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1. Introduction

Algebraic number theory has benefited immeasurably over the past four decades from the
applications of the methods and results of the Langlands program to the study of Galois
representations attached to automorphic forms. Yet Galois representations do not figure
prominently in Langlands’s original conjectures, apart from the complex Galois representa-
tions that are the object of the Artin conjecture. There seems to be no completely precise
statement in the literature of a Langlands reciprocity conjecture a bijection between rep-
resentations of Galois groups with values in the !-adic points of reductive groups, subject to
certain natural restrictions (including a version of irreducibility), and of automorphic repre-
sentations of related reductive groups — although number theorists believe there should be
such a conjecture and have a general idea of how it should go. The best general account of
this question is still contained in the expanded version [69] of Taylor’s 2002 ICM talk.

The first objective of the present survey is to describe the results in the direction of
reciprocity obtained since the publication of [69]. Construction of the correspondence in
one direction — from automorphic representations to Galois representations — has progressed
considerably, even in directions that could not have been expected ten years ago. All of
the Galois representations associated to automorphic representations have been constructed,
either directly or by p-adic interpolation, using the cohomology of Shimura varieties. This
source of Galois representations has been or soon will be exhausted, and new methods will
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need to be invented in order to bnd the Galois representations attached to automorphic rep-
resentations that cannot be related in any way to cohomology of Shimura varieties, notably
the representations of Galois groups of number belds that are not totally real nor CM.

Little was known at the time of [69] regarding the converse direction, the problem of
proving that a given Galois representatjois attached to automorphic forms, whaim p >
2. Now there is a mature theory afitomorphy lifting theorems, in the spirit of the results
developed by Wiles for his proof of FermatOs Last Theorem, applying in all dimensions.
The attempt to complete this theory represents one of the most active branches of algebraic
number theory, and is largely responsible for the rapid growth of interest jo-#uéc local
Langlands program.

LetK be a number beld. The Galois group := Gal(Q/K ) acts on thep-adic Ztale
cohomology of an algebraic variety or motive debned oveK , and this action determines
theL-functionL (s, M). Theoretical considerations guarantee thattfaglic Galois repre-
sentations on the cohomology of most algebraic varieties cannot be realized in the cohomol-
ogy of Shimura varieties; for example, the cohomology of a generic hypersurface cannot be
obtained in this way. Present methods, therefore, cannot prove the analytic continuation of
L (s, M) for most motives arising from geometry. When the Galois representation is attached
to an automorphic form, on the other hand, then ¢q(& M ), and this implies analytic (or at
least meromorphic) continuation of the latter. Moreover, the conjectures concerned with the
values at integer points df(s, M) (of Deligne, Beilinson, or Bloch-Kato) can be studied
with the help of automorphic forms. Everything one knows in the direction of the Birch-
Swinnerton-Dyer Conjecture, for example, has been proved by means of this connection.
There has been a great deal of activity in this direction as well, especially in connection with
the growth of the OrelativeO theory of automorphic forms (the relative trace formula and con-
jectures of Gan-Gross-Prasad, Ichino-lkeda, and Sakellaridis-Venkatesh). The second part
of this paper reviews some of the recent results on special valueduwfctions.

The conjectures on special values of comglefunctions are accompanied by conjec-
tures on the existence @kadic analytic functions interpolating their normalized special
values. The article concludes with a few speculative remarks about autompraticL -
functions.

2. Automorphic forms and Galois representations

2.1. Construction of automorphic Galois representations.Class beld theory classibes
abelian extensions of a number pP&ldin terms of the the structure of the idsle class group
GL(1,K)\GL(1, Ak ). In doing so it also identibek-dimensional representations lof

with continuous characters of the idele class group. Non-abelian class beld theory can be
traced back to the 1950s, when Eichler and Shimura realize@-thiatensiona¥-adic Ga-

lois representations could be attached to classical cusp forms that are eigenvalues of the
Hecke algebra. A conjectural classibcatiomedimensional-adic Galois representations,

in terms of the Langlands program, was formulated in TaylorOs 2002 ICM talk (cf. [69]). We
review this conjecture quickly. For any bnite &bf places ofK, let! ks be the Galois
group of the maximal extension &f unramibed outsid&. Taylor adopts the framework

of Fontaine and Mazur, who restrict their attention in [25] to continuous representations
p:lx ! GL(n, Q) satisfying the following two axioms:
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1. ! factors througH ¢ s for some Pnite se$ of places ofK (usually containing the
primes dividing");

2. Forall primess of K of residue characteristic the restriction of to a decomposition
groupG, ! !¢ atvisde Rhanin the sense of Fontaine.

A ! satisfying these two conditions is either callgdometricor algebraic depend-
ing on the context. Condition (1) guarantees that, at all but bnitely many prnuds
K, the restriction!, of ! to a decomposition grouf, is determined up to equivalence,
and up to semisimplibcation, by the characteristic polynomig! , T) of the conjugacy
class! (Frob,) " GL(n,Q,). One of the Fontaine-Mazur conjectures implies that there
is a number bel& such that allP, (!, T) have coéicients inE; by choosing an embed-
ding#: E $ C we may thus debnB,(!,T) as a polynomial of degree in C[T] with
non-vanishing constant term. The set of such polynomials is in bijection with the set of
(equivalence classes of) irreducible smooth representdtipms GL (n, K ) that arespher-
ical: the space of vectors i, that are invariant under the maximal compact subgroup
GL(n,Oy) ! GL(n,K,), whereOQ, is the ring of integers i, is non-trivial and nec-
essarily one-dimensional. We let,(!) be the spherical representation corresponding to
P,(!,T).

Anirreducible representationy (! ) of GL (n, K ) can be attached tofor primesv " S
as well. Ifv is not of residue characteristicthe restriction of to G, gives rise by a simple
procedure to am-dimensional representatiafi/ D (!, v) of the Weil-Deligne groupvV/ D,
atv. The local Langlands correspondence [41, 43] is a bijection betwedimensional
representations oV D, and irreducible smooth representationgzif(n, K ), and we ob-
tain” ,(!) using this bijection. Ifv divides", condition (2) allows us to dePA& D (!, V)
by means of Fontainef)%_q functor. FontaineOs construction also provides a set of Hodge-
Tate numbers$iT (!, v) for each archimedean prinve This datum, together with the action
of a complex conjugatioe, in a decomposition grou®, whenv is a real prime, debPnes
an n-dimensional representatidn, of the local Weil groupW,, and thus an irreducible
(gv,Uy)-module” (1), whereg, is the (complexibed) Lie algebra @&(K,) andU, is
a maximal compact subgroup Gf(K,). We let” (!') denote the restricted direct product
(with respect to th&L (n, Oy )-invariant vectors at bnite primes outsiigof the" ,(!), as
v ranges over all places &f.

If v is an archimedean place &f, the Harish-Chandra homomorphism identibes the
centerZ (gy) with the symmetric algebra of a Cartan subalgefyrda g,. The maximal
ideals ofZ (g,) are in bijection with linear mapldom (t, C). Theinbnitesimal characteof
an irreducible(gy, U, )-module" , is the character debning the actionZfg,) on" ; its
kernel is a maximal ideal & (gy), and thus determines a linear nfdp, " Hom(t,, C). In
[17], Clozel debnes an irreducilg, , U,)-module”  to bealgebraicif % , belongs to the
lattice inHom((t,, C) spanned by the highest weights of bnite-dimensional representations.
Denote by ¥ |, thev-adic absolute valug ¥ |» the adele norm. The following corresponds
to Conjectures 3.4 and 3.5 of [69].

Conjecture 2.1.

(1) Let! : ' # GL(n,Q,) be an irreducible geometric Galois representation. Then

the local component
| "

1 1
i” = () %[ ¥ 7 &det

“v(h)
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is algebraic at each archimedean prinveof K, and the representatioh , (!) of
GL(n, Ak ) occurs in the space of cusp formsGh (n, K )\GL(n, Ak ).

(2) Conversely, let be a cuspidal automorphic representation@if (n, Ak ). Suppose
! \,(1!2”) is algebraic for every archimedean plaweof K. Then for each primé,
there exists an irreducible geometriedimensional representation

Lm:"k ! GL(n, Q)

such that !1" "
! 2” =1 # ¥ $det 11 (1)

The Galois representations ; are calledautomorphicl Quite a lot is known about
this conjecture wheik is either a CM beld or a totally real Peld, almost exclusively in
theregular case, whert; is the inbnitesimal character of an irreducible bnite-dimensional
representation o5(K ) for all archimedearw. Let S be a Pnite set of primes &, let!
be ann-dimensional'-adic representation dfx , and say that and!, correspond away
fromSif!, =1 ,() forv % S. The following theorem represents the current state of
knowledge regarding part (b) of Conjecture 2.1; part (a) will be treated in the next section.
In its details it may already be obsolete by the time of publication.

Theorem 2.2. LetK be a CM Peld or a totally real beld. Letbe a cuspidal automorphic
representation oL (n, Ak ). Suppose , is algebraic and regular for every archimedean
placev ofK .

(a) LetS be the set of Pnite primes at whichs ramibed. If' is a rational prime, letS(")
denote the union db with the set of primes df dividing". For each primé', there
exists a completely reducible geometniclimensional representation

bnm:"k ! GL(N,Q)

such that (“T”) and!, ;7 correspond away frors(").
(b) Supposé is polarized in the following sense:

(1) IfK isa CM Peld, .
L . qc

where® denotes the action of complex conjugation actindg<on
(2) If K is totally real, .
PE 1 #s

for some Hecke characté& of GL (1, A ).

Here# denotes contragredient. Then there is a compatible family-dimensional
representation$, 1 satisfying (b) of 2.1. Moreove, 1 is de Rham, in the sense of
Fontaine, at all primew dividing".

WhenG is a reductive algebraic group, Buzzard and Gee have conjectured a correspondence between auto-
morphic representations & that satisfy an algebraicity condition at archimedean places and compatible systems
of !-adic representations with values in the Langlahdgroup of G [9]. The relation of this conjecture with
Conjecture 2.1 is a bit subtle; twoldérent algebraicity conditions are relevant to the conjecture.
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2.1.1. p-adic approximation. To forestall certain kinds of cognitive dissonance, we switch
from!-adic top-adic representations in this section. Part (b) of Theorem 2.2 has been proved
over the course of several decades by a number of people. For gerdiraénsional repre-
sentations, the most relevant references are [17, 41, 48] for work before the proof by Laumon
and Ng™ of the Fundamental Lemma; and [16, 19, 20, 51, 56, 62, 64] for results based on the
Fundamental Lemma. | refer the reader to the discussion in [35], and take this opportunity to
insist on the centrality of LabesseOs results in [51] and earlier papers, which are inexplicably
omitted from some accoungs.

Under the polarization hypothesis of case (b), migst are realized in the cohomol-
ogy of Shimura varietieS(G) attached to appropriate unitary groups Some important
representations are nevertheless missing wheneven. To complete the proof of (b), the
missing representations are constructegHagic approximationOne needs to show thiat
is in some sense the limit of a sequenceé pfthat do satisfy the strong regularity hypothe-
sis3Forn = 2 two approximation methods had been applied: Wiles used the ideas due to
Hida, while Taylor obtained the most complete results by adapting ideas of Ribet. In the
intervening years, the theory efgenvarietieswhich originated in the work of Coleman and
Mazur, had been developed to delpradic famiies of automorphic forms in a very general
setting. ChenevierOs thesis [14] generalized the approximation method of Wiles to attach
p-adic Galois representations of dimensior» 2 to non-ordinary! , using eigenvarieties.
Its extension in the book [6] with Bellasche, and the subsequent article [15] were almost
sufficient to construct the missirg,; as the limit of",; , as above. The Pnal steps in the
construction, and the proofs of most of the local properties of 2.1, were carried out in [16],
using a descent argument introduced by Blasius and Ramakrishnan in [8] and extended by
Sorensen in [65]. The remaining local properties B determination of!leadit andp-adic
monodromy of',; were not known when [35] was written; they were obtained in most
cases in [4] and completed in [12, 13].

Part (a) of Theorem 2.2 is much more recent. The brst result of this type was obtained
for GL (2) over imaginary quadratic bPelds by Taylor in [67], following his joint work [40]
with Soudry and the author; this was extended to general CM belds by Mok [54]. The proof
of part (a) in [38] starts with an old idea of Clozel. letbe aCM beldand le€ * ! K be
the Pxed Peld under complex conjugation. Ggtbe the unitary group of an-dimensional
hermitian space ovef , and assum&,, is quasi split. Ther,, viewed by restriction of
scalars as an algebraic group o@rcontains a maximal parabolic subgroBp with Levi
factor isomorphic tdRx; oGL(n)k . Let S(n, K') be the locally symmetric space attached
toGL(n, Ak ). SinceK isa CM beldS(n,K) is not an algebraic variety, and therefore its
I-adic cohomology does not carry a representation of any Galois grouipisia cuspidal
automorphic representation &L (n, A ¢ ) that is polarized, then the twisted trace formula
attaches td a collection (arL -packet) of automorphic representations of the unitary group
G mentioned above; thus transfers to the cohomology of ti#G), and this is where the
Galois representation is realized (in nearly all cases).

When! is not polarized, one uses the theory of Eisenstein series for the parabolic group

2Although complete base change from unitary groups remains to be established (the quasi-split case has recently
been treated in [55]), Labesse proved the basic properties in the case of cohomological representations, without
which the proof of Theorem 2.2 would have been impossible.

trictly speaking, the limits discussed here are taken relative to the Zariski topology on appropriate eigenva-
rieties, so the termp@adic limit" would not be quite appropriate. In many cases the missing representations can
indeed be obtained as actual limits in fh@dic topology, but as far as | know these cases have not been given an
intrinsic characterization.
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P, to attach a familyE(s,! ) of automorphic representations Gf,, withs ! C. Up to
twisting! by a positive integral power of the norm, we may assis,! ) is regular aD

and writeE(! ) = E(0,! ). ThenE(! ) is also cohomological and (for nearly all positive
integral twists) debPnes a non-trivial class in the cohomology of the Shimura v&(i€ty)
attached to (the unitary similitude group @),. The realization irp-adic Ztale cohomology

of this Eisenstein class then debngsadic Galois representation. However, it is easy to see
that the semisimplibcation of this representation is a sum of abelian characters, and therefore
it cannot be used to construct the desirgd .

Some years later, Skinner (and independently Urban) revived ClozelOs idea by suggest-
ing thatE (! ) might be realized as the limit in pradic family of a sequence auspidal
cohomological automorphic representatidnef G,,. One then considers the collection of
2n-dimensional representatiohs ;. The symbolg ) = lim;tr!,,, then makes sense
as a@p-valued function o' s for appropriateS, and because it is the limit of traces of
genuine representations it dePnezadimensionapseudorepresentatioif he latter notion
is an abstraction of the invariance properties of the character of a representation, brst con-
structed in the2-dimensional case by Wiles, then debned by Taylor in general using results
(especially results of Procesi) from invariant theory. TaylorOs theory impliegghat is
the character of a uniqum-dimensional representation, and by varyingmong its abelian
twists it can be shown by elementary methods that, ) breaks up as the sum of twe
dimensional pieces, one of which is the, of Theorem 2.2.

The hard part is to obtaig (! ) as the limit of cuspidal;. What this means is that the
eigenvalues of Hecke operators at primes at whicls unramibed are-adic limits of the
corresponding Hecke eigenvalues'on In [38] this is achieved by realizing (! ) in ap-
adic cohomology theory that satisbes a short list of desirable properties. The most important
properties are (i) the global cohomology is computed as the hypercohomology in the (rigid)
Zariski topology of the de Rham complex and (ii) the cohomology has a weight bltration,
characterized by the eigenvalues of an appropriate Frobenius operator. The cohomology
theory chosen in [38] is a version of BerthelotOs rigid cohomology (generalizing Monsky-
Washnitzer cohomology). This is calculated on the complement, imminémal (Baily-

Borel) compactibcatioB(G,)* of S(Gy ), of the vanishing locus of lifts (modulo increasing
powers ofp) of the Hasse invariant. This complement freid and therefore by (i) the
cohomology can be computed by a complex whose terms are spgeasdicfmodular forms,

in the sense of Katz. By analyzing the Pniteness properties of this complex, and using the
density of genuine holomorphic modular forms in the spacp-aflic modular forms, [38]
writesE (! ) as the limit of cuspidal;, as required.

About a year after the results of [38] were announced, Scholze discovered a more Rexible
construction based on a venyfidirent cohomology theory, theadic Ztale cohomology of
perfectoid spacesThe topological constructions in [38] can in principle also lift torsion
classes in the cohomology of the locally symmetric space attach®H ¢o, A ) to torsion
classes in the cohomology &{(G,), but rigid cohomology cannot detect torsion classes.
The p-adic Ztale cohomology of perfectoid spaces does not have this defect, and ScholzeOs
article [61] not only gives a new and more conceptual proof of the results of [38] but applies
to torsion classes as well. Thus Scholze proved a long-standing conjecture, brst formulated
by Ash in [2], that has greatly inBuenced subsequent speculatipradit representations of
general Galois groups. The reader is referred to ScholzeOs article in the current proceedings
for more information about his results.



Automorphic Galois representations and the cohomology of Shimura varieties 373

Restrictions on Galois representations on the cohomology of Shimura varietiesin part

(b) of 2.2 the proof of the deepest local properties of the (polarizgd)at primes dividing

p were proved by bnding representations closely relateg, to (the images under tensor
operations) directly in the cohomology of Shimura varieties. Whea not polarized, the

v, are still constructed in [38] and [61] by a limiting process , starting from a family of

I'v1 , Of geometric origin, but there is every reason to believe (see below) thigs thand its

images under tensor operations will almost never be obtained in the cohomology of Shimura
varieties, and although they are expected to be geometric no one has the slightest idea where
they might arise in the cohomology of algebraic varieties.

Room for improvement. The inPnitesimal charactér ! Hom(t,, C) is regular provided

it is orthogonal to no roots df, in g,; in other words, if it is contained in the interior of a
Weyl chamber. The regularity hypothesis in Theorem 2.2 can sometimes be relaxed to allow
non-degenerate limits of discrete series, whose inbnitesimal characters lie on one or more
walls of a Weyl chamber. The brst result of this type is the Deligne-Serre theorem which
attaches (Artin) representations'af to holomorphic modular forms of weighit This has
recently been generalized by Goldring [28] to representatiorGldfn) obtained by base
change from holomorphic limits of discrete series of unitary groups.

2.2. Reciprocity. Number theorists canOt complain of a shortage of Galois representations.
The Ztale cohomology of algebraic varieties over a numberkogdtbvides an abundance of
#adic representations bf satisfying the two Fontaine-Mazur axioms. One of the Fontaine-
Mazur conjectures predicts that any irreducible representatibp dfatistying these axioms
is equivalent to a constituent ¢fadic conomology of some (smooth projective) varigty
overK . The reciprocity Conjecture 2.1 (a) has been tested almost exclusivelyaiising
from geometry in this way. The paradigmatic case in wiick Q andV is an elliptic curve
was discussed in the ICM talks of Wiles (in 1994) and Taylor (in 2002}he Fontaine-
Mazur conjecture itself has been solved in almosPalimensional cases whét = Q for
I that take complex conjugation to a matrix with determiratt Two di! erent proofs have
been given by Kisin and Emerton; both of them take as their starting point the solution by
Khare and Wintenberger of SerreOs conjectuzdimensional modular representations of
" . All of these results are discussed in a number of places, for example in [24, 46, 47]. |
will therefore concentrate on results valid in any dimengion

Let! : "¢ # GL(n, O) be a continuous representation with ‘tagents in ant-adic
integer ringO with maximal idealm and residue bell; letlg: "¢ # |GL(n, k) denote
the reduction of modulom. We say! is residually automorphidéf o % &, for some
cuspidal automorphic representatiorof GL (n, Ak ). The method for proving reciprocity
initiated by Wiles consists in proving theorems of the following kind:

Theorem 2.3(Modularity Lifting Theorem, prototypical statemenSupposdsis residually
automorphic. Then every lift &fto characteristic zero that satisbes axioms (1) and (2) of
Fontaine-Mazur, as well as

(1) a polarization condition;

(2) conditions on the size of the imagew(typically including the hypothesis thatis

4The nomenclature associated with the conjecture in this particular case, which predates the Fontaine-Mazur
conjecture, is a matter of considerable sociological and philosophical interest.
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absolutely irreducible); and

(3) ramibcation conditions at primes dividingtypically including a regularity hypothe-
sis)

is automorphic. In particular, if' itself satispes conditiond), (2), and (3), then" is
automorphic.

The method for proving such theorems is called the Taylor-Wiles methodr the Taylor-
Wiles-Kisin methoddepending on context, and is named after its inventors in the setting
when n = 2. The first theorems of this kind for arbitrary n were proved in [21, 70]. Together
with the results of [39] they imply the Sato-Tate theorem for elliptic curves over Q with non-
integral j -invariant (see below). Subsequent improvements have allowed for less restrictive
conditions in (2) and (3). The following theorem of Barnet-Lamb, Gee, Geraghty, and Taylor
[3] represents the current state of the art.

Theorem 2.4(Modularity Lifting Theorem). LetK be a CM Peld with totally real subbeld
KT, and letc ! Gal(K/K *) denote complex conjugation. Létbe as in 2.3. Suppose
I'" 2(n+1) andK does not contain a primitive-th root of 1. Supposé satisbes axioms
(1) and (2) of Fontaine-Mazur, as well as

() "¢ # "V %y, wherep is an!-adic character ofl - such thatu(c,) = #1 for
every complex conjugatiagy;

(2) The restriction ofgto! ¢ (1, is absolutely irreducible; and

(3) For any primev of K dividing! the restriction", of " to the decomposition group
Iy is potentially diagonalizable and il T -regular: ", hasn distinct Hodge-Tate
weights.

Supposeé is residually automorphic. Thehis automorphic.

Remark 2.5. This is not the most general statement — there is a version of this theorem when
K' is totally real, and condition (2) can be replaced by adequacy.

Remark 2.6. The first novelty is the simplification of condition (2) on the image of &
Thorne showed in [72] that the Taylor-Wiles-Kisin method works when the image of '@ is
what he called adequateand this condition is implied by the irreducibility condition (2) as
long as! " 2(n +1). The second novelty in 2.4 is the notion of potential diagonalizabil-
ity. This is roughly the requirement that, after a finite base change, ", for v dividing !, is
crystalline and can be deformed in a moduli space of crystalline representations to a sum of
characters. It is known that "y in the Fontaine-La! aille range (the setting of [21, 70]) and
ordinary " (the setting of [5, 27]) are potentially diagonalizable, but the condition is more
general. In particular, it is preserved under finite ramified base change, which allows for
considerable flexibility.

2.3. Potential automorphy. The need to assume residual automorphy places important re-
strictions on the application of theorems on the model of 2.3 to reciprocity. For some appli-
cations, however, it is enough to know that a given " is potentiallyresidually automorphic:
that" becomes residually automorphic after base change to an unspecified totally real or CM
Galois extension K //K . One can then often use a modularity lifting theorem to prove that
" | r,. is automorphic, in other words that " is potentially automorphiclf " is attached to



Automorphic Galois representations and the cohomology of Shimura varieties 375

amotive M, then L (s,!) = L (s, M) is given by an Euler product that converges absolutely
in some right half-plane. An application of Brauer’s theorem on induced characters then
implies that L (s,! ) has a meromorphicontinuation to the entire plane, and moreover (by a
theorem due to Shahidi and to Jacquet-Piatetski-Shapiro-Shalika) that L (s,!) has no zeroes
down to the right-hand edge of the critical strip.

Potential automorphy was introduced by Taylor in [68] in order to prove a potential
version of the Fontaine-Mazur conjecture for 2-dimensional Galois representations. The
method was generalized to higher dimensions in [39] and in subsequent work of Barnet-
Lamb. The idea is the following. A theorem of the form 2.3 can be applied to an "-adic
! that is residually automorphic. But it can also be applied if !| = !, is a member of a
compatible family {!,:} of "'-adic representations, where "' varies over all primes, provided
at least one ! |, in the family is known to be residually automorphic. It thus su! ces to find a
motive M of rank n such that

Hypothesis 2.7.17 v ! Fandly, w is known a priori to be residually automorphic for
some'; =",

Typically one assumes 11 \ is induced from an algebraic Hecke character. The motives
used in [39] are the invariants M+, under a natural group action, in the middle-dimensional
cohomology of the n# 1-dimensional hypersurfaces X with equation (depending on t, with
"t $ PI\{0,1,%})

fe(Xo,..,Xn) = (X +aa& X)) # N+ D)tXg... Xy =0 2.1

This Dwork familyof hypersurfaces was known to physicists for their role in the calculations
that led to the formulation of the mirror symmetry conjectures [11]; and they were known
to number theorists because Dwork had studied their cohomology in connection with p-adic
periods.

The isomorphism class of X depends on t"*! and one sees that their cohomology de-
fines a hypergeometric local system over P! \ { 0,1,%}. Properties of this local system
proved by a number of people, are used, together with a “local-global principle" due to
Moret-Bailly, to find a t over a totally real (or CM) Galois extension K 'YK such that M
satisfies Hypothesis 2.7.

Applying the method of potential automorphy is not always automatic. One has to satisfy
the conditions of Moret-Bailly’s theorem as well as conditions (1), (2), and (3) of 2.3. More
details can be found in [35] (which was written, however, before the simplifications of [72]
and [3]). Here are a few applications:

Theorem 2.8. LetK = @ and letII be a cuspidal holomorphic automorphic representation
of GL (2)q (attached to an elliptic modular form of weight& 2, say) to which one can
associate a compatible family 8fdimensional'-adic representations, ;7. Supposdl is

not obtained by automorphic induction from a Hecke character of an imaginary quadratic
beld. Thersym"!, 11 is potentially automorphic for ath & 1.

This theorem was proved first when k = 2 in [21, 39, 70], assuming II, is a Steinberg
representation for some V. This hypothesis was dropped, and was generalized to all kK in [5].
It follows from the arguments of Serre in [63] and from the non-vanishing of L (s, Sym"!)
mentioned above, that this implies the Sato-Tate conjecturr elliptic modular forms [5, 21,
39, 70]:
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Theorem 2.9. Let f be an elliptic modular newform of weightfor ! o(/N) (for someN),
and assume the-adic Galois representation s attached tof are not dihedral. For any
prime p not dividing .V, let ap( f) denote the eigenvalue of the normalized Hecke operator

atpon f. Letap(f) = ap(f)/Zp%, which is known to be a real number in the interval
[! 1,1]. Asp varies, thez,( f) are equidistributed irf! 1, 1] for the measure 1! t2dt.

In particular, if £ is an elliptic curve ove without complex multiplication, anti+ p!
ap(F) is the number of points & overFp, then the numberasp(E)/Zp% are equidistributed
inin[! 1,1]for the measure 1! #2dt.

The hypothesis that f has trivial nebentypus (is a form for ! o(/N)) is unnecessary and
was only included to allow for a simple statement. A version of 2.8 for Hilbert modular
forms was proved by Barnet-Lamb, Gee, and Geraghty, and they derived the corresponding
version of Theorem 2.9. All of these results were subsumed in the following theorem of
Patrikis and Taylor [59], a strengthening of one of the main theorems of [3]:

Theorem 2.10. Let K be totally real (resp. CM) and lefr-} be a weakly compatible
family of #-adic representations dfx (where# runs over bnite places of a number beld
M). Assume the- are pure of bxed weight (the Frobenius eigenvalues at an unramibed
place of normy are Weilgz -numbers); that they aré/7-regular; and that they satisfy an
appropriate polarization condition. Then there is a Pnite totally real (resp. CM) Galois
extensionk / K over which the family becomes automorphic.

The Hodge-Tate multiplicities of n-dimensional !-adic representations realized on the
cohomology of the Dwork family are at most 1; moreover, n has to be even, and each Hodge-
Tate weight between Oand n! 1occurs. Gri! ths transversality implies that such a condition
is inevitable when Hodge structures vary in non-trivial families. This appears to restrict
the applicability of the Dwork family to proving potential automorphy. However, it was
observed in [34], and more generally in [5], that it su! ces to prove thata given",; becomes
automorphic after tensoring with the Galois representation obtained by induction from an
automorphic Galois character attached to a Hecke character of an appropriate cyclic CM
extension K' /K. This observation was applied in the proof of 2.9 and more systematically
in [3], in both cases in order to replace the given Hodge-Tate weights of " by the set of
weights adapted to the cohomology of the Dwork family.

Remark 2.11. Let f be as in Theorem 2.9 and " the associated automorphic representation.
Theorem 2.9 is equivalent to the assertion that, as p varies over primes unramified for "y ; ,
the conjugacy classes of "y ¢ (F'roby), normalized so that all eigenvalues have complex ab-
solute value 1, are equidistributed in the space of conjugacy classes of SU(2). A version of
the Sato-Tate conjecture can be formulated for a general motive M; SU(2) is replaced by
the derived subgroup of the compact real form of the Mumford-Tate group MT'(M) of M.
In order to prove this conjecture for more complicated M T'(M) one would have to be able to
prove the corresponding generalization of Theorem 2.8, with the symmetric powers replaced
by the full set of equivalence classes of irreducible representations $ of AT (M)%" . But
even if the !-adic representation "  attached to M is HT -regular, $ #" y is generally
not HT-regular, and thus cannot be obtained by Theorem 2.2. Thus one has no way to start
proving potential automorphy of $ #" y once MT(M)%%" is of rank greater than 1.

2.3.1. p-adic realization of very general Galois representations.It was mentioned above
that the proof of 2.2 is completed by a p-adic approximation argument. One says more gen-
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erally that ap-adic representatiop : I'ks ! GL(n,@p) for someS is p-adically auto-
morphic if p = lim; p; (for example, in the sense of pseudo-representations, where the limit
can be in the Zariski or in the-adic topology), where eagh is an automorphic Galois rep-
resentation of'x s . The theory of eigenvarieties shows theddically automorphic Galois
representations vary ip-adic analytic families. The representatignsy of 2.2 areHT-
regular becausH is cohomological, but analytic families pfadically automorphic Galois
representations can specialize to representations that are Hodge-Tate but not regular, and to
representations that are not Hodge-Tate at all.

One can ask whether a givetis p-adically automorphic. There are discrete obstructions;
for example the set of ramibed primes is Pnite in gradic family. There are also sign
obstructions. Th@-dimensional Galois representations attached to an elliptic modular
form f areodd: detp ¢ (c) = " 1 whenc is complex conjugation. In other words, no
representatiop for which det p 1 (¢) = 1 can be obtained in the cohomology of a Shimura
variety. The signature of complex conjugation is constanp@dic analytic families of
Galois representations, and therefore represents an obstruction to realizing sueh an
representation asgaadically automorphic representation.

However, the direct sum of two even representations does not necessarily have such
a sign obstruction. Similar discrete invariants charactesiaglically automorphic Galois
representations in higher dimension, but they can be made to vanish upon taking appropriate
direct sums. Say is p-adically stably automorphic if p# p' is p-adically automorphic for
somep'. One knows what this means/if is a totally real or CM peld. If not, leky $ K be
the maximal totally real or CM subbeld, and sgy-adic representationis p-adically stably
automorphic if p# p'is the restriction td'x of a p-adically automorphic representation of
Tk,-

Question 2.12.Is every p-adic representation of I' that satisfies the Fontaine-Mazur ax-
ioms stably p-adically automorphic?

The main theorem of [30] states, roughly, thaery p-adic representation dfx is
Ostably potentially residually automorphic,O where the reader is invited to guess what that
means.

One can often debne analytic or geometric invariangsadic families by interpolation
of their specializations to automorphic points. Thus one dep+aatkc L-functions or Galois
cohomology (Selmer groups) pfadic families. Specializations to points not known to be
automorphic (e.g., because they are Hdf-regular) debne invariants of the corresponding
Galois representations.

2.3.2. Prospects for improvement.

(a) Condition (1) in Theorem 2.4 corresponds to the polarization condition in (b) of The-
orem 2.2. At present no one knows how to remove this condition and thus to prove the
reciprocity conjecture for all representations constructed in Theorem 2.2 (see, how-
ever, the articles [10] of Calegari and Geraghty and [31] of Hansen). Removing con-
dition (1) is suficient, and probably necessary, to show thatghg of Theorem 2.2
are irreducible for (almost) all

(b) Although we have seen that substitutes can be found for residual irreducibility in ap-
plications to compatible families, it remains a major obstacle for many applications. In
addition to the argument applied in Skinner-Wiles #adimensional representations
of I'p, Thorne has recently found a new method based on level raising [73].
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(c) The article [70] replaces the very deep questions regarding congruences between au-
tomorphic forms of different levels (“level-raising”, which an earlier version of [21]
proposed to solve by generalizing Thara’s Lemma on congruences between elliptic
modular forms) by a careful study of the singularities of certain varieties of tame rep-
resentations of local Galois groups. But this comes at the cost of losing control of
nilpotents in the deformation rings. In particular, current methods cannot classify lift-
ings of p to rings in which ¢ is nilpotent. This may be important if one wants to extend
the results of this section to the torsion representations constructed by Scholze.

(d) Dieulefait has expanded on the ideas used by Khare and Wintenberger to prove the
Serre conjecture and has proved some astonishing results. For example, he has proved
base change of elliptic modular forms to any totally real extension [23]. The methods
of [46] and of [23] do not assume residual automorphy but actually prove it in the
cases they consider. It is not yet known whether or not these methods can be applied
in higher dimension.

(e) The authors of [3] ask whether every potentially crystalline representation is poten-
tially diagonalizable. An affirmative answer would expand the range of their methods.
The regularity hypothesis of Condition (3) seems insuperable for the moment. At
most one can hope to prove reciprocity for representations like those constructed in
[28], with Hodge-Tate multiplicities at most 2. The recent proof by Pilloni and Stroh
of the Artin conjecture for (totally odd) 2-dimensional complex representations of ! ¢ ,
when K is totally real, is the strongest result known in this direction. As long as one
has no method for constructing automorphic Galois representations with Hodge-Tate
multiplicities 3 or greater, the reciprocity question for such representations will remain
inaccessible.

3. Critical values of automorphic L -functions

3.1. Critical values and automorphic motives. Let M be a (pure) motive of rank n over
a number field K, with coefficients in a number field E. By restriction of scalars we can
and will regard M as a motive of rank n[K : Q] over Q. The values at integer points of
the L-function L (S, M) are conjectured to contain deep arithmetic information about M .
If, for example, M = M (A) is the motive attached to the cohomology in degree 1 of an
abelian variety A, then the value, or more generally the first non-vanishing derivative, of
L(s,M (A)) ats = 1is predicted by the Birch-Swinnerton-Dyer conjecture. This is the only
critical value of L (S, M (A)), in the sense of Deligne (the importance of critical values had
previously been noted by Shimura). Deligne formulated his conjecture on critical values in
one of his contributions to the 1977 Corvallis conference. We follow Deligne in working
with motives for absolute Hodge cycles; thus M is by definition a collection of compatible
realizations in the cohomology of smooth projective algebraic varieties. The realization in
{-adic cohomology gives the Galois representation p; v on an ¢-adic vector space M, and
therefore determines L (S,M ). Extension of scalars from Q to C makes M a motive over
C, whose cohomology is thus a direct factor of the cohomology of a complex manifold,
whose topological cohomology is a Q-vector space called Mg (Betti realization). Complex
conjugation on the points of M (C) acts on Mg as an involution F, . As a motive over Q,
M also has the algebraic de Rham cohomology, a Q-vector space Mgr with a decreasing
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Hodge filtration ... FIMgr ! F% IMyr ... by Q-subspaces. For any integer m let M (m)
denote the Tate twist M " Q(m). Hodge theory defines comparison isomorphisms

(M. :M(mM)s" C# M(m)wr" C.

This isomorphism does not respect the rational structures on the two sides. By restricting
I (m)m,» tothe +1-eigenspace of F+ in M (m)g and then projecting on a certain quotient
M (m)gr/F M (m)gr " C, one defines an isomorphism between two complex vector spaces
of dimension roughly half that of M, provided M (m) is critical in Deligne’s sense. The
determinant of this isomorphism, calculated in rational bases of the two sides, is the Deligne
period Ca (M (m)). Itis a determinant of a matrix of integrals of rational di! erentials in M 4g
over rational homology cycles, and is well defined up to Q¥ -multiples. More generally, if
M is a motive with cok cients in a number field E — in other words, if there are actions of E
on each of the vector spaces Mg, Mgr, M|, compatible with the comparison isomorphisms
— then there is a Deligne period ¢t (M (m)) well-defined up to E® -multiples; moreover,
L(s, M) then defines an element of E " C, as in [22]. In the following discussion we will
drop the subscript and just write ¢ (M (m)) for the Deligne period with coe" cients.

We call s = m a critical valueof L (s, M) if M (m) is critical. The set of critical m can
beread o! from the Gamma factors in the (conjectural) functional equation of L (s, M) ([22],
Definition 1.3). When M = M (A), s = 1 is the only critical value. Deligne’s conjecture is
the assertion that

Conjecture 3.1([22]). If m is a critical value of the motiv®l with coé cients inE, then
L(m,M)/c* (M (m)) %E®.

Beilinson’s conjectures express the non-critical integer values of L (S, M) at non-critical
integers in terms of the motivic cohomology (higher algebraic K -theory) of M . Automor-
phic methods give very little information about non-critical values of the L-functions of
motives that can be related to automorphic forms, and this survey has nothing to say about
them. On the other hand, the de Rham realizations of the motives that arise in the coho-
mology of Shimura varieties are given explicitly in terms of automorphic forms. One can
therefore state versions of Deligne’s conjecture for certain of these motives entirely in the
language of automorphic forms.5 The literature on special values of L -functions is vast and a
book-length survey is long overdue. Automorphic versions of Deligne’s conjecture represent
arelatively small segment of the literature that is still too extensive for treatment in the space
of this article. The proofs are generally quite indirect, not least because one can rarely write
down Mg in terms of automorphic forms. When M is realized in the cohomology (with co-
e" cients) of a Shimura variety S(G), one can occasionally define non-trivial classes in M g
by projecting onto M the cycles defined by Shimura subvarieties S(G% ! S(G). Integrating
di! erential forms on S(G) & S(G) over the diagonal cycle S(G) amounts to computing a

SStrictly speaking, Deligne’s conjecture only makes sense in the setting of a theory of motives that is the sub-
ject of very di" cult conjectures. For example, one expects that if M and M ' are motives such that the triples
(Mg, Mgr ., I (M)y,» )and (ML, Mg, 1 (m)y:~ ) are isomorphic, then M and M ' are isomorphic as mo-
tives. This would follow from the Hodge conjecture. Similarly, one assumes that L (5,M ) = L (s,M ') implies
that M | M '; this would follow from the Tate conjecture.

Blasius’s proof of Deligne’s conjecture for L -functions of Hecke characters of CM fields is carried out within
the framework of motives for absolute Hodge cycles. It is practically the only authentically motivic result known in
this direction.
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cohomological cup product. In this brief account we limit our attention to a class of motives

whose Deligne periods can be factored as products of cup products of this kind.
SupposeK is a CM Peld. As explained in 2.1.1, most of the representations of

! ¢ are realized in the cohomology of a Shimura varieBé&) attached to unitary groups

G. Along with then-dimensional Galois representation this construction yields a candidate

for the rankn motive M (" ). Originally M (" ) is dePned oveK ; one obtains a motive

RM (") = R/ oM (" ) by restriction of scalars t@Q, taking into account the theorem of

Borovoi and Milne on conjugation of Shimura varieties (the Langlands conjecture). The

spaceRM (" )gqr andRM (" )g satisfy analogues of conditions (1) and (3) of Theorem

2.4. The regularity condition (3) implies there is a set of integgrs q, < --- < Qn

such thatdimg FIRM (" )gr/F 9T RM (" )gr = 1 if and only if g = g for somei, and

the dimension i$) otherwise. Her& = E (" ) is the Pbeld of coke cients ofRM (" ) (more

precisely,E is a bnite product of number Pelds). We choose a nonQerational E -basis

"i of F4RM (" )gr/F % RM (" )gr, View " as a (vector-valued) automorphic form on

G(Q)\G(A), and letQ; (" ) =< ";,"; > denote its appropriately normalizég inner

product with itself.

Conjecture 3.2. Up to multiplication byE' , eachQ; (" ) depends only on the automor-
phic representatiofi of GL (n) and not on the realization in the cohomology of a Shimura
variety.

This conjecture is implied by the Tate conjecture. It has been veribed in many cases for
the (holomorphic) perio®@, (" ). The author has partial results for genepa(" ).

Given any motiveM of rank n satisfying conditions (1) and (3) of 2.4 we can debne
invariantsQ; (M ) in the same way, and a determinant factdvl ) (for this and what follows,
see [32, 36], and section 4 of [29]). For any inte@ér r ! n we write

LetM ®be a second motive of ramié, satisfying conditions (1) and (3) of 2.4. Then for any
integerm critical for R, o(M " M %) there is a factorization (cf. [29] (4.11)):

¢ (R(M " M¥(m)) # (28 )cmnn ) . P (M) " Pt (M 9P (3.1)
r=1 r'=1

where# means that the ratio of the two sides lies in the multiplicative group of the co-
el cient Peld,c(m,n,n® is an explicit polynomial inm and the dimensions) ! a, :=
a(r,M,M % b :=b(r¥M,M % and

a ! n% B! on.

r r!

Debning" as above, there is an (ad hoc) determinant fegtor), and we let
!
Por(")=a(" )"t Qi(").

i"r

An automorphic version of DeligneOs conjecture is
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ConJecture 3.3. Let! and! ' be cuspidal automorphic representations@f.(n)x and
GL(n')k , satisfying the hypotheses of Theorem 2.2 (b)skék a critical value of

n+n'" 2

| 1!
5 L #).

L(s, R o(M(1 )! M(1 ") = L(s"

Then

n"1 n" 2
L(m, R o(M( )1 M(11) 8 (@ri)™00 ) T Pyr (1) T Peer(t P,

r=1
with a;, b;- asin(3.1).

The integersu; andb;. of (3.1) are determined purely by the relative position of the
Hodge decompositions aff;r ! C and Mgz ! C (and donOt depend am). Suppose
M = RM("), M' = RM(!"), with ! and! ' as in (3.3). The regularity hypotheses
imply that there are Pnite-dimensional representatiofié s ) andW"'(! § ) of GL(n)xk
andGL(n')k , respectively, such thats andW (! s ) (resp.! § andW'(! § )) have the
same inbnitesimal characters. Téeandbd;, can be computed explicitly in terms of the
highest weights ofV (! s ) andW'(! § ). For example, suppose = n" 1 and

Homg (n" 1k %c) (W('s )! W(l g ),C)%0. (3.2)
Thenai =b =1,1&i&n" 1;1&4 &n" 2 ap =by 1 =0.

Theorem 3.4. Supposéy is an imaginary quadratic beld. Lét and! ' be as in 3.3. Sup-
pose moreover that the inbnitesimal character‘sg)fand| s satisfy 3.2 and are duciently
regular. Then there are constantgm, ! g ,! § ) such that

L(m, Ry oM )1 M)/ (m,! s ! Hp#r HP#r N Q (3.3)

for every critical valuen.

This is a reinterpretation of Theorem 1.2 of [29]. There the invaridats(! ) are re-
placed by complex numbe®(") (! ), which are Petersson square normshofomorphic
automorphic forms on unitary Shimura varieties dfelient signatures (and it is shown that
the quotient in (3.3) lies in a specibc number beld). Naturally one expects the constants
c(m,! g ,! s ) to be powers oRmi. The Tate conjecture implies an identity between the
two kinds of invariants, and this has been proved (up to unspecibed archimedean factors, and
up toQ-multiples) in [33] (and subsequent unpublished work).

The methods of [29] are based on interpreting the Rankin-Selberg integi@lfor) #
GL(n" 1) as a cohomological cup product. Such arguments have been used previously
by Mahnkopf and Raghuram; see [60] for the most general results in this direction. Earlier
results on this problem were conditional on the conjecture that certain archimedean zeta inte-
grals did not vanish identically. SunOs recent proof of this conjecture [66] has revived interest
in the problem and one can expect rapid progress in the next few years. For general number
Pelds one does not have the analogues of the invariantd ) and the results of [60] are
expressed in terms of period invariants obtained by comparing the cohomological rational
structure of with one debPned by Whittaker models. The (mild) regularity hypothesis of 3.4
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is required in the comparison of these Whittaker period invariants with the motivic invariants
P, +(1). Similar arguments should sice to treat the cases of Conjecture 3.3/fot n" 1

that satisfy an analogue of (3.2), for general CM belds. (The case wheré was treated

by the author in a series of papers, starting with [32], and is used crucially in the proof of
Theorem 3.4.) The full scope of the methods of [29] is not yet clear, but it is certain that it is
not limited to the situation of (3.2). The identipcationcofm,! 4 ,! & ) with the invariant

(2! 5)s(mnn $1) s |ikely to follow from these methods as wéll.

3.2. How general are these results? Only a restricted class of Galois representations can
be obtained using the cohomology of Shimura varieties, and only those that can be realized
directly in the cohomology are associated to motives that admit an automorphic interpreta-
tion. The Rankin-Selberd-functions described in the previous section, along with a few
related constructions (symmetric and exterior squares and adjdimctions), seem to be
the only ones whose critical values can be analyzed by automorphic methods. RaghuramOs
results in [60] apply only under the hypothesis (3.2). It should be straightforward to gen-
eralize his methods to paits, ! “ where! is cuspidal and " is an essentially tempered
cohomological Eisenstein series, as in [29] (or earlier work of Mahnkopf). If RaghuramOs
results could be extended to cases where neltheor! * is cuspidal, then the hypothesis
(3.2) would be superf3uous (in Theorem 3.4 as well).

A motivic analysis of critical values of Rankin-Selbefgfunctions, as in Theorem 3.4,
has thus far only been carried out for CM belds. Bhagwat has proved an analogue of the
relation (3.1) whenkK = Q, following earlier work of Yoshida (see the appendix to [60])
and similar factorizations must hold for totally real pelds. As far as | know, no one has
proposed automorphic interpretations of the terms that occur in BhagwatOs factorization.
For! satisfying the polarization condition as in (b) of Theorem 2.2 it should be possible to
interpret some of them as periods of motives realized in the cohomology of Shimura varieties
attached to special orthogonal groups of signaf@re:). In the absence of a polarization
condition, Shimura varieties seem to be of no help.

3.3. Exact formulas for the central critical value. The conjectures of Bloch-Kato and
Fontaine-Perrin-Riou give exact formulas for special values of mofivfanctions. The
algebraic quotientd.(m, M) /c* (M (m)) and their generalizations to non-critical values
are expressed explicitly as products of local and global algebraic factors debned in terms
of Galois cohomology. For the central critical value these expressions generalize the Birch-
Swinnerton-Dyer conjecture for the valuesat 1 of L(s, M(A)), in the notation of the
previous section.

Beginning with the thesis of Waldspurger, exact formulas have also been found for cer-
tain central values of automorphic-functions. The conjecture of Ichino-lkeda, and its
version for unitary groups formulated by N. Harris, [42, 45] give exact formulas for central
values in the framework of the Gan-Gross-Prasad conjectures [26]. In what faKoiss
a CM Pbeld. We change notation and letdenote a cuspidal automorphic representation
of GL(n)x that descends to a (cuspiddl}packetP, y of a givenG = U(V), viewed
as group overk*, with dimV = n. Similarly, ! " is an automorphic representation of
GL(n" 1)k obtained by base change from a (cuspidapacketP; : y: of G = U(V"). It

6Note added in proof. This has now been carried out, at least when thecimogs are su ciently regular, by
Lin Jie.
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is assumed thdt” embeds in/ as a non-degenerate hermitian subspace of codimemsion
Foranyr € P, y andn’ € B .y, the pairing

I=7@n - C: fof — Ff(ghdg', fen, ffen (3.4)
G/ (KH)\G'(A)

is invariant under the diagonal action Gf(A). One of the Gan-Gross-Prasad conjectures
asserts that the space of such invariant pairings is of dimedgmrexactly one paitV, V')

and one pai(r,7’) € B v x Py, and that the lucky pair is identibed by a compli-
cated formula involving root numbers. The non-archimedean part of this conjecture has
been proved by R. Beuzart-Plessis, following the method used by Waldspurger to solve the
analogous conjecture for special orthogonal groups [7, 74]. Thus if one bPxes a non-trivial
pairingB : 7 @ ©' — C, the pairingl debned in 3.4 is a multiple @8. The Ichino-lkeda
Conjecture can be seen as a determination of this multiple. In the statement of the conjecture,
the superscript denotes contragredient; all integrals are taken with respect to Tamagawa
measure.

Conjecture 3.5([45]). Letf e =, f' € «, f¥V € «¥, "V € «V, and suppose all four
vectors are factorizable. Then

I(f7f/).1'(f\/7f/,\/)

< S Y > fL Y >

L(1,T1 x I7)

=27 H Zy(f, f/?f\/,f’,\/) AN L(l’ﬂ"Ad)L(l,ﬂJ,Ad).

vES

Here< e, @ >, are thel, pairings, the facto" is trivial whenII andIIl’ are cuspidal
but not in generalS is the set of ramibed primes far, 7, and the chosen vectors, includ-
ing archimedean primes, thg&, for v € S are normalized integrals of matrix doeients
attached to the datd\ is a special value of a Pnite product of abeliafunctions (theL-
function of the Gross motive), the numerator on the right-hand side is the Rankin-Selberg
product forGL(n) x GL(n — 1), and the factors in the denominator are the Langlands
L-functions forG andG’ attached to the adjoint representations of tiiegroups.

Here and elsewheré( s, o) denotes the non-archimedean Euler product. Hfenctions
in the right-hand side are given the unitary normalization. Thus the complefadction
A(s) = Loo(s,IIxIT')- L(s, II®II') in the numerator of the right-hand side always satisbes
A(s) = £AQ — s). WhenlI andIIl’ satisfy (b) of 2.2, however, there is a second (motivic)
normalization as well, in which the value= % is replaced by an integer value, and all the
values ofL-functions that occur in the right-hand side are critical.

Conjecture 3.5 is of no interest when the sigr-i5 because the numerator vanishes triv-
ially. When theL-function is motivic, there have been proposals for an arithmetic substitute
for the conjecture in this case, wi]ih(%, ) replaced by its derivative at = % along the
lines of the Gross-Zagier conjecture and subsequent work. When the sigjntise conjec-
ture rebPnes the global Gan-Gross-Prasad conjecture, which asseﬁ(s%thﬁtx Imy=o0if
and only if the pairing of 3.4 is trivial.

WhenL(%, IIxII') # 0, Conjecture 3.5 gives an exact expression for its value, provided
one can make good choices of the test vecforg, fV, f/V and can control the local zeta
integrals. It is natural to speculate that these zeta integrals can be interpreted in terms of
local Galois cohomological information, and that whHérandII’ are attached to motives,
the expressions on the two sides of Conjecture 3.5 can be matched termwise with corre-
sponding expressions in the Bloch-Beilinson and Bloch-Kato conjectures. The local factor
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Z,(f,f ', f",f"") is the integral of the matrix cdiécient of r, attached to the paif, f, )
against the matrix céicient ofr, attached t¢f,f." ). The following question is deliber-
ately vague.

Question 3.6. For any given pair of local (ramified) representations m,, m,, is there a
quadruple f,f .t f)" such that the local zeta integral Z,(f,f *,f" ,f'" ) exactly equals
the local Galois-cohomological factor in the Bloch-Kato conjecture?

As explained in [37], the expressions on the left-hand side are algebraic multiples of
invariants calledGross-Prasad periods that depend only oh and! ', provided the test
vectors are chosen to be rationally normalized (with respect to coherent cohomology). The
denominators are closely related to e, debned above. Combining Conjecture 3.5 with
Conjecture 3.3, one gets conjectural expressions for the Gross-Prasad periods as well in
terms ofPy , (7) andPy . (7'); see [37], Conjecture 5.16.

In order to compare the local terms of Conjecture 3.5 with the Galois-cohomological
data of the Bloch-Kato conjecturiitegral normalizations of the test vectors are needed. It
is well known, however, that even the module of elliptic modular forms with integral modular
Fourier codficients is not spanned by Hecke eigenfunctions. This is the phenomeanen of
gruences between Hecke eigenvalues foffdrent automorphic representations, which is the
subject of theorems of the form 2.3, and it is no less relevant to automorphic representations
of groups other thaGL (2).

3.3.1. Adjoint L -functions. The denominator of the Ichino-lkeda formula is relevant to
the problem of integral normalization of test vectors. The peirt 1 is the only criti-

cal value of the adjoinL -functions that occur there. Supposéhas an associated motive

M (! ) = M (x). Then for any prim¢, the Bloch-Kato conjecture identiPes thadic val-
uation of the quotient of (1, =, Ad) by an (integrally normalized) Deligne period with the
order of a Galois cohomology group that is supposed to count the numieadié¢ defor-
mations of the residual Galois representatmn.. Whenn = 2 andK is totally real, a
version of this conjecture has been proved by Diamond-Flach-Guo and Dimitrov, combining
the methods of Theorem 2.4 with the results of [44].

HidaOs paper [44] was the starting point for his theory of families of modular forms, and
was the Prst to establish a relation between the critical value of the atjdiniction and
congruences between modular forms. In dimension 2, the special cases of the Ichino-
Ikeda conjecture proved by Wei Zhang in [75] are used in [29] to relate the Whittaker period
of a! satisfying (b) of Theorem 2.2 th(1, 7, Ad), up to rational multiples. One hopes
this provides a starting point for determinihgl, 7, Ad) up to units in number belds, as
required by the Bloch-Kato conjecture.

3.4. Two speculative remarks on automorphic p-adic L -functions.

Remark 3.7. DeligneOs conjecture is the starting point of the constructiqraafic L -
functions. The algebraic values on the left-hand side of the identify in 3.1, suitably nor-
malized, are predicted to extend analytically whenéMeand m vary in p-adic families.

The literature is vast but fragmentary, and the authorOs ongoing project with Eischen, Li,
and Skinner will only add one (rather bulky) fragment to the collection when it is Pnished.
Current plans are limited terdinary (Hida) families, but ultimately one expects the method

to extend to completely general families. In particular, spekdic L -functions could be
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specialized to the “very general” p-adic representations of 2.3.1. Moreover, using Brauer in-
duction, one could even attach a p-adic L-functions to a motivic Galois representation pj, as
that is potentially p-adically automorphic. Although such a function would have no obvious
connection to the complex L-function of M, it could conceivably be related to the Galois
cohomology of p, ar.

Remark 3.8. One can study the behavior of the right-hand side of Conjecture 3.5 when II
and II' vary in p-adic families. Given the right choice of data in the local zeta integrals at
primes dividing p, the result should be a p-adic meromorphic function of IT and IT'. Can this
function be constructed directly on the left-hand side of the identity?
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