Séminaires : Séminaire d'Algèbre

Equipe(s) : gr,
Responsables :J. Alev, D. Hernandez, B. Keller, Th. Levasseur, et S. Morier-Genoud.
Email des responsables : Jacques Alev <jacques.alev@univ-reims.fr>, David Hernandez <david.hernandez@imj-prg.fr>, Bernhard Keller <bernhard.keller@imj-prg.fr>, Thierry Levasseur <Thierry.Levasseur@univ-brest.fr>, Sophie Morier-Genoud <sophie.morier-genoud@imj-prg.fr>
Salle : à distance / remote
Adresse :IHP
Description

Depuis le 23 mars 2020, le séminaire se tient à distance. Pour les liens et mots de passe, merci de contacter l'un des organisateurs ou de souscrire à la liste de diffusion https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. L'information nécessaire sera envoyée par courrier électronique peu avant chaque exposé. Les notes et transparents sont disponibles ici.

 

Since March 23, 2020, the seminar has been taking place remotely. For the links and passwords, please contact one of the organizers or

subscribe to the mailing list at https://listes.math.cnrs.fr/wws/info/paris-algebra-seminar. The connexion information will be emailed shortly before each talk. Slides and notes are available here.

 


Orateur(s) Amnon YEKUTIELI - Ben Gurion University, Israel et Université Paris 7,
Titre Cohomologically complete complexes
Date24/10/2011
Horaire14:30 à 15:30
Diffusion
RésumeLet $A$ be a noetherian commutative ring, and $\mathfrak{a}$ an ideal in it. In this lecture I will talk about several properties of the derived $\mathfrak{a}$-adic completion functor and the derived $\mathfrak{a}$-torsion functor. In the first half of the talk I will discuss $\mathfrak{a}$-adically projective modules, GM Duality (first proved by Alonso, Jeremias and Lipman), and the closely related MGM Equivalence. The latter is an equivalence between the category of cohomologically $\mathfrak{a}$-adically complete complexes and the category of cohomologically $\mathfrak{a}$-torsion complexes. These are triangulated subcategories of the derived category D(Mod $A$). In the second half of the talk I will discuss new results: (1) A characterization of the category of cohomologically $\mathfrak{a}$-adically complete complexes as the right perpendicular to the derived localization of $A$ at $\mathfrak{a}$. This shows that our definition of cohomologically $\mathfrak{a}$-adically complete complexes coincides with the original definition of Kashiwara and Schapira. (2) The Cohomologically Complete Nakayama Theorem. (3) A characterization of cohomologically cofinite complexes. (4) A theorem on completion by derived double centralizer. This is joint work with Marco Porta and Liran Shaul.
Salleà distance / remote
AdresseIHP
© IMJ-PRG