Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Bruno VALLETTE - Université de Nice,
Titre Théorie de déformation des morphismes de props
Date10/12/2007
Horaire14:30 à 15:30
Diffusion
RésumePour tout morphisme de props, nous définirons, à la Quillen, un complexe de chaines qui mesure les déformations de ce morphisme. Lorsque le prop but est le prop des endomorphismes d'un module A, ceci définit la théorie homologique des déformations de A comme (bi)gèbre sur le prop source. Nous retrouvons de cette manière les différents complexes de chaines de la littérature : (co)homologie de Hochschild des algèbres associatives, de Chevalley-Eilenberg des algèbres de Lie, de Harrison des algèbres commutatives, de Lecomte-Roger des bigèbres de Lie, de Gerstenhaber-Schack des bigèbres associatives. Grâce à ce point de vue, nous monterons que ce complexe de chaines est toujours une algèbre de Lie à homotopie près (stricte lorsque le prop est de Koszul). Les solutions de Maurer-Cartan généralisées correspondent alors aux structures déformées de (bi)gèbre sur A. De plus, nous construirons des opérations supérieures (non binaires) agissant sur ce complexe qui généralisent les opérations braces du complexe de Hochschild. Ceci nous permettra de montrer une version généralisée de la conjecture de Deligne.
Salleà distance / remote
AdresseIHP
© IMJ-PRG