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Introduction

Let F be a non-Archimedean locally compact field, of residual characteristic p and let

E/F be an unramified quadratic extension. Denote by U(n) an unramified unitary group

attached to the extension E/F.

The goal of this chapter is to make explicit the transfer of unramified representations

in the following cases:

(1) Quadratic base change from U(n) to GL(n)E.

(2) Endoscopic transfer from U(a)× U(n− a) to U(n).

These results are used in chapter 4A of this volume and in Book 2 to construct auto-

morphic representations. We recall the classification of spherical representations in terms

of Satake parameters for any reductive group and then make it explicit for linear and

unitary groups (not necessarily unramified).

These notes came out of a workshop on unitary groups which took place at the Uni-

versity of East Anglia in the winter of 2007 and whose participants were S. Stevens, V.

Sécherre and M. Miyauchi. This paper could have not been written without their help.

I would like to thank M. Harris for inviting me to contribute to this book and the other

Partially supported by JSPS, ESPSRC grants GR/T21714/01, EP/G001480/1, MTM2007-66929 and
FEDER.
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authors for having made it possible. Thanks also to H. Saito and G. Henniart for all

helpful conversations and their support on numerous occasions.

1. Notation

1.1. Let F be a non-Archimedean locally compact field, of residual characteristic p.

For every finite extension L over F we will denote by OL its ring of integers, pL its

maximal ideal, $L a uniformizing parameter and kL its residue field. We denote by qL

the cardinality of kL.

Let WF be the absolute Weil group of F and, if L is a finite extension over F, let WL/F

be the Weil group of L/F. If L/F is a Galois extension, let Γ(L/F) be the Galois group.

The symbol Γ will denote Γ(F/F), where F is an algebraic closure of F. The norm and

the trace maps will be denoted by NL/F and trL/F respectively.

1.2. Let G be a connected reductive group over F. As usual, if there is no confusion,

we will not distinguish between G and the group G(F) of F-points of G. Fix a minimal

F-parabolic subgroup P0 of G and let M0 be a Levi factor of P0. We denote by WG the

spherical Weyl group, defined to be

WG = NG(M0)/M0,

where NG(M0) is the normalizer of M0 in G. A parabolic subgroup P of G will be called

standard if it contains P0. In this case we will denote by MP the unique Levi factor

of P containing M0, by NP the unipotent radical of P, P− the opposite of P (such that

P ∩ P− = MP) and N−
P = NP− . Set N0 = NP0 .

1.3. In this chapter, all representations are assumed to be smooth and admissible – that

is, by a representation of G we understand a pair (π,V) where V is a vector space over

C and π is a group homomorphism from G into GL(V) such that the stabilizer of every

vector in V is an open subgroup of G and, for every compact open subgroup K of G, the

space VK of K-invariant vectors in V is finite dimensional.

We denote by Irr(G) the set of equivalence classes of irreducible representations of G.

Given π a representation of G we will denote by π̃ the contragredient representation of π

and let JH(π) be the set of irreducible constituents of π.
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1.4. Let P be a standard parabolic subgroup of G and let (τ,V) be a representation of

the Levi factor MP of P, regarded as a representation of P on which NP acts trivially. We

denote by iGP (τ), the representation of G unitarily induced from τ ; this is the representation

by right translation in the space of functions φ : G → V satisfying the following conditions:

(a) One has φ(pg) = δ
1/2
P (p)τ(p)φ(g), for p ∈ P, g ∈ G and where δP is the modulus

function.

(b) There exists a compact open subgroup K of G such that φ(gk) = φ(g) for g ∈ G

and k ∈ K.

The factor δ
1/2
P is there to ensure that iGP (τ) is unitary if τ is (hence the term unitary

induction). The functor iGP preserves finite length, i.e. if τ is a finite length representation

of MP, then iGP (τ) is also a representation of finite length.

1.5. A representation π of G is called cuspidal if it is not a composition factor of any

representation of the form iGP (τ) with P a proper parabolic subgroup of G and τ a repre-

sentation of MP. This is equivalent to every coefficient of π being compactly supported

modulo the center of G.

A cuspidal datum is a pair (M, ρ) where M is a Levi subgroup of G and ρ is a cuspidal

representation of G. Two cuspidal data, (M, ρ), (M′, ρ′) are conjugate if there exists g ∈ G

such that

Ad g : M
∼−→M ′,

Ad g : ρ
∼−→ ρ′.

If π is an irreducible representation of G, there exists, up to conjugacy, a unique cuspidal

datum (M, ρ) such that π is a composition factor of iGP (ρ). We call it the cuspidal support

of π and write it supp(π).

1.6. Let K be a compact open subgroup of G. The Hecke algebra of G relative to K,

denoted by H (G,K), is the space of compactly supported functions f : G → C which are

left and right K-invariant. This is an algebra under the operation of convolution, relative

to some choice of Haar measure µG on G. It has a unit element, denoted by eK, which is

µ−1
G (K) times the characteristic function of K.

The Hecke algebra H (G) is then defined as

H (G) :=
⋃
K

H (G,K),
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where K runs through a basis of neighborhood of 1 consisting of compact open subgroups.

Representations of G on a complex vector space V correspond bijectively to the admis-

sible representations of H (G) on V, where the action of H (G) on V is defined as usual

by

(1.1) π(f)v =

∫
G

f(g)π(g)v dg.

1.7. Let (B,T) be a Borel pair, i.e., a pair consisting of a maximal split torus T of G

and a Borel subgroup B containing T. It gives rise to a reduced based root datum

ψ(G,B) = (X∗(T),∆∗,X∗(T),∆∗)

where X∗(T) (resp. X∗(T)) is the character (resp. co-character) group, ∆∗ ⊂ X∗(T) is the

subset of simple roots of T which are positive with respect to B and ∆∗ is the set of co-

roots associated to the roots in ∆∗. Up to canonical isomorphism, ψ(G,B) is independent

of the choice of (B,T).

Let LG be the L-group of G, that is LG is the semi-direct product of Ĝ – the complex

connected reductive group whose reduced based root datum is dual to that of G – and the

Weil group WF. See [Bo1] or the introduction of this volume [Har] for more information

on the L-group.

Let H and G be two connected reductive groups. A homomorphism ξ : LH → LG is

called an L-homomorphism if

(i) it is a homomorphism over WF, that is, the following diagram commutes

LH

��

ξ
// LG

��
WF WF

where the vertical arrows are the projection onto the factor WF of the L-group,

(ii) ξ is continuous, and

(iii) the restriction of ξ to Ĥ is a complex analytic homomorphism ξ : Ĥ → Ĝ.

The principle of functoriality predicts that, at least when G is quasi-split, to each such

L-homomorphism there is associated a correspondence (not a function!) from irreducible

representations of H to irreducible representations of G. The original idea comes from the

fact studied in this chapter: we will see the lifting of unramified representations of H to

unramified representations of G in the case where H and G are unramified groups.
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2. Spherical representations

In this section, given a maximal compact subgroup K of G, we recall the classification

of K-spherical representations of G – that is, irreducible representations of G having a

non-zero K-fixed vector – in terms of Satake parameters. All the proofs can be found

in the articles of Cartier [Car] and Borel [Bo1] at Corvallis. One can also consult the

original paper of Satake [Sat].

2.1. Let K be a good, special, maximal compact subgroup of G. The original definition

of such a compact subgroup appears in [BT] in terms of the apartment of G. There

always exists such a group. The relevant properties of such a group that we need in the

sequel are:

Iwasawa decomposition. G = P0K.

Cartan decomposition. G = KΛ+K, where Λ+ is defined as in [Be2, §2.2].

Iwahori decomposition. There exists an Iwahori subgroup I ⊂ K such that I = (I ∩
N−

0 )(I ∩M0)(I ∩ N0) (unique factorization).

The subgroup M0 ∩K is the unique maximal compact subgroup of M0; it is normal in

M0 and we have M0/M0 ∩K ' Zd where d is the rank of G.

Remark 2.1. — In the case where M0 is a split torus defined over F, then M0(F) is

isomorphic to F×d and the map taking α∨ to α∨($F) induces an isomorphism between

the group of co-characters X∗(M0) and M0/M0 ∩K.

Denote by Xun(M0) the set of unramified characters of M0, that is, the characters of

M0 which are trivial on M0 ∩K. The Weyl group W = WG acts on Xun(M0) by

(wχ)(m) = χ(w−1mw),

for χ ∈ Xun(M0), m ∈ M0 and w ∈ W . If we fixm1, . . . ,md some generators of M0/M0∩K,

we get an isomorphism:

C×d ∼−→ Xun(M0)(2.1)

z 7→ χz,

given by χz(mi) = zi, for i = 1, . . . , d and z = (z1, . . . , zd).
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Remark 2.2. — The unramified characters of M0 are hence in bijection with the C-

rational points of a split torus defined over C. This particular fact is not an unimportant

accident, as we will see.

Let χ ∈ Xun(M0). By the Iwasawa decomposition we easily check that the space of

K-fixed vectors iGP0
(χ)K is one-dimensional generated by the canonical spherical vector

ψχ,K : G → C, mnk 7→ δ
1/2
P (m)χ(m),

for m ∈ M0, n ∈ N0 and k ∈ K.

As the functor of K-invariants is exact, there is one unique irreducible composition

factor of iGP0
(χ) which is K-spherical. Thus we get a map

(2.2) Xun(M0) → {K-spherical representations of G} .

Theorem 2.3. — The map defined by equation (2.2) induces a bijection

Xun(M0)/W
∼−→ {K-spherical representations of G} .

We prove injectivity with a light version of Bernstein-Zelevinski geometric lemma. Us-

ing the Iwahori decomposition and the Borel-Matsumoto theorem [Bo2], we get that the

map is surjective. Remark that the inverse map is given by π 7→ supp(π).

2.2. Another way of defining an inverse map is by using the Satake isomorphism [Sat].

Consider the spherical Hecke algebra H (M0,M0 ∩ K). For elementary reasons it is a

polynomial algebra

H (M0,M0 ∩K) ' C
[
x±1

1 , . . . , x±1
d

]
where xi corresponds to the characteristic function of mi (M0 ∩K), and we recall that

m1, . . . ,md are some fixed generators of M0/M0 ∩K.

The Weyl group W acts on H (M0,M0∩K) in the obvious manner: for f ∈ H (M0,M0∩
K), w ∈ W , m ∈ M0,

wf(m) = f(w−1mw).

Theorem 2.4. — The C-algebra homomorphism (the Satake transform):

S : H (G,K) −→ H (M0,M0 ∩K)

given by

(S f)(m) = δ
1/2
P0

(m)

∫
N0

f(mn)dn = δ
−1/2
P0

(m)

∫
N0

f(nm)dn,
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where dn denotes a Haar measure on N0, is injective with image H (M0,M0 ∩ K)W , the

algebra of W -invariant elements of H (M0,M0 ∩K).

Let χ be any unramified character of M0 and fix a Haar measure on M0 such that∫
M0∩K

dm = 1. The map (Fourier transform) f 7→
∫

M0
f(m)χ(m)dm is an algebra ho-

momorphism from H (M0,M0 ∩ K) to C, and, by varying χ, we get in this way all such

homomorphisms.

Define a linear map ωχ : H (G,K) → C by

ωχ(f) =

∫
M0

S f(m)χ(m)dm.

Proposition 2.5. — Any algebra homomorphism from H (G,K) into C is of the form

ωχ for some unramified character χ of M0. Moreover, one has ωχ = ωχ′ if, and only if,

there exists an element w ∈ W such that χ′ = wχ.

2.3. Now let π be a K-spherical representation of G. As we have supposed that the

compact subgroup K is special, the Hecke algebra H (G,K) is commutative. The subspace

of all K-fixed vectors in π, being irreducible, is then one-dimensional.

Thus, we obtain an algebra homomorphism:

λπ : H (G,K) → C,

defined by π(f)v0 = λπ(f)v0, with v0 any K-fixed vector, and where the action of H (G,K)

on the representation space of π is defined by (1.1). One can check, using for example

[Car, §1.5], that we also have

(2.3) λπ(f) = tr (π(f)) .

So, by Proposition 2.5, there exists an unramified character χπ, unique up to conjugacy

by W such that

λπ = ωχπ

. The next proposition is proved in [Gar].

Proposition 2.6. — The map π 7→ χπ is the inverse of the homomorphism defined in

Theorem 2.3.
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Proof. — Let π be a K-spherical representation and let χ ∈ Xun(M0) be such that π is

a subrepresentation of iGP0
(χ). Let ψ be the canonical spherical vector. Then for any

f ∈ H (G,K), and any g ∈ G we have

λπ(f)ψ(g) = iGP0
(χ)(f)ψ(g)

=

∫
G

f(h)ψ(gh)dh.

Normalizing the Haar measure on K to be 1, we deduce that:

λπ(f) = λπ(f)ψ(1)

=

∫
G

f(h)ψ(h)dh

=

∫
P0

∫
K

f(pk)ψ(pk)δ−1(p)dpdk

=

∫
P0

f(p)ψ(p)δ−1(p)dp

=

∫
P0

f(p)χ(p)δ−1/2(p)dp

=

∫
N0

∫
M0

f(nm)χ(nm)δ−1/2(nm)dndm

=

∫
M0

S f(m)χ(m)dm

= ωχ.

Depending upon the choice m1, . . . ,md of some generators for the quotient M0/M0∩K,

the Satake parameters attached to π are the images

χπ(m1), . . . , χπ(md).

2.4. A connected reductive group is said to be unramified over F if it is quasi-split and

splits over an unramified extension of F. One can consult [Cas] where these groups and

their spherical representations are treated in detail. The special properties of these groups

are:

(1) A connected reductive group G is unramified if, and only if, it has hyperspecial

maximal compact subgroups. The original definition of these compact subgroups appears
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in [Tit] in terms of hyperspecial points in the Bruhat-Tits building of G, generalizing the

concept of special compact subgroups.

(2) There exists a group scheme X over OF such that G = XF and XkF
is a connected

reductive group. The compact subgroup X(OF) is hyperspecial. See, for example [Mil].

(3) The action of WF on Ĝ factors through the projection of WF onto Γ(Fun/F), where

Fun is the maximal unramified extension of F. It is hence determined by the action of the

Frobenius element.

(4) Denote by T = M0 a maximal torus contained in a Borel subgroup B = P0 of G.

Let A be a maximal split torus and K a hyperspecial maximal compact subgroup. Then

the embedding of A into T induces an isomorphism of the lattices

(2.4) A/A ∩K
∼−→ T/T ∩K.

This last property gives us the idea for using the L-group for classifying spherical

representations. The dual group of A is a complex torus Â. So we have a set of canonical

isomorphisms:

Hom
(
T/T ∩K,C×) = Hom

(
A/A ∩K,C×)

= Hom
(
X∗(A),C×)(2.5)

= Hom
(
X∗(Â),C×

)
,

which is, by definition, the group of points of Â. Here, the first equality comes from

property (4), the second one from the fact that A is split and Remark 2.1, and the third

equality by definition of the dual group.

The embedding of A into T gives rise to a surjection from T̂ to Â which, by (2.5)

associates to each element in T̂ an unramified character of T. We have an action coming

from the Weyl group on Xun(T) and action of the Frobinius element on T̂. Let’s see that

these actions are compatible.

2.5. Suppose until the end of this section that G is an unramified group. We say that a

representation of G is K-unramified if it is K-spherical where K is a hyperspecial compact

subgroup of G.

Remark 2.7. — The notion of unramified representation depends on the choice of the

hyperspecial maximal compact subgroup K. However, the hyperspecial maximal compact

subgroups form a single orbit under the action of the adjoint group Gad of G (cf. [Tit]).
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Fix an element F ∈ WF whose projection to Γ(Fun/F) is the Frobenius element. We

say that two elements g′1 and g′2 of Ĝ are F-conjugate if there exists h ∈ Ĝ such that

g′2 = h−1g′1h
F.

The following theorem was first stated and proved in [La1]. See also [La2] and [Bo1].

Theorem 2.8. — (1) Every semisimple Ĝ-conjugacy class in Ĝ o F contains an ele-

ment of the form t′ o F with t′ ∈ T̂.

(2) The surjection T̂ → Â which associates to each element t′ ∈ T̂, by (2.5), an un-

ramified character χt′ of T is such that two elements t′1 and t′2 of T̂ are F-conjugate if,

and only if, the unramified characters χt′1
and χt′2

of T are conjugate under the action of

the Weyl group W .

2.6. Combining Theorems 2.3 and 2.8, we deduce that K-unramified representations are

in bijective correspondence with the F-conjugacy classes of semisimple elements in ĜoF.

Furthermore, each such class can be represented by an element of the form (t,F), with

t ∈ T̂ fixed under F. To sum up, when G is an unramified group the set IrrK-un(G) of

K-unramified representations of G is in canonical bijection with:

(1) Xun(M0)/W .

(2) Hom (H (G,K),C).

(3) Semi-simple Ĝ-conjugacy classes in the coset Ĝ o F.

(4) Equivalence classes of unramified L-parameters of G, that is, commuting diagrams

Γ(Fun/F)
φ

//

��

LG

zzuuu
uuu

uuu
u

Γ(Fun/F)

where the vertical arrow is the identity map from Γ(Fun/F) to itself and φ(w) is semisim-

ple, for all w ∈ Γ(Fun/F).

For (4), remark that an unramified parameter φ is determined by the semisimple element

φ(F) = gφ o F.

2.7. Let H and G be two unramified connected reductive groups over F and let

ξ : LH → LG
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be an L-homomorphism. We deduce a map from semi-simple conjugacy classes in Ĥ o F

to semi-simple conjugacy classes in Ĝ o F. Thus if we fix some hyperspecial maximal

compact subgroups KH and KG in H and G respectively, using the preceding results, we

deduce a lift, called the natural unramified lift :

(2.6) ξ̃ : IrrKH-un(H) → IrrKG-un(G).

We will make this lift explicit in some special cases in section 4.

We get also a natural map from Hom (H (H,KH),C) to Hom (H (G,KG),C) and hence

we deduce a lift from the relative Hecke algebras:

(2.7) b(ξ) : H (G,KG) → H (H,KH).

By equation (2.3), this map is characterized by the property tr (π (b(f))) = tr
(
ξ̃(π)(f)

)
,

for π ∈ IrrKH-un(H) and f ∈ H (G,KG).

3. Basic structure of linear and unitary groups

3.1. Linear groups. — GLn(F) is by definition the multiplicative group of invertible

matrices in EndF(Fn). It is endowed with the inherited topology. The identity has a

countable basis of neighborhoods that are compact open subgroups; in particular, GLn(F)

is a locally compact topological group. As such, its Haar measure is left and right invariant

(the group is unimodular).

3.1.1. Denote by GLn(OF) the subgroup of GLn(F) of elements g ∈ EndOF
(On

F) such

that det g is a unit in F×.

Theorem 3.1. — GLn(F) contains a unique conjugacy class of maximal compact sub-

groups, and each such subgroup is open. One element in this class is GLn(OF).

3.1.2. Let α = (n1, . . . , nr) be a partition of the integer n. We denote by Mα the

subgroup of GLn(F) of invertible matrices which are diagonal by blocks of size ni and

Pα the subgroup of upper triangular matrices by blocks of size ni. A standard parabolic

subgroup of GLn(F) is a subgroup of the form Pα and its Levi factor is Mα.

Thus a minimal Levi factor M0 is the subgroup of diagonal matrices M(1,...,1), which

is isomorphic to n copies of F×. For commodity, we will write elements in M0 by
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diag(λ1, . . . , λn), with λi ∈ F× for 1 ≤ i ≤ n. The spherical Weyl group is isomor-

phic to the group of permutations Sn. Here Sn acts on M0 by permutations on the

matrix entries λi, 1 ≤ i ≤ n.

3.1.3. The dual group of GLn(F) is GLn(C). To verify this we identify X∗ and X∗

with Zn under the standard pairing 〈ei, ej〉 = δij, and let

∆∗ = ∆∗ = {ei − ei+1 : 1 ≤ i ≤ n− 1} .

The Galois action on it is trivial since GLn(F) is a split group, thus LGLn(F) = GLn(C)×
WF (direct product).

3.1.4. The set of unramified representations is, by Theorem 2.3, in bijection with

the n-tuples (χ1, . . . , χn) of unramified characters of F× up to permutation. To

such an n-tuple we associate the conjugacy class in GLn(C) of the diagonal element

diag(χ1($), . . . , χn($)), where $ is a uniformizing parameter of F.

3.2. Unitary groups. — Let E/F be a quadratic extension and let σ be the conjugation

of E with respect to F. We also write σ(x) = x. The character of order two of F×

associated to E/F by local class field theory will be denoted by ωE/F. If χ is a character

of E×, χ will denote the character χ(x) = χ(x).

Let V be an n-dimensional vector space over E. A hermitian form on V is a pairing

h : V × V → E

that is σ-linear in the first variable, linear in the second variable:

h(αv, βw) = αβh(v, w)

and satisfies h(w, v) = σ (h(v, w)) for v, w ∈ V and α, β ∈ E. We always assume h to

be non-degenerate, i.e. for v ∈ V, v 6= 0, there exists w ∈ V such that h(v, w) 6= 0. We

say that two hermitian vector spaces are isometric if there is an E-linear isomorphism

between them that identifies the hermitian forms. Such a map is called an isometry. The

group of isometries of a hermitian space into itself is called a unitary group, i.e. U(V ) is

the subgroup of g ∈ GL(V) that preserve h:

h(g(v), g(w)) = h(v, w), for v, w ∈ V.

This relation defines an algebraic group over F. We say that n = dimE V is the degree

the unitary group U(V). A hermitian space is called anisotropic if, for all v ∈ V, v 6= 0,

we have h(v, v) 6= 0. A subspace W of V is called totally isotropic if h(w,w) = 0 for all
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w ∈ W. If V and V′ are two hermitian vector spaces, one constructs the hermitian vector

space (orthogonal sum) V ⊥ V′ in the obvious way.

Example 3.2. — (1) For n = 1, let a ∈ F. We define the hermitian space E(a) as the

E-vector space of dimension 1 where the hermitian form h is defined by:

h(e, e′) = eae′.

(2) For n = 2, the hyperbolic plane H over E is the E-vector space of dimension 2 with

the product:

h ((e1, e2), (e
′
1, e

′
2)) = e1e

′
2 + e2e

′
1.

(3) For n = 2, the anisotropic hermitian space W2(a1, a2) is the E-vector space of

dimension 2, W2(a1, a2) = E(a1) ⊥ E(a2) with a1, a2 not equal to zero and −a1/a2 /∈
NE/F(E×). All anisotropic hermitian spaces of dimension 2 are isometric.

In general, by a theorem of Landherr [L], for each n there are exactly two different

classes of isomorphism of n-dimensional hermitian spaces over E:

(1) For n = 2m + 1 odd, let V± ' mH ⊥ W±, where W± ' E(a) (see example 3.2)

depending on whether a ∈ NE/F(E×) or not.

(2) For n = 2m even, let V+ ' nH and V− ' (n − 1)H ⊥ W−
2 where W−

2 is an

anisotropic space of dimension 2.

This decomposition is called the Witt decomposition. The number of hyperbolic planes

appearing in this decomposition is called the Witt index w(V) of V.

3.2.1. If n is odd, U(V+) is isomorphic to U(V−) and it is always a quasi-split group.

We will denote it by U(n). If n is even, then U(V+) is not isomorphic to U(V−). We

usually write U(V+) = U(m,m); it is a quasi-split group while U(V−) is not. A unitary

group U is thus unramified if, and only if, E/F is an unramified extension and U is

isomorphic to U(V+) (see Paragraph 2.4).

3.2.2. The number of conjugacy classes of maximal compact subgroups of a unitary

group U(V) is equal to w(V) + 1. By [Tit], two of them consist of special compact

subgroups and, when U(V) is unramified, they are also hyperspecial if the degree of U(V)

is even while, if the degree is odd, just one conjugacy class of maximal compact subgroups

consists of hyperspecial compact subgroups.
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3.2.3. Let (V, h) be a hermitian space. A self dual flag Φ is a decreasing sequence of

spaces

V = V−d ! V1−d ! · · · ! V−1 ! V0 ⊇ V⊥
0 ! V1 ! · · · ! Vd = {0},

where, for i = −d, . . . , d, i 6= 0, we have

V⊥
i := {v ∈ V : h(v, vi) = 0,∀vi ∈ Vi} = V−i.

For such a flag Φ and i = 1, . . . , d, we can always choose a totally isotropic hermitian

subspace Wi ⊂ V−i such that V−i = V−i+1 ⊕ Wi, and a hermitian space W0 such that

V0 = V⊥
0 ⊕W0.

Parabolic subgroups of U(V) are stabilizers of self-dual flags. For a given flag Φ,

denote by PΦ its associated standard parabolic subgroup. Then, the Levi factor of PΦ is

isomorphic to

MΦ '
d∏

i=1

AutE(Wi)× U(W0).

In particular, for any hermitian space V of Witt index w(V) = m, the minimal Levi

subgroup M0 of the unitary group U(V ) is isomorphic to m copies of E× times U(Van),

where

U(Van) =


1, if dim V = 2m (V ' V+,

U(1), if dim V = 2m+ 1

U(W−
2 ), if dim V = 2m+ 2 (V ' V−,

For commodity, we will write elements in M0 by diag(λ1, . . . , λm, uo), with λi ∈ E× and

u0 ∈ U(Van). The spherical Weyl group W is isomorphic to Sm o Zm
2 . Here Sm acts on

M0 by permutations on the matrix entries λi, 1 ≤ i ≤ m. If ci is the non-trivial element

of the i-th copy of Z2, then ci changes λi into λ
−1

i .

3.2.4. Let K be a good special maximal compact subgroup of U(V). The set of K-

spherical representations of U(V) is, by Theorem 2.3, in canonical bijection with the

m-tuples (χ1, . . . , χm) of unramified characters of E× where m is the Witt index w(V) of

V and two m-tuples (χ1, . . . , χm) and (χ′1, . . . , χ
′
m) correspond to the same K-spherical

representation if there exists a permutation s ∈ Sm such that, for 1 ≤ i ≤ m, χ′s(i) equals

χi or χ−1
i .
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3.2.5. Let U(n) be a unitary group of degree n (quasi-split or not). Over E, U(n) is

isomorphic to GLn|E, and U(n) is an outer form of GLn|E. It follows that Û(n) = GLn(C)

and the Galois action factors through Γ(E/F).

Let Φn be the n× n matrix whose ij entry is (−1)i+1δi,n−j+1;

(3.1) Φn =


0 0 . . . 0 1

0 0 . . . −1 0
...

... . . .
...

...

0 (−1)n . . . 0 0

(−1)n+1 0 . . . 0 0


Then g 7→ Φn

tg−1Φ−1
n is the unique outer automorphism of GLn(C) which preserves the

standard splitting (defined with respect to the upper-triangular Borel subgroup and the

standard basis for the simple root spaces). Hence the non-trivial element σ of Γ(E/F)

acts on Û(n) = GLn(C) by this automorphism

σ(g) = Φn
tg−1Φ−1

n .

An action of WF on Û(n) is defined by projection onto Γ(E/F). The L-group of U(n) is

the semi-direct product of Û(n) with WF with respect to this action.

3.2.6. Suppose U(n) is an unramified group of degree n – that is E/F is an unram-

ified extension and there exists a positive integer m (the Witt index) such that U(n) is

isomorphic to U(2m+ 1) or to U(m,m). Fix a hyperspecial maximal compact subgroup

K of U(n) and denote by wσ a fixed element of WE/F whose projection to Γ(E/F) is σ.

Then WF = WE ∪ wσWE.

As we have seen in Paragraph 3.2.4, K-unramified representations are classified by m-

tuples (χ1, . . . , χm) of unramified characters of E×, where two m-tuples (χ1, . . . , χm) and

(χ′1, . . . , χ
′
m) correspond to the same K-unramified representation if, and only if, there

exists a permutation s ∈ Sm such that, for 1 ≤ i ≤ m, χ′s(i) equals χi or χ−1
i = χ−1

i .

Fix a maximal torus T in U(n) and a maximal split torus A in T. Then T is isomorphic

to ResE/FA so that Â ' C×m and T̂ ' C×2m. The diagonal embedding A into T gives

rise to a natural projection form T̂ onto Â given by (t1, t2) 7→ t1t
−1
2 where ti ∈ C×m for

i = 1, 2.
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So, by Paragraph 2.4, to an m-tuple (χ1, . . . , χm) of unramified characters of E× we

can associate the conjugacy class in LU(n) of the diagonal element

diag
(
χ

1/2
1 ($), . . . , χ1/2

m ($), χ−1/2
m ($), . . . , χ

−1/2
1 ($)

)
o wσ, if n = 2m is even,

diag
(
χ

1/2
1 ($), . . . , χ1/2

m ($), 1, χ−1/2
m ($), . . . , χ

−1/2
1 ($)

)
o wσ, if n = 2m+ 1 is odd.

Of course the wσ-conjugacy class does not depend on the choice of the square root of the

χi($) for 1 ≤ i ≤ m.

4. Some lifting problems

In this section, we make explicit, in terms of Satake parameters, base change lifting

and endoscopic transfer. We will deal only with the unramified case, that is we will

suppose that E/F is a quadratic unramified extension and, for n a positive integer, we

will write U = U(n) the quasi-split unitary group of degree n. So, if we denote by θ

the automorphism g 7→ Φn
tg−1Φ−1

n of GLn(E) with Φn defined as in (3.1), then U is

isomorphic to the subgroup of fixed points by θ in GLn(E). We still fix wσ an element of

WE/F whose projection to Γ(E/F) is σ.

Denote by µ the unique unramified character of E× of order 2.

4.1. Quadratic base change. —

4.1.1. Set G = ResE/F (U). The dual group of G is Ĝ = GLn(C) × GLn(C) [Bo1,

§I.5], where the Weil group acts on Ĝ through its projection onto Γ(E/F) and σ acts by

σ(x, y) = (Φn
ty−1Φ−1

n ,Φn
tx−1Φ−1

n ) with Φn as in (3.1).

There is a natural bijection between wσ-conjugacy classes of Ĝ and semi-simple conju-

gacy classes of GLn(C), sending the conjugacy class of (g1, g2)owσ in LG to the conjugacy

class of (g1Φn
tg−1

2 Φ−1
n ) in GLn(C). This bijection reflects the fact that G(F) is isomorphic

to U(E).

4.1.2. There are two natural L-homomorphisms (the base change lifts):

BC : LU → LG(4.1)

BC ′ : LU → LG
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defined by BC(g, w) = (g, g, w) and BC ′(g, w) = α(w)BC(g, w) where α(w) is the 1-

cocycle defined by

α(w) =

(µ(w), µ(w)), if w ∈ WE,

(µ(w0),−µ(w0)), if w = w0wσ, w0 ∈ WE.

where we regard here µ as a character of WE via local class field theory.

4.1.3. We now make base change explicit for unramified representations. We fix a

hyperspecial maximal compact subgroup K in U . We deduce, by (2.6), two morphisms:

B̃C : IrrK-un(U) → Irrun(G)(4.2)

B̃C ′ : IrrK-un(U) → Irrun(G).

Theorem 4.1. — (1) Let π be a K-unramified representation of U(n) and denote by

(χ1($), . . . , χm($)) its Satake parameters. Then the Satake parameters of B̃C(π) are

(χ1($), . . . , χm($), χ−1
m ($), . . . , χ−1

1 ($)), if n = 2m is even,

(χ1($), . . . , χm($), 1, χ−1
m ($), . . . , χ−1

1 ($)), if n = 2m+ 1 is odd.

(2) B̃C ′(π) = µ(det)⊗ B̃C(π).

Proof. — Let π be a K-unramified representation of U(n) and (χ1, . . . , χm) its Satake

parameters. By 3.2.6, π is also parametrized by the conjugacy class in LU of the diagonal

element

(t, wσ) =

diag
(
χ

1/2
1 ($), . . . , χ

1/2
m ($), χ

−1/2
m ($), . . . , χ

−1/2
1 ($)

)
o wσ, if n = 2m,

diag
(
χ

1/2
1 ($), . . . , χ

1/2
m ($), 1, χ

−1/2
m ($), . . . , χ

−1/2
1 ($)

)
o wσ, if n = 2m+ 1.

The conjugacy class BC(t, wσ) = (t, t, wσ) in LG can be regarded, by 4.1.1, as the

conjugacy class of (tΦn t
−1Φ−1

n ) in GLn(C), that is, by the conjugacy class of the element

diag
(
χ1($), . . . , χm($), χ−1

m ($), . . . , χ−1
1 ($)

)
, if n = 2m is even,

diag
(
χ1($), . . . , χm($), 1, χ−1

m ($), . . . , χ−1
1 ($)

)
, if n = 2m+ 1 is odd.

We deduce the first part of the theorem with 3.2.6. To prove (2) recall that, by the

Langlands correspondence, the cocycle α corresponds to the character of G defined by

g 7→ µ ◦ det g.

Corollary 4.2. — B̃C is an injective map.
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Proof. — Let π and π′ be two K-unramified representations of U and (χ1($), . . . , χm($))

and (χ′1($), . . . , χ′m($)) respectively its Satake parameters. Suppose B̃C(π) ' B̃C(π′).

Then, up to a permutation in S2m, we have that the sets (χ1, . . . , χm, χ
−1
m , . . . , χ−1

1 ) and

(χ′1, . . . , χ
′
m, χ

′−1
m , . . . , χ′−1

1 ) are equal. Hence there exists a permutation s ∈ Sm such

that, for 1 ≤ i ≤ m, χ′s(i) equals χi or χ−1
i . Thus, π ' π′.

Remark 4.3. — For any representation π of G denote by πθ the representation g 7→
π (θ(g)). We say that π is θ-invariant if π ' πθ. One could naively think that the

image of B̃C is the set of θ-invariant representations of G. But this set is bigger as it

also contains some representations coming from endoscopic groups (see next chapter).

For example, the unramified representation of GL2(E) with Satake parameters (1, µ) is

θ-invariant and comes (see Paragraph 4.2.3 for more details) from the endoscopic group

U(1) × U(1) where in the first factor we take the standard base change B̃C and in the

second we use the twisted base change B̃C ′.

4.2. Endoscopic transfer. —

4.2.1. Recall from [Ro1] that, for a unitary group U of degree n, the elliptic endoscopic

groups are the quasi-split unitary groups H = U(a) × U(b) where a and b are positive

integers with a + b = n. The embedding LH → LU depends on the choice of characters

µa and µb of E× extending respectively the characters wa
E/F and wb

E/F.

Then the embedding ξµa,µb
: LH → LU is defined by (cf. [Ro2]):

(g1, g2) o 1 7→

(
g1

g2

)
o 1

1 o w 7→

(
µb(w)1a

µa(w)1b

)
o w for w ∈ WE

1 o wσ 7→

(
Φa

Φb

)
Φ−1

n o wσ,

where Φm, m = a, b, n is defined as in (3.1) and we regard µa and µb as characters of WE

via local class field theory.

4.2.2. Fix some hyperspecial maximal compact subgroups Ka, Kb and K in U(a), U(b)

and U(n) respectively. We suppose here that µa and µb are unramified characters, that
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is, for i = a, b:

µi =

µ, if i ≡ 1 mod 2

1, otherwise.

The following theorem is now straightforward:

Theorem 4.4. — Let π and π′ be a Ka-unramified representation of U(a) and π′ be a

Kb-unramified representation of U(b). Let a′, b′ be the Witt indexes of U(a) and U(b) re-

spectively. Denote by (χ1($), . . . , χa′($)) and (χ′1($), . . . , χ′b′($)) respectively its Satake

parameters. Then the Satake parameters of ξ̃µa,µb
(π, π′) (see (2.6)) are:

(µbχ1($), . . . , µbχa′($), µaχ
′
1($), . . . , µaχb′($)),

if a and b are not both odd integers,

(µχ1($), . . . , µχa′($), µ, µχ′1($), . . . , µχb′($)),

if a and b are both odd integers.

Remark 4.5. — Notice that the rank of H = U(a) × U(b) is the same as that of U

unless n = a+ b is even and a, b are both odd. In the second (exceptional) case, the rank

of H is one less than that of U

4.2.3. For global purposes, we study now the split case. Using local Langlands corre-

spondence [HT], [Hen], this can be done in a much greater generality, but we shall restrict

ourselves just to an easy example. Let H = GLa(E)×GLb(E) and set G = GLn(E) with

n = a+b and let µa and µb be unramified characters of E×. We define an L-homomorphism

ξµa,µb
: LH → LG by

(g1, g2) 7→

(
µb($)g1

µa($)g2

)
.

It is now clear that if π and π′ are unramified representations of GLa(E) and GLb(E)

respectively and (χ1($), . . . , χa($)) and (χ′1($), . . . , χ′b($)) are its respective Satake pa-

rameters, then the Satake parameters of ξ̃µa,µb
(π, π′) are:

(µb ◦ χ1($), . . . , µb ◦ χa($), µa ◦ χ′1($), . . . , µa ◦ χb($)).

Hence ξ̃µa,µb
(π, π′) is a composition factor of the parabolically induced representation

(4.3) iGP(a,b)
((π µb ◦ det)⊗ (π′ µb ◦ det))
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where we see (π µb◦det)⊗(π′ µb◦det) as a representation of the Levi subgroup H ' M(a,b)

of P(a,b). In particular, if π and π′ are unitary representations, by Theorem A.2, the

representation (4.3) is irreducible and hence isomorphic to ξ̃µa,µb
(π, π′).

A

On the classification of irreducible representations of linear groups

By the work of Silberger [Sil] and Borel-Wallach [BW], extending the results of Lang-

lands to the p-adic case, the problem of classifying irreducible representations of a con-

nected reductive group G over F is reduced to the study of tempered representations.

These representations appear as composition factors of parabolically induced representa-

tions of discrete series representations of Levi subgroups of G. So identifying the tempered

dual of G consists of two problems:

(1) Determine the discrete series representations of the Levi subgroups (in terms of

cuspidal representations or by the theory of types).

(2) Decompose the resulting parabolically induced representations.

Neither problem is resolved in any generality. The general theory of irreducible represen-

tations of GLn over a non-Archimedean local field, however, is well understood. In this

appendix, we recall the construction of irreducible representations in terms of cuspidal

data. For a more detailed exposition and historical notes one can consult [Mo1], see also

[Rod], [BZ1] and [Ze1].

A.1. Discrete series. — For a general reductive group, one does not know how to clas-

sify the discrete series in terms of cuspidal representations. But for GLn(F) this has been

done by Bernstein and Zelevinsky [Ze1]. An understanding of cuspidal representations

in terms of types is due to Bushnell and Kutzko [BK].

Let ρ be a cuspidal representation of GLr(F) and let a be a positive integer. We denote

by δ(a, ρ) the unique irreducible quotient of the parabolically induced representation:

i
GLn(F)
P

(
ρ| det |−

a−1
2 ⊗ ρ| det |−

a−3
2 ⊗ · · · ⊗ ρ| det |

a−1
2

)
,

where P denotes the standard parabolic subgroup associated to the partition (r, r, . . . , r).

Theorem A.1. — (1) All representations of the form δ(a, ρ) with a a positive integer

and ρ a unitary cuspidal representation of GLr(F) are irreducible discrete series represen-

tations.
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(2) Conversely, let π be an irreducible discrete series representation of GLn(F). There

exist a unique divisor r of n and a unique irreducible unitary cuspidal representation ρ of

GLr(F) such that, if we set a = n
r
, then π is isomorphic to δ(a, ρ).

A.2. Tempered representations. — The parabolically induced representation of a

discrete series representation, in the case of GLn(F), is irreducible (see, for example [Jac]).

We have a deeper result, proved by Bernstein [Be1]:

Theorem A.2. — Let P be a standard parabolic subgroup of GLn(F) and let MP be its

Levi factor. Let ρ be an irreducible unitary representation of MP. Then i
GLn(F)
P (ρ) is

irreducible.

A similar theorem for the inner forms of GLn(F) has been proved by V. Sécherre [Sec].

A.3. Irreducible representations. — The understanding of the unitary dual of

GLn(F) is due to Tadić [Tad]. The Langlands correspondence in this case is due to

Harris-Taylor [HT] and Henniart [Hen]. The Langlands quotient theorem, in this case,

reads:

Theorem A.3. — Let π be an irreducible representation of GLn(F). There exist a par-

tition α = (n1, . . . , nr) of n and, for 1 ≤ i ≤ r, a unique (up to isomorphism) tempered

representation τi of GLni
(F) and a unique real number ti with

t1 > t2 > · · · > tr,

such that π is the unique irreducible quotient of

i
GLn(F)
Pα

(
τ1| det |t1 ⊗ τ2| det |t2 ⊗ · · · ⊗ τr| det |tr

)
.

We note π = L (τ1| det |t1 , . . . , τr| det |tr) and, if π′ = L
(
τ ′1| det |t′1 , . . . , τ ′r′| det |t′r′

)
is an-

other representation of GLn(F), then π is isomorphic to π′ if, and only if, r = r′ and for

all 1 ≤ i ≤ r, τi| det |ti ' τ ′i | det |t′i.
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