Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Merlin CHRIST - Bonn,
Titre Cluster-tilting in topological Fukaya categories for higher Teichmuller theory
Date22/09/2025
Horaire14:00 à 15:00
Diffusion
Résume

The (decorated) higher Teichmüller space of a marked surface is a space of local systems valued in a split simple Lie group of a Dynkin type I. There is a corresponding cluster algebra, which gives rise to coordinates on the higher Teichmüller space. We will discuss additive categorifications of these cluster algebras. We first associate a (relative) 3-Calabi--Yau dg category with the surface and Dynkin type I. This dg category arises by gluing, along a perverse (co)sheaf of categories. The fundamental building block is associated with the 3-gon surface (=the basic triangle). The 3-CY category of the basic triangle was introduced and studied in recent work of B. Keller and M. Liu. We then discuss an equivalence between the following three Frobenius exact dg/infinity-categories, categorifying the cluster algebra:

1) The Higgs category associated with the 3-CY category.

2) The cosingularity category of the 3-CY category.

3) The topological Fukaya category of the surface valued in the 2-periodic 1-CY cluster category of type I.

This talk will take place in hybrid mode at the Institut Henri Poincaré.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG