Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : Info sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse :
Description

Le séminaire est prévu en présence à l'IHP et à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Peigen Cao - USTC, Hefei,
Titre The tropical invariant and the $F$-invariant in cluster algebras
Date02/02/2026
Horaire14:00 à 15:00
Diffusion
Résume

The Lambda-invariant and the d-invariant are two integer-valued invariants introduced by Kang-Kashiwara-Kim-Oh and by Kashiwara-Kim-Oh-Park in their study of monoidal categorification of cluster algebras using finite-dimensional modules over quiver Hecke algebras and quantum affine algebras. The Lambda-invariant can be viewed as a monoidal categorification of the compatible Poisson structure on those cluster algebras. The d-invariant is defined as half the symmetrized sum of Lambda-invariants, and it can be used to characterize the strong commutativity between real simples.

In this talk, we introduce the tropical invariant and the F-invariant in cluster algebras. The tropical invariant is defined for any cluster algebra with a compatible Poisson structure and it generalizes the Lambda-invariant. The F-invariant is defined as the symmetrized sum of the tropical invariants and it simultaneously generalizes all of the following invariants: the d-invariant, Derksen-Weyman-Zelevinsky’s E-invariant, Fu-Gyoda’s f-compatibility degree, Fomin-Zelevinsky’s compatibility degree, and Qiu-Zhou’s f-intersection number on marked surfaces.

This talk will take place on Zoom only.

SalleInfo sur https://researchseminars.org/seminar/paris-algebra-seminar
Adresse
© IMJ-PRG