Séminaires : Géométrie énumérative

Equipe(s) : aa, tga,
Responsables :Penka Georgieva, Elba Garcia-Failde, Ilia Itenberg, Alessandro Chiodo
Email des responsables : penka.georgieva@imj-prg.fr
Salle : 1516 - 413
Adresse :Jussieu
Description

URL: https://webusers.imj-prg.fr/~penka.georgieva/EGSeminar.html


Orateur(s) Maxime Cazaux - IMJ-PRG,
Titre Quantum K-theory of the quintic singularity
Date13/12/2024
Horaire14:00 à 15:00
Diffusion
Résume

The Landau-Ginzburg Calabi-Yau correspondence relates the quantum cohomology of a CY hypersurface X, with that of the associated singularity in the affine space. More precisely, both theories are encoded in generating I-functions, which match under analytic continuation and satisfy the Picard-Fuchs equation. In quantum K-theory, an analogue of quantum cohomology, the I-function of X satisfies a q-difference equation instead. In this talk, we will discuss an approach for K-theoretic invariants of the Fermat singularity, and explain how to recover all the solutions to the q-difference equation of the quintic threefold.

Salle15-16-413
AdresseJussieu
© IMJ-PRG