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The goal of this introduction is to motivate the problem of stabilization of the
trace formula and to present the approach to stabilization of the elliptic terms
carried out by Langlands and Kottwitz in the 1980s. The first two sections are
devoted to describing the trace formula and presenting two typical applications.
In this series of books we studiously avoid all reference to the analytic problems
resolved by Arthur in incorporating parabolic terms into the invariant trace formula.
The reader who wishes to learn more about this material should consult Arthur’s
article [A], which we have also used as a reference for introductory material. In this
introduction, we restrict our attention to automorphic representations of groups
that are anisotropic (or at least anisotropic modulo center); then all terms on
the geometric side of the trace formula are necessarily elliptic. Other chapters in
this volume will make use of Arthur’s simple trace formula, in which only elliptic
terms even when the group is not anisotropic; the description of stabilization works
identically in this situation.

The third section explains the problem of stabilization arises naturally when
one wants to compare trace formulas for different groups. The remaining sections
present the various steps involved in stabilization, mainly following Kottwitz’ arti-
cles on the subject, as reinterpreted by Ngô in his seminar talks in 2003. At various
points in his articles, Kottwitz’ invokes conjectures in order to proceed with stabi-
lization of the two sides of the trace formula. The stabilization of the elliptic part
of the geometric side, involving orbital integrals, depends crucially on the Funda-
mental Lemma, as we explain in §6. Twenty years later, this is now a theorem,
so Kottwitz’ stabilization of the geometric side of the trace formula for anisotropic
groups is now complete. The stabilization of the spectral side depends on the par-
tition of the irreducible admissible representations of a p-adic group into L-packets
(more generally, Arthur packets) of a specific form. There has been considerable
recent progress on this question but much remains to be done. In this introduction
we concentrate on the geometric side. Some of the subsequent articles will consider
the spectral side of the trace formula for unitary groups, with applications in Book
2 to the cohomology of related Shimura varieties.
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2 MICHAEL HARRIS

Conventions for harmonic analysis on reductive groups over local fields and adèle
groups, and for automorphic representations, are as in Arthur’s article [A].

1. Automorphic representations and the trace formula

Here and in what follows, E denotes a number field and G denotes a connected
reductive group over E, with center ZG. We choose a maximal compact subgroup
K∞ ⊂ G∞ := G(E⊗QR). This choice is not always innocent, but little or nothing in
the present volume will depend on that choice. We also let g denote the complexified
Lie algebra of G(R), AE the adèle ring of E, and Af

E the ring of finite adèles of E.
Thus G(AE) = G∞ × G(Af

E), and any Haar measure dg on G(AE) decomposes
correspondingly as a product dg∞dgf . Let C∞

c (G(AE)) (resp. C∞
c (G∞), resp.

C∞
c (G(Af

E))) denote the space of compactly supported functions on G(AE) that
are C∞ in the archimedean variables and locally constant in the non-archimedean
variables. Likewise, for any place v of E, we define C∞

c (G(Ev)). The map

(φ∞, φf ) 7→ [(g∞, gf) 7→ φ∞(g∞) · φf (gf )

defines an isomorphism

C∞
c (G∞) ⊗ C∞

c (G(Af
E))

∼
−→C∞

c (G(AE)).

These spaces of test functions are algebras under convolution (cf. [K7, 1.2]).
Our main class of examples will be unitary groups. Let K/E be a quadratic

extension, and let V be an n-dimensional K-vector space with a non-degenerate
hermitian form <, >V relative to the extension K/E; the group G = U(V ) of
symmetries of this hermitian form is naturally a group scheme over E, whose A-
valued points for any E-algebra A is given by

G(A) = {g ∈ GL(V ⊗E A) |< gv, gv′ >V =< v, v′ >V , ∀v, v′ ∈ V ⊗E A}

If v is a place of E that splits as a product w · w′ in K, then

Vv = V ⊗E Ev = Vw ⊕ Vw′

where Vw = V ⊗K Kw. Then Vw and Vw′ are maximal isotropic subspaces of
Vv, and the hermitian form defines an isomorphism Vw′

∼
−→V ∨

w . Then G(Ev) ⊂
GL(Vw⊕Vw′) fixes both Vw and Vw′ and its action on the former defines a canonical
isomorphism

G(Ev)
∼
−→GL(Vw).

The center ZG is the diagonal subgroup U(1)K/E, whose group of A-valued points
is the subgroup of (K⊗E A)× of elements of norm 1 down to A×; in particular, ZG

is anisotropic. We can also consider G = GL(n)E , with ZG = GL(1)E, embedded
diagonally in G.

Suppose G is anisotropic; for example G = U(V ), where E has a real place that
becomes complex in K, such that G(Ev) is isomorphic to the compact unitary group
U(n). Then the adèlic quotient G(E)\G(AE) is compact. Right-translation defines
a unitary action of G(AE) on the Hilbert space L2(G(E)\G(AE)). This action
gives rise to an action of C∞

c (G(AE)) by integration: for f ∈ L2(G(E)\G(AE)),
φ ∈ C∞

c (G(AE)), define
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R(φ)f(g) =

∫

G(AE)

φ(gh)f(h)dh.

The map φ 7→ R(φ) defines an algebra homomorphism from the algebra C∞
c (G(AE))

of test functions to the C∗ algebra of bounded operators on L2(G(E)\G(AE)). In
fact, R(φ) is a compact operator for all φ (cf. [A], p.8). It follows formally [A, p.
9] that

Proposition 1.1. When G is anisotropic, L2(G(E)\G(AE)) decomposes as a
countable Hilbert space direct sum

L2(G(E)\G(AE)) =
⊕

π

mππ,

where π runs over the set of equivalence classes of irreducible unitary representa-
tions of G(AE) (or equivalently, of C∞

c (G(AE))).

The operators R(φ) are of trace class, [A, pp. 14-15]. The multiplicities mπ can
be determined, in principle, by calculating the distribution φ 7→ trR(φ), as follows.
The irreducible representation π of G(AE) can be written, non-canonically, as a
restricted tensor product [cf. A, (2.2)]

π
∼
−→π̄∞ ⊗ π̄f =

′
⊗

v

π̄v

where π̄∞, resp. π̄f , resp. π̄v, is an irreducible unitary representation of G∞, resp.
G(Af

E), resp. G(Ev)l. Let Kf ⊂ G(Af
E) be a compact open subgroup, which

we assume to be of the form Kf =
∏

v Kv, where v runs over non-archimedean
places of E and each Kv is a compact open subgroup of G(Ev), maximal compact
for almost all v.

Fact 1.2. For almost all v, πv is unramified, i.e.the space π̄Kv
v of Kv-invariant

vectors in π̄v is one-dimensional.

We let πv ⊂ π̄v be the subspace of Kv-finite vectors, and we also write π for
the restricted tensor product of the πv. For v-non-archimedean, πv is a smooth
representation – every vector is fixed by an open compact subgroup of Kv – and is
moreover always an admissible representation – for every open subgroup U ⊂ Kv,
the subspace πU

v is finite-dimensional.
The algebra C∞

c (G(AE)) can be written as a restricted tensor product of local
algebras C∞

c (G(Ev)); every φ can be written as a finite sum of factorizable test
functions: infinite tensor products ⊗φv where, for almost all non-archimedean v,
φv is the characteristic function 1Kv

of the chosen Kv. We decompose dgf =
∏

dgv,
where dgv is a Haar measure on G(Ev). We can arrange that, for almost all non-
archimedean v,

∫

G(Ev)

1Kv
dgv = 1.

For non-archimedean v, the action of C∞
c (G(Ev)) on πv, defined by

πv(φv)(w) =

∫

G(Ev)

πv(g)(w)φv(g)dgv, w ∈ πv, φv ∈ C∞
c (G(Ev))
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is a finite sum with finite-dimensional image. In particular, πv(φv) is a trace class
operator. The same is true for archimedean v, provided on takes φv to be left and
right Kv-finite. We assume this to be the case henceforward. The character of πv

is the distribution φv 7→ tr πv(φv). It is invariant under conjugation by G(Ev), or
simply an invariant distribution.

When πv is unramified tr πv(1Kv
) =

∫

G(Ev)
1Kv

dgv = 1 for almost all v. Thus

when φ = ⊗φv, the infinite product

tr π(φ) =
∏

v

tr πv(φv)

is actually finite and well-defined, and extends linearly to all K∞-finite elements in
C∞

c (G(AE)).

Fact 1.3. (a) The distribution φ 7→ tr π determines π up to isomorphism.
(b) The sum

∑

mπtr π of distributions converges to the distribution tr R.
(c) (linear independence of characters) The distribution tr R determines the mπ

uniquely.

We emphasize that the distributions tr π and tr R depend on the choice of Haar
measure dg.

What we have described so far is a straightforward generalization of the theory of
characters of finite-dimensional representations of finite groups, though the proofs
are in general not so straightforward. In the case of finite groups, the class function
analogous to tr R is the character of the regular representation on a coset space,
and thus can be written as the sum of characteristic functions of conjugacy classes
with explicit coefficients. The corresponding assertion for the automorphic trace
trR is the Selberg trace formula. The characteristic functions of conjugacy classes
are replaced by orbital integrals. Suppose γ ∈ G(A) and φ ∈ C∞

c (G(Ev)) is a K∞-
finite test function. Let Hγ ⊂ G(A) denote the centralizer of γ. Suppose for the
moment that Hγ has a Haar measure dgγ , and let dġ = dg/dgγ denote the quotient
measure on Gγ\G(A). We define the orbital integral

(1.4) Oγ(φ) = ΦG(A)(γ, φ) =

∫

Hγ\G(A)

φ(x−1γx)dẋ.

The two expressions on the left correspond to two systems of notation used in the
literature.

Convergence of the integral (1.4) is a hypothesis that is automatically satisfied
in favorable circumstances, for example when γ ∈ G(E) for anisotropic G. In
that case Hγ is the group of AE-points of the centralizer Gγ of γ, an E-rational
algebraic subgroup of G. Since G is anisotropic over E, and γ ∈ G(E) is necessarily
semi-simple, and Gγ is thus reductive. It is often convenient to assume the derived
subgroup Gder ⊂ G is simply connected; then Gγ is even a connected reductive
group. With or without this hypothesis, the map φ 7→ Oγ(φ) defines a (G(AE)-
)invariant distribution on C∞

c (G(AE)). It depends both on the choice of measure
dgγ on Gγ(AE) as well as on dg. On the other hand, dgγ defines a volume

vγ =

∫

Gγ(E)\Gγ (AE)

dgγ.
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Theorem 1.5 (Selberg trace formula, anisotropic case). There is an identity
of distributions:

trR(φ) =
∑

γ

vγOγ(φ)

where γ runs over G(E)-conjugacy classes in G(E) and, for any fixed choice of φ,
the sum of orbital integrals is finite. In other words

∑

γ

vγOγ(φ) =
∑

π

mπtr π(φ).

The left-hand side is called the geometric side of the trace formula, the right-hand
side is the spectral side.

Remark. We write φ = φ∞⊗φf . The function φf is biinvariant under some open
compact subgroup Kf ⊂ G(Af ), and thus the sum on the right hand side only
involves representations with Kf -fixed vectors. In practice, we will φ∞ such that
Tr(π(φ∞) is non-zero only when π is a cohomological representation with fixed
infinitesimal character. It then (almost) follows that the spectral side is finite for
the given φ. This is not quite true if G is anisotropic modulo its center but if ZG has
a non-trivial split component. There are various ways to modify the trace formula
to avoid this problem, some of which are illustrated in the articles of Labesse and
Clozel-Moeglin. We will ignore the question in this introduction, which is mainly
concerned with local properties of the geometric side.

The finiteness of the geometric side in the anisotropic case is a consequence of
reduction theory.

The coefficients vγ and mπ are global and cannot be simplified further, although
when dgγ is chosen to be Tamagawa measure vγ can be expressed in terms of
cohomological data. When dgγ and dg are Tamagawa measures, we write τ(Gγ) in
place of vγ ; thus

(1.6)
∑

γ

τ(Gγ)Oγ(φ) =
∑

π

mπtr π(φ).

The terms tr π(φ) and Oγ(φ), on the other hand, are local: if φ is factorizable,
then so are the distributions. We have already seen this for tr π, and for the orbital
integrals it is even easier:

Oγ(φ) =
∏

v

Oγ(φv)

where γ is viewed as an element of G(Ev) and

Oγ(φv) =

∫

Gγ(Ev)\G(Ev)

φv(x−1γx)dẋv,

with dẋ =
∏

dẋv a factorization of the quotient measure.
When G/ZG is anisotropic but ZG is not, there are various ways to modify these

constructions to compensate for the fact that ZG(E)\ZG(AE) has infinite volume.
When G is itself not anisotropic, Arthur, extending Selberg’s constructions for

GL(2) and some other rank one groups, generalized Theorem 1.5 by generalizing
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both sides of the equality. Although L2(G(E)\G(AE)) is no longer a direct sum of
irreducible automorphic representations, it does decompose as a direct integral of
unitary representations. In particular, the subspace Ld

2(G(E)\G(AE)) defined as
the direct sum of all irreducible direct summands of L2(G(E)\G(AE)) – the discrete
spectrum of G(E)\G(AE)) has a character that can be placed on the spectral side
of the Arthur-Selberg trace formula. It is unfortunately not alone, and needs to
be accompanied by quite complicated integral terms. On the geometric side, the
problem is that it is no longer true that every γ ∈ G(E) is semisimple, and this leads
to the appearance of complicated terms on this side as well. Under favorable choices
of test functions, all these bad terms disappear and we are left with a formula very
similar to Theorem 1.5, called the simple trace formula. For the heuristic purposes
of this introduction, it will be enough to restrict our attention to the anisotropic
case.

2. Simple applications of the trace formula

It should be taken as axiomatic that the spectral side of the trace formula is
intrinsically interesting, whereas the geometric side lends itself to calculation. Thus
it is in principle possible to obtain information about the spectral side by calculating
the geometric side for carefully chosen test functions φ. In what follows we write
Gv in place of G(Ev).

Example 2.1: Limit multiplicities and pseudocoefficients. The first exam-
ple develops a theme that goes back to Langlands’ early work on the dimensions
of spaces of automorphic forms. Here we follow Clozel’s approach in [C1], though
only in the simplest cases. As before, we assume G is anisotropic, and to simplify
the discussion we assume G semisimple as well. Let S be a finite set of places of
E, including all archimedean places, and for each v ∈ S choose an irreducible ad-
missible representation π0

v of Gv. Suppose for each v we can choose a test function
φv such that

(2.1.1) tr π0
v(φv) = 1, tr πv(φv) = 0, πv 6= π0

v,

where πv runs over all irreducible admissible representations of Gv. For nonar-
chimedean places w /∈ S we let φw = 1Kw

, so that

(2.1.2) tr πw(φw) = vol(Kw) dimπKw
w , ∀πw.

Let KS =
∏

w/∈S Kw, π0
S = ⊗v∈Sπ0

v. With this choice of test functions the spectral
side of the trace formula would then be

(2.1.3)
∑

π=π0

S
⊗πS

mπvol(KS) dim(πS)KS

.

In other words, this choice of φ counts the automorphic forms of type πS at S and
of level KS away from S. For example, suppose S equals the set of archimedean
places, Gv is the automorphism group of a hermitian symmetric domain Dv for
every archimedean v, and π0

v is the representation corresponding to holomorphic
modular forms of some fixed weight on Dv. Then m(π) counts the holomorphic

modular forms of given weight and level KS .
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Functions with property (2.1.1) can be found when v is nonarchimedean, π0
v is

supercuspidal, and the center ZG(Ev) is compact. Indeed, supercuspidal represen-
tations π0

v are characterized by the condition that their matrix coefficients

φe,e∨(g) = e∨(π0
v(g)e), e ∈ π0

v, e∨ ∈ (π0
v)

∨

are compactly supported modulo ZG(Ev), which we are assuming finite. Thus
under these hypotheses, such a φe,e∨ ∈ C∞

c (Gv). On the other hand, just as for
finite groups, the matrix coefficient of a supercuspidal representation π0

v acts as
zero, hence a fortiori has trace zero, on any representation other than π0

v, but for
appropriate choices of e, e∨ has non-zero trace on π0

v. Thus, up to multiplication
by a scalar, matrix coefficients of supercuspidal representations satisfy (2.1.1). The
same is true when v is archimedean and Gv is compact.

Assume for the moment, then, that Gv is compact for all archimedean v, and
that π0

v is supercuspidal for finite v in S. When KS = Kf is sufficiently small
an argument based on the discreteness of G(E) in G(A) implies that the only
conjugacy class that meets the support of φ is the class of the identity element e
[C1, Lemma 5]. Thus the geometric side of the trace formula is reduced to the
single term veOe(φ) = veφ(e). We thus obtain

(2.1.4)
∑

π

vol(KS) dim(πS)KS

is constant for sufficiently small KS .

When the compactness and supercuspidality hypotheses are not satisfied, there
are in general no test functions satisfying (2.1.1). Matrix coefficients of discrete
series representations can be used, provided they are integrable, but they are not
compactly supported, and a different version of the trace formula is needed. How-
ever, one can make do with a weaker hypothesis

(2.1.1(bis)) tr π0
v(φv) = 1, tr πv(φv) = 0, πv 6= π0

v, πv tempered.

Test functions satisfying (2.1.1)(bis) are called pseudocoefficients and are known to
exist for all square integrable representations; this is due to Clozel and Delorme
for real groups and to Bernstein, Deligne, and Kazhdan for p-adic groups. On
the other hand, it can be shown that the non-tempered representations that have
non-zero trace for a given pseudocoefficient have strictly smaller limit multiplicities
than discrete series representations. (The relevant arguments are in [C1].) This
can be made precise, but the upshot is that (2.1.4) remains true when πS is merely
discrete series, with the word “constant” replaced by “asymptotically constant.”
See [C1] for details.

Example 2.2: Jacquet-Langlands transfer.
We present the Jacquet-Langlands correspondence in the simplest possible set-

ting. Let E be a totally real field of even degree. Then up to isomorphism there
exists a unique quaternion algebra D over E such that for all archimedean places
v Dv is ramified, i.e., isomorphic to the Hamiltonion quaternions, and such that
for all non-archimedean v Dv ≃ M(2, Ev). Let D′ be a second quaternion algebra
over E that is ramified at all archimedean places but not isomorphic to D. Then
there exists a non-empty finite set S of non-archimedean places of E such that D′

v
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is a division algebra if and only if v ∈ S or v is archimedean; moreover, S has even
cardinality. We let G = D×, G′ = D′,×, viewed as group schemes over Spec(E).
Thus Gv

∼
−→GL(2, Ev) for all finite v, and G′

v
∼
−→Gv for v /∈ S, but G′

v is an inner
form of GL(2, Ev), anistropic modulo its center E×

v , for v ∈ S.
For v /∈ S we may identify

(2.2.1) C∞
c (Gv)

∼
−→C∞

c (G′
v),

The isomorphism (2.2.1) is based on an isomorphism of groups and is unique up
to inner automorphism. In particular, (2.2.1) determines an isomorphism of spaces
of invariant distributions (such as orbital integrals) which is canonical up to the
action of the center.

We let N : G → GL(1) denote the reduced norm, and use the same notation
for G′. For v archimedean all irreducible representations of Gv

∼
−→G′

v are finite-
dimensional. The space of C∞ Kv-finite functions is spanned, up to the action of
the center, by the matrix coefficients of these finite-dimensional representations,
and we would like to use these as test functions. However, these matrix coefficients
are not compactly supported. There are three ways to get around this problem:
(a) work with the class of test functions that transform under a fixed character of
the center, and with the version of the trace formula adapted to this situation; (b)
truncate the matrix coefficient φ1

v by multiplying it by cV (N(g)), where V ⊂ R× is
a compact subset and cV is the characteristic function of V ; (c) ignore it. In other
situations we will be attempted to follow the strategy (c), but here we can use (b), it
being understood that as V varies among compact sets and φ1

v varies among matrix
coefficients of finite-dimensional representations, the functions φ1

V,v = cV ◦ N · φ1
v

separate representations. To simplify further, we will choose as test functions for
Gv as well as for G′

v the (truncations of the) function φ1
v ≡ 1, the matrix coefficient

of the trivial representation, for all archimedean v.
For v ∈ S the groups Gv and G′

v are not isomorphic. However, the conjugacy
classes in G′

v can be identified with a subset of the conjugacy classes of Gv. Every
element γ′ ∈ G′

v generates the subalgebra Ev[γ
′] ⊂ D′

v. Since D′
v is a division

algebra, Ev[γ
′] is a field, which equals Ev if γ′ ∈ ZG′

v
; otherwise, [Ev[γ

′] : Ev] = 2.
The conjugacy class of γ′ in D′

v is completely determined by the minimal polynomial
of γ′ over Ev, which is irreducible of degree 1 or 2. Given such a minimal polynomial
Pγ′ , we can associate to it a conjugacy class [γ] ⊂ Gv = GL(2, Ev). If γ ∈ [γ], then
its minimal polynomial equals Pγ′ , and indeed Ev[γ]

∼
−→Ev[γ

′]. Such conjugacy
classes in Gv are called ellliptic; they are characterized by the fact that their minimal
polynomials are irreducible, or equivalently by the fact that Ev[γ] ⊂ M(2, Ev) is a
field. We say that the conjugacy classes [γ′] ⊂ G′

v and [γ] ⊂ Gv are associated, and
write γ ↔ γ′. A conjugacy class in Gv has an associated conjugacy class in G′

v if
and only if it is elliptic.

The keys to comparing automorphic representations of G and of G′ are contained
in the following list of facts:

Fact 2.2.2 (Existence of transfer). To any function φ′
v ∈ C∞

c (G′
v) we can

associate a function φv ∈ C∞
c (Gv) with the properties

(2.2.2.1) Oγ(φv) = Oγ′(φ′
v), γ ↔ γ′ regular

(2.2.2.2) Oγ(φv) = 0 if γ ∈ Gv is semisimple non-elliptic.

The function φv is called a transfer of φ′
v, and we write φv ↔ φ′

v.
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Fact 2.2.3 (Density of orbital integrals). The function φv of (2.2.2) is not
unique but the properties (2.2.2.1) and (2.2.2.2) suffice to determine tr π(φv) for
any irreducible admissible representation π of Gv.

Implicit in (2.2.2) is the possibility to associate Haar measures on G′
v and Gv.

Since the centralizers of associated elements are isomorphic – (G′
v)γ

∼
−→(Gv)γ –

this suffices to pin down the quotient measures. We will have more to say about
associated measures in subsequent sections. [Find reference for (2.2.3)**]

Fact 2.2.4 (local Jacquet-Langlands correspondence). To any irreducible
admissible representation π′

v of G′
v, there exists an irreducible admissible represen-

tation πv of Gv, defined up to isomorphism, with the following properties.

(a) If dim π′
v > 1, then πv is supercuspidal; if π′

v = χ◦N for some character χ :
E×

v → C×, then πv
∼
−→St⊗χ◦det, where St is the Steinberg representation

of GL(2, Ev); We write πv = JL(π′
v).

(b) Let φ′
v ∈ C∞

c (G′
v) with transfer φv ∈ C∞

c (Gv) . Then

tr JL(π′
v)(φv) = −tr π′

v(φ
′
v);

tr πv(φv) = 0 if πv is neither one-dimensional nor of the form JL(π′
v).

(c) The space of distributions tr JL(π′
v), as π′

v varies over all irreducible ad-
missible representations of G′

v, separates the transfers to Gv of functions in
C∞

c (G′
v). More precisely, suppose {π′

i,v, i ∈ I} is a finite set and ai ∈ C for
all i ∈ I. Suppose

∑

aitr JL(π′
i,v)(φv) = 0

for all transfers φv from C∞
c (G′

v). Then ai = 0 for all i.

This fact is assumed for simplicity of exposition. In fact, it was obtained by
Jacquet and Langlands as a consequence of the constructions we are about to
present. Note again that it is assumed implicitly that measures are associated.
Condition (c) is a simple consequence of the facts already presented; one can even
let φv run over the space of all test functions on Gv whose orbital integrals vanish
off the elliptic set, since these spaces are the same.

We need one more fact:

Fact 2.2.5 (global transfer of conjugacy classes). Let (γv) ∈ G(AE) be a
conjugacy class. Suppose there exists γ′ ∈ G′(E) such that, for all v /∈ S, γ′ is
conjugate to γv in Gv ≃ G′

v and such that, for v ∈ S, γv ↔ γ′. Then there exists
γ ∈ G(E) such that γ is conjugate to γv for all v.

Conversely, suppose γ ∈ G(E), and suppose γ is elliptic at all v ∈ S. Then there
exists γ′ ∈ G′(E) such that γ′ is conjugate to γ at all v /∈ S, and γ ↔ γ′ at all
v ∈ S.

We write γ ↔ γ′. Then τ(Gγ) = τ(Gγ′) (equality of Tamagawa measure).

In the present case most of this is easy: γ′ generates a quadratic extension
E[γ′] of E that embeds locally in D′ everywhere. Since there is no additional
local obstruction to embedding in D, E[γ′] also embeds globally in D, and we let γ
denote the image of γ′ under any such embedding; it is well-defined up to conjugacy.
Conversely, if γ is as in the second paragraph, the local hypotheses at v guarantee
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that E[γ] embeds locally in D′ everywhere, hence there is a global embedding,
which defines γ′ up to conjugacy. For groups other than multiplicative groups of
division algebras, this is a much more serious issue.

The equality of Tamagawa measures is a special case of a theorem due in complete
generality to Kottwitz. At this point it suffices to remark that when Tamagawa
measures are taken on both sides, then it can be assumed that local measures are
associated as implicit in (2.2.2) and (2.2.4)

Now let φ′ ∈ C∞
c (G′(AE)) be a factorizable test function, with φ′

v = φ1
V,v =

cV ◦N · 1 for every archimedean v. Define a factorizable function φ ∈ C∞
c (G(AE))

by

φv = φ′
v, v /∈ S (via (2.2.1)); φv ↔ φ′

v, v ∈ S.

We write φ ↔ φ′.

Theorem 2.2.6 (global Jacquet-Langlands correspondence). Let π′ be an
automorphic representation of G′, and suppose dimπ′ > 1, π′

v trivial for all archimedean
v. Then there exists an automorphic representation π = JL(π′) of G, with

πv
∼
−→π′

v, v /∈ S; πv = JL(π′
v), v ∈ S.

Moreover, m(JL(π′)) = m(π′).

Proof. We first apply the Selberg trace formula to G′, with test functions φ′ as
above. Write φ′ = φ′

S ⊗ φ′,S . Automorphic representations of G and G′ can be
factorized analogously. The spectral side of the trace formula is then
(2.2.6.1)

∑

dim π′>1,π′

∞
=1

m(π′)tr π′
S(φ′

S)tr π′,S(φ′,S)+
∑

dim π′=1,π′

∞
=1

m(π′)tr π′
S(φ′

S)tr π′,S(φ′,S).

The restriction to π′
∞ is imposed by our choice of φ′

v at archimedean v, and is in
fact completely unnecessary. Similarly, for φ ↔ φ′, the spectral side of the trace
formula for G is
(2.2.6.2)

∑

dim π>1,π∞=1

m(π)tr πS(φS)tr πS(φS) +
∑

dim π=1,π∞=1

m(π)tr πS(φS)tr πS(φS).

The geometric side of the trace formula for G′ is

(2.2.6.3)
∑

γ′

vγ′Oγ′(φ′
S) · Oγ′(φ′,S).

Likewise, the geometric side of the trace formula for G is

(2.2.6.4)
∑

γ

vγOγ(φS) · Oγ(φS),

where the sum is taken over all conjugacy classes γ in G(E). Now G is anisotropic
over E, so every γ ∈ G(E) is semisimple, hence is still semisimple in Gv for every
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v. But (2.2.2.2) implies that Oγ(φS) = 0 unless γ is elliptic at all v ∈ S. Thus
(2.2.5) implies that (2.2.6.4) equals

(2.2.6.5)

∑

γ′,γ↔γ′

vγOγ(φS) · Oγ(φS)

=
∑

γ′

vγOγ′(φ′
S) · Oγ′(φ′,S)

=
∑

γ′

vγ′Oγ′(φ′
S) · Oγ′(φ′,S)

The second equality is a consequence of the last assertion in (2.2.5).
Now the last line is equal to (2.2.6.3). Thus the Selberg trace formula implies

equality of (2.2.6.1) and (2.2.6.2). The one dimensional automorphic representa-
tions of G′ and G correspond in an obvious way, and we thus obtain
(2.2.6.6)

∑

dim π′>1,π′

∞
=1

m(π′)tr π′
S(φ′

S)tr π′,S(φ′,S) =
∑

dim π>1,π∞=1

m(π)tr πS(φS)tr πS(φS).

Apart from the (unnecessary) restriction on π′
∞, the representations as well as

the test functions on the left-hand side are completely general. By (2.2.4) (b)
the right-hand side is the sum over π with πv in the image of the local Jacquet-
Langlands correspondence for all v ∈ S. The theorem is then a simple consequence
of (2.2.4)(c) and general results on linear independence of characters of G(AS

E),
and we leave the details to the reader [until the next draft!!].

3. Stable conjugacy

Example 2.2 is perhaps the most elementary use of the trace formula to transfer
automorphic representations from one group to another. In this case G′ and G are
inner forms of each other, but similar arguments are used when G′ = GL(n, E)
and G = GL(n, E′), with E′/E a cyclic extension (cyclic base change, due to
Langlands for n = 2 and Arthur-Clozel in general) or when G′ = GL(n, E), E is
a cyclic extension of F of degree d, and G = GL(nd, F ) (automorphic induction,
due to Arthur-Clozel, and revisited by Henniart-Herb). Each such case follows the
general pattern of Example 2.2, especially the transfer of local and global conjugacy
classes, and the transfer of orbital integrals. There are local difficulties, especially
in obtaining the correct form of base change to substitute for (2.2.2.1) and (2.2.2.2),
but the main difficulties are global and analytic and arise from the presence of non-
elliptic and non-cuspidal terms in the general trace formula for isotropic groups.

A quite different sort of difficulty arises when G and G′ are not inner forms of
GL(n). The main relevant property of GL(n) is concealed in the discussion of trans-
fer of associated conjugacy classes preceding (2.2.2). Semi-simple conjugacy classes
in inner forms of GL(n) are completely characterized by their characteristic poly-
nomials. Similar characterizations are possible for other groups, but only over an
algebraically closed field. In other words, two semi-simple elements of G(F ), where
F is either a global or a local field, can belong to the same G(F̄ )-conjugacy class but
to distinct G(F )-conjugacy classes. It is often possible to associate the former for
different groups, but there is no natural way to associate the latter. However, the
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geometric expansion of the trace formula is a sum of integrals over G(F )-conjugacy
classes. The discrepancy between G(F )-conjugacy and G(F̄ )-conjugacy, first stud-
ied when G = SL(2) by Labesse and Langlands, is the origin of the stable trace
formula.

Strictly speaking, the above remarks only apply when the derived subgroup
Gder ⊂ G is assumed simply connected, and we will make this assumption hence-
forward. We then say that two semi-simple elements γ1, γ2 ∈ G(F ) are stably
conjugate if they belong to the same G(F̄ )-conjugacy class; the intersections with
G(F ) of semi-simple G(F̄ )-conjugacy classes are called stable conjugacy classes.
The stable orbital integral of a test function f attached to the semi-simple element
γ ∈ G(F ) is the sum, weighted by sign factors to be described below, of the orbital
integrals of f over the conjugacy classes in the stable conjugacy class associated to
γ. For F local as well as global, we will soon see that this sum is finite, and its
terms can be parametrized in terms of Galois cohomology. A stable distribution on
G(F ), or G(AF ), is a distribution that is invariant over G(F̄ ) (resp. G(ĀF )) and
not only over G(F ) (resp. G(AF )). The trace formula would be stable if it were a
sum of stable distributions.

For some very special groups G, stable conjugacy and conjugacy coincide. We
have already seen this for inner forms of GL(n). It is also effectively the case
globally for certain inner forms of unitary groups. This is the basis of the results
of Kottwitz on the zeta functions of “simple Shimura varieties” and of Clozel and
Labesse on stable base change from unitary groups to GL(n). The work of Harris-
Taylor on Galois representations at places of bad reduction of Shimura varieties
was carried out in this setting, as was Harris’ proof of a version of the Jacquet-
Langlands correspondence between two such unitary groups. Certain test functions
are also insensitive to the difference between stable conjugacy and G(F )-conjugacy.
This was first observed by Kottwitz in his proof of Weil’s conjecture on Tamagawa
numbers, and was developed elsewhere, most recently in Labesse’s book on stable
base change [Lab] and in an article of Harris-Labesse [HL].

For general G and for general test functions these simplifications are not possi-
ble. Hence the problem arises of stabilizing the trace formula. The trace formula
is not itself a sum of stable distributions. The error, however, can conjecturally be
expressed in terms of stable distributions on other groups: these are the endoscopic
groups. The stable trace formula is this conjectural expression. Several decades of
work by a number of people have reduced the stabilization of the trace formula to
a collection of conjectures, known collectively and informally as the ”fundamental
lemma,” concerning a specific class orbital integrals on p-adic groups. The break-
through in the proof of the fundamental lemma was finally made by Laumon and
Ngô in the spring of 2004, and this is the motivation for the present collection of
books.

The subsequent sections of the introduction roughly follow the notes of the lec-
tures of Ngô at IHES in the spring of 2003. Ngô’s notes sketch proofs of a number of
the theorems stated here, and they are available for consultation at various locations
on the internet, notable at http://www.ihes.fr/IHES/Scientifique/Seminaires/seminaire-
LL.html. Complete proofs are of course in the articles quoted below.

The first step, due to Langlands and Kottwitz, is to determine the set of conju-
gacy classes in a stable conjugacy class. When F is a non-archimedean local field
this is not bad at all. Let γ ∈ G(F ) be a semi-simple element, and let I = Iγ ⊂ G
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denote its centralizer (also denoted Gγ). Since γ is semi-simple, I is a reductive
group, and since Gder is simply connected, I is connected. This is the main rea-
son we assume Gder simply connected; the general case can also be handled by
reduction to this case.

Suppose γ′ is stably conjugate to γ, i.e. there exists g ∈ G(F̄ ) such that g−1γg =
γ′. Let Γ = Gal(F̄ /F ). For any Γ-module M , we write H•(F, M) for H•(Γ, M).
For any σ ∈ Γ,

g−1γg = γ′ = σ(γ′) = σ(g−1)γσ(g),

hence σ 7→ gσ(g)−1 defines a 1-cocycle

cσ ∈ H1(F, I) := H1(F, I(F̄ )).

It is easy to see that the cohomology class of cσ is independent of the choice of g,
and that the conjugacy class of γ′ depends only on this cohomology class. If γ is
a regular element of G then I is a torus, and thus H1(F, I) is obviously an abelian
group. On the other hand, the image of cσ in H1(F, G) is obviously a coboundary;
thus

(3.1) cσ ∈ ker[H1(F, I) → H1(F, G)]

In fact, because Gder is simply connected, it is a result of Kneser that H1(F, Gder) =
1, and after some work it follows that H1(F, G) can be interpreted in terms of
H1(F, D), where D = G/Gder is a torus; in particular, the kernel in (3.1) is an
abelian subgroup of H1(F, I).

We write inv(γ, γ′) for the class in ker[H1(F, I) → H1(F, G)] corresponding to
the conjugacy class of γ′.

After a bit more work, Kottwitz showed in [K3] that (3.1) is an abelian group
even if γ is not regular, and indeed even if Gder is not simply connected. This has
been reformulated systematically by Labesse in terms of a generalization of what
Borovoi called the abelianized Galois cohomology of I and G. Labesse defined in a
functorial way a set H0(F, I\G) that fits into a short exact sequence:

(3.2) 0 → I(F )\G(F ) → H0(F, I\G) → ker[H1(F, I) → H1(F, G)] → 0.

The term I(F )\G(F ) is naturally the G(F )-conjugacy class of γ, whereas the kernel
on the right is a finite abelian group that parametrizes the conjugacy classes in the
stable conjugacy class. Thus the term in the middle is the stable conjugacy class.

We write γ′st
∼γ if γ′ and γ are stably conjugate.

Fact 3.3. For any γ′st
∼γ, the centralizer Iγ′ is the inner form of Iγ defined as

the image of the cocycle cσ defined by γ′ under the natural map H1(F, Iγ) →
H1(F, Iγ,ad). There is a map (the Kottwitz sign):

e : { Inner forms of Iγ} = H1(F, Iγ,ad) → {±1}

The stable orbital integral SOγ(f) of f ∈ C∞
c (G(F )) is the sum

∑

γ′
st
∼γ

e(Iγ′)Oγ′(f) =

∫

H0(F,I\G)

e(x)f(x−1γx)dẋ.

The right-hand side is here treated as a suggestive expression whose precise defini-
tion can be found on p. 67 of [Lab].

Stable conjugacy over global fields has an analogous but more complicated treat-
ment, to which we turn after introducing the L-group.
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4. L-groups and stable conjugacy

We let F be either a local field or a number field, and let Γ denote either
Gal(F̄ /F ) or the Weil group WF̄ /F . Let G be a connected reductive group over
F . Langlands’ theory of the L-group begins with the observation that a connected
reductive algebraic group G over an algebraically closed field (of characteristic zero,
for simplicity) can be reconstructed up to canonical isomorphism in terms of the
based root datum Ψ0(G) = (X∗, ∆∗, X∗, ∆∗). Here T is a maximal torus of G,
X∗ = X∗(T ), resp. X∗ is its group of characters (resp. cocharacters), B ⊃ T is
a Borel subgroup, ∆∗ is the set of positive simple roots of T in B, ∆∗ the set of
positive simple coroots. These data depend on a number of choices, but for any
two choices the corresponding data are canonically isomorphic, hence the notation
Ψ0(G) is justified.

The quadruple (X∗, ∆∗, X∗, ∆∗) satisfies a collection of axioms including as a
subset the axioms for a root datum satisfied by the first two items. It suffices to men-
tion that any quadruple Ψ of the same type, with X∗ and X∗ finitely generated free
abelian groups, and ∆∗ ⊂ X∗ and ∆∗ ⊂ X∗, that satisfy these axioms comes from
a connected reductive group. The dual based root datum Ψ̂ = (X∗, ∆∗, X

∗, ∆∗),
obtained by switching the first two items with the last two, also satisfies these
axioms, and therefore defines up to canonical isomorphism a connected reductive
algebraic group Ĝ over C with Ψ0(Ĝ)

∼
−→Ψ̂.

We write Ĝ for ĜF̄ . The F -rational structure on GF̄ translates to an action of
Γ on Ψ0(GF̄ ), preserving the natural pairing between characters and cocharacters,

and thus, almost, to an action of Γ on Ĝ. To define such an action unambiguously
one needs to choose a splitting (“épinglage”) of Ĝ, i.e., a triple (T̂ , B̂, {Xα, α ∈ ∆̂)),

where T̂ is a maximal torus of Ĝ, B̂ ⊃ T̂ a Borel subgroup, ∆̂ the set of positive
simple roots of T̂ in B̂, and Xα is a non-zero element of the root space ĝα ⊂ Lie(B̂)

for every α ∈ ∆̂. An action of Γ on Ĝ that fixes some splitting is called an L-action,
and an L-group LG of G is the semi-direct product of Ĝ with Γ with respect to a
fixed L-action.

If G1 → G2 is an F -homomorphism whose image is a normal subgroup, then
the dual construction yields a homomorphism Ĝ2 → Ĝ1 that is canonical up to
(Ĝ1)

Γ-conjugacy.
In the following section, we will begin with an object on the L-group side and

use it to reconstruct endoscopic groups of H.
This construction has a number of subtle and unexpected properties that ought

ideally to be mentioned here but are probably too difficult to motivate at this
stage. The skeptical reader is advised that motivation will come through experience
working with these notions (as I keep telling myself). It should not be hard to see
that the L-groups of inner forms are isomorphic. For classical groups the L-groups
are easy to calculate explicitly.

Example 4.1. Unitary groups. Let Φn be the matrix whose ij entry is (−1)i+1δi,n−j+1:

Φn =







0 0 . . . 0 1
0 0 . . . −1 0

. . . . . . . . . . . . . . .
(−1)n−1 0 . . . 0 0







Let K/E be a quadratic extension as above, and define an action of Gal(K/E) on
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Ĝ = GL(n, C) by letting the non-trivial element c act as

c(g) = Φn
tg−1Φ−1

n .

Conjugation by Φn is necessary in order to preserve the standard splitting of Ĝ
defined by the standard upper triangular Borel subgroup with its standard diagonal
torus, and the standard basis of the simple root subspaces in Lie(Ĝ) given by
the matrices Xi,i+1, i = 1, . . . , n − 1, with entry 1 in the (i, i + 1) place and
zero elsewhere: one checks that c(Xi,i+1) = Xn−i,n−i+1 for all i. Without this
condition on the splitting, the Langlands parametrization of representations (local
or automorphic) of G is just wrong.

An action of Gal(Ē/E), or of the Weil group WE , on Ĝ is defined by projection
onto Gal(K/E). The L-group in the Weil (resp. Galois) normalization is the semi-

drect product of Ĝ) with WE (resp. Gal(Ē/E)) with respect to this action.

The endoscopic groups that contribute to the stable trace formula are naturally
defined in terms of the L-group. The first indication of this relation is given by the
following determination, due to Langlands and Kottwitz [L,K2], of the cohomology
group parametrizing the stable conjugacy class of a semi-simple element. We let
Z(Ĝ) denote the center of Ĝ and D denote Pontryagin dual.

Proposition 4.2 [K2]. For any local field F , there is a canonical map

H1(F, G) → π0(Z(Ĝ)Γ)D,

functorial in G, that is an isomorphism if F is p-adic. In particular, if γ ∈ G(F )
is semi-simple, I = Iγ, then the stable conjugacy class of γ pairs canonically with

π0(Z(Î)Γ/Z(Ĝ)Γ) = π0(Z(Î)ΓZ(Ĝ)/Z(Ĝ))

and this pairing is a duality when F is p-adic.

Let F be any local field. If γ ∈ G(F ) is semi-simple, γ′st
∼γ, we define

s 7→< inv(γ, γ′), s >

for the character π0(Z(Î)Γ/Z(Ĝ)Γ) → C× defined by the pairing in (4.2). The
determination of the set of conjugacy classes in a stable conjugacy class (in the
p-adic case) in terms of the Langlands dual proceeds by replacing the cohomology
of the reductive group G by the cohomology of a complex of tori. Proposition 4.2
is then derived as a consequence of, and generalization of, local Tate-Nakayama
duality for cohomology of tori.

Global Tate-Nakayama duality for tori associates all the local duality maps by
means of a reciprocity law. The generalization to arbitrary reductive groups is due
to Langlands and Kottwitz. We begin by generalizing the notion of elliptic elements
to arbitrary reductive groups.

Definition 4.3. Let F be either a p-adic field or a number field. Let γ0 ∈ G(F ) be a
semi-simple element, with centralizer I. The element γ0 is elliptic if Z(I)0/Z(G)0

is anisotropic. Equivalently, γ0 is elliptic if it belongs to a maximal torus of G
contained in no proper parabolic subgroup.

Following the method pioneered by Harish-Chandra, harmonic analysis on p-
adic and adelic groups is reduced by a procedure known as descent to the study of
elliptic elements. When F is a number field we will only be considering anisotropic
groups, all of whose elements are elliptic, and descent will not be an issue.
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Definition 4.4. Let F be a number field. Let γ0 ∈ G(F ) be a semi-simple elliptic
element, with centralizer I. Define

(4.4.1) K(γ0) = {c ∈ π0((Z(Î)/Z(Ĝ))Γ) | ∀v c ∈ π0(Z(Î)ΓvZ(Ĝ)/Z(Ĝ))}

where v runs over places of F , and Γv is a decomposition group at v.

Theorem 4.5 [K3, Theorem 6.6]. Let γ0 ∈ G(F ) be a semi-simple elliptic
element, Let γ = (γv) ∈ G(AF ) and suppose γv is stably conjugate to γ0 for all v.
Then there exists γ′ ∈ G(F ) in the G(AF )-conjugacy class of γ if and only if

(4.5.1)
∑

v

inv(γ0, γv) |K(γ0)= 0.

Kottwitz’ statement has a slightly different form but is equivalent to this one.
The proof of this theorem makes use of the Hasse principle for simply connected
semi-simple groups. (When Kottwitz’ article was written this had not yet been
established for E8, so he includes the hypothesis, no longer necessary, that G contain
no E8 factors.) The sum of local invariants is finite because at almost all places,
γv and γ0 belong to the same hyperspecial maximal compact subgroup. Excluding
a finite set of places defined in terms of the divisors of 1 − α(γ0), where α runs
through the roots of G not orthogonal to γ0, it then follows that γv and γ0 are in
the same conjugacy class [K3, Prop. 7.1].

It is now relatively easy to complete the first stage of the stabilization of the
trace formula. Details are contained in Ngô’s notes as well as in the original sources.
Theorem 4.5 provides a necessary and sufficient condition for the intersection of a
G(AF )-conjugacy class with the G(AF )-stable conjugacy class of γ0 to contain a
G(F )-conjugacy class. The next proposition completes this condition by determin-
ing the number of G(F )-conjugacy classes in the G(AF )-conjugacy class of γ.

Proposition 4.6 [K3, §9]. Let γ0 and γ be as in Theorem 4.5, and suppose γ
satisfies the reciprocity condition (4.5.1). Then the G(AF )-conjugacy class of γ
contains

|K(γ0)|τ(G)τ(Gγ0
)−1

G(F )-conjugacy classes.

The geometric side of the trace formula can thus be simplified. First, let E0

denote a set of representatives in G(F ) of the set of stable conjugacy classes in
G(F ). Write Te(φ) for the geometric side of the trace formula, i.e, for the sum of
terms on the left of (1.6). These can be grouped according to stable conjugacy:

Te(φ) =
∑

γ

τ(Gγ)Oγ(φ) =
∑

γ0∈E0

τ(Gγ0
)

∑

γ
st
∼γ0

Oγ(φ).

Here we have used the important theorem of Kottwitz that

(4.7) τ(Gγ) = τ(Gγ′) if γ
st
∼γ′.
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Now Oγ(φ) is purely local: it only depends on the G(AF )-conjugacy class of γ.
Proposition 4.6 allows us to group together the terms in the inner sum in terms of
adelic conjugacy:

(4.7) Te(φ) = τ(G)
∑

γ0∈E0

|K(γ0)|
∑

γ
stA∼ γ0

Oγ(φ)

where γ
stA∼ γ0 means γ ∈ G(F ) is stably conjugate to γ0 but is taken only up to

G(AF )-conjugacy.
The inner sum in (4.7) is a sum of local terms, indexed by a condition that is

part local and part global. Theorem 4.5 allows us to separate these conditions by
Fourier analysis on the group K(γ0):

(4.8)

Te(φ) = τ(G)
∑

γ0∈E0

∑

κ∈K(γ0)

∏

v

∑

γv
st
∼γ0

< κ, inv(γ0, γv) > Oγv
(φv)

= τ(G)
∑

γ0∈E0

∑

κ∈K(γ0)

∏

v

Oκ
γ0

(φv).

The expression Oκ
γ0

(φv), the κ-orbital integral, is defined locally by

(4.9) Oκ
γv

(φv) =
∑

γv
st
∼γ0

e(Iγv
) < κ, inv(γ0, γv) > Oγv

(φv).

Thus when κ = 1 is the trivial character, we recover the stable orbital integral:

O1
γ0

(φv) = SOγ0
(φv).

The Kottwitz signs in (4.9) disappear in the product because all terms come from
global groups and the product over all places of Kottwitz signs for a global group
is +1.

In certain rare situations all the Oκ vanish except for κ = 1, and then (4.8) is
a sum of stable distributions. In the case studied by Kottwitz in [K5], and taken
up again in [HT], K(γ0) is always trivial, thus there are no non-trivial κ-orbital
integrals. This is also possible for more general groups with appropriate choices of
test functions.
Remark 4.10. Note that the abelian group K(γ0) is attached to the centralizer I
rather than to the element γ0. In the notation of [Lab], recalled in the appendix to
this section,

K(γ0) = K(I, G; F ) = H0
ab(AF /F, I\G)D.

Here and in the remainder of this section one could have followed Labesse and ex-
pressed all calculations in terms of abelianized Galois cohomology, without reference
to the L-group. For example, Labesse’s formalism expresses the global κ-orbital
integral concisely as

∫

H0(AF ,I\G)

< κ, ẋ > φ(x−1γ0x)dẋ.

The expression (4.4.1) will be necessary in subsequent sections in order to express
the stabilization in terms of endoscopic groups.
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Example 4.11: Stable conjugacy and κ in the case of unitary groups. We
let G = U(V ) as in §1, and we suppose G to be anisotropic. Then any maximal
torus of G is anisotropic. Let Li be an extension of E of degree ni, Ki = Li ⊗E K,
and assume Ki is a field for all i. Let Ti ⊂ RKi/EGm be the kernel of the norm
map RKi/EGm → RLi/EGm. Any maximal torus of G is isomorphic to one of the
form

∏

i Ti, with Ti as above and
∑

i ni = n. Conversely, any such torus embeds in
the quasi-split inner form of G, and embeds in G provided certain local and global
obstructions vanish.

Suppose γ ∈ G(F ) is a regular (semi-simple) element, with centralizer I isomor-

phic to
∏r

i=1 Ti as above. Then Z(Î) = Î =
∏

T̂i. The non-trivial element of the

Galois group Gal(K/E) = Gal(K/Li) acts on each T̂i by x 7→ x−1. Thus

π0(Z(Î)Γ) = Z(Î)Γ =
r

∏

i=1

Z/2Z = (Z/2Z)r.

It follows that
K0(I) = π0(Z(Î)Γ/Z(Ĝ)Γ)

∼
−→(Z/2Z)r−1.

Whether or not γ is regular, K0(Gγ) is of the form (Z/2Z)r−1 for some r ≤ n.

Remark 4.12. In the literature there are frequent references to “strongly regular”
semisimple elements. In general groups, a semisimple element is regular if its
centralizer is a diagonalizable subgroup, and strongly regular if it is a torus.
In other words, an element is strongly regular if and only if it is regular and its
centralizer is connected. In this introduction we are exclusively concerned with G
for which Gder is simply connected, thus every regular element is strongly regular.

Appendix to §4: Labesse’s cohomological formalism for endoscopy

In this introduction we have mainly adopted the notation of Langlands and Kot-
twitz for the Galois cohomology groups relevant to stable conjugacy, because most
of the literature on the subject is written using this notation. Kottwitz’ construc-
tions have been given a more functorial treatment by Borovoi in [B]; this work was
extended by Milne in [M]. Building on this approach, Labesse [Lab] found a unified
cohomological formalism that applies to twisted as well as standard endoscopy; it
is flexible as well as intuitively satisfying. Moreover, Labesse’s cohomological ob-
jects can be defined without reference to Tate-Nakayama duality, though the latter
remains the best tool for calculation. In this appendix, we state some of the main
results of [Lab]. As an application, we use Labesse’s formalism to classify unitary
groups over local and global fields, a calculation that will be needed in the body of
this text.

Inner forms of unitary groups.
Then the abelianized Galois cohomology in the sense of Borovoi [B] and [Lab] is

easy to compute for U∗
n and U∗

n,ad. The abelianized cohomology of U∗
n is the coho-

mology of its cocenter U∗
1 . The abelianized cohomology of U∗

n,ad is, by definition,
the hypercohomology of the crossed module SU∗

n → U∗
n,ad. This complex is quasi-

isomorphic to the complex of tori U∗
1

n
−→ U∗

1 and hence, up to a shift by 1, to the
diagonalisable group Dn = ker[U∗

1
n

−→ U∗
1 ] . In particular there are isomorphisms

Hi
ab(F, U∗

n)
∼
−→ Hi(F, U∗

1 ) and Hi
ab(F, U∗

n,ad)
∼
−→ Hi+1(F, Dn) .
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Lemma 4.A.1.

(i) We have

H1
ab(•, U

∗
n) = Z/2Z and H2

ab(•, U
∗
n) = 1

where • = F (resp. • = AF /F ) when E/F is a quadratic extension of local

(resp. global) fields. Moreover, if F is global, we have keri(F, U∗
1 ) = 1 for

i ≥ 0.
(ii) We have

H1
ab(•, U

∗
n,ad) = H2(•, Dn) =

1 if n is odd
Z/2Z if n is even

where • = F (resp. • = AF /F ) when E/F is a quadratic extension of local
(resp. global) fields. This is also the case if F = R and E = R ⊕R . When
F is a non archimedean local field and E = F ⊕ F then

H1
ab(F, U∗

n,ad) = H2(F, Dn) = Z/nZ .

When F = C then H2(F, Dn) = 1 .
(iii) When E/F is a quadratic extension of global fields the map

H2(Fv, Dn) → H2(AF /F, Dn)

is surjective, unless maybe when Fv = C . Moreover keri(F, Dn) = 1 for
i ≥ 2 .

A. ssertions (i) and (ii) follow easily from the Tate-Nakayama isomorphism and
from the above remarks. We still have to prove (iii). The co-localization map
can be computed using Poitou-Tate duality [Ltam, Corollaire 2.2]; it is known

that keri(F, Dn) = 1 for i ≥ 3 [Ltam, Corollaire 2.4]. We are left to prove that

ker2(F, Dn) = 1 . Using that

Dn = ker[U∗
1

n
−→ U∗

1 ]

we obtain, when n is odd, a commutative and exact diagram

1 1
↓ ↓

1 → ker2(F, Dn) → H2(F, Dn) → H2(AF , Dn)
↓ ↓

1 → H2(F, U∗
1 ) → H2(AF , U∗

1 )

and the conclusion is clear in this case. When n is even we get a commutative and
exact diagram

1 1
↓ ↓

1 → H1(F, U∗
1 ) → H1(AF , U∗

1 )
↓ ↓

1 → ker2(F, Dn) → H2(F, Dn) → H2(AF , Dn)
↓ ↓

1 → H2(F, U∗
1 ) → H2(AF , U∗

1 )
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and again the conclusion is easy.

Inner forms of U∗
n (resp. GU∗

n) will be denoted Un (resp. GUn) or simply U (resp.
GU). The set of their isomorphism classes is in bijection with H1(F, U∗

n,ad). An

inner form of U∗
n (resp. GU∗

n) defines a class, called its invariant, in H1
ab(F, U∗

n,ad)
via the abelianization map

H1(F, U∗
n,ad) → H1

ab(F, U∗
n,ad) .

There is also a natural map

H1(F, U∗
n,ad) → H1(F, G∗

n,ad)

and hence an inner form Un of U∗
n defines an inner form ResE/F B× of G∗

n where
B is a simple algebra over E and we may regard Un as the unitary group of the
simple E-algebra B with an involution of the second kind, denoted b 7→ b† . Then
Un = {x|xx† = 1} and the F0-similitude group GUn is the subgroup of ResE/F0

B×

such that, for any F0-algebra R,

GUn(R) = {x ∈ (B ⊗F0
R)× | x · x† = ν(x) ∈ R×} .

We shall now recall the classification of inner forms of unitary groups over local
and global fields (see also [C2]).

If F is local non archimedean, the invariant suffices to determine the inner form,
since the abelianization map

H1(F, U∗
n,ad) → H1

ab(F, U∗
n,ad)

is an isomorphism in this case. When F = R and E = C the set H1(F, U∗
n,ad) is in

natural bijection with signatures (p, q) with p + q = n and p ≥ q. The invariant is
[p−q

2 ] modulo 2 if n is even. The description in other cases is left to the reader.
Now let E/F be a quadratic extension of global fields. We want to describe the

local-global obstructions i.e. the description of the image of the map H1(F, U∗
n,ad) →

H1(AF , U∗
n,ad). This will be an immediate consequence of the next lemma.

Lemma 4.A.2. The adjoint unitary group satisfies the Hasse principle i.e.

ker1(F, U∗
n,ad) = 1 .

We have

H1
ab(AF /F, U∗

n,ad) =
1 if n is odd

Z/2Z if n is even

and the natural map

H1
ab(Fv, U

∗
n,ad) → H1

ab(AF /F, U∗
n,ad)

is always surjective.

W. e first observe that, according to [Lab, Corollaire 1.6.11],

ker1(F, U∗
n,ad) = ker1ab(F, U∗

n,ad) .

The assertions then follow from 4.A.1.
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Proposition 4.A.3. Let F be global field. There is at most one global inner form
of U∗

n when the local ones are prescribed. There is no local-global obstruction for
inner forms when n is odd. There is a parity condition when n is even: the sum of
images of local invariants must zero in Z/2Z .

T. he exact sequence

ker1(F, G) → H1(F, G) → H1(AF , G) → H1
ab(AF /F, G) → ker2ab(F, G)

valid for any reductive group (see [Lab, Proposition 1.6.12]) reads in our case, in
view of 4.A.1 and 4.A.2,

1 → H1(F, U∗
n,ad) → H1(AF , U∗

n,ad) → H1
ab(AF /F, U∗

n,ad) → 1 .

The Hasse principle implies that the local inner forms determine uniquely the global
one. The local-global obstruction can be represented by a cohomology class in

H1
ab(AF /F, U∗

n,ad)

and the proposition follows from 4.A.2.

5. Endoscopic groups

The goal of stabilization is to rewrite the expression (4.8) as a sum of stable
trace formulas for groups over F , without reference to the finite groups K(γ0).
The new sets of groups over F , called endoscopic groups, are derived directly from
the elements κ ∈ K(γ0). There are two obvious obstacles to this program. In
the first place, the conjugacy classes γ0 belong to G(F ). In the second place, the
test functions φ are defined on G(AF ). We have already seen in example 2.2 how
to overcome these obstacles in a special case. Transfer of conjugacy classes to
endoscopic groups was solved in the 1980s by Kottwitz, following the first steps of
Langlands. It is fair to say that the endoscopic groups were devised in order to
make this possible, given the expression (4.8). The difficulty has thus been shifted
to the problem of transferring test functions to endoscopic groups. This is the main
topic of the present volume and will only be discussed briefly in this introduction.

Version (4.8) of the trace formula writes it as a sum over pairs (γ0, κ), where γ0

is a stable elliptic conjugacy class in G(F ) and κ is an element of the group (4.4.1)

defined in terms of the dual group Ĝ. The goal is to rewrite it as a sum over pairs
(γH , H) where H runs through a family of connected reductive groups over F and
γH is a stable elliptic conjugacy class in H(F ) whose contribution to the sum is its
stable orbital integral. This turns out to be too naive, and the object H needs to
be endowed with additional structure in order to qualify as an endoscopic group.

Recall that κ is an element of the center of the dual group of the centralizer I of
the elliptic element γ0. With a great deal of hindsight, this might suggest that one
look for H containing γH among groups whose L-groups contain Z(Î) as central
subgroups. Here is a precise definition:

Definition 5.1. An endoscopic triple for G is a datum of the form (H, s, ξ)
where

(i) s ∈ Ĝ is a semi-simple element;
(ii) H is a quasi-split connected reductive group over F ;

(iii) ξ : Ĥ → Ĝ is an injective homomorphism identifying ξ(Ĥ) = ZĜ(s)0.
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These data satisfy the following conditions:

(a) ξ is Γ-equivariant up to Ĝ-conjugation; i.e., for all σ ∈ Γ, there exists

xσ ∈ Ĝ such that
σĜ ◦ ξσ−1

Ĥ
= ad(xσ) ◦ ξ

where σĜ and σĤ are the respective L-actions of Γ on the dual groups;

(b) The image of s in Z(Ĥ)/Z(Ĝ) is Γ-invariant and its image in H1(F, Z(Ĝ))
under the connecting homomorphism associated to the short exact sequence
of Γ-modules:

1 → Z(Ĝ) → Z(Ĥ) → Z(Ĥ)/Z(Ĝ) → 1

is everywhere locally trivial (i.e., belongs to the Tate-Shafarevich group

ker1(F, Z(Ĝ))).

Condition (b) should be recognized as a variant of the condition satisfied by κ in

(4.4.1), see below. Denote by A(H/F ) the subgroup of π0(Z(Ĥ)/Z(Ĝ)Γ) satisfying
this condition. Condition (a) implies that ξ extends to an L-homomorphism, but
this extension is not unique. The group H will be called an endoscopic group,
though it should always be kept in mind that the full triple is needed for the sake
of classification.

Definition 5.2. An isomorphism between two endoscopic triples (H, s, ξ) and (H ′, s′, ξ′)
for G is an F -isomorphism α : H → H ′ such that

(i) ξ ◦ α̂ : Ĥ ′ → Ĝ and ξ′ are Ĝ-conjugate;
(ii) The isomorphism A(H ′/F )

∼
−→A(H/F ) determined by (i) takes s′ to s.

In particular, the image Had(F ) of H(F ) in Aut(H) is contained in the group
Aut((H, s, ξ)) of automorphisms of the endoscopic triple. We let

(5.3) ΛH = Aut((H, s, ξ))/Had(F ).

This is obviously a finite group, and we let λH denote its order.

Definition 5.4. The endoscopic triple (H, s, ξ) is elliptic if ξ(Z(Ĥ)Γ)·Z(Ĝ)/Z(Ĝ)
is a finite group.

We note that Definitions 5.1, 5.2, and 5.4 all make sense when F is a local field
as well as a global field; we just have to replace “locally trivial” by “trivial” in
5.1(b).

5.5. Example: elliptic endoscopic triples for unitary groups.
Let G = U(V ), as in the previous examples. The following proposition is proved

in Rogawski’s book [R]:

Proposition 5.5.1 [R, 4.6.1]. Let (H, s, ξ) be an elliptic endoscopic triple for G.
Then H is isomorphic to U(a)×U(b) where a and b are non-negative integers such
that a+ b = n. The triple is determined by {a, b} up to isomorphism. Furthermore,
ΛH is a group of order 2 if a = b and is trivial otherwise.

Sketch of proof. Since Ĝder is simply connected, ξ identifies Ĥ with the centralizer
of the semisimple element s ∈ Ĝ. Thus Ĥ =

∏t
i=1 GL(ni) for some partition
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n =
∑

ni. A simple reduction using property (b) of (5.1) shows we can assume s ∈

Z(Ĥ)Γ, and that the action of Γ on H factors through Gal(K/E). Now Definition

5.4 implies that the identity component Z(Ĥ)Γ,0 is contained in Z(Ĝ)Γ = {±1},

hence that Z(Ĥ)Γ is itself a finite group. This in turn implies that the non-trivial

element c ∈ Gal(K/E) fixes the individual blocks GL(ni) ⊂ Ĥ and acts non-
trivially on the center GL(1) ⊂ GL(ni) for each i. In other words, c(zi) = z−1

i for

zi ∈ Z(GL(ni)). Thus s = (z1, . . . , zt) with each zi = ±1. Since Ĥ is the centralizer
of s, it follows that t ≤ 2. Similar arguments prove the remaining assertions.

Application of the stable trace formula to unitary groups is complicated by the
fact that the isomorphism between H, whose L-group is canonically the connected
centralizer of s in Ĝ, and a fixed product U(a) × U(b) of unitary groups, depends
on an additional arbitrary choice. In the following discussion we let H denote the
quasi-split E-group U(a)∗ × U(b)∗ (here the superscript ∗ is standard notation for
the quasi-split inner form, unique up to isomorphism). The transfer from H to G
of parameters, and of automorphic representations, depends on the choice of an
L-homomorphism

(5.5.2) ξ : LH → LG

which we normalize following Rogawski, p. 68 of [Montreal]. Let ηK/E denote the

quadratic character of A×
E corresponding to the quadratic extension K. Fix Hecke

characters µa and µb of K which extend the characters ηa
K/E and ηb

K/E of the idèles

of E. On Ĥ = LH0 = GL(a) × GL(b), we have

(5.5.3) ξ(ha, hb) =

(

ha 0
0 hb

)

∈ Ĝ ⊂ LG, ha ∈ GL(a), hb ∈ GL(b)

The Hecke characters µi can be viewed as a character of WK by class field theory,
and for w ∈ WK we let

(5.5.4) ξ(w) =

(

µb(w)Ia 0
0 µa(w)Ib

)

× w ∈ Ĝ ⋉ WK

Finally, if wσ ∈ WE is a representative of the non-trivial coset of WK, we set

(5.5.5) ξ(wσ) =

(

Φa 0
0 Φb

)

· Φ−1
n × wσ.

Here Φm, m = a, b, n, is defined as in (4.1).
One verifies that the formulas (5.5.3-5.5.5) define an L-homomorphism ξ, which

we can denote ξµa,µb
to emphasize the choices. The insertion of these characters is

required in order to make the homomorphisms well-defined with respect to the Φm,
and we have seen in (4.1) that these latter are required by the need to preserve the
standard splittings.

5.6. Classification of elliptic endoscopic triples for other classical groups.
These are worked out in various places, for example in Waldspurger’s Asterisque

volume. Details will be provided in later versions.
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Let (H, s, ξ) be an elliptic endoscopic triple for G. and let γH ∈ H be an
elliptic semi-simple element, TH a maximal elliptic torus of the connected centralizer
IH = I0

γH
of γH in H. There is a canonical G-conjugacy class of embeddings

j : TH → G, defined over F̄ . Choose such a j and let γ = j(γH). The stable
conjugacy class of γ is independent of the choice of j and depends only on the
stable conjugacy class of γH . We say γ0 ∈ G(F ) is associated to γH , or “comes
from ” γH , or (more commonly) γH is an image of γ0, if γ0 is in the stable
conjugacy class of j(γH). If G is quasi-split, then a theorem of Steinberg and
Kottwitz [K1] guarantees there is always such a γ0. In general, there are both local
and global obstructions. An example of local obstruction: at a real place v of F , γH

has eigenvalues of absolute value > 1, but Gv is compact. The global obstruction
belongs to a certain H2.

The image j(TH) ⊂ GF̄ is a maximal torus T ⊂ G. Thus roots of T in G define
characters of TH . We say γH is (G, H)-regular. if α(γH) 6= 1 for any root of T in
G that does not restrict to a root of H. This condition is independent of the choice
of TH and j.

We write I0 = Gγ0
if γ0 comes from γH . If γH is (G, H)-regular, then j extends to

an isomorphism IH
∼
−→I of centralizers, unique up to conjugacy by T . The element

s ∈ Z(Ĥ) can be viewed as an element of Z(ÎH) and thus as an element of Z(Î0).

Condition 5.1(b) then implies that the corresponding element of π0((Z(Î)/Z(Ĝ))Γ)
belongs to |K(I0)|. We denote this element κ.

To the quadruple (H, s, ξ, γH), with γH (G, H)-regular, we have thus associated
a pair (γ0, κ), with γ0 a stable conjugacy class in G(F ) and κ ∈ K(I0), provided G
is quasi-split. If not, the pair (γ0, κ) may or may not exist. We let

π : { quadruples (H, s, ξ, γH)} → { pairs (γ0, κ)}

be the partially defined map. The double sum over pairs (γ0, κ) is transformed into
a double sum over stable conjugacy classes in elliptic endoscopic groups by means
of the following proposition:

Lemma 5.7. The (partially defined) map π is surjective, and the fiber above any
pair (γ0, κ) in the image is either empty or contains λH quadruples.

Following Langlands, define

i(G, H) = τ(G)τ(H)−1λH .

Let E denote a set of representatives of equivalence classes of of elliptic endoscopic
triples. For any (H, s, ξ) ∈ E, let EH,0 denote a set of representatives of (G, H)-
regular stable conjugacy classes in H(F ). The above constructions allow us to
rewrite the double sum over E0 × K(I0) in (4.8) as a double sum over E × EH,0:

(5.8) Te(φ) =
∑

(H,s,ξ)∈E

i(G, H)τ(H)
∑

γH∈EH,0

Oκ
γ0

(φ),

where (γ0, κ) = π((H, s, ξ), γH). This is obviously useless, because the term SOκ
γ0

(φ)
is still defined in terms of G rather than H. The next section explains how to rewrite
Oκ

γ0
(φ) as a stable orbital integral on H.
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6. Transfer and the fundamental lemma

The expression of SOκ
γ0

(φ) in terms of stable orbital integrals on endoscopic
groups is given explicitly by the following conjecture when γ0 is a regular elliptic
element.

Conjecture 6.1 (Langlands-Shelstad). Let F be a local field. Let (H, s, ξ) be
an elliptic endoscopic triple for G, Let φ ∈ C∞

c (G(F )). Then there is a function
φH ∈ C∞

c (H(F )), well-defined as a functional on stably invariant distributions
on H, such that, for if γH a stable semi-simple conjugacy class in H, (γ0, κ) =
π((H, s, ξ), γH), with γ0 is regular in G, we have

(6.1.1) SOγH
(φH) =

∑

γ
st
∼γ0

∆(γH , γ)Oγ(φ)

Here ∆(γH , γ) is the transfer factor to be defined in §7.

This conjecture – which is now a theorem, as we will see below – has been stated
in various versions in the literature, and one of the objectives in Chapter II of this
book is to explain the relations between these versions. The analogous result for
real groups is due to Shelstad, and is explained in Chapter II.A. We immediately
derive the expected conclusion. Let

ST ∗
e (φH) = τ(H)

∑

γH∈EH,0

SOγH
(φH)

where the sum runs over (G, H)-regular elliptic γH .

Theorem 6.2 (Kottwitz). Assume Conjecture 6.1 (in Kottwitz’ version, see Re-
mark 6.3 (b)). Then (5.8) can be written

Te(φ) =
∑

(H,s,ξ)∈E

i(G, H)ST ∗
e (φH)

for a certain function φH ∈ C∞
c (H(AF )), defined as the tensor product of local

transfers of φ.

Remark 6.3. (a) Conjecture 6.1 is purely local, whereas Theorem 6.2 is global.
The global test function φ can be considered factorizable as ⊗vφv, and then for
almost all v φv is necessarily the characteristic function of a hyperspecial maximal
compact subgroup. In order for the right-hand side of the expression in (6.2) to
make sense, each φH has to have the same property. Thus Conjecture 6.1 needs to
be supplemented by the Fundamental Lemma (Conjecture 6.4), to be stated below.

(b) Kottwitz’ version (Conjecture 5.5 of [K3]) is an extension of Conjecture 6.1
to (G, H)-regular γH . Conjecture 6.1 as stated only suffices for an identity between
the regular terms on both sides. Kottwitz’ version is derived by Langlands and
Shelstad from Conjecture 6.1 [LS2,Lemma 2.4.A].

(c) Theorem 6.2 is derived from the transfer conjectures by identifying the right-
hand side of (6.1.1) with the κ-orbital integral of φ over γ. This depends on formal
properties of the transfer factors, which will be explained in §7, at which point it
will be explained in greater detail how one passes from (6.1.1) to (6.2).

The main theorem of [W1] is that the Langlands-Shelstad transfer conjecture is
a consequence of the following special case:
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Conjecture 6.4 (Fundamental Lemma). Let G be an unramified group over
the local field F , and let (H, s, ξ) be as in conjecture 6.1, with H also unramified.
Let K ⊂ G(F ) (resp. KH ⊂ H(F ) be a hyperspecial maximal compact subgroup of
G (resp. H), φ = 1K the characteristic function of K. Then there is a constant
c, depending only on the measures of K and KH , such that (6.1.1) holds with
φH = c · 1KH

with 1KH
the characteristic function of KH .

As mentioned in (6.3)(a), something of this sort is necessary even in order to
formulate the stabilization globally. Waldspurger’s method actually does not re-
quire the full strength of the Fundamental Lemma; in order to deduce the transfer
conjecture, it suffices to know Conjecture 6.4 locally in almost all residue character-
istics. (See Chapter II.B. for an account of this and related work.) Moreover, Hales
showed in [H2] that it suffices to know the fundamental lemma for unit elements in
the Hecke algebra, for sufficiently large residue characteristics; cf. §9 for a complete
statement. Thanks to Laumon-Ngô [LN] and Waldspurger [W3], this has now been
established for unitary groups. The results of Laumon and Ngô are presented in
Chapter II.C following the more recent work of Ngô [N1, N2] which proves the
fundamental lemma for general reductive groups over local fields in positive char-
acteristic. The results of [W3], that show that the Fundamental Lemma depends
only on the residue field, are treated in Chapter II.D.; an alternative approach to
the independence of the characteristic is presented in Chapter II.E.

More fundamentally, perhaps, Conjecture 6.4 is necessary in order to characterize
the image of endoscopic transfer at (almost all) unramified places. This topic is
treated in §9 and in more detail in Chapter III.C.

7. Formal properties of transfer factors

Transfer factors are combinatorially extremely involved, but the most important
terms are roots of unity and the main complication is in the correct definition of
signs. We begin by assuming G to be quasi-split; the endoscopic groups H are by
definition quasi-split. Transfer factors can be derived for general G from those for
quasi-split G. In the present section F is a non-archimedean local field and (H, s, ξ)
is an elliptic endoscopic triple for G.

Let h and g denote the F -Lie algebras of H and G, respectively. If G is quasi-
split, it admits a Γ-stable splitting (épinglage) (T, B, {Xα, α ∈ ∆}). The data are
as in §4; the Borel subgroup B and its maximal torus T are defined over F , and
the root data Xα are Γ-stable in the sense that σ(Xα) = Xσ(α) if σ ∈ Γ. Let b be
the Lie algebra of B. Let X+ =

∑

α∈∆ Xα. Then X+ ∈ g(F ). For each α ∈ ∆ one
can define sl(2) triples (Xα, Hα, X−α) so that

[Hα, X±α] = ±2X±α, [Xα, X−α] = Hα.

Then let X− =
∑

α∈∆ X−α; X− is also in g(F ).
We begin by observing that stable conjugacy can be defined for semisimple el-

ements of g just as for G, and are classified in the same way in terms of the
cohomology of centralizers in G. Moreover, if X, X ′ ∈ g are stably conjugate, then
one can define an invariant

inv(X, X ′) ∈ ker[H1(F, I) → H1(F, G)]

if I ⊂ G is the stabilizer of X .
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Transfer factors for Lie algebras:

∆G,H(•, •) : hG−reg(F ) × greg(F ) → C

were defined by Waldspurger. These factors are simpler than the corresponding
factors for groups, and satisfy the relation

(7.1) ∆G,H(XH , X) = ∆′(exp(XH), exp(X))

when XH and X are sufficiently close to 0 in the corresponding Lie algebras. Here
exp is the exponential function in the Lie algebra and ∆′ is the Langlands-Shelstad
transfer factor with the volume term removed (this will be explained below).

Theorem 7.2 (Kottwitz, [K6]). Assume G is quasi-split.

(a) (Kostant) Any stable semisimple conjugacy class in g contains an element
in X− + b; i.e. of the form X− + Y where Y ∈ b.

(b) Let XH ∈ H be a semisimple element that transfers to a regular stable con-
jugacy class [XG] in g. Let XKostant

G ∈ g(F )∩ (X− + b) be stably conjugate
to XG. Then ∆G,H(XH , XKostant

G ) = 1.
(c) More generally

∆G,H(XH , XG) =< inv(XG, XKostant
G ), s >

(See Ngô’s notes on transfer factors, §5.)

Remark 7.3. Let g be a reductive Lie algebra over F̄ with maximal torus t and
Weyl group W . The scheme Spec(tW ) is isomorphic to the scheme-theoretic quo-
tient of g by the adjoint action of G and thus gives a coarse parametrization of
conjugacy classes in g. The Kostant map defined above on semisimple conjugacy
classes extends to a map from Spec(tW ) to g with image contained in the open sub-
scheme of regular elements (including regular unipotent elements as well as regular
semisimple elements). For example, when g = gln, Spec(tW ) is the affine space of
(coefficients of) characteristic polynomials, so the Kostant section gives a way of
picking out an element with given characteristic polynomial, once a splitting has
been fixed. The Kostant section is central in the geometric approach to endoscopy
and should be recalled when reading the chapters on the fundamental lemma.

The general Langlands-Shelstad transfer factor ∆(γH , γ) is given as a product of
five terms, denoted ∆I , ∆II , ∆1 = ∆III1 , ∆2 = ∆III2 , and ∆IV . Various of these
factors are only defined in terms of additional arbitrary choices, most of which
disappear in the product. The term ∆I also depends on the choice of splitting.
When G is not quasi-split, the term ∆1 is only defined up to an arbitrary constant.
The choice of constants at places of a fixed number field is normalized globally
by the condition that almost all of the constants can be taken to equal 1 and the
product of the local constants is forced to equal 1. This is the “global hypothesis”,
cf. (7.3.7) below. For this reason the literature sometimes describes the local
transfer factors as being defined only up to a constant multiple, the quotient

∆(γH , γ; γ′
H, γ′) = ∆(γH , γ)/∆(γ′

H, γ′)
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being independent of all choices. Note that the simplified factor in (7.2) also de-
pends on the choice of splitting.

All terms in the product are roots of unity, with the exception of ∆IV , which
is a power of the order of the residue field. Waldspurger’s transfer factor for Lie
algebras omits the volume factor ∆IV , which reappears elsewhere, and on elements
close to the origin ∆2 is trivial. The main terms are in any case the remaining
terms. These are described briefly below, and in some detail in Ngô’s notes on
transfer factors, §6. Here it suffices to recall some of the main formal properties
satisfied by the transfer factors.

7.3. Formal properties of transfer factors. The field F is assumed to be local
until (7.3.7), where it is a global field. The G is assumed to be a non-archimedean
connected reductive group, except in (7.3.4) and (7.3.5) where it can be a real
algebraic group.

Property 7.3.1 (change of inner form). Up to now we have been supposing G
quasi-split. We drop that hypothesis. This means, in particular, that a given γH

may not correspond to a stable class in G containing a point in G(F ). If it does,
the transfer factor ∆(γH , γ) is defined for any γ ∈ G(F ) in the stable class. Let G∗

be the quasi-split inner form of G, γ∗ ∈ G∗(F ) an element of the stable class. If γH

is sufficiently close to the identity then one can use the Kostant section of the Lie
algebra to define a base point; one can also find a base point when the groups are
unramified (see (7.3.3)). In general there is no natural choice. On the other hand,
G∗ is also an endoscopic group of G, and γ is an image in G(F ) of γ∗, so there is
also a transfer factor ∆(γ∗, γ). The relation is described in [LS1]. Let

∆G|G∗(γH , γ, γ∗) = ∆(γH , γ)/∆(γH, γ∗)

and let γ′
H ∈ H(F ), γ′ ∈ G(F ), γ′,∗ ∈ G∗(F ) be another triple with the same

property. Then

∆G|G∗(γH , γ, γ∗)/∆G|G∗(γ′
H , γ′, γ′,∗) = λH(γ, γ∗; γ′, γ′,∗)

where the term on the right hand side is given by a cohomological invariant whose
expression can be found in [LS1, 4.2].

Property 7.3.2 (cocycle property).
Suppose γ and γ′ are stably conjugate in G(F ) with image γH in H(F ) The

relation (7.2)(c) generalizes as follows:

∆(γH , γ) =< inv(γ, γ′), s > ∆(γH , γ′).

There seem to be different sign conventions in the literature for the definition of
the invariant, or maybe I have just got the order wrong. This property allows us
to rewrite (6.1.1) as

SOγH
(φH) =

∑

γ
st
∼γ0

< inv(γ, γ′), s > ∆(γH , γ0)Oγ(φ)

= c
∑

< inv(γ, γ′), κ > Oγ(φ)

with c = ∆(γH , γ0). This is the same as cOκ
γ0

(φ) (when γ is regular its centralizer is
a torus, so the Kottwitz signs are trivial ) and the product over the different places
of the constants c turns out to equal 1.
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Property 7.3.3 (transfer factors for unramified groups). In [H], Hales provides
explicit formulas for transfer factors when G and H are both unramified. This is
possible because the a-data and χ-data of Langlands-Shelstad can be chosen more
or less canonically in this case. The formulas are given by a series of reductions,
including (7.3.6) below, so in fact there is no simple way to write them down.

Property 7.3.4 (transfer factors for real groups).
Conjugacy classes can be described more explicitly in real groups than in p-adic

groups, and the transfer factors are also more explicit. It is more natural to discuss
these factors in the chapter on endoscopy for real groups.

Property 7.3.5 (descent to centralizers of semisimple elements). This is the topic
of the article [LS2]. Let F be a local field, ǫ ∈ G(F ) a semisimple element, ǫH ∈
H(F ) an image of ǫ. Let Gǫ, HǫH

denote their respective centralizers. We assume
ǫH is chosen so that HǫH

is quasi-split, so that it is an endoscopic group for Gǫ. Let
γ, γ′ ∈ Gǫ(F ) be semisimple elements that are regular in G(F ), and let γH , γ′

H be
their images in H(F ), which can be chosen in HǫH

(F ). Thus there are two transfer
factors: ∆(γH , γ; γ′

H, γ′), taken relative to G and H, and ∆ǫ(γH , γ; γ′
H, γ′), taken

relative to Gǫ and HǫH
. Let Θ = ∆/∆ǫ.

Theorem [LS2,1.6.A]. As γH and γ′
H tend to ǫH and γ, γ′ tend to ǫ,

limΘ(γH , γ; γ′
H, γ′) = 1.

This is the property that allows the reduction of the transfer conjecture to the
analogous conjecture for Lie algebras.

Property 7.3.6 (descent to Levi subgroups). Here G is quasi-split and unramified
and M is a Levi subgroup of a parabolic subgroup P ⊂ G. Then M is also quasi-
split and unramified. There is an endoscopic group HM associated to M .

Lemma [H,9.2]. Let γ ∈ M(F ), γH ∈ HM (F ). Then

∆G(γH , γ) = ∆M (γH , γ) ·
∏

α

|(α(γ)− 1)|
1

2

where α ranges over roots of G outside M and H.

Hales verifies that all factors of both sides agree except for the volume factor
∆IV , where the difference is obviously compensated by the product indicated.

Property 7.3.7 (global reciprocity). Suppose F is a number field, {v} the set of
places of F . Let γH ∈ H(F ), up to stable conjugacy, γ = (γv) ∈ G(AF ), and
suppose γH , viewed as an element of H(Fv), is an image of γv for all v. The
normalizations of the local transfer factors, denoted ∆v(•, •), can be chosen so that
∆v(γH , γv) = 1 for almost all v and

∏

v

∆v(γH , γv) =
∏

v

< inv(γ0, γv), κ >

if (γ0, κ) = π(γH , s, ξ) ∈ G(F ) × K0(Iγ0
).
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Property 7.3.8 (extension to (G, H)-regular classes). As mentioned in Remark
(6.3)(b), Kottwitz stabilization of the elliptic part of the trace formula requires
matching of orbital integrals for all (G, H)-regular classes, and not only for G-
regular classes. This in turn requires extending the definition of transfer factors to
pairs (γH , γ) where γH is (G, H)-regular. This is carried out in [LS2,2.4], using the
descent Property 7.3.5. Formula (6.1.1) is replaced by

SOγH
(φH) =

∑

γ
st
∼γ0

e(Iγ)∆(γH , γ)Oγ(φ)

([LS2], (2.4.1)) and the cocycle property (7.3.2) remains valid in this more general
setting, as required for comparison with (4.9).

8. Explicit expressions for transfer

factors for unitary Lie algebras

The regular semisimple conjugacy classes in classical Lie algebras over local fields
can be described in an elementary way in terms of elements of field extensions and
linear algebra. In §10 of [W2], Waldspurger provides explicit formulas for transfer
factors for unitary, orthogonal, and symplectic Lie algebras. Here we present his
formulas in the unitary case.

Let G = U(V, qV ), where qV is the hermitian form on the n-dimensional vector
space V over K. In Waldspurger’s normalization qV is anti-linear in the first variable
and linear in the second. The parametrization of conjugacy classes in g = Lie(G)
parallels the discussion of (4.11). Let I be a finite set. For each i ∈ I let Ei be
an extension of E of degree ni, Ki = Ei ⊗E K; choose ai, bi ∈ K×

i . Let c denote
the non-trivial element of Gal(K/E), ci = 1 ⊗ c acting on Ki. In order to follow
Waldspurger we temporarily allow Ki to be a direct sum of two fields, in which case
ci exchanges the two factors. We assume

(1) For all i, Ki = K[ai];
(2) For all i 6= j ∈ I, there is no K-linear morphism Ki → Kj taking ai to aj

(i.e., the minimal polynomials of ai and aj have no common factors);
(3) For all i, ci(ai) = −ai, ci(bi) = bi;
(4)

∑

i[Ki : K] =
∑

i ni = n

Set W = ⊕iKi and define a hermitian form qW on the K-vector space W by

(8.1) qW (
∑

i

wi,
∑

i

w′
i) =

∑

i

n−1
i traceKi/K(ci(wi)w

′
ibi).

Define an element X(ai),W ∈ End(W ) by

X(ai),W (
∑

i

wi) =
∑

aiwi.

Then X(ai),W is a regular semisimple element of the Lie algebra of U(W, qW ).
Now suppose there is an isomorphism (W, qW )

∼
−→(V, qV ). Fixing such an isomor-

phism, X(ai),W defines an element X(ai) ∈ greg whose conjugacy class is denoted
O(I, (ai), (bi)). Two such conjugacy classes O(I, (ai), (bi)) and O(I ′, (a′

i), (b
′
i)) co-

incide if and only if there are a bijection I
∼
−→I ′ denoted i 7→ i′ and isomorphisms

σi : Ki′
∼
−→Ki taking a′

i to ai and such that

(8.2) εKi/Ei
(σi(b

′
i)) = εKi/Ei

(bi) for all i
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where ε∗ is the quadratic character associated to the extension (so there is no
condition if Ki is not a field). On the other hand, O(I, (ai), (bi)) and O(I ′, (a′

i), (b
′
i))

are in the same stable conjugacy class if I
∼
−→I ′ and the σi exist as indicated, but

(8.1.2) is dropped. The isomorphism (W, qW )
∼
−→(V, qV ) imposes one constraint on

the signs ε(bi). Thus the set of conjugacy classes in the stable conjugacy class is in

bijection with (Z/2Z)|I
∗|−1 where I∗ ⊂ I is the subset for which Ki is a field, the

term −1 corresponding to the constraint given by the isometry class of (V, qV ).
As in (4.11), I∗ = I if and only if O(I, (ai), (bi)) is elliptic. An elliptic endoscopic

datum (H, s, ξ) is defined by a partition I = I1

∐

I2. Let I∗ = I∗
1

∐

I∗
2 be the

corresponding partition. Let ג ∈ K be an element such that c(ג) = (−1)n+1ג, and
assume the matrix of qV is Φnג2 with Φn as in (4.1).

Let P denote the characteristic polynomial of X = X(ai), viewed as an element
of EndK(V ), P ′ its derivative. For i ∈ I, set

(8.3) Ci = Ki]ג : E]b−1
i P ′(ai).

One checks that Ci ∈ Ei for all i. Now let Y ∈ hreg and suppose the stable classes
of X and Y correspond. Let

DG(X) = |
∏

α

dα(X)|
1

2

E

where α runs over the roots of G and define DH(Y ) likewise. The following propo-
sition is a special case of [W2,X.8]:

Proposition 8.4. Under these hypotheses

∆G,H(Y, X) = DG(X)DH(Y )−1
∏

i∈I∗

2

εKi/Ei
(Ci).

The transfer factor in the above proposition evidently includes the volume term
∆IV . However, the term ∆III,2 is trivial for Lie algebras and Waldspurger in-
dicates that he has made implicit choices that trivialize the term ∆II as well as
the significant term ∆III,1. So only ∆I (a sign) and ∆IV (a power of the residue
characteristic) are present.

9. Endoscopic transfer of representations

9.1. Formalism for transfer of stable distributions.
We start from the stable trace formula in the form of Theorem 6.2:

Te(φ) =
∑

(H,s,ξ)∈E

i(G, H)ST ∗
e (φH)

and assume the subscript e and asterisks can be removed:

(9.1.1) T (φ) =
∑

(H,s,ξ)∈E

i(G, H)STH(φH)

The subscripts H have been added for clarity. If G is anisotropic, as we assume in
the applications, there is no difference between Te(φ) and T (φ). In the applications
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we will also choose the local test functions φ∞ so that a similar equality holds
on the right-hand side; see Labesse’s chapter IV.A, where this choice is made and
justified.

For each triple (H, s, ξ), the map

φ 7→ ST (φH)

defines an invariant distribution on C∞
c (G(AE)). Although φH is not uniquely

determined, the distribution is well defined by the properties of the transfer map.
More generally, let t be a stable (stably invariant) distribution on H. Then the map

(9.1.2) φ 7→ ξ∗(t)(φ) := t(φH)

is a well-defined invariant distribution on C∞
c (G(AE)). The notation ξ∗ may not be

optimal, but I have not seen alternative notation for this map of distributions and
the present choice, in emphasizing the choice of ξ∗, is useful for our applications to
unitary groups, where the exact normalization of ξ, as in (5.5), plays an important
role in the explicit formulas.

Formula (9.1.1) then becomes an equality of distributions.

(9.1.3) T (φ) =
∑

(H,s,ξ)∈E

i(G, H)ξ∗(φ)

Endoscopic transfer then comes down to the explicit calculation of the distributions
ξ∗(STH)(φ). Since G is anisotropic, we can write

(9.1.4) T (φ) = Td(φ) =
∑

π⊂Ad(G)

mπTr π(φ)

as in §1. Here Ad(G) is the sum of automorphic representations occurring in the
discrete spectrum Ld

2, defined as at the end of §1. Since G is anisotropic, Ld
2 = L2,

but we also assume we are in the situation of the simple trace formula, as in IV.A,
so that the terms on the right-hand side of (9.1.1) can also be written

(9.1.5) STH(φH) =
∑

[τ ]⊂Ad(H)

m[τ ]Tr[τ ](φH)

Here [τ ] is ad hoc notation for a stable character of H, a finite linear combination
[τ ] =

∑

aiτi of characters of irreducible representations which is stably invariant,
and then

Tr[τ ] =
∑

aiTr τi.

The existence of such a decomposition is still conjectural, but it is known in the
applications to be considered in IV.B, and we can admit it as a hypothesis. More
refined decompositions were considered in [LL] and a general expression was con-
jectured in [K2], but this is not what we choose to emphasize here. The upshot is
that

(9.1.6)
∑

π⊂Ad(G)

mπTr π(φ) =
∑

(H,s,ξ)∈E

i(G, H)
∑

[τ ]⊂Ad(H)

m[τ ]ξ∗(Tr [τ ])(φ).
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By linear independence of characters (1.3(c)), in order to determine the mπ

it suffices to know the m[τ ] and to calculate the maps ξ∗ explicitly. The stable
character [τ ] is a (restricted) tensor product ⊗′

v[τ ]v over places v of E, so the latter
reduces to the local problem of calculating the ξ∗,v[τ ]v for all v. For archimedean
v this problem was posed and solved by Shelstad for tempered representations
and, more generally, by Adams, Barbasch, and Vogan; these results are reviewed
in Renard’s chapter II.A and Adams’ chapter III.B. When [tau]v is an unramified
(spherical) representation, there is a natural conjectural expression for ξ∗,v[τ ]v in
terms of Satake parameters. In [H2] Hales showed how to reduce this conjecture to
the special case treated by the fundamental lemma; thus this is now also a theorem
thanks to [LN, N1, N2]. In §9.2 we describe these formulas when G is a unitary
group, with the elliptic endoscopic groups parametrized as in (5.5) in terms of
auxiliary choices of Hecke characters.

Remark 9.1.7. The terms on the right hand side of (9.1.6) are not linearly in-
dependent. Cancellation occurs between the terms occurring in the expansions of
different (H, s, ξ) and these cancellations often have interesting arithmetic appli-
cations. Moreover, it should be noted that the coefficients i(G, H) are in general
fractions and not integers. This forces some of the distributions m[τ ]ξ∗(Tr [τ ]) to
be fractional linear combinations of irreducible characters, frequently with nega-
tive coefficients. Of course, the final coefficients mπ are necessarily non-negative
integers.

9.2. Functoriality and Arthur parameters.
Here and below we write ξ∗([τ ]) = ξ∗(Tr [τ ]) for brevity. The basic stable discrete

automorphic distributions on H are supposed to be associated to admissible maps
(Arthur parameters)

Φ : LE × SU(2) → LH

Here LE is the hypothetical Langlands group and the factor SU(2) measures the
failure of the packet Π(Φ) of discrete automorphic representations of H indexed by
Φ to be tempered. We only consider Φ trivial on the factor SU(2) and replace the
map of the Langlands group by the collection Φv of restrictions of Φ, as v varies
over places of E, to the local Weil-Deligne group WDv = WD(Ev). Composition

of Φ with the L-homomorphism ξ : LH → LG defines an Arthur parameter ξ̃∗(Φ)
for G. If Φ corresponds to the stable character [τ ], then the corresponding packet

Π(ξ̃∗(Φ)) of admissible irreducible representations of G(A) is conjecturally related

to the transfer ξ∗([τ ]), as discussed above. However, Π(ξ̃∗(Φ)) is no longer a stable

character, and the characters of the various members of the collection Π(ξ̃∗(Φ)) are
expected to occur in ξ∗([τ ]) with multiplicities determined by an explicit formula

depending on the interaction of the datum s with the parameter ξ̃∗(Φ); this is the
content of Arthur’s multiplicity conjectures. Since these conjectures can only be
stated in terms of local L-packets, since the complete analysis of local L-packets
for unitary groups is not yet available as of this writing, and since in any case the
structure these L-packets, constructed by Moeglin, is too intricate for the purposes
of this introduction, I will limit my explicit description of the endoscopic transfer
to the simplest possible cases.

9.3. Explicit formulas for endoscopic transfer.
We work in the setting of unitary groups, with the elliptic endoscopic groups

described in (5.5). Let n = a + b be a partition of n, with a ≥ b, and let Ha,b =
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U(a)∗ × U(b)∗ (quasi-split inner forms); thus Hn,0 = G∗ is the quasi-split inner
form of G. Choose characters µa, µb as in (5.5) and define the L-homomorphism

ξ = ξµa,µb
: LHa,b →

LG

by the formulas (5.5.3-5.5.5). Let v be a place of E and consider a stable character
[τ ]v of Ha,b(Ev). Our goal is to describe the character ξµa,µb,v,∗([τ ]v) in a few simple
cases. Note that

Lemma 9.3.1. For all places v, the characters µa,v and µb,v of (K ⊗E Ev)
× are

unitary.

It suffices to show that µa and µb are unitary characters; but this is clear because
they restrict trivially to the kernel in A×

E of ηK/F , and this kernel is cocompact in
the idèles of K.

9.3.2 Split places.
If v splits in K/E then Ha,b(Ev) ≃ GL(a, Ev)×GL(b, Ev) and G(Ev) ≃ GL(n, Ev).

Consider the standard maximal parabolic Pa,b ⊂ G(Ev) corresponding to the par-
tition n = a + b, and let Ma,b ⊂ Pa,b denote its standard Levi subgroup. Then
Ha,b(Ev) is clearly isomorphic to Ma,b, so we can identify their corresponding sets
of irreducible admissible representations

i : A(Ha,b(Ev))
∼
−→A(Ma,b).

The set of such identifications is a homogeneous space under the action of the
group X(Ma,b) of continuous characters of Ma,b, which can in turn be identified
with the group X(E×

v )2 of ordered pairs of characters of Ev, via composition with
the determinant Ma,b → E×

v ×E×
v . Every irreducible representation τv = (τa,v, τb,v)

of Ha,b(Ev) is stable and therefore defines a stable character [τv]. We assume τv

is a unitary representation (in practice it will in fact be tempered). If we identify
Ma,b with GL(a, Ev) × GL(b, Ev), then let

(9.3.2.1) i(ξµa,µb
)∗([τv]) = (τa,v ⊗ µb ◦ det, τb,v ⊗ µa ◦ det)

and define

(9.3.2.2) ξµa,µb,v,∗([τv]) = I
GL(n,Ev)
Pa,b

i(ξµa,µb
)∗([τv])

where the representation of Ma,b in (9.3.2.1) has been inflated to a representation
of Pa,b. In particular ξµa,µb,v,∗([τv]) is an irreducible admissible representation of
G(Ev), and we have the following identity of standard L-functions

(9.3.2.3) L(s, ξµa,µb,v,∗([τv])) = L(s, τa,v ⊗ µb ◦ det)L(s, τb,v ⊗ µa ◦ det)

and the analogous identity for standard ε-factors.

9.3.3 Unramified representations.
Suppose v is inert (and unramified) in K/E, and suppose the unitary group

G is unramified at v. Thus G(Ev) as well as Ha,b(Ev) are quasi split and have
hyperspecial maximal compact subgroups Kv and Ka,b, respectively. Irreducible
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admissible representations τv of Ha,b(Ev) with Ka,b-fixed vectors are in one-to-
one correspondence with characters of the unramified Hecke algebra H(Ha,b) =
C∞

c (Ka,b\Ha,b(Ev)/Ka,b) of Ka,b-bi-invariant test functions on Ha,b(Ev). These
latter, in turn, are in one-to-one correspondence with unramified admissible homo-
morphisms (Satake parameters)

(9.3.3.1) Φ : WEv
→ LHa,b.

Here unramified means that the composition of Φ with projection on Ĥa,b is trivial
on the inertia subgroup, hence factors through the quotient E×

v /O×
Ev

of WEv
; ad-

missible means that the composition of Φ with the natural map LHa,b → WEv
is

the identity map. Let

(9.3.3.2) λa,b(Φ) : H(Ha,b) → C

denote the corresponding character of the unramified Hecke algebra. Of course the
Satake parameter Φ is also an Arthur parameter, in the sense of (9.2), and the
associated spherical representation τv is denoted Π(Φ), following the notation of
(9.2). This is consistent:

Proposition 9.3.3.3. Any such spherical Π(Φ) has a stable character, hence de-
fines a stable distribution [Π(Φ)].

For details, see Minguez’ chapter II.C.
The same Satake parametrization is valid for the quasi-split unitary group G(Ev).

Define ξ̃µa,µb,∗(Φ) : WEv
→ LG as in (9.2). This is now a Satake parameter for

G, hence defines a spherical representation Π(ξµa,µb,∗(Φ)). Define the unramified
Hecke algebra H(G) with respect to Kv, as above, and let

λn(ξ̃µa,µb,∗(Φ))H(G) → C

be the character of H(G) corresponding to the indicated Satake parameter. The

map ξ̃µa,µb,∗ on Satake parameters is dual to a homomorphism

(9.3.3.3) ξ̃∗µa,µb
: H(G) → H(Ha,b).

Theorem 9.3.3.4. We have the equality

ξµa,µb,∗([Π(Φ)]) = Π(ξ̃µa,µb,∗(Φ)),

where ξµa,µb,∗ is the transfer map on distributions defined by (9.1.2).

This theorem is the basic fact about endoscopic transfer, specialized to the case
of unitary groups. The analogous theorem is valid for elliptic endoscopic transfer
of unramified representations in general.

Sketch of proof. It follows from the definitions that the theorem is equivalent to
the following assertion:

(9.3.3.5) ∀φ ∈ H(G), φHa,b = ξ̃∗µa,µb
(φ).
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Allowing for differences of notation, this is what is called in [H2] (and elsewhere)
the fundamental lemma for standard endoscopy, in the case under consideration.
The article [H2] of Hales reduces this equality to the special case in which φ is
the unit element 1Kv

and therefore the right-hand side of (9.3.3.5) is just 1Ka,b
.

In other words, Hales reduces (9.3.3.5) to Conjecture 6.4; indeed he obtains the
equality assuming Conjecture 6.4 has been established for sufficiently large residue
characteristic. The theorem thus follows by combining [H2] with the results of [LN]
and [W3].

The analogue of the relation (9.3.2.3) holds for the Langlands L-functions at-
tached to the standard representations of LHa,b and LG, more or less tautologically.

9.3.4 Global endoscopic transfer. Now suppose that K/E and the group G are
unramified at all finite places and consider the restriction of the transfer maps
φ 7→ φHa,b to φ which are biinvariant under an appropriately chosen compact open
subgroup Kf ⊂ G(Af ) containing Kv for all inert places v. The transfers are
then defined on automorphic representations τ with fixed vectors under the corre-
sponding compact open subgroups of Ha,b; in particular, each such τ is spherical
at every inert place v. Under these hypotheses (corresponding to the “simplifying
hypotheses” to be considered in Book 3), any stable L-packet of Ha,b is of the form

[τ ] = [τ ]∞ ⊗ τf

where τf is a (single) irreducible representation of Ha,b(A
f ). Then

ξµa,µb,∗([τ ]) = ξµa,µb,∞,∗([τ ]∞) ⊗
′

⊗

v∤∞

ξµa,µb,v,∗(τv),

where the restricted tensor product is taken over finite places. The terms ξµa,µb,v,∗(τv)
are explicitly computed by the formulas in (9.3.2) and (9.3.3). The calculation of
ξµa,µb,∞,∗([τ ]∞) is the topic of the chapters of Renard and Adams.

In the applications, especially in IV.1 and IV.2, [τ ]∞ is a discrete series L-packet,
and ξµa,µb,∞,∗([τ ]∞) is a sum of discrete series characters of G(E∞), weighted by
signs determined long ago by Shelstad. More details are provided in IV.2.

9.4 Twisted endoscopy and base change for unitary groups.
TO BE WRITTEN
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