Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Dylan ALLEGRETTI - ,
Titre Skein algebras and quantized Coulomb branches
Date25/11/2024
Horaire14:00 à 15:00
Diffusion
Résume

Character varieties of surfaces are fundamental objects in modern mathematics, appearing in low-dimensional topology, representation theory, and mathematical physics, among other areas. Given a reductive algebraic group G, the G-character variety of a surface is a moduli space parametrizing G-local systems on the surface.
Character varieties of surfaces are expected to arise in physics as Coulomb branches of certain quantum field theories. A Coulomb branch is a kind of moduli space that was recently given a precise mathematical definition in the work of Braverman, Finkelberg, and Nakajima.
In this talk, I will focus on the SL(2,C)-character variety of a surface. It has a quantization given by a noncommutative algebra called the Kauffman bracket skein algebra. I will describe a precise relationship between skein algebras and quantized Coulomb branches, confirming the physics prediction in some cases. This is joint work with Peng Shan.

This talk will take place on Zoom only.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG