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Introduction

This is a revised version of the articles “Construction of automorphic Galois
representations I,II” by Michael Harris posted at the site

http : //www.institut.math.jussieu.fr/projets/fa/bp0.html

The present version is still provisional, as the second proof of Theorem 3.2.5 depends
on a theorem that at the time of this writing has not yet been committed to print;
however, the first proof, based on [Ch], is complete.

1. Construction of Galois representations

under simplifying hypotheses

Let F be a totally real field, K/F a totally imaginary quadratic extension, d =
[F : Q], c ∈ Gal(K/F ) the non-trivial Galois automorphism. Let n be a positive
integer and G = Gn be the algebraic group RK/QGL(n)K. Let g = Lie(G(R)),
K∞ ⊂ G(R) the product of a maximal compact subgroup with the center ZG(R).
We consider cuspidal automorphic representations Π of G satisfying the following
two hypotheses:

General Hypotheses 1.1. Writing Π = Π∞ ⊗ Πf , where Π∞ is an admissible
(g, K∞)-module, we have

(i) (Regularity) There is a finite-dimensional irreducible representation W (Π) =
W∞ of G(R) such that

H∗(g, K∞; Π∞ ⊗ W∞) 6= 0.

(ii) (Polarization) The contragredient Π∨ of Π satisfies

Π∨ ∼
−→Π ◦ c.

We next make the following temporary hypotheses:

Special Hypotheses 1.2.

(1.2.1) K/F is unramified at all finite places (in particular d > 1).
(1.2.2) Πv is spherical (unramified) at all non-split non-archimedean places v of K.
(1.2.3) The degree d = [F : Q] is even.
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2 CONSTRUCTION OF AUTOMORPHIC GALOIS REPRESENTATIONS, II

The irreducible representation W (Π) factors over the set Σ of real embeddings
of F

W (Π) = ⊗σ∈ΣWσ,

where Wσ is an irreducible representation of G(K⊗F,σ R)
∼
−→GL(n, C)×GL(n, C).

The highest weight of Wσ is denoted µ(σ). It can be identified in the usual way
with a pair of non-increasing n-tuples of non-negative integers (µ(σ̃), µ(σ̃c)), one
for each extension σ̃ of σ to an embedding of K, where we write

µ(σ̃) = (µ1(σ̃) ≥ µ2(σ̃) ≥ . . . µn(σ̃)).

Moreover, the polarization condition implies that one of the n-tuples diagrams is
dual to the other, in other words that

µi(σ̃
c) = −µn−i−1(σ̃).

Special Hypothesis 1.3. For at least one σ ∈ Σ, the highest weight µ(σ) is
sufficiently far from the walls; in practice, it suffices to assume µ(σ) is regular, i.e.
µi(σ̃) 6= µj(σ̃) if i 6= j.

Let K be a p-adic field, WDK its Weil-Deligne group. Let A(n, K) denote the set
of equivalence classes of irreducible admissible representations of GL(n, K), and let
G(n, K) denote the set of equivalence classes of n-dimensional Frobenius semisimple
representations of WDK . We denote by

L : A(n, K) → G(n, K)

the local Langlands correspondence, normalized to coincide with local class field
theory when n = 1 in such a way that a uniformizer of K× is sent to a geometric
Frobenius.

The following result has now been proved in several stages (articles [L.IV.1],
[CHL.IV.2], [CHL.IV.3] of Book 1, and especially [S], of which an expository account
will appear in Book 2.

Theorem 1.4. (i) Suppose n is odd and Π satisfies Hypotheses (1.1) and (1.2).
Then there is a number field E(Π) and a compatible system ρλ,Π : ΓK → GL(n, E(Π)λ)
of λ-adic representations, where λ runs through the finite places of E(Π), such that

(a) For all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ),

ρF−ss
λ,Π |Γv

∼
−→L(Πv ⊗ | • |

1−n

2

v ).

Here the superscript F−ss denotes Frobenius semisimplification.
(b) For all finite primes v of K dividing NE(Π)/Q(λ), ρλ,Π |Γv

is de Rham,
and its Hodge-Tate numbers have multiplicity at most one (i.e., ρλ,Π is
Hodge-Tate regular and are determined by Π∞, or equivalently by W (Π), in
accordance with the recipe given in (1.5), below.

(c) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vector
fixed by a hyperspecial maximal compact subgroup of GL(n,Kv). Then ρv :=
ρλ,Π |Γv

is crystalline, and if ϕ denotes the smallest linear power of the
crystalline Frobenius of Dcrys(ρv) then

det(T − ϕ) = det(T − L(Πv ⊗ | • |
1−n

2

v )(Frobv)).

(d) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vector
fixed by an Iwahori subgroup of GL(n,Kv). Then ρλ,Π |Γv

is semistable.
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(ii) If n is even, the same conclusions hold as in (i), provided Π in addition
satisfies Hypothesis 1.3.

When Π satisfies the additional hypothesis that Πv0
is square-integrable for some

finite place v0, then this theorem is mostly proved in [HT], extending an earlier
theorem due to Clozel and Kottwitz [C,K2] obtaining (a) at most places where
Π is unramified. The theorem is completed in [TY]. What we here call ρλ,Π is
the representation denoted Rℓ(Π

∨) in [HT]. The compatibility (a) with the local
Langlands correspondence is due in general to Shin [S]. A weaker version of Theorem
1.4 with local compatibility at almost all finite places is deduced in [CHL.IV.3] from
the results of [L.IV.1] and [CHL.IV.3], using the methods of [K1].

1.5 Hodge-Tate numbers of automorphic Galois representations.

Fix a prime λ of the coefficient field E(π), say of residue characteristic p. The
automorphic Galois representation ρλ,Π constructed in Book 2 is obtained in the co-

homology of a geometric p-adic local system W̃p(Π) on a Shimura variety, obtained
in a standard way from the finite-dimensional representation W (Π) introduced
above. It is therefore of geometric type, in the sense of Fontaine and Mazur: each
ρλ,Π is unramified outside a finite set of places of K, and at every place dividing
the residue characteristic of λ, ρλ,Π is de Rham. The latter fact is a consequence
of the comparison theorems of p-adic Hodge theory. For the same reasons, ρλ,Π is
semistable at a prime v dividing the residue characteristic of λ such that Πv has
Iwahori invariants, and when Πv is unramified, it is even crystalline and the second
part of Theorem 1.4 (c) holds by its part (a) and a theorem of Katz-Messing.

In particular the Hodge-Tate numbers can be read off from the Hodge numbers of
the de Rham cohomology of the flat vector bundle W̃ (Π) associated to W (Π). The

comparison of W̃p(Π) and W̃ (Π), and therefore the determination of the Hodge-Tate
numbers from the highest weights µ(σ) of Wσ, presupposes a dictionary relating

complex and p-adic places of K. In [HT] this is given by an isomorphism ι : Q̄p
∼

−→C.
For what follows it suffices to identify the algebraic closure of Q in Q̄p with the field

of algebraic numbers in C. Then the p-adic embeddings of Q, and in particular of
K, are identified with the complex embeddings; if s is an embedding of K in Q̄p,
we write ιs for the corresponding complex embedding.

Let s be an embedding of K in Q̄p, and let DdR,s denote Fontaine’s functor from

representations of Γs = Gal(Q̄p/s(K)) to filtered Q̄p ⊗Qp
E(π)λ-modules:

DdR,v(R) = (R ⊗Qp
BdR)Γs .

The Hodge-Tate numbers of R (with respect to s) are the j such that grjDdR,s(R) 6=
(0). Then in the situation of Theorem 1.4, the Hodge-Tate numbers of ρλ,Π with
respect to s are the j of the form

(1.6) j = i − µn−i(ι(s)
c), i = 0, . . . , n − 1.

This is to be compared to part 4 of Theorem VII.1.9 of [HT]; the replacement of
ι(s) by ι(s)c corresponds to our replacement of Π by Π∨ in the definition of ρλ,Π.

Suppose n is even but Π does not satisfy Hypothesis 1.3. Then we expect to
prove the following theorem in Book 2.
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Expected Theorem 1.7. Suppose Π satisfies Hypotheses (1.1) and (1.2). Then

there is a number field E(Π) and a compatible system ρλ,Π : ΓK → GL(n(n−1)
2

, E(Π)λ)
of λ-adic representations, where λ runs through the finite places of E(Π), such that

(a) For almost all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ)
at which Πv is unramified, ρλ,Π is an unramified representation, and

ρss
λ,Π |Γv

∼
−→∧2 L(Πv)(2 − n).

(b) For all finite primes v of K dividing NE(Π)/Q(λ), ρλ,Π |Γv
is de Rham.

(c) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vec-
tor fixed by a hyperspecial maximal compact subgroup of GL(n,Kv). Then
ρλ,Π |Γv

is crystalline.

This theorem is equally valid for odd and even n, but is a consequence of Theorem
1.4 when n is odd.

Expected Theorem 1.7 is the Galois counterpart of one of the theorems about
stable base change for unitary groups proved in [L.IV.1]. The consequence for
Galois representations, using the techniques of Kottwitz in [K1], will be derived in
Book 2.

The remainder of this note explains how to extend the conclusions of Expected
Theorem 1.4.

2. An application of eigenvarieties and

p-adic families of Galois representations

In this section we recall the main result of [Ch] (using Theorem 1.4 above).

Let K/F be a CM quadratic extension of a totally real field, satisfying Special
Hypotheses (1.2.1) and (1.2.3), and assume n even. These hypotheses imply by a
standard Galois cohomological argument (cf. Harris’ introduction to Book 1) that

Lemma 2.1. There exists a hermitian space V0/K relative to the extension K/F
such that the unitary group G0 = U(V0) satisfies

(i) For all finite places v, G0(Fv) is quasi-split and splits over an unramified
extension of Fv; in particular, G0(Fv) contains a hyperspecial maximal com-
pact subgroup.

(ii) For all real places v, G0(Fv) is compact.

Moreover, G0 is unique up to isomorphism.

By Labesse [L.IV.1], any Π satisfying Hypotheses (1.1) and (1.2) admits a strong
descent to the unitary group G0.

Fix ℓ a finite prime and consider the following hypothesis on a Π satisfying
Hypotheses (1.1).

Special Hypotheses 2.2. There is a place v0 of F dividing the rational prime ℓ
such that

(2.2.1) v0 splits in K,
(2.2.2) If v is a place of K dividing v0, Πv has nonzero Iwahori-invariants.

We fix a pair of embeddings ι = (ιℓ, ι∞) of Q into Qℓ and C. The following
theorem is [Ch, Thm. 3.3 & 3.5]. The main ingredient in its proof is the construction
of certain ℓ-adic eigenvarieties of the unitary group G0. The inertial part in (a’)
below, including the assertion about the monodromy operator, is due to Belläıche-
Chenevier [BC].
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Theorem 2.3. Suppose Π satisfies Hypotheses (1.1), (1.2) and Special Hypotheses
(2.2). Then there is a semisimple continuous Galois representation ρι,Π : ΓK →

GL(n, Qℓ) such that

(a′) For all finite primes v of K of residue characteristic prime to ℓ,

ρF−ss
ι,Π |Γv

≺ L(Πv ⊗ | • |
1−n

2

v ).

Moreover, the assertion about Hodge-Tate numbers in Theorem 1.4. (i) (b) holds,
as well as the whole of (b), (c) and (d) for all finite primes v of K above ℓ but not
dividing v0.

If ρ = (s, N) and ρ′ = (s′, N ′) are two Weil-Deligne representations, we refer to
[Ch] §3.1 for the precise definition of the dominance relation ρ ≺ ρ′. Let us simply
say here that it implies that s ≃ s′ and that N is in the Zariski-closure of the
conjugacy class of N ′.

Remark 2.4. Assertion (a′) of Theorem 2.3 is weaker than compatibility with
the local Langlands correspondence. We return to this point at the end of §3.

3. Removal of Special Hypotheses

3.1. Removal of Special Hypotheses 1.2.
Let now K/F be any CM quadratic extension of a totally real field, and let Π be

an automorphic representation of GL(n,K) satisfying Hypothesis 1.1. The term S
general is defined in [So, Definitions 1 and 3]

Proposition 3.1.1. There is a finite set S of places of F and an S-general collec-
tion. I of totally real quadratic extensions Fi/F such that, for each Fi ∈ I, letting
Ki = Fi · K, Πi the base change of Π to Ki, the triple (Fi,Ki, Πi) satisfies Special
Hypotheses 1.2. Moreover, we can assume that, for every v ∈ S and every Fi ∈ I,
either v splits in K/F or the unique extension of v to K, denoted vK, splits in Ki.

Proof. Let S be the set of primes of v at which (1.2.1) or (1.2.2) fails: either v
ramifies in K/F , or v stays prime in K and the corresponding component ΠvK

is
ramified. We take I to be the set of totally real quadratic extensions Fi/F with

the property that, for all v ∈ S, Fi,v
∼

−→Kv. It is obvious that this set has the
properties claimed.

Theorem 3.1.2. Let Π be an automorphic representation of GL(n,K) satisfying
Hypothesis 1.1 and Special Hypothesis 1.3 if n is even. Then the conclusions of
Theorem 1.4 also hold for Π.

(Assuming Expected Theorem 1.7) If n is even and satisfies Hypothesis 1.1, then
the conclusions of Expected Theorem 1.7 also hold for Π.

Proof. The first part is deduced from Theorem 1.4 and Lemma 1 of [So] exactly
as in [HT], pp. 229-232. We omit the details, since the more complicated case of
a general solvable extension is treated in the next section. The second assertion is
deduced from Expected Theorem 1.7 and Proposition A.1 in the same way.

3.2. Removal of Special Hypotheses 1.3.
Since Special Hypotheses 1.3 are only relevant to even n, we assume n to be

even. Moreover, the case n = 2 is already understood. Thus we assume n ≥ 4.
We state a variant of Lemma 4.1.2 of [CHT].
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Lemma 3.2.1 [CHT]. Let F be a totally real field, v a place of F , w 6= v a
second finite place, M/F any finite extension. Let L be a finite Galois extension
of Fv. There exists a totally real solvable Galois extension F ′/F in which w splits
completely, linearly disjoint from M , such that, for every place v′ of F ′ dividing v,
the extension F ′

v′/Fv is isomorphic to L/Fv. Moreover, there is a constant µ(L)
independent of w such that [F ′ : F ] can be assumed to be less than µ(L).

In the statement of [loc. cit.], we take S = {v, w, } ∪ S∞, where S∞ is the set of
real places of F , D = M , L = E′

v, and Fw = E′
w. For µ(L) we need to return to

the proof of [loc. cit.]. Writing the extension L/Fv as a series of cyclic extensions
L ⊃ L1 ⊃ L2 · · · ⊃ Lr ⊃ Fv, it suffices by induction to assume L/Fv cyclic of degree
d such that Gal(L/Fv) corresponds via class theory to a character χL : F×

v → C×.
Then we need to extend χL to a character χ of the idèle classes of F trivial on F×

w

such that the class field associated to χ is of degree less than µ(L). In the proof of

Lemma 4.1.1 of [CHT], an open subgroup U ⊂ AS,×
F is chosen to satisfy

∏

u∈S

χu(x) = χL(x) = 1 ∀x ∈ U ∩ F×.

In [CHT] χu is the restriction of the character denoted χS to F×
u ; in our case χu is

trivial for u 6= v and χv = χL. In particular, the subgroup U depends only on χL.
The character χ is an extension of 1 ·χL ·1 from J = U ·F×

v ·
∏

u∈S,u6=v F×
u /(U ∩F×)

to A×
F /F×. Now the index of J in A×

F /F× is bounded by hF · i(U), where hF is
the class number of F and i(U) is the index of U · O×

v · O×
w in

∏
x O

×
x where x runs

over all finite primes of F . Thus the class field associated to χ is of degree at most
µ(L) = d · hF · i(U), which depends only on χL since we have already seen this is
the case for U .

Corollary 3.2.2. Let Π be an automorphic representation of G satisfying Hypothe-
ses 1.1 and let M/F be any finite extension not containing K. Let w be a place of
F and let S be the set of places at which Π is ramified. There is a constant µ(Π)
and a totally real solvable Galois extension F ′/F of degree ≤ µ(Π)) in which w
splits completely, linearly disjoint from M , such that, letting K′ = K · F ′ the base
change ΠK′ of Π to GL(n,K′) has the following property: for every prime v ∈ S
not dividing w and every prime v′ of K′ dividing v, the local component ΠK′,v′ has
an Iwahori-fixed vector.

Proof. By induction on the number of places in S we may assume S is the set of (one
or two) primes above a single place v of F , v 6= w. Passing to a quadratic extension if
necessary, as in (3.1), we may assume v splits in K as u·uc. We may thus identify Πu

with an irreducible admissible representation of GL(n, Fv). It follows from the local
Langlands correspondence, and indeed from the numerical correspondance proved
by Henniart, that there exists a finite Galois extension Lv/Fv, necessarily solvable,
such that the base change Πu,Lv

of Πu to GL(n, Lv) has an Iwahori-fixed vector.
Equivalently, letting (s, N) be the representation of the Weil-Deligne group of Fv

corresponding to Πu – s is a Frobenius semisimple representation of the Weil group
of Fv and N is a nilpotent endomorphism satisfying the usual commutation rules
– the restriction of s to the Weil group of L is unramified. We now apply Lemma
3.2.1 to this triple (Lv, w, M). For the constant µ(Π) we can take

∏
v∈S µ(Lv).
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Remark. It follows that, letting S be as in the statement of Corollary 3.2.2, the
collection I of solvable extensions F ′/F of degree at most µ(Π) for which ΠK′ has
an Iwahori-fixed vector locally above all places in S is S-general in the sense of [So].
Moreover, because of the assumption on the degree, the extensions in the family I
also have uniformly bounded heights, in the sense of [So].

In the proof of the next proposition part (b), we admit Expected Theorem 1.7.
Recall that ι = (ιℓ, ι∞) is a pair of embeddings.

Proposition 3.2.3. Suppose Π satisfies Hypotheses (1.1) and Special Hypothesis
(2.2), in the sense that, for at least a prime v of K dividing ℓ and split above F ,
Πv has an Iwahori fixed vector. Then there exists a semisimple continuous Galois
representation ρι,Π : ΓK → GL(n, Q̄ℓ) satisfying Theorem 2.4 (a’) and Theorem 1.4
(i) (b) for Π.

Proof. Arguing as in Theorem 3.1.2 we may assume that K/F satisfies Hypothesis
(1.2). Condition (a′) follows then from Theorem 2.3. Moreover, the same theorem
ensures that ρι,Π is at least Hodge-Tate, with the right weights, at primes dividing
ℓ. It remains to prove that ρι,Π is at least de Rham. But now part (b) of Expected
Theorem 1.7, which holds for Π thanks to Theorem 3.1.2, together with condition
(a) and Chebotarev density, implies at least that ∧2ρι,Π is de Rham. Now since

n ≥ 4, the map from ∧2 : GL(n) → GL(n(n−1)
2 ) is an isogeny. A theorem of

Wintenberger [Wi] asserts that if L is an ℓ-adic field and ρ : ΓL → GL(n, Q̄ℓ) is
a Hodge-Tate representation whose image under an isogeny is de Rham, then ρ is
itself de Rham. This completes the proof.

Remark 3.2.4. The difference between condition (a′) and (a) corresponds pre-
cisely to the absence of complete information about local monodromy already men-
tioned in Remark 2.5.

In the next result we no longer assume Expected Theorem 1.7.

Theorem 3.2.5. Fix a prime ℓ and embeddings ι = (ιℓ, ι∞) as above. Let Π be an
automorphic representation of GL(n,K) satisfying General Hypotheses (1.1). Then
there exists a semisimple continuous Galois representation

ρι,Π : ΓK → GL(n, Q̄ℓ)

satisfying the conclusions of Theorem 2.4 (a’) and of Theorem 1.4 (i) (b), (c) and
(d) for Π.

Proof. We first show the existence of ρι,Π satisftying Theorem 2.4 (a’). For that
property, it follows from the preceding proposition that, in Theorem 1.4(ii), we
can replace the condition “Π in addition satisfies Special Hypothesis (1.3)” by the
condition “Π satisfies Special Hypothesis (2.2)” But it follows immediately from
the remark following the proof of Corollary 3.2.2 that we can apply Theorem 1 of
[So] to reduce to the case of Π satisfying Special Hypothesis (2.2).

Note that by the p-adic monodromy theorem the property of being de Rham is
preserved under finite base change, as are Hodge-Tate numbers. Part (b) of the
Theorem follows then from Proposition 3.2.3 if we admit Expected Theorem 1.7.

We now give another proof of (b), as well as (c) and (d), without assuming
Expected Theorem 1.7. Using a quadratic base change as in Proposition 3.1.1. we
may assume that K/F satisfies Hypothesis (1.2) and that each prime of F dividing
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ℓ splits in K. Let v be such a prime. Let F1 be a quadratic totally real extension
of F such that v splits in F1 and write v = uu′ in F1. By Lemma 3.2.1 we may
choose a solvable totally real extension F2 of F1 such that :

- u splits completely in F2,

- there exists a prime w of F2 above u′ such that, if ΠK.F2
denotes the (cuspidal)

base change of Π to K.F2, the representation (ΠK.F2
)w′ has Iwahori-invariants for

each place w′ of K.F2 dividing w. Thus ΠK.F2
satisfies Hypotheses (1.1), (1.2) and

(2.2) with respect to the place w. Moreover, if ṽ is a prime of K above v, we have
by construction identifications Kv = (K.F2)ṽ hence

ρι,Π |Γv
= ρι,ΠK.F2

|Γṽ
.

Parts (b), (c) and (d) follow then from Theorem 2.4 as ṽ does not divide w.

Remark 3.2.6. The theorem of Wintenberger invoked in the proof of Proposition
3.2.3, together with (c) of Expected Theorem 1.7, implies in this case that, if Πv

has a vector fixed by a hyperspecial maximal compact subgroup of GL(n,Kv), for
some v dividing ℓ, then the local representation at v is crystalline up to twisting by
a quadratic character. This twist could be eliminated if we had a generalization of
Kisin’s theorem on analytic continuation of crystalline periods when the base field
is not Qp. Indeed, this would imply that the local representation at v has at least
one crystalline period. It follows that the possible quadratic character is necessarily
unramified, hence the twist preserves the property of being crystalline. The proof
we give here is very different.

As far as we know, the idea of the proof given here to get properties (b), (c)
and (d) is new, and is the first real application of the theory of eigenvarieties with
”some weights fixed”. Christopher Skinner informed us that he also had this idea
to get part (c) of the result above.

If Πv has a vector fixed by an Iwahori subgroup, then the local representation
at v ought to be semistable. This should follow from the corresponding fact in the
setting of Expected Theorem 1.7, but the latter seems to require new information on
models of Shimura varieties for U(2, n− 2) at Iwahori level. As Haines has pointed
out, Faltings has proved that the local models have the required properties, but
this is not quite enough to conclude directly.

Remark 3.2.7. The Galois representations constructed above by ℓ-adic continuity
form a compatible system in the weak sense that their characteristic polynomials of
Frobenius coincide for all ℓ. Since the coefficients of the characteristic polynomials
all belong to the coefficient field E(Π) of the cohomological representation Π, by (ii)
and (v) of Theorem 2.3, it follows that these Galois representations are compatible
in the strong sense of having coefficients in the same number field. I omit the
formulation of the theorem in the present draft.

4. Totally real fields

With future applications in mind, we state here a version of Theorem 1.4 for
cohomological automorphic representations of GL(n,AF ). General Hypotheses 1.1
are replaced by the following hypothesis.
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General Hypotheses 4.1. Let Π be a cuspidal automorphic representation of
GL(n,AF ) Writing Π = Π∞ ⊗ Πf , we assume

(i) (Regularity) There is a finite-dimensional irreducible representation W (Π) =
W∞ of G(R) such that

H∗(g, K∞; Π∞ ⊗ W∞) 6= 0.

(ii) (Polarization) There is a Hecke character

χ : A×
F /(F )× → C×

with χv(−1) independent of the prime v | ∞ such that he contragredient Π∨

of Π satisfies
Π∨ ∼

−→Π ⊗ χ.

Theorem 4.2. Let Π be a cuspidal automorphic representation of GL(n,AF ) sat-
isfying Hypotheses 4.1. Then there is a number field E(Π) and a compatible system
ρλ,Π : ΓF → GL(n, E(Π)λ) of λ-adic representations, where λ runs through the
finite places of E(Π), such that

(a) For all finite primes v of F of residue characteristic prime to NE(Π)/Q(λ),

ρF−ss
λ,Π |Γv

∼
−→L(Πv ⊗ | • |

1−n

2

v ).

Here the superscript F−ss denotes Frobenius semisimplification.
(b) For all finite primes v of F dividing NE(Π)/Q(λ), ρλ,Π |Γv

is de Rham,
and its Hodge-Tate numbers have multiplicity at most one (i.e., ρλ,Π is
Hodge-Tate regular and are determined by Π∞, or equivalently by W (Π), in
accordance with the recipe given in (1.5).

(c) Let v be a finite prime of F dividing NE(Π)/Q(λ). Suppose Πv has a vector
fixed by a hyperspecial maximal compact subgroup of GL(n,Kv). Then ρv :=
ρλ,Π |Γv

is crystalline, and if ϕ denotes the smallest linear power of the
crystalline Frobenius of Dcrys(ρv) then

det(T − ϕ) = det(T − L(Πv ⊗ | • |
1−n

2

v )(Frobv)).

(d) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vector
fixed by an Iwahori subgroup of GL(n,Kv). Then ρλ,Π |Γv

is semistable.

Proof. The deduction of this result from Theorem 3.2.5 follows exactly the proof
of Proposition 4.3.1 of [CHT]. The claim regarding E(Π) is as indicated in Remark
3.2.7.
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