Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Myungho Kim - Kyung Hee University,
Titre Exchange matrices of $\bold i$-boxes
Date04/11/2024
Horaire14:00 à 15:00
Diffusion
Résume

Admissible chains of $\bold i$-boxes are important combinatorial tools in the monoidal categorification of cluster algebras via representations of quantum affine algebras, since they provide some seeds of the cluster algebra. For a given sequence $\bold i$ with indices ranging over the interval [a,b], we define a subinterval [x,y] of [a,b] as an $\bold i$-box if the color of $\bold i$ at x matches the color at y. Two $\bold i$-boxes are said to commute if the extension of one of the $\bold i$-boxes by one step to the left and one step to the right properly contains the other $\bold i$-box. A maximal commuting family of $\bold i$-boxes yields a seed in the category of finite-dimensional modules over the quantum affine algebra, and any such family can be constructed from an admissible chain.  In this talk, I will introduce the notion of $\bold i$-boxes and present recent results on the exchange matrices of a maximal commuting family of $\bold i$-boxes. This is a joint work with Masaki Kashiwara.

This talk will take place on Zoom only.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG