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1. A patching lemma

Let F be a number field, p a prime, S a finite set of places of F , and I a set
of cyclic Galois extensions K/F of prime degree qK . For all K ∈ I, we assume
we are given an n-dimensional semisimple continuous representation ρK : ΓK →
GL(n, Qp), with the following two properties

(a) For any K ∈ I, σ ∈ Gal(K/F ), ρσ
K

∼
−→ρK ;

(b) if K, K ′ ∈ I, then

ρK |ΓK·K′

∼
−→ρK′ |ΓK·K′

.

We assume I is S-general in the sense that, for any v /∈ S and any finite extension
M/F , there is K ∈ I in which v splits completely which is linearly disjoint from
M .

Proposition 1.1. Under the above hypotheses, there is a semisimple representation
ρ, unique up to isomorphism, such that ρ : ΓF → GL(n, Qp) such that ρ |ΓK

∼
−→ρK

for all K ∈ I except for possibly one.

Proof. The proof is as in [HT], pp. 229-232, or [BR], which treat the case qK = 2
for all K. Fix K0 ∈ I and let ρ0 = ρK0

, Γ0 = ΓK0
. Let T be the set of irreducible

constituents τ ⊂ ρ0, counted with multiplicity. Let r = ⊕τ∈T τ , H the Zariski
closure of the image of r, H0 ⊂ H its identity component, M ⊃ K0 the fixed field
of H0.

By hypothesis (1), G0 = Gal(K0/F ), a cyclic group of order q = qK0
, acts on T .

Let C ⊂ T (resp. P ⊂ T ) be the set of non-trivial orbits (resp. fixed points). For
each c ∈ C, choose an element τc ∈ c, and let C0 = {τc | c ∈ C}. For τ ∈ P , (resp.
τ ∈ C0) we let τ̃ denote an extension of τ to a representation of ΓF (resp. we set

τ̃ = IndΓF

Γ0
τ.
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For τ ∈ C0, τ̃ is independent of the choice of τc, whereas for τ ∈ P , τ̃ is unique up
to twisting by a character factoring through G0. We let X(G0) denote the set of
characters of G0.

Let N/F be a finite Galois extension disjoint from M over F . As in [HT, p.
230], we see that

(1.1.1) Every τ |ΓN·K0
is irreducible, τ ∈ P

∐
C0;

(1.1.2) For τ ∈ P , τ̃ |ΓN
is irreducible;

(1.1.3) If τ |ΓN·K0
≃ τ ′ |ΓN·K0

then τ = τ ′;

(1.1.4) If τ, τ ′ ∈ P , η ∈ X(G0), then τ̃ |ΓN
≃ τ̃ ′ ⊗ η |ΓN

implies τ = τ ′ and η = 1.

For any K ∈ I disjoint from M over F , it follows as on the top of p. 231 of [HT]
that there exists ητ̃ ,K ∈ X(G0) for all τ ∈ P such that

(1.1.5.) ρK = ⊕τ∈C0
τ̃ |ΓK

⊕
⊕τ∈P τ̃ ⊗ ητ̃ ,K |ΓK

Fix a K1 ∈ I disjoint from M over F , and set

(1.1.6) ρ = ⊕τ∈C0
τ̃

⊕
⊕τ∈P τ̃ ⊗ ητ̃ ,K1

,

one finds as in [loc. cit.] that ρ is well defined and satisfies ρ |ΓK

∼
−→ρK for all

K ∈ I disjoint from M over F , in particular for all K 6= K0. This completes the
proof.

We will need a variant. We let I be a collection of solvable Galois extensions of
F and, for each K ∈ I, with B = Gal(K/F ), given a filtration

B = B0 ⊃ B1 ⊃ · · · ⊃ BN = {1}

with each Bj normal in B and Bj/Bj+1 a cyclic group of prime order qj , we set
Kj = KBj . For each such Kj , let IKj

subsetI of extensions containing Kj . We call
IKj

S-general if the collection of cyclic extensions of Kj of prime order contained
in some K ∈ IKj

is S-general, in the sense above, and we say I is S-general if IKj

is S-general for every Kj obtained as above. By induction, we have the following
corollary:

Corollary 1.2. Let I be an S general collection of solvable Galois extensions of F .
Assume that, for all K ∈ I we have an n-dimensional continuous representation
ρK : ΓK → GL(n, Qp) satisfying conditions (a) and (b) above. Then there is
a semisimple representation ρ, unique up to isomorphism, such that ρ : ΓF →
GL(n, Qp) such that ρ |ΓK

∼
−→ρK for all K ∈ I except for possibly one.

Remark 1.3. It is well known that I is S-general if it satisfies the following
alternative hypothesis: for any finite set Σ of places of F disjoint from S, there
is K ∈ I in which every v ∈ Σ splits completely. Indeed, let M/F be a finite
extension, which we may assume Galois, and let Mi ⊂ M be the set of subfields of
M Galois over F with Gal(Mi/F ) a simple group. For each Mi pick a place vi of
F , not in S, which does not split completely in Mi, and let Σ be the set of these
vi. Then any K in which each vi splits completely is necessarily linearly disjoint
from M .
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2. Hypotheses

Let F be a totally real field, K/F a totally imaginary quadratic extension, d =
[F : Q], c ∈ Gal(K/F ) the non-trivial Galois automorphism. Let n be a positive
integer and G = Gn be the algebraic group RK/QGL(n)K. Let g = Lie(G(R)),
K∞ ⊂ G(R) the product of a maximal compact subgroup with the center ZG(R).
We consider cuspidal automorphic representations Π of G satisfying the following
two hypotheses:

General Hypotheses 2.1. Writing Π = Π∞ ⊗ Πf , where Π∞ is an admissible
(g, K∞)-module, we have

(i) (Regularity) There is a finite-dimensional irreducible representation W (Π) =
W∞ of G(R) such that

H∗(g, K∞; Π∞ ⊗ W∞) 6= 0.

(ii) (Polarization) The contragredient Π∨ of Π satisfies

Π∨ ∼
−→Π ◦ c.

We next make the following temporary hypotheses:

Special Hypotheses 2.2.

(2.2.1) K/F is unramified at all finite places (in particular d > 1).
(2.2.2) Πv is spherical (unramified) at all non-split non-archimedean places v of K.
(2.2.3) The degree d = [F : Q] is even.
(2.2.4) All primes of small residue characteristic relative to n are split in K/F .

The irreducible representation W (Π) factors over the set Σ of real embeddings
of of F

W (Π) = ⊗σ∈ΣWσ,

where Wσ is an irreducible representation of G(K⊗F,σ R)
∼
−→GL(n, C)×GL(n, C).

The highest weight of Wσ is denoted µ(σ); it can be identified in the usual way with
a pair of Young diagrams, one for each extension of σ to a complex embedding of K,
and thus with a pair of non-increasing n-tuples of non-negative integers (µ(σ̃, µ(σ̃c)),
where we write

µ(σ̃) = (µ1(σ̃) ≥ µ2(σ̃) ≥ . . . µn(σ̃)).

Moreover, the polarization condition implies that one of the Young diagrams is dual
to the other, or equivalently that

µi(σ̃
c) = −µn−i−1(σ̃).

Special Hypothesis 2.3. For at least one σ ∈ Σ, the highest weight µ(σ) is
sufficiently far from the walls; in practice, it suffices to assume µ(σ) is regular, i.e.
µi(σ̃) 6= µj(σ̃) if i 6= j.

Let K be a p-adic field, WDK its Weil-Deligne group. Let A(n, K) denote the set
of equivalence classes of irreducible admissible representations of GL(n, K), and let
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G(n, K) denote the set of equivalence classes of n-dimensional Frobenius semisimple
representations of WDK . We denote by

L : A(n, K) → G(n, K)

the local Langlands correspondence, normalized to coincide with local class field
theory when n = 1 in such a way that a uniformizer of K× is sent to a geometric
Frobenius.

The following result is expected to be proved in Books 1 and 2.

Expected Theorem 2.4. (i) Suppose n is odd and Π satisfies Hypotheses (2.1)
and (2.2). Then there is a number field E(Π) and a compatible system ρλ,Π : ΓK →
GL(n, E(Π)λ) of λ-adic representations, where λ runs through the finite places of
E(Π), such that

(a) For all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ),

ρF−ss
λ,Π |Γv

∼
−→L(Πv ⊗ | • |

1−n
2

v ).

Here the superscript F−ss denotes Frobenius semisimplification.
(b) For all finite primes v of K dividing NE(Π)/Q(λ), ρλ,Π |Γv

is de Rham,
and its Hodge-Tate numbers have multiplicity at most one (i.e., ρλ,Π is
Hodge-Tate regular and are determined by Π∞, or equivalently by W (Π), in
accordance with the recipe given in (2.5), below.

(c) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vec-
tor fixed by a hyperspecial maximal compact subgroup of GL(n,Kv). Then
ρλ,Π |Γv

is crystalline.
(d) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vector

fixed by an Iwahori subgroup of GL(n,Kv). Then ρλ,Π |Γv
is semistable.

(ii) If n is even, the same conclusions hold as in (i), provided Π in addition
satisfies Hypothesis 2.3.

When Π satisfies the additional hypothesis that Πv0
is square-integrable for some

finite place v0, then this theorem is mostly proved in [HT], extending an earlier
theorem due to Clozel and Kottwitz [C,K2] obtaining (a) at most places where Π
is unramified. The theorem is completed in [TY]. What we here call ρλ,Π is the
representation denoted Rℓ(Π

∨) in [HT].

(2.5) Hodge-Tate numbers of automorphic Galois representations.
Fix a prime λ of the coefficient field E(π), say of residue characteristic p. The

automorphic Galois representation ρλ,Π constructed in Book 2 is obtained in the co-

homology of a geometric p-adic local system W̃p(Π) on a Shimura variety, obtained
in a standard way from the finite-dimensional representation W (Π) introduced
above. It is therefore of geometric type, in the sense of Fontaine and Mazur: each
ρλ,Π is unramified outside a finite set of places of K, and at every place dividing
the residue characteristic of λ, ρλ,Π is de Rham. The latter fact is a consequence of
the comparison theorems of p-adic Hodge theory, and in particular the Hodge-Tate
numbers can be read off from the Hodge numbers of the de Rham cohomology
of the flat vector bundle W̃ (Π) associated to W (Π). The comparison of W̃p(Π)

and W̃ (Π), and therefore the determination of the Hodge-Tate numbers from the
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highest weights µ(σ) of Wσ, presupposes a dictionary relating complex and p-adic

places of K. In [HT] this is given by an isomorphism ι : Q̄p
∼
−→C. For what follows

it suffices to identify the algebraic closure of Q in Q̄p with the field of algebraic

numbers in C. Then the p-adic embeddings of Q, and in particular of K, are iden-
tified with the complex embeddings; if s is an embedding of K in Q̄p, we write ιs
for the corresponding complex embedding.

Let s be an embedding of K in Q̄p, and let DdR,s denote Fontaine’s functor from

representations of Γs = Gal(Q̄p/s(K)) to filtered Q̄p ⊗Qp
E(π)λ-modules:

DdR,v(R) = (R ⊗Qp
BdR)Γv .

The Hodge-Tate numbers of R (with respect to v) are the j such that grjDdR,s(R) 6=
(0). Then in the situation of Theorem 2.4, the Hodge-Tate numbers of ρλ,Π with
respect to s are the j of the form

(2.6) j = i − µn−i(ι(s)
c), i = 0, . . . , n − 1.

This is to be compared to part 4 of Theorem VII.1.9 of [HT]; the replacement of
ι(s) by ι(s)c corresponds to our replacement of Π by Π∨ in the definition of ρλ,Π.

Suppose n is even but Π does not satisfy Hypothesis 2.3. Then we expect to
prove the following theorem in Books 1 and 2.

Expected Theorem 2.7. Suppose Π satisfies Hypotheses (2.1) and (2.2). Then

there is a number field E(Π) and a compatible system ρλ,Π : ΓK → GL(n(n−1)
2 , E(Π)λ)

of λ-adic representations, where λ runs through the finite places of E(Π), such that

(a) For almost all finite primes v of K of residue characteristic prime to NE(Π)/Q(λ)
at which Πv is unramified, ρλ,Π is an unramified representation, and

ρss
λ,Π |Γv

∼
−→∧2 L(Πv)(2 − n).

(b) For all finite primes v of K dividing NE(Π)/Q(λ), ρλ,Π |Γv
is de Rham.

(c) Let v be a finite prime of K dividing NE(Π)/Q(λ). Suppose Πv has a vec-
tor fixed by a hyperspecial maximal compact subgroup of GL(n,Kv). Then
ρλ,Π |Γv

is crystalline.

This theorem is equally valid for odd and even n, but is a consequence of Ex-
pected Theorem 2.4 when n is odd.

Expected Theorems 2.4 and 2.7 are the Galois counterparts of expected the-
orems about stable base change and endoscopic transfer for unitary groups that
will be recalled in §5. The latter theorems are purely analytic consequences of the
stable trace formula, and include some of the main expected results of Book 1,
whereas the consequences for Galois representations, which include special cases of
the conjectures formulated by Kottwitz in [K1], should be derived in Book 2.

The remainder of this note explains how to extend the conclusions of of Expected
Theorem 2.4, with the exception of (i)(d), in the absence of Hypotheses 2.2 and
2.3.
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3. Eigenvarieties and p-adic families of Galois representations

This is a report on what is expected in the first part of Book 3, following [BC],
where some of the following results are presented conditionally, primarily assuming
the results recalled in §6.

Let K/F be a CM quadratic extension of a totally real field, satisfying Special
Hypotheses (2.2.1), (2.2.3), and (2.2.4). Hypotheses (2.2.1) and (2.2.3) imply by a
standard Galois cohomological argument (cf. Book 1) that

Lemma 3.1. There exists a hermitian space V0/K relative to the extension K/F
such that the unitary group G0 = U(V0) satisfies

(i) For all finite places v, G0(Fv) is quasi-split and splits over an unramified
extension of Fv; in particular, G0(Fv) contains a hyperspecial maximal com-
pact subgroup.

(ii) For all real places v, G0(Fv) is compact.

Moreover, G0 is unique up to isomorphism.

We let complex conjugation c ∈ Gal(K/F ) act on GL(n,AK) relative to the
unitary group G0. We choose a c-invariant open compact subgroup K =

∏
w Kw ⊂

GL(n,Af
K
) such that Kw

∼
−→GL(n,Ov) if w is not split over F . Let U =

∏
v Uv ⊂

G0(A
f
F ) be a corresponding open compact subgroup. At inert places Uv is hyper-

special maximal compact. At split v, vK = w · wc, the identification

G0(Fv)
∼
−→GL(n,Kw)

identifies Uv with Kw. Our hypothesis that K is c-invariant ensures that this does
not depend on the choice of w dividing v. Let S be the set of places v of F where
Uv is not hyperspecial maximal compact.

Special Hypotheses 3.2. Let v be a place of F dividing the rational prime p.

(3.2.1) v splits in K
(3.2.2) The subgroup Uv contains an Iwahori subgroup of GL(n,Ov).

For every v ∈ S, G0(Fv)
∼
−→GL(n, Fv). We fix a semisimple type for GL(n, Fv),

in the sense of Bushnell-Kutzko, and denote it τv. In fact, there is an open compact
subgroup Kv ⊂ GL(n, Fv) and an irreducible representation τv of Kv such that the
set of irreducible admissible representations πv of G0(Fv) containing τv form an
inertial equivalence class, denoted I(τv). Let E be an extension of Qp containing
the fields of definition of all the τv, v ∈ S. The following Theorem summarizes
some of the results of [BC §7]. The results are dispersed in several sections of [loc.
cit.]; future drafts will include more detailed references.

Theorem 3.3 [BC]. There exists a reduced and separated rigid analytic space
XU = XU ({τv, v ∈ S})/E, two collections of analytic functions

(a) κ1,s, . . . , κn,s ∈ O(XU ), where s runs over embeddings of K in Q̄p;
(b) Fw(Y ) ∈ O(XU )[Y ], where w runs over finite places of K dividing v /∈ S

and each Fw is a polynomial of degree n with coefficients in O(XU ).

an n-dimensional pseudorepresentation

T : Gal(Q/K) → O(XU ),
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and a pair of Zariski dense subsets Zreg ⊂ Z ⊂ XU such that

(i) The points of Z are parametrized by cuspidal automorphic representations
Π satisfying General Hypotheses 2.1 and Special Hypothesis (2.2.2), such
that ΠK 6= 0, or equivalently by automorphic representations π of G0, such
that πU 6= 0.

(ii) For any v /∈ S, w a place of K dividing v, and x ∈ XU , the n-dimensional
representation ρT,x : Gal(Q/K) → GL(n,OCp

) associated to the specializa-
tion of T at x has the property that

det(I − ρT,x(Frobw)Y ) = Fw(Y );

(iii) For any embedding s : K → Q̄p and x ∈ X, the restriction of ρT,x to Γs

(notation as in (2.5)) has Hodge-Tate-Sen weights κi,s, i = 1, . . . , n;
(iv) For x ∈ Z and s : K → Q̄p, the restriction of ρT,x to Γs is Hodge-Tate and

has Hodge-Tate numbers given in terms of Π∞ by the formula (2.6).
(v) For x ∈ Z and w as in (ii),

Fw(Y ) = PΠw
(Y )

is the normalized Hecke polynomial associated to the unramified representa-
tion Πw.

(vi) For x ∈ Z and v ∈ S, the corresponding Π has the property that Πv is in
the intertial equivalence class I(τv).

(vii) For any x ∈ XU and v in S prime to ℓ, the restriction to the local in-
ertia group Iv of n-dimensional representation ρT,x is the representation
corresponding to the inertial equivalence class I(τv).

(viii) For x ∈ Zreg, with corresponding representation Π, the the restriction of
ρT,x to Γs is de Rham.

If n is odd, then Zreg = Z. If n is even, then Zreg is parametrized by those Π
satisfying Special Hypotheses 2.3.

The analytic space XU ({τv, v ∈ S}) is the eigenvariety corresponding to the ram-
ification information (S, {τv, v ∈ S}). The points in Z are usually called “classical
points” of the eigenvariety. Special Hypotheses 3.2 correspond to the condition
“finite slope” for the eigencurve of Coleman-Mazur.

Remark 3.4. In the final version, there should also be analytic functions at primes
v ∈ S, v not dividing ℓ, that correspond to Frobenius eigenvalues after base change
to eliminate wild inertia. At v dividing ℓ, there should also be analytic functions
corresponding to eigenvalues of crystalline Frobenius.

4. Removal of Special Hypotheses

We admit Expected Theorems 2.4 and 2.7 for the duration of this section.

4.1. Removal of Special Hypotheses 2.2.
Let now K/F be any CM quadratic extension of a totally real field, and let Π

be an automorphic representation of GL(n,K) satisfying Hypothesis 2.1.

Proposition 4.1.1. There is a finite set S of places of F and an S-general collec-
tion I of totally real quadratic extensions Fi/F such that, for each Fi ∈ I, letting
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Ki = Fi · K, Πi the base change of Π to Ki, the triple (Fi,Ki, Πi) satisfies Special
Hypotheses 2.2. Moreover, we can assume that, for every v ∈ S and every Fi ∈ I,
either v splits in K/F or the unique extension of v to K, denoted vK, splits in Ki.

Proof. Let S be the set of primes of v at which (2.2.1), (2.2.2), or (2.2.4) fails:
either v ramifies in K/F , or v stays prime in K and the corresponding component
ΠvK

is ramified, or the residue characteristic of v is small. We take I to be the
set of totally real quadratic extensions Fi/F with the property that, for all v ∈ S,

Fi,v
∼
−→Kv. It is obvious that this set has the properties claimed.

Theorem 4.1.2. Let Π be an automorphic representation of GL(n,K) satisfying
Hypothesis 2.1 and Special Hypothesis 2.3 if n is even. Assume Expected Theorem
2.4. Then the conclusions of Expected Theorem 2.4 also hold for Π.

If n is even and satisfies Hypothesis 2.1, then the conclusions of Expected Theo-
rem 2.7 also hold for Π.

Proof. The first part is deduced from Expected Theorem 2.4 and Proposition 1.1
exactly as in [HT], pp. 229-232. We omit the details, since the more complicated
case of a general solvable extension will be treated in the next section. The second
assertion is deduced from Expected Theorem 2.7 and Proposition 1.1 in the same
way.

4.2. Removal of Special Hypotheses 2.3.
Since Special Hypotheses 2.3 are only relevant to even n, we assume n to be

even. Moreover, the case n = 2 is already understood. Thus we assume n ≥ 4.
We state a variant of Lemma 4.1.2 of [CHT].

Lemma 4.2.1 [CHT]. Let F be a totally real field, v a place of F , w 6= v a
second finite place, M/F any finite extension. Let L be a finite Galois extension
of Fv. There exists a totally real solvable Galois extension F ′/F in which w splits
completely, linearly disjoint from M , such that, for every place v′ of F ′ dividing v,
the extension F ′

v′/Fv is isomorphic to L/Fv.

In the statement of [loc. cit.], we take S = {v, w, }∪ S∞, where S∞ is the set of
real places of F , D = M , L = E′

v, and Fw = E′
w.

Corollary 4.2.2. Let Π be an automorphic representation of G satisfying General
Hypotheses 2.1 and let M/F be any finite extension not containing K. Let w be a
place of F and let S be the set of places at which Π is ramified. There is a totally
real solvable Galois extension F ′/F in which w splits completely, linearly disjoint
from M , such that, letting K′ = K · F ′ the base change ΠK′ of Π to GL(n,K′) has
the following property: for every prime v ∈ S not dividing w and every prime v′ of
K′ dividing v, the local component ΠK′,v′ has an Iwahori-fixed vector.

Proof. By induction on the number of places in S we may assume S is the set of (one
or two) primes above a single place v of F , v 6= w. Passing to a quadratic extension
if necessary, as in (4.1), we may assume v splits in K as w ·wc. We may thus identify
Πw with an irreducible admissible representation of GL(n, Fv). It follows from the
local Langlands correspondence, and indeed from the numerical correspondance
proved by Henniart, that there exists a finite Galois extension L/Fv, necessarily
solvable, such that the base change Πw,L of Πw to GL(n, L) has an Iwahori-fixed
vector. Equivalently, letting (s, N) be the representation of the Weil-Deligne group
of Fv corresponding to Πw – s is a Frobenius semisimple representation of the Weil
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group of Fv and N is a nilpotent endomorphism satisfying the usual commutation
rules – the restriction of s to the Weil group of L is unramified. We now apply
Lemma 4.2.1 to this triple (L, w, M).

It follows that, letting S be as in the statement of Corollary 4.2.2, the collection
I of solvable extensions F ′/F for which ΠK′ has an Iwahori-fixed vector locally
above all places in S is S-general.

Now by Expected Theorem 3.3, Π corresponds to a (classical) point x in the
subset Z ⊂ XU . We let ρΠ,ℓ denote the Galois representation ρT,x (we take ℓ = p
in Theorem 3.3).

Proposition 4.2.3. Suppose Π satisfies General Hypotheses 2.1 and Special Hy-
pothesis 3.2, in the sense that, for all v dividing ℓ, Πv has an Iwahori fixed vector.
Then the Galois representation ρΠ,ℓ : ΓK → GL(n, Q̄ℓ) satisfies the conclusions of
Expected Theorem 2.4 (i), (a) and (b) for Π.

Proof. Condition (a) follows from Theorem 3.3 (ii) and (v). It follows from (iv)
of Theorem 3.3 that ρΠ,ℓ is at least Hodge-Tate, with the right weights, at primes
dividing ℓ. It remains to prove that ρΠ,ℓ is at least de Rham. But now part (b) of
Expected Theorem 2.7, which holds for Π thanks to Theorem 4.1.2, together with
condition (a) and Chebotarev density, implies at least that ∧2ρΠℓ

is de Rham. Now

since n ≥ 4, the map from ∧2 : GL(n) → GL(n(n−1)
2 ) is an isogeny. A theorem

of Wintenberger [Wi] asserts that if L is an ℓ-adic and ρ : ΓL → GL(n, Q̄ℓ) is a
Hodge-Tate representation whose image under an isogeny is de Rham, then ρ is
itself de Rham. This completes the proof.

Theorem 4.2.4. Fix a prime ℓ. Let Π be an automorphic representation of
GL(n,K) satisfying General Hypotheses 2.1. Then the conclusions of Expected The-
orem 2.4 (i) (a) and (b) hold for Π.

Proof. It follows from the preceding proposition that, in Expected Theorem 2.4(ii),
we can replace the condition “Π in addition satisfies Special Hypothesis 2.3” by
the condition “Π satisfies Special Hypothesis 3.2” in the sense . But it follows
immediately from the remark following the proof of Corollary 4.2.2 that we can use
Corollary 1.2 to reduce to the case of Π satisfying Special Hypothesis 3.2. Note
that by the p-adic monodromy theorem the property of being de Rham is preserved
under finite base change, as are Hodge-Tate numbers.

Remark 4.2.5. The theorem of Wintenberger invoked in the proof of Proposition
4.2.3, together with (c) of Expected Theorem 2.7, implies in this case that, if Πv

has a vector fixed by a hyperspecial maximal compact subgroup of GL(n,Kv), for
some v dividing ℓ, then the local representation at v is crystalline up to twisting by
a quadratic character. It should be possible to eliminate this twist, but I haven’t
yet thought about the problem. If Πv has a vector fixed by an Iwahori subgroup,
then the local representation at v ought to be semistable; this should follow from
the corresponding fact in the setting of Expected Theorem 2.7, but the latter seems
to require new information on models of Shimura varieties for U(2, n−2) at Iwahori
level. As Haines has pointed out, Faltings has proved that the local models have
the required properties, but this is not quite enough to conclude.

The Galois representations constructed above by ℓ-adic continuity form a com-
patible system in the weak sense that their characteristic polynomials of Frobenius
coincide for all ℓ. Since the coefficients of the characteristic polynomials all belong
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to the coefficient field E(Π) of the cohomological representation Π, by (ii) and (v)
of Theorem 3.3, it follows that these Galois representations are compatible in the
strong sense of having coefficients in the same number field. I omit the formulation
of the theorem in the present draft.

5. Stable base change, endoscopic transfer,

and Expected Theorems 2.4, 2.7, and 3.3

We consider automorphic representations Π satisfying General Hypotheses 2.1
and Special Hypotheses 2.2. Each of the Expected Theorems 2.4, and 2.7 corre-
sponds to a pair of theorems, the first about stable base change and endoscopic
transfer, the second about the cohomology of certain Shimura varieties. In this
section I limit my attention to the first sort of theorem, which can be stated simply
without introduction of additional notation. The following lemma is proved by the
standard Galois cohomological argument already mentioned in §3:

Lemma 5.1. (i) Suppose n is odd. Under Special Hypotheses 2.2 there exists a
hermitian space V1/K relative to the extension K/F such that, letting G1 = U(V1),

(5.1.1) For all finite places v of F , G1(Fv) is quasi-split and splits over an unrami-
fied extension of Fv; in particular, G1(Fv) contains a hyperspecial maximal
compact subgroup.

(5.1.2) For all real places v of F , with the exception of one place v0, G1(Fv) is

compact; G1(Fv0
)

∼
−→U(1, n − 1).

(ii) Suppose n is even. Under Special Hypotheses 2.2 there exists a hermitian space
V2/K relative to the extension K/F such that, letting G1 = U(V1),

(5.1.3) For all finite places v of F , G0(Fv) is quasi-split and splits over an unrami-
fied extension of Fv; in particular, G0(Fv) contains a hyperspecial maximal
compact subgroup.

(5.1.4) For all real places v, with the exception of one place v0, G2(Fv) is compact;

G2(Fv0
)

∼
−→U(2, n − 2).

For any finite prime v of F , let Gv denote a quasisplit unitary group over v,
relative to the extension K/F . With w a prime of K dividing v, we can construct
a formal descent πv of Πw as follows:

5.2 v split. Then Gv
∼
−→GL(n, Fv)

∼
−→GL(n,Kw). We let πv = Πw with respect

to this isomorphism.

5.3 v inert. Then Πw is unramified by (2.2.2) and invariant under the outer auto-
morphism corresponding to descent to Gv. We let πv be the spherical representation
of Gv whose formal base change, defined in terms of the Satake isomorphism, is
isomorphic to Πw. The existence and properties of this formal base change will
need to be recalled in Book 1.

We define a representation πf = ⊗′
vπv of G∗(A

f ), ∗ = 0, 1, 2, the restricted
tensor product taken over all finite places of F .

The following theorem corresponds to stable base change (twisted endoscopic
transfer) for cuspidal automorphic representations.

Expected Theorem 5.2. Let Π satisfy General Hypotheses 2.1 and Special Hy-
potheses 2.2. Let G∗ = G1 if n is odd, G∗ = G0 or G2 if n is even. Let
A(G∗) = A0(G∗) be the space of automorphic forms on G∗.
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(a) If n is odd, there are exactly n distinct representations πi of G1,∞ such that
πi ⊗ πf occurs in A(G1), each with multiplicity one.

(b) If n is even, there is exactly 1 representation π∞ of G0,∞ (resp. exactly
n(n−1)

2 distinct representations πj of G2,∞) such that πj ⊗ πf occurs in A(G∗),
each with multiplicity one.

This automorphic input suffices for Expected Theorem 2.4 (i), Expected Theo-
rem 2.7, and Expected Theorem 3.3.

Now let n be even again, and consider H = U(n)× U(1) as endscopic group for
G1, defined with respect to the odd number n + 1. Let Π satisfy Hypotheses 2.1
and 2.2 as always, and let χ be a Hecke character of U(1) unramified outside places
that split in K/F . For every finite place v of F , one can define the local endoscopic
transfer πv(Πv, χv) = πv(Π, χ) as an explicit representation of G1(Fv); it is a single
representation which is spherical if v is inert in K. The explicit formula will be
included in a later draft. Define πf (Π, χ) = ⊗′

vπv(Π, χ).

Expected Theorem 5.3. Assume n is even and Π satisfies General Hypotheses
2.1 and Special Hypotheses 2.2 and 2.3. Then there is a character χ∞ofU(1)(R)
such that, for any Hecke character χ of U(1) with infinity type χ∞, there are exactly
n distinct representations πi of G1,∞ such that πi⊗πf (Π, χ) occurs in A(G1), each
with multiplicity one.

This is the automorphic input for Expected Theorem 2.4 (ii).
Of course the representations πi in 5.2 and 5.3 are discrete series representations,

and can be defined in terms of the coefficients W∞ of 2.1 (i) in the case of Expected
Theorem 5.2, where the set of πi fills out the complete discrete series L-packet.
In Expected Theorem 5.3, the discrete series L-packet is defined by χ∞ as well as
W∞, and has n+1 members; only n of them occur with non-zero multiplicity. The
parameters for the relevant discrete series representations will be provided explicitly
in a later draft.
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