotes contragredient; all integrals are taken with respect to Tamagawa
measure.

Conjecture 3.5([45]). Let f ∈ π, f ′ ∈ π′, f∨ ∈ π∨, f ′,∨ ∈ π′,∨, and suppose all four
vectors are factorizable. Then

I(f, f ′) · I(f∨, f ′,∨)
< f, f∨ >2< f ′, f ′,∨ >2

= 2−r
∏

v∈S
Zv(f, f ′, f∨, f ′,∨) ·∆ ·

L( 1
2 ,Π×Π′)

L(1,π, Ad)L(1,π′, Ad)
.

Here< •, • >2 are theL2 pairings, the factor2−r is trivial whenΠ andΠ′ are cuspidal
but not in general,S is the set of ramiÞed primes forπ,π′, and the chosen vectors, includ-
ing archimedean primes, theZv for v ∈ S are normalized integrals of matrix coe! cients
attached to the data,∆ is a special value of a Þnite product of abelianL-functions (theL-
function of the Gross motive), the numerator on the right-hand side is the Rankin-Selberg
product forGL(n) × GL(n − 1), and the factors in the denominator are the Langlands
L-functions forG andG′ attached to the adjoint representations of theirL-groups.

Here and elsewhere,L(s, •) denotes the non-archimedean Euler product. TheL-functions
in the right-hand side are given the unitary normalization. Thus the completedL-function
Λ(s) = L∞(s,Π×Π′) ·L(s,Π⊗Π′) in the numerator of the right-hand side always satisÞes
Λ(s) = ±Λ(1 − s). WhenΠ andΠ′ satisfy (b) of 2.2, however, there is a second (motivic)
normalization as well, in which the values = 1

2 is replaced by an integer value, and all the
values ofL-functions that occur in the right-hand side are critical.

Conjecture 3.5 is of no interest when the sign is−1, because the numerator vanishes triv-
ially. When theL-function is motivic, there have been proposals for an arithmetic substitute
for the conjecture in this case, withL( 1

2 , •) replaced by its derivative ats = 1
2 , along the

lines of the Gross-Zagier conjecture and subsequent work. When the sign is+1 , the conjec-
ture reÞnes the global Gan-Gross-Prasad conjecture, which asserts thatL( 1

2 ,Π×Π′) = 0 if
and only if the pairingI of 3.4 is trivial.

WhenL( 1
2 ,Π×Π′) ̸= 0 , Conjecture 3.5 gives an exact expression for its value, provided

one can make good choices of the test vectorsf, f ′, f∨, f ′,∨ and can control the local zeta
integrals. It is natural to speculate that these zeta integrals can be interpreted in terms of
local Galois cohomological information, and that whenΠ andΠ′ are attached to motives,
the expressions on the two sides of Conjecture 3.5 can be matched termwise with corre-
sponding expressions in the Bloch-Beilinson and Bloch-Kato conjectures. The local factor
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Zv (f, f ! , f " , f !," ) is the integral of the matrix coefficient ofπv attached to the pair(f v , f "
v )

against the matrix coefficient ofπ!
v attached to(f !

v , f !,"
v ). The following question is deliber-

ately vague.

Question 3.6. For any given pair of local (ramified) representations πv , π!
v , is there a

quadruple f v , f !
v , f "

v , f !,"
v such that the local zeta integral Zv (f, f ! , f " , f !," ) exactly equals

the local Galois-cohomological factor in the Bloch-Kato conjecture?

As explained in [37], the expressions on the left-hand side are algebraic multiples of
invariants calledGross-Prasad periods that depend only on! and ! !, provided the test
vectors are chosen to be rationally normalized (with respect to coherent cohomology). The
denominators are closely related to theP# r deÞned above. Combining Conjecture 3.5 with
Conjecture 3.3, one gets conjectural expressions for the Gross-Prasad periods as well in
terms ofP# r (π) andP# r ! (π! ); see [37], Conjecture 5.16.

In order to compare the local terms of Conjecture 3.5 with the Galois-cohomological
data of the Bloch-Kato conjecture,integral normalizations of the test vectors are needed. It
is well known, however, that even the module of elliptic modular forms with integral modular
Fourier coefficients is not spanned by Hecke eigenfunctions. This is the phenomenon ofcon-
gruences between Hecke eigenvalues for different automorphic representations, which is the
subject of theorems of the form 2.3, and it is no less relevant to automorphic representations
of groups other thanGL(2).

3.3.1. Adjoint L -functions. The denominator of the Ichino-Ikeda formula is relevant to
the problem of integral normalization of test vectors. The points = 1 is the only criti-
cal value of the adjointL -functions that occur there. Supposeπ has an associated motive
M (! ) = M (π). Then for any primeℓ, the Bloch-Kato conjecture identiÞes theℓ-adic val-
uation of the quotient ofL (1,π, Ad) by an (integrally normalized) Deligne period with the
order of a Galois cohomology group that is supposed to count the number ofℓ-adic defor-
mations of the residual Galois representationøρℓ,π. Whenn = 2 andK is totally real, a
version of this conjecture has been proved by Diamond-Flach-Guo and Dimitrov, combining
the methods of Theorem 2.4 with the results of [44].

HidaÕs paper [44] was the starting point for his theory of families of modular forms, and
was the Þrst to establish a relation between the critical value of the adjointL -function and
congruences between modular forms. In dimensionn > 2, the special cases of the Ichino-
Ikeda conjecture proved by Wei Zhang in [75] are used in [29] to relate the Whittaker period
of a ! satisfying (b) of Theorem 2.2 toL(1,π, Ad), up to rational multiples. One hopes
this provides a starting point for determiningL(1,π, Ad) up to units in number Þelds, as
required by the Bloch-Kato conjecture.

3.4. Two speculative remarks on automorphic p-adic L -functions.

Remark 3.7. DeligneÕs conjecture is the starting point of the construction ofp-adic L -
functions. The algebraic values on the left-hand side of the identify in 3.1, suitably nor-
malized, are predicted to extend analytically wheneverM andm vary in p-adic families.
The literature is vast but fragmentary, and the authorÕs ongoing project with Eischen, Li,
and Skinner will only add one (rather bulky) fragment to the collection when it is Þnished.
Current plans are limited toordinary (Hida) families, but ultimately one expects the method
to extend to completely general families. In particular, suchp-adic L -functions could be
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specialized to the “very general” p-adic representations of 2.3.1. Moreover, using Brauer in-
duction, one could even attach a p-adic L-functions to a motivic Galois representation ρp,M
that is potentially p-adically automorphic. Although such a function would have no obvious
connection to the complex L-function of M , it could conceivably be related to the Galois
cohomology of ρp,M .

Remark 3.8. One can study the behavior of the right-hand side of Conjecture 3.5 when Π
and Π! vary in p-adic families. Given the right choice of data in the local zeta integrals at
primes dividing p, the result should be a p-adic meromorphic function of Π and Π! . Can this
function be constructed directly on the left-hand side of the identity?
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